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Permutations

Permutations are fundamental objects in mathematics, computer
science, game theory, economics, physics, chemistry and biology.

Notation.
I Sn is the symmetric group of permutations on n letters.
I w ∈ Sn is a bijection from [n] := {1, 2, . . . , n} to itself

denoted in one-line notation as w = [w(1),w(2), . . . ,w(n)].
I si = (i ↔ i + 1) = adjacent transposition for 1 ≤ i < n.

Example. w = [3, 4, 1, 2, 5] ∈ S5 and s4 = [1, 2, 3, 5, 4] ∈ S5.

ws4 = [3, 4, 1, 5, 2] and s4w = [3, 5, 1, 2, 4].



Permutations

Presentation of the Symmetric Group.

Fact. Sn is generated by s1, s2, . . . , sn−1 with relations

sisi = 1
(sisj)2 = 1 if |i − j | > 1
(sisi+1)3 = 1

For each w ∈ Sn, there is some expression w = sa1sa2 · · · sap .
If p is minimal, then

I `(w) = length of w = p,
I sa1sa2 · · · sap is a reduced expression for w ,
I a1a2 . . . ap is a reduced word for w .



Reduced Words and Reduced Wiring Diagrams

Example. 121 and 212 are reduced words for [3, 2, 1].
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Example. 4356435 is a reduced word for [1, 2, 6, 5, 7, 3, 4] ∈ S7.
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Reduced Words

Key Notation. R(w) is the set of all reduced words for w .

Example. R([3, 2, 1]) = {121, 212}.

Example. R([4, 3, 2, 1]) has 16 elements:

321323 323123 232123 213213
231213 321232 132132 312132
132312 312312 123212 213231
231231 212321 121321 123121

Example. R([5, 4, 3, 2, 1]) has 768 elements.



Counting Reduced Words

Question. How many reduced words are there for w?

Theorem.(Stanley, 1984) For wn
0 := [n, n − 1, . . . , 2, 1] ∈ Sn,

|R(wn
0 )| = ( n

2 )!
1n−1 3n−2 5n−3 · · · (2n − 3)1 .

Observation: The right side is equal to the number of standard
Young tableaux of staircase shape (n − 1, n − 2, . . . , 1).
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Counting Standard Young Tableaux
Defn. A partition of a number n is a weakly decreasing sequence
of positive integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0)

such that n =
∑
λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(6, 5, 2) −→

Def. A standard Young tableau T of shape λ is a bijective filling
of the boxes by 1, 2, . . . , n with rows and columns increasing.

Example. T = 1 2 3 6 8
4 5 9
7

The standard Young tableaux (SYT) index the bases of Sn-irreps.



Counting Standard Young Tableaux

Hook Length Formula.(Frame-Robinson-Thrall, 1954) If λ is a
partition of n, then

#SYT (λ) = n!∏
c∈λ hc

where hc is the hook length of the cell c, i.e. the number of cells
directly to the right of c or below c, including c.

Example. Hook lengths of λ = (5, 3, 1):
7 5 4 2 1
4 2 1
1

So, #SYT (5, 3, 1) = 8!
7·5·4·3·4·2 = 162.

Remark. Notable other proofs by Greene-Nijenhuis-Wilf ’79
(probabalistic), Krattenthaler ’95 (bijective),
Novelli-Pak-Stoyanovskii ’97 (bijective), Bandlow ’08.



Counting Reduced Words

Theorem.(Edelman-Greene, 1987) For all w ∈ Sn,

|R(w)| =
∑

aλ,w #SYT (λ)

for some nonnegative integer coefficients aλ,w with λ ` `(w) in a
given interval in dominance order.

Proof via an insertion algorithm like the RSK:
a = a1a2 . . . ap ←→ (P(a),Q(a)).
P(a) is strictly increasing in rows and columns whose reading word
is a reduced word for w .
Q(a) can be any standard tableau of the same shape as P(a).

Corollary. Every reduced word for w0 inserts to the same P
tableau of staircase shape δ, so |R(w0)| = #SYT (δ).



Random Reduced Word

The formula |R(w)| =
∑

aλ,w #SYT (λ) gives rise to an easy way
to choose a random reduced word for w using the Hook Walk
Algorithm (Greene-Nijenhuis-Wilf) for random STY of shape λ.

Algorithm. Input: w ∈ Sn, Output: a1a2 . . . ap ∈ R(w) chosen
uniformly at random.

1. Choose a P-tableau for w in proportion to #SYT (sh(P)).
2. Set λ = sh(P).
3. Loop for k from n down to 1. Choose one of the k empty

cells c in λ with equal probability. Apply hook walk from c.
4. Hook walk: If c is in an outer corner of λ, place k in that cell.

