Cor: Let geliced) let BCLP(12) be bounded, and JCC112d have finite measure, then ¥:= { (q+f)|, : f+73}. is precompact in LPCZJ. BeFore proving the corollary, we need a lemma: Lemme! Let ge La (123) for legero, Then $\lim_{W \to 0} \|T_h g - g\|_{q} = 0.$ pf: Let E70, Jgo E Cc (IRd) such that 11g.-glig< e/z. g. is uniformly continuous 11 Tugo-golly = 2m (supplyo) 1/2 11 Tugo-gollo -00 > for In small enough 1 trg-gll 2 5 11tr go-trgll 2 + 11 tr go-egolly + 11 g-egolly

Proof of Corollary
It suffices to show that
$$F$$
 is bounded
and $\|T_n \xi - \xi\|_{L^p(\mathbb{R}^d)} \longrightarrow \mathbb{O}$ unitarily
in F
Boundedness
For $f \in \mathcal{R}$, since T is bounded
 $\|(q + f)|_{J_2}\|_{p} \leq \|q + f \|_{p} \leq \|q\|_{2} \|F\|_{p} \leq C \|q\|_{2}$.
 $\Rightarrow F$ is bounded in $L^p(\mathbb{R}^d)$

Convergence

$$\| \mathcal{L}_{n}(q+F) \|_{\Sigma} - (q+F) \|_{\Sigma} \|_{F} \leq \| \mathcal{L}_{n}(q+F) - q+F \|_{F}$$

$$= \| \mathcal{L}_{n}(q)+F - q+F \|_{F}$$

$$= \| \mathcal{L}_{n}(q-q)+F \|_{F}$$

$$\leq \| \mathcal{L}_{n}(q-q) + F \|_{\Sigma}$$

$$\leq \| \mathcal{L}_{n}(q-q) \|_{\Sigma}$$

$$\leq \mathcal{L} \| \mathcal{L}_{n}(q-q) \|_{\Sigma}$$

$$| \mathcal{L}_{n}(q-q) \|_{\Sigma}$$

$$| \mathcal{L}_{n}(q-q) \|_{\Sigma}$$

$$| \mathcal{L}_{n}(q-q) \|_{\Sigma}$$

Than! K(x, Y) is a closed l'near subspace of Z(X, Y). **5**f: OK(X,Y) is linear: obvious 2 KLX, YS is closed: (Th) ~ C K(X,Y) s.t. || Th - T || 2/x y) -0 Let Let 200, JN Such that 1 To - TI (6/2 ' Since TN is compact, TN(Bx(0,1)) is totally bounded $T_N(B_x(0,1)) \subset \bigcup_{i=1}^{n} B_y(y_i, e/2).$ シ T(B, O, N) C U B, (Y:, E) T(B, CON) is totally bounded

Def: (Finite Rank Operator) An operator TGZ(X,X) is said to be of Finite ranke if the range of T, R(T), is Finite - dimensional. Cor: Let (Thing, be a sequence of finite-rank operators and let TeZ(X,X) be such that $\|T_n - T\| \xrightarrow{\rightarrow} C$. Then TEKIXJ. Approximation of Compact Operators by Finite-Renk operators Thm: Let 4 be a Hilbert space and TEKLHS, then J(Tu)ne, Finite-rank operators such that $\|T_n - T\|_{\mathcal{I}(H,H)} \rightarrow G.$

pf: (Idea: Use orthogonal projections).
Let $F = T(B_{H}(0,1))$
F is compact and deres totally bounded,
so given nEZL, fure exists
ZI2,, InZCH such that
$F \subset \bigcup_{j=1}^{m} B_{H}(F_{j}, L)$
Let $V_n = epan (F_{2},, F_m)$ and define
This Punot where $P_{v_n} = \operatorname{ortheseoul}_{v_n}$ onto V_n .
Then Tn 1s finite rank and
$\ T_{n,x} - T_{x}\ \leq \ T_{n,x} - F_{j_{0}}\ + \ T_{x} - F_{j_{0}}\ $
$\leq \ T_n \times - P_{v_n} F_{j_n}\ + \frac{1}{n}$
= $\ P_{v_n}T_x - P_{v_n}F_{i,n}\ + V_n$
$\leq T_{x} - \hat{f}_{j_0} + \frac{y_n}{2} \leq \frac{2}{n}$
$\nabla x \in \mathcal{G}_{H}(0,1)$ $= \sum T_{n-}T < 2/n \qquad \square.$

Then IF TEKCHY, then T+ EKCHY.
pF : Let $\{F_n\}_{n=1}^{\infty} \subset B_{+}(o, i)$.
Claim: {T*Fn3 has a convergent
subsequence. Let
F= T(B, (0, 1).
Then F is a compact metric space.
Let $Y := \{ \Psi_n : F \rightarrow C \mid \Psi_n(x) := \langle F_n, x \rangle \}$
Then FCC(F).
Observe: $ \mathcal{L}_{h} \mathcal{L}_{h} - \mathcal{L}_{h} \mathcal{L}_{h} \leq \ h\ $
Tieresore, 7 is a bounded, equicontinuous
subset of C(F). Since F is compact,
F gatisfies the hypotheses of Arzela-Ascoli

Therefore,
$$\exists$$
 subsequence $\{\forall n_{\mu}\}_{\mu_{\mu}}$, s.t.
 $\{\forall n_{\mu}\}_{\mu_{\mu}}\}$ is Cauchy.
 $\Rightarrow \sup_{Y \in B(0, 1)} |\forall n_{\mu}(T_{Y}) - \forall n_{\mu}(T_{Y})| \rightarrow 0$
 $\Rightarrow \sup_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, T_{Y} \rangle - \langle T \neq f_{n_{\mu}}, T_{Y} \rangle| \rightarrow 0$
 $\Rightarrow \sup_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \sup_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{Y \in B(0, 1)} |\langle T \neq f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{X \in T} |f_{n_{\mu}}, T \to f_{n_{\mu}}, Y \rangle - \langle T \neq f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{X \in T} |f_{n_{\mu}}, T \to f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{X \in T} |f_{n_{\mu}}, T \to f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $\Rightarrow \lim_{X \in T} |f_{n_{\mu}}, T \to f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, T \to f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle| - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle| - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle| - \langle T \Rightarrow f_{n_{\mu}}, Y \rangle| \rightarrow 0$.
 $= \lim_{X \to T} |f_{n_{\mu}}, Y \rangle| - \langle T \Rightarrow f_{n_{\mu}}, Y$