Reduced words and a formula of Macdonald

Sara Billey University of Washington

Based on joint work with: Alexander Holroyd and Benjamin Young based on preprint 2017

University of Southern California, January 25, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Permutations and Reduced Words

Macdonald's Reduced Word Formula

Generalizations of Macdonald's Formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Open Problems

Permutations

Permutations are fundamental objects in mathematics, computer science, game theory, economics, physics, chemistry and biology.

Notation.

- S_n is the symmetric group of permutations on n letters.
- w ∈ S_n is a bijection from [n] := {1, 2, ..., n} to itself denoted in *one-line notation* as w = [w(1), w(2), ..., w(n)].
- ▶ $s_i = (i \leftrightarrow i + 1) = adjacent transposition for <math>1 \leq i < n$.

Example.
$$w = [3, 4, 1, 2, 5] \in S_5$$
 and $s_4 = [1, 2, 3, 5, 4] \in S_5$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $ws_4 = [3, 4, 1, 5, 2]$ and $s_4w = [3, 5, 1, 2, 4]$.

Permutations

Presentation of the Symmetric Group.

Fact. S_n is generated by $s_1, s_2, \ldots, s_{n-1}$ with relations

$$egin{array}{l} s_i s_i = 1 \ (s_i s_j)^2 = 1 \ {
m if} \ |i-j| > 1 \ (s_i s_{i+1})^3 = 1 \end{array}$$

For each $w \in S_n$, there is some expression $w = s_{a_1}s_{a_2}\cdots s_{a_p}$. If p is minimal, then

- $\ell(w) = length of w = p$,
- $s_{a_1}s_{a_2}\cdots s_{a_p}$ is a *reduced expression* for w,
- $a_1 a_2 \dots a_p$ is a *reduced word* for *w*.

Reduced Words and Reduced Wiring Diagrams

Example. 121 and 212 are reduced words for [3, 2, 1].

Example. 4356435 is a reduced word for $[1, 2, 6, 5, 7, 3, 4] \in S_7$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Reduced Words

Key Notation. R(w) is the set of all reduced words for w.

```
Example. R([3,2,1]) = \{121,212\}.
```

Example. *R*([4, 3, 2, 1]) has 16 elements:

321323	323123	232123	213213
231213	321232	132132	312132
132312	312312	123212	213231
231231	212321	121321	123121

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example. *R*([5, 4, 3, 2, 1]) has 768 elements.

Counting Reduced Words

Question. How many reduced words are there for *w*?

Question. How many reduced words are there for w?

Theorem. (Stanley, 1984) For
$$w_0^n := [n, n - 1, ..., 2, 1] \in S_n$$
,

$$|R(w_0^n)| = \frac{\binom{n}{2}!}{1^{n-1} \ 3^{n-2} \ 5^{n-3} \ \cdots \ (2n-3)^1}.$$

Observation: The right side is equal to the number of standard Young tableaux of staircase shape (n - 1, n - 2, ..., 1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counting Standard Young Tableaux

Defn. A *partition* of a number *n* is a weakly decreasing sequence of positive integers

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$$

such that $n = \sum \lambda_i = |\lambda|$.

Partitions can be visualized by their Ferrers diagram

Def. A standard Young tableau T of shape λ is a bijective filling of the boxes by 1, 2, ..., n with rows and columns increasing.

Example. $T = \begin{bmatrix} 1 & 2 & 3 & 6 & 8 \\ 4 & 5 & 9 \\ \hline 7 \end{bmatrix}$ The standard Young tableaux (SYT) index the bases of S_n -irreps. Counting Standard Young Tableaux

Hook Length Formula. (Frame-Robinson-Thrall, 1954) If λ is a partition of *n*, then

$$\#SYT(\lambda) = \frac{n!}{\prod_{c \in \lambda} h_c}$$

where h_c is the *hook length* of the cell c, i.e. the number of cells directly to the right of c or below c, including c.

Example. Hook lengths of $\lambda = (5, 3, 1)$: 7 5 4 2 1 So, $\#SYT(5, 3, 1) = \frac{8!}{7 \cdot 5 \cdot 4 \cdot 3 \cdot 4 \cdot 2} = 162$. 1

Remark. Notable other proofs by Greene-Nijenhuis-Wilf '79 (probabalistic), Krattenthaler '95 (bijective), Novelli-Pak-Stoyanovskii '97 (bijective), Bandlow '08.

Counting Reduced Words

Theorem.(Edelman-Greene, 1987) For all $w \in S_n$,

$$|R(w)| = \sum a_{\lambda,w} \# SYT(\lambda)$$

for some nonnegative integer coefficients $a_{\lambda,w}$ with $\lambda \vdash \ell(w)$ in a given interval in dominance order.