Otherwise, choose a new cell in the hook of c uniformly.
Repeat step until c is an outer corner.



Random Reduced Word

Def. For a = a1a2 . . . ap ∈ R(w), let B(a) be the random variable
counting the number of braids in a, i.e. consecutive letters
i , i + 1, i or i + 1, i , i + 1.

Examples. B(321323) = 1 and B(232123) = 2

Question. What is the expected value of B on R(w)?

Thm.(Reiner, 2005) For all n ≥ 1, the expected value of B on
R(w0) is exactly 1.
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Random Reduced Word
Angel-Holroyd-Romik-Virag: “Random Sorting Networks” (2007)

Conjecture. Assume a1a2 . . . ap ∈ R(w0) is chosen uniformly at
random. The distribution of 1’s in the permutation matrix for
w = sa1sa2 · · · sap/2 converges as n approaches infinity to the
projected surface measure of the 2-sphere.



Random Reduced Word

Alexander Holroyd’s picture of a uniformly random 2000-element
sorting network (selected trajectories shown):



Macdonald’s Formula

Thm.(Macdonald, 1991) For w0 ∈ Sn,

∑
a∈R(w0)

a1 · a2 · · · a(n
2) =

(
n
2

)
!

Question.(Holroyd) Is there an efficient algorithm to choose a
reduced word randomly with P(a1a2 . . . a(n

2)) proportional to
a1 · a2 · · · a(n

2)?
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Consequences of Macdonald’s Formula
Thm.(Young, 2014) There exists a Markov growth process using
Little’s bumping algorithm adding one crossing in a wiring diagram
at a time to obtain a random reduced word for w0 ∈ Sn in

(n
2
)

steps.

Image credit: Kristin Potter.



Consequences of Macdonald’s Formula
The wiring diagram for a random reduced word for w0 ∈ S600
chosen with Young’s growth process.

  
	



Macdonald’s Formula
The permutation matrix for the product of the first half of a
random reduced word for w0 ∈ S600 chosen with Young’s growth
process.

  
	



Macdonald’s Formula

Thm.(Macdonald, 1991) For any w ∈ Sn with `(w) = p,∑
a∈R(w)

a1 · a2 · · · ap = p!Sw (1, 1, 1, . . .)

where Sw (1, 1, 1, . . .) is the number of monomials in the
corresponding Schubert polynomial.

Question.(Young, Fomin, Kirillov,Stanley, Macdonald, ca 1990)
Is there a bijective proof of this formula?

Answer. Yes! Based on joint work with Holroyd and Young, and
builds on the Young’s growth process.
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Schubert polynomials

History. Schubert polynomials were originally defined by
Lascoux-Schützenberger early 1980’s. Via work of
Billey-Jockusch-Stanley, Fomin-Stanley, Fomin-Kirillov,
Billey-Bergeron in the early 1990’s we know the following
equivalent definition.

Def. For w ∈ Sn, Sw (x1, x2, . . . xn) =
∑

D∈RP(w) xD where
RP(w) are the reduced pipe dreams for w , aka rc-graphs.

Example. A reduced pipe dream D for w = [2, 6, 1, 3, 5, 4]−1

where xD = x3
1 x2x3x5.
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Bijective Proof of Macdonald’s Formula

To show: ∑
a∈R(w)

a1 · a2 · · · ap = p! ·#RP(w)

Def. b1b2 . . . bp is a bounded word for a1a2 . . . ap provided
1 ≤ bi ≤ ai for each i .

Def. The pair (a,b) = ((a1a2 . . . ap), (b1b2 . . . bp)) is a
bounded pair for w provided a ∈ R(w) and b is a bounded word
for a.

Def. A word c = c1c2 . . . cp is a sub-staircase word provided
1 ≤ ci ≤ i for each i .
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Bijective Proof of Macdonald’s Formula

To show: ∑
a∈R(w)

a1 · a2 · · · ap = p! ·#RP(w)

Want: A bijection BP(w) −→ cD(w) where
I BP(w) := bounded pairs for w ,

I cD(w) := cD-pairs for w of the form (c,D) where D is a
reduced pipe dream for w and c is a sub-staircase word of the
same length as w .



Bijective Proof of Macdonald’s Formula
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Transition Equations

Thm.(Lascoux-Schützenberger,1984) For all w 6= id , let (r < s)
be the largest pair of positions inverted in w in lexicographic order.
Then,

Sw = xrSwtrs +
∑

Sw ′

where the sum is over all w ′ such that `(w) = `(w ′) and
w ′ = wtrstir with 0 < i < r . Call this set T (w).

