4 Important Inequalities
(1) Jensen's Inequality.

Thai: Let (X, M, μ) be a finite measure space. Suppose $g \in L^{\prime}(-\infty)$ and

$$
q: x \rightarrow(a, b) \subset \mathbb{R} .
$$

Suppose $F:(a, b) \rightarrow \mathbb{R}$ is a convex function, then

$$
F\left(\frac{1}{\mu(x)} \int_{x} g d \mu\right) \leq \frac{1}{\mu(x)} \int_{x} F \circ g d \mu .
$$

Prosit;
Claim: If $t_{0} \in(a, b), \exists \beta \in \mathbb{R}$ such that $F(t)-F\left(t_{0}\right) \geq \beta\left(t-t_{0}\right)$ for all $t \in(a, b)$.
Observe: $\frac{1}{\mu(x)} \int_{x} g d u \in(a, b)$.
Let

$$
t_{0}:=\frac{1}{v(x)} \int_{x} g d m
$$

$\Rightarrow \exists \beta$ such the

$$
\begin{aligned}
& F(t)-F\left(\frac{1}{m(x)} \int_{x} g d x\right) \\
& \geq \beta\left(t-\frac{1}{m(x)} \int_{x} g d x\right) . \\
& t \in(a, b)
\end{aligned}
$$

for all $t \in(a, b)$
In particular,

$$
\begin{array}{rl}
\frac{1}{\mu(x)} \int_{x} F \circ g & d \mu-F\left(\frac{1}{\mu(x)} \int_{x} g d \mu\right) \\
\geq B\left[\frac{1}{\mu(x)} \int_{x} g d \mu-\frac{1}{\mu(x)} \int_{x} g d r\right] . \\
\Rightarrow \frac{1}{\mu}(x) \int_{x} F \circ g d \mu & \geq F\left(\frac{1}{m(x)} \int_{x} g d m\right)
\end{array}
$$

(2) Hölder's Inequality.

Them: Let $1<p^{2} \infty, 1<q<\infty$ and

$$
\frac{1}{p}+\frac{1}{q}=2
$$

If f and g are measurable functions on X, then $\|\neq g\|_{1} \leq\|F\|_{p}\|g\|_{q}$
(Equality holds if $\alpha|F| P=\beta \lg \mid$ i for some $\alpha, \beta \neq 0$).

Pf. WLOG let $\|f\|_{p}=\|g\|_{q}=1$.
Lemma: ($G M \leq \mu M$)
If $a, b \geq 0$ and $\lambda \in(0,1)$, then

$$
, \quad a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b
$$

w) equality if $a=b$

Let $a=|F|^{p}$ and $b=|g|^{q}$

$$
\begin{aligned}
& \Rightarrow \quad|f g|=a^{1 / p} b^{1 / q} \leq \frac{1}{p} a+\frac{1}{q} b=\frac{1}{p}\left|\|^{p}+\frac{1}{q}\right| g q^{\varepsilon} . \\
& \Rightarrow \quad \int\left|f_{g}\right| d \mu \leq \frac{1}{p}\|f\|_{p}^{p}+\frac{1}{q}\left\|_{g}\right\|_{q}^{q}=1 . \quad \square .
\end{aligned}
$$

(3) Minkowski Inequality

Thai If $1 \leq p<\infty$ and $f, g \in L^{P}(\mu)$
then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

pF: Let $p>1$
Observe: $\quad|f+g|^{p} \leq(|f|+|g|)|f+g|^{p-1}$ Hälder implies

$$
\int|F+g|^{p} \leq\|F\|_{p}\| \|^{1}+\left.\left.g\right|^{p-1}\left\|_{q}+\right\| g\left\|_{p}\right\|\left|F_{q}\right|\right|^{p-1} \|_{q}
$$

Note:: $\quad \int|f+g|^{(p-1) q}=\int|f+g|^{p}$
and $\quad 1 / q=1-\frac{1}{p}$

$$
\begin{aligned}
& \Rightarrow \quad \int \mid f+g\left\|^{p} \leq\left(\|f\|_{p}+\|q\|_{p}\right)\right\| f+g \|_{p}^{p-1} \\
& \Rightarrow\left(\int|f+g|^{p}\right)^{1 / p} \leq\|f\|_{p}+\| g n_{p}
\end{aligned}
$$

(4) Young's Inequality.