Proof via an insertion algorithm like the RSK:

 $\mathbf{a} = a_1 a_2 \dots a_p \longleftrightarrow (P(\mathbf{a}), Q(\mathbf{a})).$

 $P(\mathbf{a})$ is strictly increasing in rows and columns whose reading word is a reduced word for w.

 $Q(\mathbf{a})$ can be any standard tableau of the same shape as $P(\mathbf{a})$.

Corollary. Every reduced word for w_0 inserts to the same *P* tableau of staircase shape δ , so $|R(w_0)| = \#SYT(\delta)$.

The formula $|R(w)| = \sum a_{\lambda,w} \# SYT(\lambda)$ gives rise to an easy way to choose a random reduced word for *w* using the Hook Walk Algorithm (Greene-Nijenhuis-Wilf) for random STY of shape λ .

Algorithm. Input: $w \in S_n$, Output: $a_1 a_2 \dots a_p \in R(w)$ chosen uniformly at random.

- 1. Choose a *P*-tableau for *w* in proportion to #SYT(sh(P)).
- 2. Set $\lambda = sh(P)$.
- 3. Loop for k from n down to 1. Choose one of the k empty cells c in λ with equal probability. Apply hook walk from c.
- Hook walk: If c is in an outer corner of λ, place k in that cell. Otherwise, choose a new cell in the hook of c uniformly. Repeat step until c is an outer corner.

Def. For $\mathbf{a} = a_1 a_2 \dots a_p \in R(w)$, let $B(\mathbf{a})$ be the random variable counting the number of *braids* in \mathbf{a} , i.e. consecutive letters i, i + 1, i or i + 1, i, i + 1.

Examples. B(321323) = 1 and B(232123) = 2

Question. What is the expected value of B on R(w)?

Def. For $\mathbf{a} = a_1 a_2 \dots a_p \in R(w)$, let $B(\mathbf{a})$ be the random variable counting the number of *braids* in \mathbf{a} , i.e. consecutive letters i, i + 1, i or i + 1, i, i + 1.

Examples. B(321323) = 1 and B(232123) = 2

Question. What is the expected value of B on R(w)?

Thm.(Reiner, 2005) For all $n \ge 1$, the expected value of *B* on $R(w_0)$ is exactly 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Angel-Holroyd-Romik-Virag: "Random Sorting Networks" (2007)

Conjecture. Assume $a_1a_2 \ldots a_p \in R(w_0)$ is chosen uniformly at random. The distribution of 1's in the permutation matrix for $w = s_{a_1}s_{a_2} \cdots s_{a_{p/2}}$ converges as *n* approaches infinity to the projected surface measure of the 2-sphere.

Alexander Holroyd's picture of a uniformly random 2000-element sorting network (selected trajectories shown):

Thm.(Macdonald, 1991) For $w_0 \in S_n$,

$$\sum_{\mathbf{a}\in R(w_0)}a_1\cdot a_2\cdots a_{\binom{n}{2}}=$$

Thm. (Macdonald, 1991) For $w_0 \in S_n$,

$$\sum_{\mathbf{a}\in R(w_0)}a_1\cdot a_2\cdots a_{\binom{n}{2}}=\binom{n}{2}!$$

Thm. (Macdonald, 1991) For $w_0 \in S_n$,

$$\sum_{\mathbf{a}\in R(w_0)}a_1\cdot a_2\cdots a_{\binom{n}{2}}=\binom{n}{2}!$$

Question.(Holroyd) Is there an efficient algorithm to choose a reduced word randomly with $P(a_1a_2...a_{\binom{n}{2}})$ proportional to $a_1 \cdot a_2 \cdots a_{\binom{n}{2}}$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consequences of Macdonald's Formula

Thm.(Young, 2014) There exists a Markov growth process using Little's bumping algorithm adding one crossing in a wiring diagram at a time to obtain a random reduced word for $w_0 \in S_n$ in $\binom{n}{2}$ steps.

Image credit: Kristin Potter.

Consequences of Macdonald's Formula

The wiring diagram for a random reduced word for $w_0 \in S_{600}$ chosen with Young's growth process.

◆□> ◆□> ◆□> ◆□> ● □

The permutation matrix for the product of the first half of a random reduced word for $w_0 \in S_{600}$ chosen with Young's growth process.

Thm.(Macdonald, 1991) For any $w \in S_n$ with $\ell(w) = p$,

$$\sum_{\mathbf{a}\in R(w)} a_1 \cdot a_2 \cdots a_p = p! \mathfrak{S}_w(1,1,1,\ldots)$$

where $\mathfrak{S}_w(1, 1, 1, ...)$ is the number of monomials in the corresponding Schubert polynomial.

Question.(Young, Fomin, Kirillov,Stanley, Macdonald, ca 1990) Is there a bijective proof of this formula?

