The Riesz Representation Thu
We will characterize the dual of $L^{i}(\mu)$ for $1 \leqslant p<\infty$ and $C_{c}(x)$.

The Dual of $L P(m)$ for $1 \leq p<\infty$ Let (X, M, μ) be a o-finite measure space. Let $1 \leqslant p<\infty, 1<q \leqslant \infty$ $\frac{1}{p}+\frac{1}{q}=1$. For $g \in L^{2}(e n)$, define the linear functional

$$
l_{g}(f):=\int f \bar{g} d \mu
$$

Holder's Inequality $\Rightarrow\left|\ell_{g}(t)\right| \leq\|g\|_{q}\|f\|_{p}$ $\Rightarrow \quad l_{g} \in(L P(\infty))^{+}$and $\left\|l_{g}\right\| \leq\left\|_{g}\right\|_{g}$. Therefore there exists a continuous injection of $L^{q}(-\alpha)$ into $\left(L^{p}(\mu)\right)^{*}$

Props $\left\|l_{g}\right\|=\sup _{\|t\|_{p}=1}\left|l_{g}(t)\right|=\|g\|_{q}$
For $\quad 1 \leqslant q<\infty$
pf: Suffices to show $\left\|l_{g}\right\| \geq\|g\|_{\varepsilon}$ By construction:

Let $f(x):=\frac{|g(x)|^{q-1} g(x)}{\|g\|_{q}^{z-1}}$
Then

$$
l_{q}(f)=\int \frac{\|\left. g\right|^{2}}{\left\|q g_{l}\right\|_{q}-1}=\|g\|_{q} .
$$

and $\|F\|_{p}=\int \frac{\|\left. g\right|^{\left.(q-1)_{p}\right)}}{\left\|_{g}\right\|_{q} q_{2}^{q-n_{p}}} d \mu=\frac{\int \operatorname{lq}_{q} \|^{8} d \mu}{\left\|_{g}\right\|_{q}^{q}}=1_{1}$.
Prop: Suppose $g \not t^{1} l_{\text {lo }}(m)$
If $\quad M_{q}(g):=\sup \left\{\left|S_{f g}\right|: f\right.$ simple, $\left.11+11_{p}=1\right\}<00$ Then $g \in L q(e n)$ and $\|g\|_{q}=M_{q}(g)$.
pf: Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be a segerence of simple functions such that $\phi_{n} \rightarrow g$ pointwise and $\left|\phi_{n}\right| \leqslant|g| \quad \arg (\phi)=\arg (g)$. Since $[x, \mu, e n)$ is σ-finite, $\exists\left\{E_{n}\right\}_{n=1}^{\infty}$ suck that $\mu\left(E_{n}\right)<\infty$ for all n. and

$$
x=\bigcup_{n=1}^{\infty} E_{n} .
$$

Define $g_{n}=\phi_{n} x_{E_{n}}$. Then $g_{n} \rightarrow g$
pointosise μ-ace. and $\left\|g_{n}\right\|_{q}<\infty$.
By previous proposition, $\exists f_{n}$ such tet

$$
\left\|F_{n}\right\|_{p}=1
$$

By construction, f_{n} is simple as well Then, by Factor's Leman

$$
\begin{aligned}
\|g\|_{q} & \leq \liminf _{n \rightarrow \infty}\| \|_{n} \|_{q}=\liminf _{n \rightarrow \infty} S\left|\xi_{n} g_{n}\right| \\
& \leq \operatorname{limin}_{n \rightarrow \infty} \int\left|F_{n g}\right| \leq M_{q}(g)
\end{aligned}
$$

Obviously, $\quad M_{\varepsilon}(g) \in\|g\|_{\varepsilon}$ by Hölder's ing

Thu: (Riesz Rep. Thu)
Let $1<p<\infty, \frac{1}{p}+\frac{1}{2}=1$, let (x, m, μ) be a o-Finite measure space. For each $L \in\left(L^{p}(n)\right)^{*}, \quad \exists q \in \mathcal{L}^{q}(\infty)$ such the

$$
L(f)=\int f g d \mu \quad \text { for all } f \in L(\mu)
$$

and $\quad\|L\|=\|g\|_{q}$
Therefore, $L q(x)$ is isometrically isomorphic to $\left[L^{P}(-\mu)\right)^{\dagger}$.
pf:
Idea: Use Radon-Nikodym-Lebesgue derivative to get $g \in L_{\text {loo }}^{1}$ then use previous proposition to show $g \in L$.

