Corollarics
• IF TEKLH) and LEQ1203, then
NLT-XI) is finite-dimensionel
· IF N(T->I)= {03, tren
T-XI is surjective.
• T-λΙ invertible => T*-λΙ invertible.
Spectra and Eigenvalues
DeF: Let TEZ(H,H)
The resolvent set, denoted by p(T),
is defined by p(T) = { > e (T-> I is invertible}
The <u>spectrum</u> , denoted by $\sigma(T)$, is defined by
olt):= C (p(t)
The eigenvalues of T, denoted EVLT), is defined

$N_{otes}: E \vee (T) \subset \sigma(T).$
- If T is compact, then
Euly) 203 - 0(+) 203.
EV(T) GoIT) can hold.
For example, consider right-shift operator on l?(IN).
Then: let TEILH, H). Then o(T) ::
compact and
の(て) こええらんし ハレミ ハエルろ.
F: Suppose LeC, ILISUTI
Goal: Show that T-XI is invertible.
In particular, we show that T-XI is bijective
Let FEH. Consider the equation
(*) エレーンル=よ.

Claim: 3!mett that satisfies (+).
$pf_{of_{claim}}$: $T_{u-\lambda u=f} = u = \frac{1}{\lambda}(T_{u}-f)$.
$2et F(w) = \frac{1}{2}(\tau_w - \frac{2}{3}).$
Then F(w) - F(v) < u - v
Contraction mapping principle =>]! u c.t. F(u) = u.
T-λI is bijective.
Next, we prove that octs = e(t) is open.
Let $\lambda_{e} \in (L^{T})$ and let $\lambda \in C$
sトt:ボイ トレーンのレイ II (エーン。エソー1 I ⁻¹
Again, we want to show that T-XI is bijective.
Let FEH,
$Tu - \lambda u = F$ $\iff Tu - \lambda_0 u = F + (\lambda - \lambda_0) u$.

Now, if Su:= (T->, I) 2(F- (2-20)~).
flan	
$\ S_{N}-S_{v}\ = \ (T-\lambda_{o}T)^{1}(\lambda_{o})\ $	->> (u-~)
	6) u-~1
< 11 v 11.	
>> T->I is invertible =>	σιτίε
clased.	
In conclusion, $\sigma(\tau)$ is a	mpart D.
Le <u>mme</u> : Let TEK(H) and	$l let (\lambda_n)_{n=1}^{\infty}$
be a sequence of distinct e	emplex numbers
such that	
ントーン	
and {2, 3, - C o(T) < 203	•
Then $\lambda = 0$	
[I.e. all points of or(T)-203 ar	e isolated paints).

pF: Since T is compact, Ant EVIT).
For each n, choose ento such that
$(\tau - \lambda e_n) = 0.$
Let En = spen len The
Claim: $E_N \notin E_{N+1}$
profof claim: by induction, assume
Zez,, en 3 are linearly independent.
Suppose $e_{N+1} = \sum_{j=1}^{N} x_j e_j$
$\Rightarrow Te_{N+1} = \sum_{j=1}^{N} \kappa_j Te_j = \sum_{j=1}^{N} \kappa_j \lambda_j e_j$
$\mathbf{r}_{\mathbf{k}} = \sum_{\mathbf{N}+1} \mathbf{e}_{\mathbf{N}+1} = \sum_{j=1}^{n} \mathbf{d}_{j} \sum_{\mathbf{N}+1} \mathbf{c}_{j}$
$ = \sum_{j=1}^{N} d_j (\lambda_{N+1} - \lambda_j) e_j = d_j (\lambda_j - \lambda_{N+1}) = 0 $
$\Rightarrow \alpha_j = \forall j$
⇒ Sei,, eaun 3 is lin ind. → En & Eaun
\sim

Now construct a seguence, untEn, s.t. Hunl=1 and dist $(u_n, E_{n-1}) \ge \frac{1}{2}$. if mon 22, then EncEmpleEn Them Tun/In GEn and (Tun-InI)un + Em-1. hShieh inplies $\|T \frac{u_{n}}{\lambda_{n}} - T \frac{u_{m}}{\lambda_{m}} \| = \|T \frac{u_{n}}{\lambda_{n}} - T \frac{u_{m}}{\lambda_{m}} + u_{n} - u_{m} \|$ $= \| T \underline{w}_{n} - T \underline{w}_{n} - \lambda \underline{w}_{n} - \underline{w}_{n} \|$ 2 dist (..., Em.,). IF $\lambda \neq 0$, then <u>Sun</u> y as <u>An Jac</u>, is a bounded

Sequence

=> {Tun } is precompact because Tis

compact.

=> 2 - un 3 ap An Small has a Cauchy subsequence