Thm. (Macdonald, 1991) For any $w \in S_n$ with $\ell(w) = p$,

$$\sum_{\mathbf{a}\in R(w)} a_1 \cdot a_2 \cdots a_p = p! \mathfrak{S}_w(1, 1, 1, \ldots)$$

where $\mathfrak{S}_w(1, 1, 1, ...)$ is the number of monomials in the corresponding Schubert polynomial.

Question.(Young, Fomin, Kirillov,Stanley, Macdonald, ca 1990) Is there a bijective proof of this formula?

Answer. Yes! Based on joint work with Holroyd and Young, and builds on the Young's growth process.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Schubert polynomials

History. Schubert polynomials were originally defined by Lascoux-Schützenberger early 1980's. Via work of Billey-Jockusch-Stanley, Fomin-Stanley, Fomin-Kirillov, Billey-Bergeron in the early 1990's we know the following equivalent definition.

Def. For $w \in S_n$, $\mathfrak{S}_w(x_1, x_2, \dots, x_n) = \sum_{D \in RP(w)} x^D$ where RP(w) are the *reduced pipe dreams* for w, aka *rc-graphs*.

Example. A reduced pipe dream *D* for $w = [2, 6, 1, 3, 5, 4]^{-1}$ where $x^{D} = x_{1}^{3}x_{2}x_{3}x_{5}$.

To show:

$$\sum_{\mathbf{a}\in R(w)}a_1\cdot a_2\cdots a_p=p!\cdot \#RP(w)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

To show:

$$\sum_{\mathbf{a}\in R(w)}a_1\cdot a_2\cdots a_p=p!\cdot \#RP(w)$$

Def. $b_1b_2...b_p$ is a *bounded word* for $a_1a_2...a_p$ provided $1 \le b_i \le a_i$ for each *i*.

Def. The pair $(\mathbf{a}, \mathbf{b}) = ((a_1 a_2 \dots a_p), (b_1 b_2 \dots b_p))$ is a *bounded pair* for *w* provided $\mathbf{a} \in R(w)$ and **b** is a bounded word for **a**.

Def. A word $\mathbf{c} = c_1 c_2 \dots c_p$ is a *sub-staircase word* provided $1 \le c_i \le i$ for each *i*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To show:

$$\sum_{\mathbf{a}\in R(w)}a_1\cdot a_2\cdots a_p=p!\cdot \#RP(w)$$

Want: A bijection $BP(w) \longrightarrow cD(w)$ where

- BP(w) := bounded pairs for w,
- cD(w) := cD-pairs for w of the form (c, D) where D is a reduced pipe dream for w and c is a sub-staircase word of the same length as w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Transition Equations

Thm.(Lascoux-Schützenberger,1984) For all $w \neq id$, let (r < s) be the largest pair of positions inverted in w in lexicographic order. Then,

$$\mathfrak{S}_{w} = x_{r}\mathfrak{S}_{wt_{rs}} + \sum \mathfrak{S}_{w'}$$

where the sum is over all w' such that $\ell(w) = \ell(w')$ and $w' = wt_{rs}t_{ir}$ with 0 < i < r. Call this set T(w).

Transition Equations

Thm.(Lascoux-Schützenberger,1984) For all $w \neq id$, let (r < s) be the largest pair of positions inverted in w in lexicographic order. Then,

$$\mathfrak{S}_{w} = x_{r}\mathfrak{S}_{wt_{rs}} + \sum \mathfrak{S}_{w'}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the sum is over all w' such that $\ell(w) = \ell(w')$ and $w' = wt_{rs}t_{ir}$ with 0 < i < r. Call this set T(w).

Example. If w = [7325614], then r = 5, s = 7

$$\mathfrak{S}_w = x_5 \mathfrak{S}_{[7325416]} + \mathfrak{S}_{[7425316]} + \mathfrak{S}_{[7345216]}$$

So, $T(w) = \{ [7425316], [7345216] \}.$

Theorem.(David Little, 2003)

There exists a bijection from R(w) to $\bigcup_{w' \in T(w)} R(w')$ which preserves the ascent set provided T(w) is nonempty.

Theorem. (Hamaker-Young, 2013) Little's bijection also preserves the Coxeter-Knuth classes and the Q-tableaux under the Edelman-Greene correspondence. Furthermore, every reduced word for any permutation with the same Q tableau is connected via Little bumps.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Little Bumps

Example. The Little bump applied to $\mathbf{a} = 4356435$ in col 4.