Finite Measure Care:
Let $\mu(X)<\infty$ and $L \in\left(L^{P}(w)\right)^{\psi}$
Define

$$
\begin{gathered}
\nu: M \rightarrow \mathbb{C} \text { by } \\
\nu(E):=L\left(x_{巨}\right) .
\end{gathered}
$$

Claims v is a complex measure on (X, M) since $x_{c} \in L^{P}(-\infty)$.

More over,

$$
\begin{aligned}
&\mid v L E)\left|=\left|L\left(x_{E}\right)\right| \leq\|L\|\left\|X_{E}\right\|_{L}=\|L\|(\mu(E))^{2 / p}\right. \\
& \Rightarrow \quad \nu \ll \mu .
\end{aligned}
$$

Rodon-Nikodym $\Rightarrow \exists q \in \mathcal{Z}_{\text {le }}^{1}(\mathrm{~m})$ such the

$$
\nu(E)=\int_{E} g d \mu:=2\left(x_{E}\right) .
$$

Therefore,
$L(f)=\int f g d e u \quad$ for all simple Functions I.
and $\quad \mid$ Sfqdal $\left|=|L(F)| \leqslant\|L\|\|f\|_{p}\right.$.
The previous proposition implies

$$
\|q\|_{q}=\sup _{\substack{\|\&\|_{p}=1 \\ \text { simple }}}\left|\int f g d u\right|=\|L\|
$$

The Dual of $C_{c}(x)$.
(Note: Recall tut $C_{c}(x)$ is not complete) unless X is complect
Let x be a locally compact, handoff topobgical
Recall: space.
Def: (Radon Measure)
A Boreal measure, μ, is Redon if
a.) $\mu(E)=\operatorname{int}\left\{\mu(u) \mid E(v, u\right.$ open $\} \quad \forall E \in B_{x}$.
b.) $\mu(U)=\sup \{\mu(k) \mid k \in U, K$ compact $\} \quad \forall U$ open
c) $\mu(k)<\infty$ for all k compact.

Def: (Positive Liver- Functional 1) A liner function el, L, on $C_{c}(x)$ is called positive if $L(f) \geq 0$ wherever $f \geq 0$

Lemme: If L is a positive lineer fractional on $C_{c}(x)$, then for each compact $K C X \quad \exists$ excitant C_{k} such that

$$
|L(f)| \leq C_{k}\|+\|_{\infty}
$$

for all $f \in C_{c}(x)$ such that $\operatorname{supp}(f) \subset K$
proof: Suppose f is real-valued.
Given K compact, choose $\varphi \in C_{c}(x)$ satisfying $\varphi(x) \subset[0,1]$ and

$$
\varphi(x)=1 \quad \text { for all } x \in K
$$

If $\operatorname{supp}(f) \subset K$, then $|F(x)| \leq\|f\|_{\infty} \varphi(x)$

$$
\Rightarrow \quad f(x) \leq\|f\|_{\infty} \varphi(x) \text { and }-f(x) \leq\|f\|_{\infty} \varphi(x) \text {. }
$$

Therefore,

$$
L\left(\|f\|_{\infty} \varphi-f\right) \geq 0 \text { and } L\left(\|f\|_{\infty} \varphi+f\right) \geq 0
$$

which implies

$$
L(\xi) \leq\|f\|-L(\varphi) \text { and }-L(f) \leq\|f\|_{\infty} L(\varphi)
$$

Moreover, $\quad \mid L(f)\|\leq\| f \|_{\infty} L(\varphi)$

$$
\text { Therefore, } \quad C_{k}=L(\varphi) \geq 0
$$

