The bual of Celx)	
(Note: Recall that Celxi is not complet valess X is compart	ete)
Let X be a locally compact, Hourdorff tope Recall:	> 6 gial ce ·
Def: (Radon Measure)	
A Borel measure, m, is Redon it	
a) u(E) = int qu(U) / Ecu, U open } HE	e Bx.
b.) u(U) = supgu(K) Keu, Kempert} Y	U open
c) u(K) <00 for all K compact.	
Def: (Positive Linear Functional)	
A linear functional, L, on CC(X)	
is called <u>positive</u> if L(f) 20 when	never
f20	

Lemme. If L is a positive lineer functional on C_c(x), then for each compact KCX Fenstant CK such that 1 L (F) 1 2 C K H F 11 00 for all FECc(X) such that supplifick Proof: Suppose F is real-valued. K compact, choose 46 Cc(x) Given satisfying YLX> c [0,1] and y(x)=1 for all xek. IF supp(F) cK, then 1F(x)1 ≤ 11711 ~ (1x) => f(x) < ||F|| ~ (x) and -F(x) < ||F||~ (x). Therefore, L(11711-4-5)20 and L(11711-4+5)20 which implies L(7) < 11711_L(4) and -L(7) < 11711_ L(4) Moreover, IL(F) (4 11 Fll on L(4) Therefore, CK = L(4) 20 П.

Prop: (Existence of a Partition of Unity)
Let X be a locally compact, Hausdorff
space, K CX compact and {V_i?_{j=1}ⁿ be
an open cover of K. There is a partition
of unity on K subordinate to {V_i?_{j=1}ⁿ
consisting of compactly supported functions.
pf: For each x ∈ K, x ∈ V_j for some j.
Local compactness ⇒ ∃N_X compact e.b.
x ∈ N_X ⊂ V_j and {int(N_X)}_{X ∈ K} is an
open cover of K. Therefore,
K ⊂
$$\bigcup_{m=1}^{M}$$
 N_X for some {x₀}^M ⊂ K
Define F_j:= UN_X , F_j is compact
N_X ∈ U_j , F_j is compact
Vrysohn's Lemma implies that there exists
g₂₁..., q_n ∈ C_c(X) such that
X ∈ ^N ≤ 9 ≤ X_V ond supplq_j) ⊂ V_j
⇒ .^N = g: g: 21 on K eince g: 21 on F_j

Uryso	hn's Le	mme	again	implies
dure	exists	fe Cc	(X) 51	sch tent
チ=	on K	and		
	supp	<i>(4)</i> د ع	بخ ن ^ت رین >	03.
Let	gn+1 =) – È		
Then	،*+ <i>ا</i> ک_	s ; >0	On	X
Finally.	, de	Fine		
	h; := -	9; 2 %x	for	j=1 , , ~
Therefor	r, suppl	n;) = su	-pp(g;)c \	/. j
and	$\sum_{j=1}^{n} h_j =$	=1 m	K	IJ .

Existence: (This is difficult since $\mathcal{X}_{E} \in \mathcal{L}(\mathcal{X})$) For UCX open define $\mathcal{U}(\mathcal{U}) = \sup \{ L(F) \mid Fe Le(\mathcal{X}), f \in \mathcal{X}_{U}, supplied \}$ and for any $E \in \mathcal{P}(\mathcal{X})$ define the enter measure

Claim 1. ... 15 an outer measure
First show that
$$u(v) \in \sum_{j=1}^{\infty} u(v_j)$$

 $U \in \bigcup_{j=1}^{\infty} V_j$, V_j open.
Let $f \in C_E(X)$ $f \in X_U$, $supp(F) \in U$.
Let $K:= supp(F)$, then K is compact.
Therefore, $K \in \bigcup_{j=1}^{\infty} V_j$, for some n .
There exists a partition of unity, ξ_{g_j} ,
on K subordinate to $\xi_V_j \cdot V_j$.

=> q; ≤ Xv; Sapp(q;) < V; and $\sum_{i=1}^{\infty} q_i = 1 \quad \text{on } \mathcal{K}.$ Then $F = F \cdot \Sigma q_j = \Sigma f \cdot q_j$ and $\overline{f} \cdot q_j \not\in \mathcal{K}_{V_j}$, supplies $f \cdot q_j \in V_j$. $= \sum_{j=1}^{\infty} L(f_{q_j}) \leq \sum_{j=1}^{\infty} L(v_j) \leq \sum_{j=1}^{\infty} L(v_j)$ ⇒ س(v) ≤ ∑ س(v) Countable enbadditivity For all Follows by standard orgunent sets, E CP(x), <u>Claim 2</u>: Open sets are set-measureble We want to show ut(Env) + ut(Erv) & ut(E) For all EE P(x). First, suppose E is open. Then EAU