The	Riesz	Represe	intation	٦	hm
We	will c	haracter	2 e	the	dual
of	لأ(سم)	Fur	14920	•	and
Cc	(×).				
The	Ducl	of 19	m) to	~	122200
Let	lX,r ure spe	ارس	be a	t	-finite
medu	ure spe				~, 1<3500
<u> </u> P +	$\frac{1}{2} = 1$.	For	g e ک ^و (عد	., (define the
lincon	r Jun	.etienal			
		lg(4):	= 54	مدلی ا	
					٤ الع الع ا <i>ل</i> Fllp
ち	lg e (LP	(m) +	and	L	gll E llglig. mous injection
Therefi	ore there	e exists	a (conti	mons injection
र्भ	le (m)	into	ساميا))) -	

pf: Let { du 3n=1 be a seguence of simple Functions such that $\phi_n \rightarrow q$ pointuise and Ital englase angly. Since (X,M, m) is o-Finite, F2 Enjoy such that m(En) Loe For all n. and $X = \bigcup_{n \in I} E_n$ Define gn= duzen. Then gn>g pointroise re-a.e. and lignly 200. By previous proposition, 35 such that 117_11,=1 By construction, In 15 simple as well

Then, by Fator's Lemma light <= liminf |light = liminf Slfngn| = liminf Slfngl <= Mg(g) Obviously, Mg(g) <= light by Hölders ineg

囚.

Thm: (Riesz Rep. Thm) Let $|\langle p \rangle | = \frac{1}{p} + \frac{1}{2} = 1$, $|e + \langle X, M, u \rangle$ be a o-finite measure space. For each L + (L^e (m) , Jq + 12 (m) such that L(F) = Sfiden for all Fellen) and $1 L l = ||q||_{q}$ Therefore, L2(m) is isometrically isomorphic to [1P(-n))*. **>f**: Idea: Use Radon - Nikodym - Lebesque derivative to get geliec tean use previous proposition to show g + 1ª. Finite Measure Case : Let u(X) 200 and L (1P(m))* Define v:M-se by マ(ビ):= レイズビン.

Claims V 13 a complex measure on LX, MS since $K_E \in L^P(-)$.
More over,
$ v E' = L(z_E) \leq L z_E _p = L (-u(E))^{4/p}$
$ \rightarrow \gamma \ell \ell \mu . $
Rodon-Nikolyn => Jg & 21 (and) such that
$\nu(E) = \int g dm := L(m_E).$ E
Therefore,
L(F) = SFgdre Forall simple Functions F.
and $ S_{qdu} = L(F) \leq L F _{p}$.
The previous proposition implies
g the and
llgllg = sup IIII = IIII simple

The bual of Celx)
(Note: Recall that Celxi is not complete) valers X is compart
(Note: Recall that C _c (x) is not complete unless X is comparet Let X be a locally comparet, Hourdorff topological Recall: cpace.
Def: (Radon Measure)
A Borel measure, m, is Rudon it
a) u(E) = int qu(U) [Ecu, U open } YEtBx.
b.) u(U) = sup { u(K) Keu, Keonpeet} VU open
c) u(K) < 00 for all K compact.
Def: (Positive Linear Functional)
A lineer functional, L, on Cc(X)
is called <u>positive</u> if L(f) 20 whenever
f20

Lemme. If L is a positive lineer functional on C_c(x), then for each compact KCX Fenstant CK such that 1 L (F) 1 2 CK 1 F 110 for all FECc(X) such that supplifick Proof: Suppose F is real-valued. K compact, choose 46 Cc(x) Given satisfying YLX> c [0,1] and y(x)=1 for all xek. IF supp(F) cK, then 1F(x)1 ≤ 11711, P(x) => f(x) < ||F|| ~ (x) and -F(x) < ||F||~ (x). Therefore, L(11711-4-5)20 and L(11711-4+5)20 which implies L(7) < 11711_L(4) and -L(7) < 11711_ L(4) Moreover, IL(F) (4 11 Fll on L(4) Therefore, CK = L(4) 20 П.