| Subspaces and Quotient Spaces              |
|--------------------------------------------|
| A subspace of X is a subset of             |
| X which is itself a linear space.          |
| Given a subspace, M, of X, me              |
| define the equivalence relation            |
| X~Y <=> X-Y+M                              |
| Let X+M denote the equivelence             |
| Class containing x. Then                   |
| $d(x+m)+\tilde{p}(y+m)=(dx+\tilde{p}y)+M.$ |
| Define $X/M := \{x \in X\}$ .              |
| IF M is closed, then X/M                   |
| inherits a norm From X.                    |
| Il x+M  1 := inf {   x+yll   yem}          |



Example: (C(EO, 13), 11.1100)  $\overline{B}(o,i) = \{ f \in C(Co,i) \mid \| f \|_{\infty} \leq 1 \}.$ Claim: BLOID is not compact. Construct non Louchy sequence. Example: Equicontinuous families of Functions. Def: A subset, ¥CC(X), is <u>equicantinuous</u> at x EX if for all E>0, 35>0 e.t. if p(X,Y) 25 then [f(x)-fep14e ¥fe¥

such het II TxII y E C ||x||x For all x.x (Equivalently, JC20 st. sup xex || Tx ||y = C)

Hxll 1