An Introduction to the Combinatorics and Geometry of Schubert Varieties

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

Nebraska Conference for Undergraduate Women in Mathematics
January 28, 2012
Famous Quotations

Arnold Ross (and PROMYS).
”Think deeply of simple things.”

Angela Gibney. Why do algebraic geometers love moduli spaces?

“It is just like with people, if you want to get to know someone, go to their family reunion.”

Goal. Focus our attention on a particular family of varieties which are indexed by combinatorial data where lots is known about their structure and yet lots is still open.
A Schubert variety is a member of a family of projective varieties whose points are indexed by matrices and whose defining equations are determinantal minors.

Typical properties:
- This family of varieties is indexed by combinatorial objects; e.g. partitions, permutations, or group elements.
- Some are smooth and some are singular.
- Their topological structure is often encoded by subsets and quotients of polynomial rings including the symmetric functions.
Enumerative Geometry

Approximately 150 years ago... Grassmann, Schubert, Pieri, Giambelli, Severi, and others began the study of *enumerative geometry*.

Early questions:

- What is the dimension of the intersection between two general lines in \mathbb{R}^2?
- How many lines intersect two given lines and a given point in \mathbb{R}^3?
- How many lines intersect four given lines in \mathbb{R}^3?

Modern questions:

- How many points are in the intersection of $2, 3, 4, \ldots$ Schubert varieties in general position?
Why Study Schubert Varieties?

1. It can be useful to see points, lines, planes etc as families with certain properties.

2. Schubert varieties provide interesting examples for test cases and future research in algebraic geometry.

3. Applications in discrete geometry, computer graphics, economics, chemistry and computer vision.
Outline

1. Review of vector spaces and projective spaces
2. Introduction to Grassmannians, Flag Manifolds and Schubert Varieties
3. Five Fun Facts on Schubert Varieties
4. References for more information
5. Advice to offer
Vector Spaces

- V is a *vector space* over a field \mathbb{F} if it is closed under addition and multiplication by scalars in \mathbb{F}.

- $B = \{b_1, \ldots, b_k\}$ is a *basis* for V if for every $a \in V$ there exist unique scalars $c_1, \ldots, c_k \in \mathbb{F}$ such that

 \[a = c_1b_1 + c_2b_2 + \cdots + c_kb_k = (c_1, c_2, \ldots, c_k) \in \mathbb{F}^k. \]

- The *dimension* of V equals the size of a basis.

- A *subspace* U of a vector space V is any subset of the vectors in V that is closed under addition and scalar multiplication.

Fact. Any basis for U can be extended to a basis for V.
Projective Spaces

Defn.

- \(\mathbb{P}(V) = \{1\text{-dim subspaces of } V\} = \frac{V}{\langle d \cdot a = a \rangle} \).

1-dim subspaces \(\xrightarrow{} \) lines in \(V \) through 0 \(\iff \) points in \(\mathbb{P}(V) \)

2-dim subspaces \(\xrightarrow{} \) planes in \(V \) through 0 \(\iff \) lines in \(\mathbb{P}(V) \)

- Given a basis \(B = \{b_1, b_2, \ldots, b_k\} \) for \(V \), the line spanned by \(a = c_1 b_1 + c_2 b_2 + \cdots + c_k b_k \in \mathbb{P}(V) \) has **homogeneous coordinates**

\[
[c_1 : c_2 : \cdots : c_k] = [dc_1 : dc_2 : \cdots : dc_k]
\]

for any \(d \in \mathbb{F} \).
The Grassmannian Varieties

Definition. Fix a vector space \(V \) over \(\mathbb{C} \) (or \(\mathbb{R}, \mathbb{Z}_2, \ldots \)) with basis \(B = \{e_1, \ldots, e_n\} \). The *Grassmannian variety*

\[
G(k, n) = \{ \text{k-dimensional subspaces of } V \}.
\]

Question.

