Lecture 1
Functional Analysis
Motivation
(1) In calculus, we are concerned
with coluing problems of the form

$$\begin{cases} \frac{d}{dt} F(t) = g(t) & F: IR = 1|R| \\ f(D) = e^{-1} & F: IR = 1|R| \\ f(D) = e^{-1} & F: IR = 1|R| \\ f(D) = e^{-1} = 1|R| \\ f(D) = 1|R| \\ f(D)$$

Up to consider
$$PDE_{s}$$

$$\begin{cases}
\frac{d}{dt} \neq (t_{1}x) = G(f(t_{1}x)) \\
f(0_{1}x) = g(x) e some function expression expression$$

Lineor Spaces

Def: [Linear Spaces/Vector Spaces] A set, x, is a linear space (vector space) over a field, K, if i.) FOEX, O+x=x HxeX ii.) IF &, REK, x, y eX then &x+ By eX. Def: [Normed Linear Space]

A <u>normed linear epoce</u>, (X, 11.11), is a linear space, X, over 112 (a-K) with a Junction ||.11: X -> [0,07) satisfying i.) ||x||=0 &> x= D ii.) |lax|| = |al.11x|| VxeX, a ell? iii.) (A.ineq) ||x+y|| & ||x|| + |ly||. Then 1.1 is called a <u>norm</u>.

Examples
• (
$$\mathbb{R}^{2d}$$
, \mathbb{H}^{1}), d -dimensional real
space with the Euclidean norm
• $L^{1}(m)$ (Norm: $\mathbb{H}^{2}\mathbb{H}_{L^{1}(m)}^{1} = \int \mathbb{H}^{2}\mathbb{H}_{m}$)
• $C_{b}(\mathbb{R}^{2}) = \{\frac{1}{2}:\mathbb{R}^{2} \to \mathbb{R}^{2}\} \xrightarrow{\mathcal{L}^{2}}$ continuous
Norm: supremum, $\mathbb{H}^{2}\mathbb{H}_{m}^{1} = \sup_{\mathbf{x} \in \mathbb{R}^{2}} \mathbb{H}^{2}\mathbb{H}_{m}^{1}$.

Notes

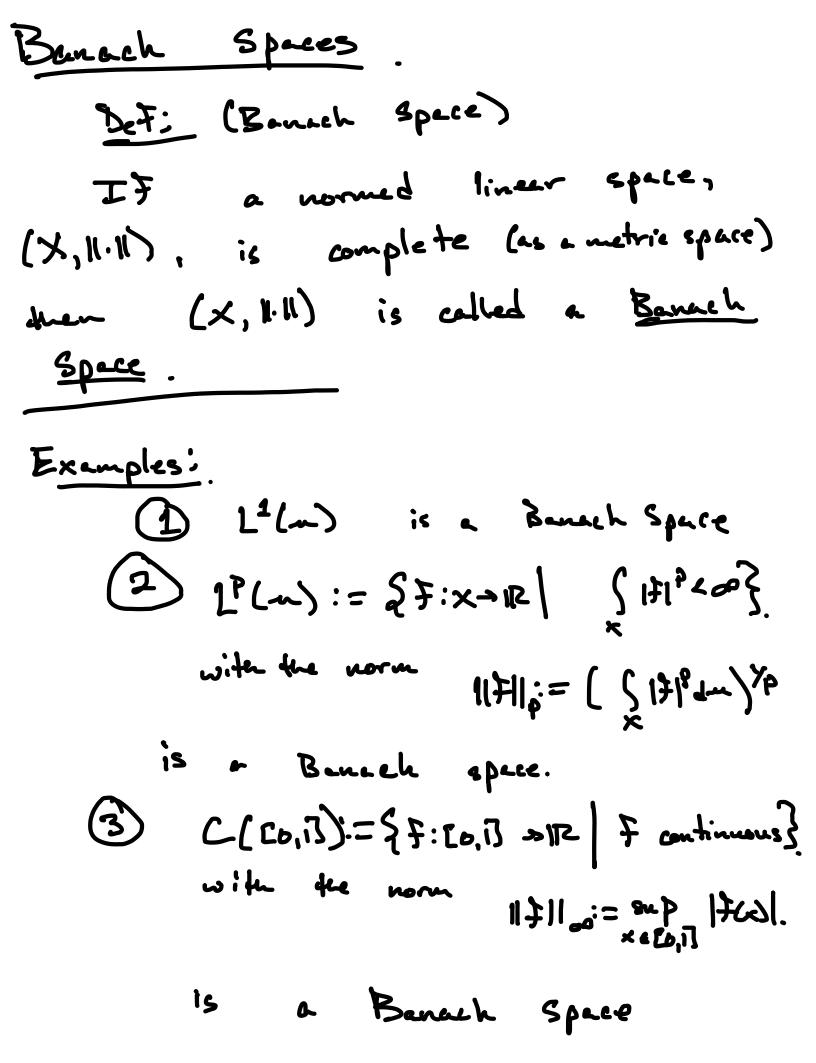
Any norm gives rise to a metric jf, on X defined by l(x,y):= llx-yll
Two norme 11.1/2 and 11.1/2 are said to be <u>equivalent</u> if JC24 e.f. C⁻¹ ll x11, f llx11₂ f C llx11,
Any norm defines a topology colled the norm topology

(strong topology).

Convergence. Det: Let (X, 11.11) be a normed linear space. A series Zxn is said to converge if $\lim_{N\to\infty} \| \stackrel{N}{\geq} \times_n - \times \| = 0$ This is denoted $\sum_{n=1}^{\infty} x_n = x$. The series , Zxn is said to converge absolutely it p S ||xn || < -0

The: A normed linear space, (X, N.N), is complete :FF every absolutely convergent series in X converges to an element in X.

Prof



(4) C_c (HZ) := {F: NZ->IR | F continuous, } comparetly supported } is/ fire sup norm is a normed mean space, but not a Banach Space (On Pset 1). Bases Det: (Hamel Basis) A subset, B, & a linear space, X, is called a Homel Basis for X if each xeX can be expressed as a unique, finite mar combination of elements in B. Lemma. Every linear space has a Hemel basis (Pret 1)

Def: [Schauder Basis]
A subset, Sensue, of a normed
linear space, (X, 11.11), is called
a Schnuder Basis it for each
x eX there exists a unique
sequence, 2×n3n=1 CIR, e.E.
$\sum_{n=1}^{\infty} x_n e_n = X$
If the convergence is absolute,
then zenzoo is an unconditionel
Scheuder Basis