Example. If w = [7325614], then r = 5, s = 7

Sw = x5S[7325416] + S[7425316] + S[7345216]

So, T (w) = {[7425316], [7345216]}.
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Little’s Bijection

Theorem.(David Little, 2003)
There exists a bijection from R(w) to ∪w ′∈T (w)R(w ′) which
preserves the ascent set provided T (w) is nonempty.

Theorem. (Hamaker-Young, 2013) Little’s bijection also
preserves the Coxeter-Knuth classes and the Q-tableaux under the
Edelman-Greene correspondence. Furthermore, every reduced word
for any permutation with the same Q tableau is connected via
Little bumps.



Little Bumps

Example. The Little bump applied to a = 4356435 in col 4.



Push and Delete operators

Let a = a1 . . . ak be a word. Define the decrement-push,
increment-push, and deletion of a at column t, respectively, to be

P−t a = (a1, . . . , at−1, at − 1, at+1, . . . , ak);
P+

t a = (a1, . . . , at−1, at + 1, at+1, . . . , ak);
Dta = (a1, . . . , at−1, at+1, . . . , ak);



Bounded Bumping Algorithm

Input: (a,b, t0, d), where a is a word that is nearly reduced at t0,
and b is a bounded word for a, and d ∈ {−,+}.

Output: Bumpd
t0(a,b) = (a′,b′, i , j , outcome).

1. Initialize a′ ← a, b′ ← b, t ← t0.
2. Push in direction d at column t, i.e. set a′ ← Pd

t a′ and
b′ ← Pd

t b′.
3. If b′t = 0, return (Dta′,Dtb′, a′t , t, deleted) and stop.
4. If a′ is reduced, return (a′,b′, a′t , t, bumped) and stop.
5. Set t ← Defectt(a′) and return to step 2.



Generalizing the Transition Equation

1. We use the bounded bumping algorithm applied to the (r , s)
crossing in a reduced pipe dream for w to bijectively prove

Sw = xrSwtrs +
∑

Sw ′ .

2. We use the bounded bumping algorithm applied to the (r , s)
crossing to give a bijection

BP(w) −→ BP(wtrs)× [1, p] ∪
⋃

w ′∈T (w)
BP(w ′).



Bijective Proof of Macdonald’s Formula

∑
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q-analog of Macdonald’s Formula

Def. A q-analog of any integer sequence f1, f2, . . . is a family of
polynomials in q, f1(q), f2(q), . . . such that fi (1) = fi .

Examples.
I The standard q-analog of a positive integer k is

[k] = [k]q := 1 + q + q2 + · · ·+ qk−1.
I The standard q-analog of the factorial k! is defined to be

[k]q! := [k][k − 1] · · · [1].

Macdonald conjectured a q-analog of his formula using [k], [k]q!.



q-analog of Macdonald’s Formula

Theorem.(Fomin and Stanley, 1994)
Given a permutation w ∈ Sn with `(w) = p,∑

a∈R(w)
[a1] · [a2] · · · [ap] qcomaj(a) = [p]q!Sw (1, q, q2, . . .)

where
comaj(a) =

∑
ai<ai+1

i .

Remarks. Our bijection respects the q-weight on each side so we
get a bijective proof for this identity too. The key lemma is a
generalization of Carlitz’s proof that `(w) and comaj(w) are
equidistributed on Sn and another generalization of the Transition
Equation.



Another generalization of Macdonald’s formula

Fomin-Kirillov, 1997. We have the following identity of
polynomials in x for the permutation w0 ∈ Sn:

∑
a∈R(w0)

(x + a1) · · · (x + a(n
2)) =

(
n
2

)
!

∏
1≤i<j≤n

2x + i + j − 1
i + j − 1 .

Remarks. Our bijective proof of Macdonald’s formula plus a
bijection due to Serrano-Stump give a new proof of this identity
answering a question posed by Fomin-Kirillov.

The right hand side is based on Proctor’s formula for reverse plane
partitions and Wach’s characterization of Schubert polynomials for
vexillary permutations.



Open Problems

Open. Is there a common generalization for the Transition
Equation for Schubert polynomials, bounded pairs, and its
q-analog?

Open. Is there a nice formula for |rppλ(x)| or [rppλ(x)]q for an
arbitrary partition λ as in the case of staircase shapes as noted in
the Fomin-Kirillov Theorem?

Open. What is the analog of Macdonald’s formula for
Grothendieck polynomials and what is the corresponding bijection?
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