(Note:	weak type (p,o) = strong type (pro).
Observe :	T strong type (p,g) => T weak type (p,g)
The	Mareinkiewicz Interpolation Thm
Th <u>m</u> . meesure	Let (X, M, w) and (Y, N, v) Le spaces.
Let	Po, Pr, 20, 92 E [1,00].
Poe	So, p. eg, and go + g2
Define	$\frac{1}{P} := \frac{1-t}{\gamma_0} + \frac{t}{P_1} + \frac{1}{\gamma_1} = \frac{1-t}{\gamma_0} + \frac{t}{\gamma_1}$
For to	± (0, i).
If	T is a sublineer map from
L ^P + L ^P	to the spece of measurable
Function	-s on Y that is both
	weak type (posgo)
مسط	weak type (p.,q.)

Then T is strong type (p,g).
We will not prove this.
Applications Boundednees of Hendry-Littlewood Maximal
Fonction. Recall: For Feld (12d)
MFlx):= sup SIL SIFIdul xeB) MFlx):= Sup SIL SIFIdul Birabell S
Thm: [Mf]_ < C f _1
pt: 5 r covering lemena.
Claim: . Mf is sublinear
· KM7HI00 SC ILFIL00
Corollary to Marcinkiewicz Interpolation
The Hardy-Littlewood Maximul Function is strong-type (p,p) for 10p200.

Boundedness of Integral Operators Let renenti open. K: IX * J. Sx=y? -> & be continuous and feli(x"|ar) Finally, define To F(x) = S K(x,y) f(y) d#"(y) Jr BJ(*) and $TF(x) := \lim_{S \to 0} T_S F(x).$ We would like to study the L^b boundedness вТ. Why? (From Folland's "Introduction to Partial Differential Equations") Consider the following boundary value problem: (*)(*)(*)(*)(*)(*), XE JL ,×=92

that there exists Formally, demonstrating a Junction, K(x,y) such that 5x K(.,y)=0 Klixt= 5 x was and u (~) = S K (*, y) = [1] d + (" when FEC2 and Ir is a C² surface. However, u can be Found using the method of "Layer Potentials" Suppose q ELP satisfies u(x) = S K(x,y) g(y) d %" ×eR $F(x_0) = \lim_{z \to x_0} u(z) = \lim_{z \to x_0} \int |L(z,y) g(y) dx^n$ €~~ ×. 63.7. Observe: (Nontrivial) 1: $\int K(z,y) q(y) dt'' = \frac{1}{2} q(k_0) + \int K(x_0,y) q(y) dt''$ = 2 $q(k_0) + \int K(x_0,y) q(y) dt''$

Thus, one can reduce the (*) equation to the following set of equations $\begin{cases} L = T_2 + T_2 \\ q = F \\ u = T_2 \\ q \end{cases}$ where $T_{2}q(x) = \int k(x,y) q(y) d(x) d(y) x \in \partial \mathcal{I}$ $T_2 q(x) = \int k(x,y) q(y) dx^{n}(y) \qquad x \in J2$ JJJ Therefore, it suffices to show that $\pm I + T_3$ is continuously invertible. Thus, we need to understand the boundedness of T1, then the invertibility of operators of the form I+T.

The case
$$K(x,y) = K(x-y)$$

 $JZ = \Pi Z_{+}^{n+1} := \{ x_{n+1} > 0 \}$
 $JJZ = \Pi Z_{-}^{n}$
Def: (Calder in Zygmund Kernel).
Let $IB > 0$, $K : \Pi Z^{n} > 0 \} \rightarrow C$ satisfy
 $i.) | K(x) | \leq B \| \times \Pi^{-n}$
 $ii.) \int | K(x) - K | = N | = N | = N$
 $\| = \| > 2 \| = N | = N$
 $iii.) \int | K(x) - K | = N | = N | = N | = N$
 $\| = \| > 2 \| = N | = N$
 $iii.) \int K(x) dx = 0 \quad \forall ocrece = 0$
 $Then K is called a Calderin - Zygmund
Kernel.$

Example: K: IR-goz -> C, where K(x) = 1

$$L_{ensmall} For F \in C_{c}^{\infty} (112^{n})_{1}$$

$$T \notin Cx) = \lim_{E \to 0} \int K(x-y) \#(y) dm(y)$$

$$exists.$$

$$p \notin :$$

$$For j \in \mathbb{Z}_{+}$$

$$\left\{ \sum_{2^{-i-1} \ge 11x-y1 \ge 2^{-i}} K(x-y) \#(y) dm(y) \right\}$$

$$= \left\{ \int K(x-y) \#(y) dy - \#(x) \int K(x-y) dy \right\}$$

$$= \left\{ \sum_{2^{-i-1} \ge 11x-y1 \ge 2^{-i}} K(x-y) (\#(y) - \#(x)) dy \right\}.$$

$$\leq \|\{\#^{1}\|_{\infty} \int \|K(x-y)\|_{1} = x-y\|_{1} dy$$

$$\sum_{2^{-i-1} \ge 11x-y1 \ge 2^{-i}} K(x-y) \||x-y|| dy$$

$$\leq \|\{\#^{1}\|_{\infty} \int \|K(x-y)\|_{1} = x-y\|_{1} dy$$

$$\leq \|\{\#^{1}\|_{\infty} \cdot 2^{-in} + 2^{+j(n-1)} \le 2^{-j} \|\|\#^{1}\|_{\infty}.$$