How can we impose the structure of a variety or a manifold on this set?
The Grassmannian Varieties

Answer. Relate $G(k, n)$ to the vector space of $k \times n$ matrices.

\[U = \text{span}\langle 6e_1 + 3e_2, \ 4e_1 + 2e_3, \ 9e_1 + e_3 + e_4 \rangle \in G(3, 4) \]

\[M_U = \begin{bmatrix} 6 & 3 & 0 & 0 \\ 4 & 0 & 2 & 0 \\ 9 & 0 & 1 & 1 \end{bmatrix} \]

- $U \in G(k, n) \iff$ rows of M_U are independent vectors in $V \iff$ some $k \times k$ minor of M_U is NOT zero.
Plücker Coordinates

- Define \(f_{j_1, j_2, \ldots, j_k}(M) \) to be the polynomial given by the determinant of the matrix

\[
\begin{bmatrix}
x_{1, j_1} & x_{1, j_2} & \cdots & x_{1, j_k} \\
x_{2, j_1} & x_{2, j_2} & \cdots & x_{2, j_k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k, j_1} & x_{k, j_2} & \cdots & x_{k, j_k}
\end{bmatrix}
\]

- \(G(k, n) \) is an open set in the Zariski topology on \(k \times n \) matrices defined as the complement of the intersection over all \(k \)-subsets of \(\{1, 2, \ldots, n\} \) of the varieties \(V(f_{j_1, j_2, \ldots, j_k}) \) where \(f_{j_1, j_2, \ldots, j_k}(M) = 0 \).

- All the determinants \(f_{j_1, j_2, \ldots, j_k} \) are homogeneous polynomials of degree \(k \) so \(G(k, n) \) can be thought of as an open set in projective space.
The Grassmannian Varieties

Canonical Form. Every subspace in $G(k, n)$ can be represented by a unique matrix in row echelon form.

Example.

$U = \text{span}\langle 6e_1 + 3e_2, \ 4e_1 + 2e_3, \ 9e_1 + e_3 + e_4 \rangle \in G(3, 4)$

\[
\begin{bmatrix}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1 \\
\end{bmatrix} \approx \begin{bmatrix}
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
7 & 0 & 0 & 1 \\
\end{bmatrix} \approx \langle 2e_1 + e_2, \ 2e_1 + e_3, \ 7e_1 + e_4 \rangle
\]
Subspaces and Subsets

Example.

\[U = \text{RowSpan} \begin{bmatrix} 5 & 9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 8 & 0 & 9 & 7 & 9 & 1 & 0 & 0 & 0 \\ 4 & 6 & 0 & 2 & 6 & 4 & 0 & 3 & 1 & 0 \end{bmatrix} \in G(3, 10). \]

\[\text{position}(U) = \{3, 7, 9\} \]

Definition.

If \(U \in G(k, n) \) and \(M_U \) is the corresponding matrix in canonical form then the columns of the leading 1’s of the rows of \(M_U \) determine a subset of size \(k \) in \(\{1, 2, \ldots, n\} := [n] \). There are 0’s to the right of each leading 1 and 0’s above and below each leading 1. This \(k \)-subset determines the position of \(U \) with respect to the fixed basis.
The Schubert Cell C_j in $G(k, n)$

Defn. Let $j = \{j_1 < j_2 < \cdots < j_k\} \in [n]$. A Schubert cell is

$$C_j = \{U \in G(k, n) \mid \text{position}(U) = \{j_1, \ldots, j_k\}\}$$

Fact. $G(k, n) = \bigcup C_j$ over all k-subsets of $[n]$.

Example. In $G(3, 10)$,

$$C_{\{3,7,9\}} = \left\{ \begin{bmatrix} * & * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & * & 0 & * & * & * & 1 & 0 & 0 & 0 \\ * & * & 0 & * & * & * & 0 & * & 1 & 0 \end{bmatrix} \right\}$$

- Observe $\text{dim}(C_{\{3,7,9\}}) = 13$.
- In general, $\text{dim}(C_j) = \sum j_i - i$.
Schubert Varieties in \(G(k, n) \)

Defn. Let \(j = \{j_1 < j_2 < \cdots < j_k\} \in [n] \). A *Schubert variety* is

\[
X_j = \text{Closure of } C_j \text{ under Zariski topology.}
\]

Question. In \(G(3, 10) \), what polynomials vanish on \(C\{3,7,9\} \)?

\[
C\{3,7,9\} = \left\{ \begin{bmatrix}
* & * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & * & 1 & 0 & 0 & 0 \\
* & * & 0 & * & * & * & 0 & * & 1 & 0 \\
\end{bmatrix} \right\}
\]

Answer. All minors \(f_{j_1,j_2,j_3} \) with

\[
\begin{cases}
4 \leq j_1 \leq 8 \\
or j_1 = 3 \text{ and } 8 \leq j_2 \leq 9 \\
or j_1 = 3, j_2 = 7 \text{ and } j_3 = 10
\end{cases}
\]

In other words, the canonical form for any subspace in \(X_j = \overline{C_j} \) has 0’s to the right of column \(j_i \) in each row \(i \).
k-Subsets and Partitions

Defn. A *partition* of a number \(n \) is a weakly increasing sequence of non-negative integers

\[
\lambda = (\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k)
\]

such that \(n = \sum \lambda_i = |\lambda| \).