Consider $f \in L^{1}\left(\| \mathbb{R}^{d}\right) \quad, g \in L^{1}(\mathbb{R} d)$
Recall the definition of convolution of f and q :

$$
(f+g)(x)=\int f(x-y) g(y) d m(y)=\int f(y) g(x-y) d m(y)
$$

Claim:

$$
\|f * g\|_{L^{1}\left(m \mathbb{m}^{d}\right)} \leq\|F\|_{L^{(}\left(m^{d}\right)}\|g\|_{L^{1}\left(\| \mathbb{R}^{d}\right)}
$$

This is the First case if Young's Inequality
Than: Let $1 \leq p, r, r 2 \infty, 1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$.
If $f \in L^{P}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right)$, then

$$
\|f+g\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L}\|g\|_{L^{2}} .
$$

pf: Case 1: $p=r=q=1$.
Follows from claim.

Case 2: $q=1, p=r$.
Want to show the $11 F \approx \mathrm{~g}\left\|_{L^{p}} \leq\right\| \not\left\|\left\|_{p}\right\| g\right\|_{L^{2}}$
First observe tet

$$
\begin{array}{r}
f \in L^{p}, g \in L^{1} \Rightarrow|f \| g(x-.)|^{y_{p}} \in L^{p}\left(\mathbb{R}^{d}\right) \\
\text { for all } x \in \mathbb{R}^{d} .
\end{array}
$$

Let p^{\prime} satiety $\frac{1}{P}+\frac{1}{p^{\prime}}=1$, then Hölder's inequality implies

$$
\begin{aligned}
& \int|f(y)| \lg (x-y) \mid d y=\left.\int|f(y)| \lg (x-y)\right|^{1 / p}|g(x-y)|^{1 / p^{\prime}} d y \\
& \leq\left(\int|f(y)|^{p} \mid g(x-y \mid d y)^{1 / p}\left(\int|g| d y\right)^{1 / p^{\prime}}\right. \\
& \Rightarrow|f \Downarrow g(x)| \leq\|g\|_{L^{1}}^{1 / p^{\prime}}\left(|f|^{p}+|g|\right)^{1 / p}(x) .
\end{aligned}
$$

Therefore,

$$
\int_{1}^{1 f x-\left.g(x)\right|^{p} d x \leq\|g\|_{L^{2}}^{1 / p^{\prime}} \int\left(|f|^{p} *|g|\right)(x) d x}
$$

By case 1

$$
\int(F+g(x))^{P} d x \leq\|g\|_{L}^{P / p^{\prime}}\|f\|_{p}^{P}\|g\|_{L^{1}}
$$

$$
\Rightarrow\left\|F_{*-g}\right\|_{L} \leq\|z\|_{p}\|g\|_{1}
$$

General Case: Exercise

Corollary: $L^{P}(\mu)$ is a Banach Space妵
(1) $L^{P}(\mu)$ is a roomed linear spaces Follows from Minkowski inequal.'t
(2) $L P(\mu)$ is complete
$L^{P}(u)$ is complete \Leftrightarrow absolutely. convergent series converge

Case 1: $p=\infty$, Absolutely convergent series \Leftrightarrow
m-a.e. Cauchy sequence.

Case 2: $p \geq 1$
Suppose $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{p}$ and

$$
B=\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}<\infty .
$$

Let $G_{N}=\sum_{n=1}^{N}\left|f_{n}\right| \quad$ and
$\left\|G_{N}\right\|_{p} \leq \sum_{n=1}^{N}\left\|F_{n}\right\|_{L} \leq B$ for all N.
By Monotone Convergence Theorem implies

$$
\begin{aligned}
& \int \lim _{n \rightarrow \infty}\left(\sum_{n=1}^{N}\left|F_{n}\right|\right)^{P}=\lim _{N \rightarrow \infty} \int\left|G_{N}\right|^{P} \leq B^{P}<\infty . \\
\Rightarrow & G:=\sum_{n=1}^{\infty}\left|f_{n}\right| \in L^{P}
\end{aligned}
$$

$\Rightarrow \quad \sum_{n=1}^{\infty}\left|f_{n}\right|$ Converges μ-ace.
$\Rightarrow \quad F:=\sum_{n=1}^{\infty} f_{n}$ converges $\mu-a . e$.
By Dominated Convergence Theorem,

$$
\lim _{N \rightarrow \infty} \int\left|F-\sum_{n=1}^{N} f_{n}\right|^{p} d \mu=0 \square .
$$