Let $\mathbf{a} = a_1 \dots a_k$ be a word. Define the *decrement-push*, *increment-push*, and *deletion* of \mathbf{a} at column t, respectively, to be

$$\mathcal{P}_{t}^{-}\mathbf{a} = (a_{1}, \dots, a_{t-1}, a_{t} - 1, a_{t+1}, \dots, a_{k});$$

$$\mathcal{P}_{t}^{+}\mathbf{a} = (a_{1}, \dots, a_{t-1}, a_{t} + 1, a_{t+1}, \dots, a_{k});$$

$$\mathcal{D}_{t}\mathbf{a} = (a_{1}, \dots, a_{t-1}, a_{t+1}, \dots, a_{k});$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bounded Bumping Algorithm

Input: $(\mathbf{a}, \mathbf{b}, t_0, d)$, where **a** is a word that is nearly reduced at t_0 , and **b** is a bounded word for **a**, and $d \in \{-, +\}$.

Output: Bump^{*d*}_{t₀}(\mathbf{a}, \mathbf{b}) = ($\mathbf{a}', \mathbf{b}', i, j$, outcome).

- 1. Initialize $\mathbf{a}' \leftarrow \mathbf{a}, \, \mathbf{b}' \leftarrow \mathbf{b}, \, t \leftarrow t_0$.
- 2. Push in direction d at column t, i.e. set $\mathbf{a}' \leftarrow \mathcal{P}_t^d \mathbf{a}'$ and $\mathbf{b}' \leftarrow \mathcal{P}_t^d \mathbf{b}'$.
- 3. If $b'_t = 0$, return $(\mathcal{D}_t \mathbf{a}', \mathcal{D}_t \mathbf{b}', \mathbf{a}'_t, t, deleted)$ and **stop**.
- 4. If \mathbf{a}' is reduced, return $(\mathbf{a}', \mathbf{b}', \mathbf{a}'_t, t, bumped)$ and stop.

(日)((1))

5. Set $t \leftarrow \text{Defect}_t(\mathbf{a}')$ and return to step 2.

Generalizing the Transition Equation

1. We use the bounded bumping algorithm applied to the (r, s) crossing in a reduced pipe dream for w to bijectively prove

$$\mathfrak{S}_w = x_r \mathfrak{S}_{wt_{rs}} + \sum \mathfrak{S}_{w'}.$$

2. We use the bounded bumping algorithm applied to the (r, s) crossing to give a bijection

$$BP(w) \longrightarrow BP(wt_{rs}) \times [1,p] \cup \bigcup_{w' \in \mathcal{T}(w)} BP(w').$$

$$\sum_{\mathbf{a}\in R(w)}a_1\cdot a_2\cdots a_p=p!\mathfrak{S}_w(1,1,1,\ldots)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Def. A *q*-analog of any integer sequence $f_1, f_2, ...$ is a family of polynomials in *q*, $f_1(q), f_2(q), ...$ such that $f_i(1) = f_i$.

Examples.

- ► The standard q-analog of a positive integer k is
 [k] = [k]_q := 1 + q + q² + · · · + q^{k-1}.
- ► The standard q-analog of the factorial k! is defined to be
 [k]_q! := [k][k 1] · · · [1].

Macdonald conjectured a q-analog of his formula using [k], $[k]_q!$.

q-analog of Macdonald's Formula

Theorem. (Fomin and Stanley, 1994) Given a permutation $w \in S_n$ with $\ell(w) = p$,

$$\sum_{\mathbf{a}\in R(w)} [a_1] \cdot [a_2] \cdots [a_p] q^{\operatorname{comaj}(\mathbf{a})} = [p]_q! \mathfrak{S}_w(1, q, q^2, \ldots)$$

where

$$\operatorname{comaj}(\mathbf{a}) = \sum_{a_i < a_{i+1}} i.$$

Remarks. Our bijection respects the *q*-weight on each side so we get a bijective proof for this identity too. The key lemma is a generalization of Carlitz's proof that $\ell(w)$ and $\operatorname{comaj}(w)$ are equidistributed on S_n and another generalization of the Transition Equation.

Another generalization of Macdonald's formula

Fomin-Kirillov, **1997**. We have the following identity of polynomials in x for the permutation $w_0 \in S_n$:

$$\sum_{\mathbf{a}\in R(w_0)} (x+a_1)\cdots(x+a_{\binom{n}{2}}) = \binom{n}{2}!\prod_{1\leq i< j\leq n} \frac{2x+i+j-1}{i+j-1}$$

Remarks. Our bijective proof of Macdonald's formula plus a bijection due to Serrano-Stump give a new proof of this identity answering a question posed by Fomin-Kirillov.

The right hand side is based on Proctor's formula for reverse plane partitions and Wach's characterization of Schubert polynomials for vexillary permutations.

Open Problems

Open. Is there a common generalization for the Transition Equation for Schubert polynomials, bounded pairs, and its *q*-analog?

Open. Is there a nice formula for $|rpp^{\lambda}(x)|$ or $[rpp^{\lambda}(x)]_q$ for an arbitrary partition λ as in the case of staircase shapes as noted in the Fomin-Kirillov Theorem?

Open. What is the analog of Macdonald's formula for Grothendieck polynomials and what is the corresponding bijection?