Partitions can be visualized by their *Ferrers diagram*

![Ferrers diagram](image)

Fact. There is a bijection between \(k \)-subsets of \(\{1, 2, \ldots, n\} \) and partitions whose Ferrers diagram is contained in the \(k \times (n - k) \) rectangle given by

\[
\text{shape} : \{j_1 < \cdots < j_k\} \mapsto (j_1 - 1, j_2 - 2, \ldots, j_k - k).
\]
A Poset on Partitions

Defn. A *partial order* or a *poset* is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young’s Lattice

If $\lambda = (\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k)$ and $\mu = (\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k)$ then $\lambda \subset \mu$ if the Ferrers diagram for λ fits inside the Ferrers diagram for μ.

Facts.

1. $X_j = \bigcup_{\text{shape}(i) \subset \text{shape}(j)} C_i$.

2. The dimension of X_j is $|\text{shape}(j)|$.

3. The Grassmannian $G(k, n) = X_{\{n-k+1, \ldots, n-1, n\}}$ is a Schubert variety!
Enumerative Geometry Revisited

Question. How many lines intersect four given lines in \(\mathbb{R}^3 \) ?

Translation. Given a line in \(\mathbb{R}^3 \), the family of lines intersecting it can be interpreted in \(G(2, 4) \) as the Schubert variety

\[
X_{\{2,4\}} = \begin{pmatrix}
* & 1 & 0 & 0 \\
* & 0 & * & 1
\end{pmatrix}
\]

with respect to a suitably chosen basis determined by the line.

Reformulated Question. How many subspaces \(U \in G(2, 4) \) are in the intersection of 4 copies of the Schubert variety \(X_{\{2,4\}} \) each with respect to a different basis?

Modern Solution. Use Intersection Theory!
Intersection Theory

- Schubert varieties induce canonical elements of the cohomology ring for $G(k, n)$ called Schubert classes: $[X_j]$.

- Multiplication of Schubert classes corresponds with intersecting Schubert varieties with respect to different bases.

$$[X_i][X_j] = [X_i(B^1) \cap X_j(B^2)]$$

- Schubert classes add and multiply just like Schur functions. Schur functions are a fascinating family of symmetric functions indexed by partitions which appear in many areas of math, physics, theoretical computer science.

- Expanding the product of two Schur functions into the basis of Schur functions can be done via linear algebra:

$$S_\lambda S_\mu = \sum c^\nu_{\lambda,\mu} S_\nu.$$

- The coefficients $c^\nu_{\lambda,\mu}$ are non-negative integers called the Littlewood-Richardson coefficients. In a 0-dimensional intersection, the coefficient of $[X_{\{1,2,...,k\}}]$ is the number of subspaces in $X_i(B^1) \cap X_j(B^2)$.
Enumerative Solution

Reformulated Question. How many subspaces $U \in G(2,4)$ are in the intersection of 4 copies of the Schubert variety $X_{\{2,4\}}$ each with respect to a different basis?
Enumerative Solution

Reformulated Question. How many subspaces $U \in G(2, 4)$ are in the intersection of 4 copies of the Schubert variety $X_{\{2,4\}}$ each with respect to a different basis?

Solution.

$$[X_{\{2,4\}}] = S_{(1)} = x_1 + x_2 + x_3 + x_4$$

By the recipe, compute

$$[X_{\{2,4\}}(B^1) \cap X_{\{2,4\}}(B^2) \cap X_{\{2,4\}}(B^3) \cap X_{\{2,4\}}(B^4)]$$

$$= S_{(1)}^4 = 2S_{(2,2)} + S_{(3,1)} + S_{(2,1,1)}.$$

Answer. The coefficient of $S_{2,2} = [X_{1,2}]$ is 2 representing the two lines meeting 4 given lines in general position.
Littlewood-Richardson Rules

There are many combinatorial algorithms to compute the Littlewood-Richardson coefficients $c_{\lambda,\mu}^\nu$. One of my favorites is based on Knutson-Tao-Woodward puzzles.

Example. (Warning: picture is not accurate without description.)
Recap

1. $G(k, n)$ is the Grassmannian variety of k-dim subspaces in \mathbb{R}^n.

2. The Schubert varieties in $G(k, n)$ are nice projective varieties indexed by k-subsets of $[n]$ or equivalently by partitions in the $k \times (n-k)$ rectangle.

3. Geometrical information about a Schubert variety can be determined by the combinatorics of partitions.

4. Intersection theory applied to Schubert varieties can be used to solve problems in enumerative geometry.
Generalizations

"Nothing is more disagreeable to the hacker than duplication of effort. The first and most important mental habit that people develop when they learn how to write computer programs is to generalize, generalize, generalize.: –Neil Stephenson "In the Beginning was the Command Line"

Same goes for mathematicians!
The Flag Manifold

Defn. A complete flag $F_\bullet = (F_1, \ldots, F_n)$ in \mathbb{C}^n is a nested sequence of vector spaces such that $\dim(F_i) = i$ for $1 \leq i \leq n$. F_\bullet is determined by an ordered basis $\langle f_1, f_2, \ldots f_n \rangle$ where $F_i = \text{span}\langle f_1, \ldots, f_i \rangle$.

Example.

$$F_\bullet = \langle 6e_1 + 3e_2, \ 4e_1 + 2e_3, \ 9e_1 + e_3 + e_4, \ e_2 \rangle$$
The Flag Manifold

Canonical Form.

\[F_\bullet = \langle 6e_1 + 3e_2, \ 4e_1 + 2e_3, \ 9e_1 + e_3 + e_4, \ e_2 \rangle \]

\[\approx \begin{bmatrix} 6 & 3 & 0 & 0 \\ 4 & 0 & 2 & 0 \\ 9 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

\[\approx \langle 2e_1 + e_2, \ 2e_1 + e_3, \ 7e_1 + e_4, \ e_1 \rangle \]

\[\mathcal{F}l_n(\mathbb{C}) := \text{flag manifold over } \mathbb{C}^n \subset \prod_{k=1}^n G(n, k) \]

\[= \{ \text{complete flags } F_\bullet \} \]

\[= B \setminus GL_n(\mathbb{C}), \ B = \text{lower triangular mats.} \]
Flags and Permutations

Example. $F_\bullet = \langle 2e_1 + e_2, \ 2e_1 + e_3, \ 7e_1 + e_4, \ e_1 \rangle \approx \begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

Note. If a flag is written in canonical form, the positions of the leading 1's form a permutation matrix. There are 0’s to the right and below each leading 1. This permutation determines the position of the flag F_\bullet with respect to the reference flag $E_\bullet = \langle e_1, \ e_2, \ e_3, \ e_4 \rangle$.
Many ways to represent a permutation

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
\end{bmatrix}
= 2341
= \begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
\end{bmatrix}
\]

- matrix notation
- two-line notation
- one-line notation
- rank table

\[
\begin{bmatrix}
* & * & * & . \\
* & * & * & . \\
* & * & * & . \\
. & . & . & . \\
\end{bmatrix}
= \begin{bmatrix}
1 & 2 & 3 & 4 \\
\end{bmatrix}
= (1, 2, 3)
= \begin{bmatrix}
2 & 3 & 4 \\
\end{bmatrix}
\]

- diagram of a permutation
- string diagram
- reduced word
The Schubert Cell $C_w(E\bullet)$ in $\mathcal{F}l_n(\mathbb{C})$

Defn. $C_w(E\bullet) = \text{All flags } F\bullet \text{ with position}(E\bullet, F\bullet) = w$

$$= \{ F\bullet \in \mathcal{F}l_n \mid \text{dim}(E_i \cap F_j) = \text{rk}(w[i, j]) \}$$

Example. $F\bullet = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \in C_{2341} = \left\{ \begin{bmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \\ * & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} : * \in \mathbb{C} \right\}$

Easy Observations.

- $\text{dim}_\mathbb{C}(C_w) = l(w) = \# \text{ inversions of } w$.
- $C_w = w \cdot B$ is a B-orbit using the right B action, e.g.

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_{1,1} & 0 & 0 & 0 \\ b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \end{bmatrix} = \begin{bmatrix} b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \\ b_{1,1} & 0 & 0 & 0 \end{bmatrix}$$
The Schubert Variety $X_w(E\bullet)$ in $\mathcal{F}l_n(\mathbb{C})$

Defn. $X_w(E\bullet) = \text{Closure of } C_w(E\bullet) \text{ under the Zariski topology}$

$$= \{ F\bullet \in \mathcal{F}l_n \mid \dim(E_i \cap F_j) \geq \text{rk}(w[i, j]) \}$$

where $E\bullet = \langle e_1, e_2, e_3, e_4 \rangle$.

Example.

$$\begin{bmatrix}
\mathbf{1} & 0 & 0 & 0 \\
0 & * & \mathbf{1} & 0 \\
0 & * & 0 & \mathbf{1} \\
0 & \mathbf{1} & 0 & 0
\end{bmatrix} \in X_{2341}(E\bullet) = \left\{ \begin{bmatrix}
* & 1 & 0 & 0 \\
* & 0 & 1 & 0 \\
* & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix} \right\}$$

Why?
Five Fun Facts

Fact 1. The closure relation on Schubert varieties defines a nice partial order.

\[X_w = \bigcup_{v \leq w} C_v = \bigcup_{v \leq w} X_v \]

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

\[w < wt_{ij} \iff w(i) < w(j). \]

Example. Bruhat order on permutations in \(S_3 \).

Observations. Self dual, rank symmetric, rank unimodal.
Bruhat order on S_4
Bruhat order on S_5
10 Fantastic Facts on Bruhat Order

1. Bruhat Order Characterizes Inclusions of Schubert Varieties
2. Contains Young’s Lattice in S_∞
3. Nicest Possible Möbius Function
4. Beautiful Rank Generating Functions
5. $[x, y]$ Determines the Composition Series for Verma Modules
6. Symmetric Interval $[\hat{0}, w] \iff X(w)$ rationally smooth
7. Order Complex of (u, v) is shellable
8. Rank Symmetric, Rank Unimodal and k-Sperner
9. Efficient Methods for Comparison
10. Amenable to Pattern Avoidance
Singularities in Schubert Varieties

Defn. X_w is *singular* at a point $p \iff \dim X_w = l(w) < \text{dimension of the tangent space to } X_w \text{ at } p.$

Observation 1. Every point on a Schubert cell C_v in X_w looks locally the same. Therefore, $p \in C_v$ is a singular point \iff the permutation matrix v is a singular point of $X_w.$

Observation 2. The singular set of a varieties is a closed set in the Zariski topology. Therefore, if v is a singular point in X_w then every point in X_v is singular. The irreducible components of the singular locus of X_w is a union of Schubert varieties:

$$\text{Sing}(X_w) = \bigcup_{v \in \text{maxsing}(w)} X_v.$$
Fact 2. (Lakshmibai-Seshadri) A basis for the tangent space to X_w at v is indexed by the transpositions t_{ij} such that

$$vt_{ij} \leq w.$$

Definitions.

- Let $T =$ invertible diagonal matrices. The T-fixed points in X_w are the permutation matrices indexed by $v \leq w$.

- If v, vt_{ij} are permutations in X_w they are connected by a T-stable curve. The set of all T-stable curves in X_w are represented by the Bruhat graph on $[id, w]$.
Bruhat Graph in S_4
Tangent space of a Schubert Variety

Example. $T_{1234}(X_{4231}) = \text{span}\{x_{i,j} \mid t_{ij} \leq w\}$.

$\dim X(4231) = 5 \quad \dim T_{id}(4231) = 6 \quad \Rightarrow \quad X(4231) \text{ is singular!}$
Five Fun Facts

Fact 3. There exists a simple criterion for characterizing singular Schubert varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper)

\(X_w \) is non-singular \iff \(w \) has no subsequence with the same relative order as 3412 and 4231.

\[
\begin{align*}
 w &= 625431 & \text{contains} & & 6241 & \sim & & 4231 & \implies & & X_{625431} & \text{is singular} \\
\text{Example:} & & w &= 612543 & \text{avoids} & & 4231 & \implies & & X_{612543} & \text{is non-singular}
\end{align*}
\]
Five Fun Facts

Consequences of Fact 3.

- (Billey-Warrington, Kassel-Lascoux-Reutenauer, Manivel 2000) The bad patterns in w can also be used to efficiently find the singular locus of X_w.

- (Bona 1998, Haiman) Let v_n be the number of $w \in S_n$ for which $X(w)$ is non-singular. Then the generating function $V(t) = \sum_n v_n t^n$ is given by

$$V(t) = \frac{1 - 5t + 3t^2 + t^2 \sqrt{1 - 4t}}{1 - 6t + 8t^2 - 4t^3}.$$

- (Billey-Postnikov 2001) Generalized pattern avoidance to all semisimple simply-connected Lie groups G and characterized smooth Schubert varieties X_w by avoiding these generalized patterns. Only requires checking patterns of types $A_3, B_2, B_3, C_2, C_3, D_4, G_2$.

Fact 4. There exists a simple criterion for characterizing Gorenstein Schubert varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)

\(X_w\) is Gorenstein \iff

- \(w\) avoids 31542 and 24153 with Bruhat restrictions \(\{t_{15}, t_{23}\}\) and \(\{t_{15}, t_{34}\}\)

- for each descent \(d\) in \(w\), the associated partition \(\lambda_d(w)\) has all of its inner corners on the same antidiagonal.
Five Fun Facts

Fact 5. Schubert varieties are useful for studying the cohomology ring of the flag manifold.

Theorem (Borel): \(H^*(\mathcal{F}l_n) \cong \mathbb{Z}[x_1, \ldots, x_n] / \langle e_1, \ldots, e_n \rangle. \)

- The symmetric function \(e_i = \sum_{1 \leq k_1 < \cdots < k_i \leq n} x_{k_1} x_{k_2} \cdots x_{k_i}. \)

- \(\{[X_w] \mid w \in S_n \} \) form a basis for \(H^*(\mathcal{F}l_n) \) over \(\mathbb{Z} \).

Question. What is the product of two basis elements?

\[[X_u] \cdot [X_v] = \sum [X_w]c_{uv}^w. \]
Cup Product in $H^\ast(\mathcal{F}l_n)$

Answer. Use Schubert polynomials! Due to Lascoux-Schützenberger, Bernstein-Gelfand-Gelfand, Demazure.

- **BGG:** If $\mathcal{S}_w \equiv [X_w]_{\text{mod} \langle e_1, \ldots, e_n \rangle}$ then

 $$\frac{\mathcal{S}_w - s_i \mathcal{S}_w}{x_i - x_{i+1}} \equiv [X_{ws_i}] \text{ if } l(w) < l(ws_i)$$

 $$[X_{id}] \equiv x_1^{n-1}x_2^{n-2}\cdots x_{n-1} \equiv \prod_{i>j}(x_i - x_j) \equiv \ldots$$

 Here $\deg[X_w] = \text{codim}(X_w)$.

- **LS:** Choosing $[X_{id}] \equiv x_1^{n-1}x_2^{n-2}\cdots x_{n-1}$ works best because product expansion can be done without regard to the ideal!
Schubert polynomials for S_4

\[
\begin{align*}
\mathcal{S}_{w_0}(1234) &= 1 \\
\mathcal{S}_{w_0}(2134) &= x_1 \\
\mathcal{S}_{w_0}(1324) &= x_2 + x_1 \\
\mathcal{S}_{w_0}(3124) &= x_1^2 \\
\mathcal{S}_{w_0}(2314) &= x_1x_2 \\
\mathcal{S}_{w_0}(3214) &= x_1^2x_2 \\
\mathcal{S}_{w_0}(1243) &= x_3 + x_2 + x_1 \\
\mathcal{S}_{w_0}(2143) &= x_1x_3 + x_1x_2 + x_1^2 \\
\mathcal{S}_{w_0}(1423) &= x_2^2 + x_1x_2 + x_1^2 \\
\mathcal{S}_{w_0}(4123) &= x_1^3 \\
\mathcal{S}_{w_0}(2413) &= x_1x_2^2 + x_1^2x_2 \\
\mathcal{S}_{w_0}(4213) &= x_1^3x_2 \\
\mathcal{S}_{w_0}(1342) &= x_2x_3 + x_1x_3 + x_1x_2 \\
\mathcal{S}_{w_0}(3142) &= x_1^2x_3 + x_1^2x_2 \\
\mathcal{S}_{w_0}(1432) &= x_2^2x_3 + x_1x_2x_3 + x_1^2x_3 + x_1x_2^2 + x_1^2x_2 \\
\mathcal{S}_{w_0}(4132) &= x_1^3x_3 + x_1^3x_2 \\
\mathcal{S}_{w_0}(3412) &= x_1^2x_2^2 \\
\mathcal{S}_{w_0}(4312) &= x_1^3x_2^2 \\
\mathcal{S}_{w_0}(2341) &= x_1x_2x_3 \\
\mathcal{S}_{w_0}(3241) &= x_1^2x_2x_3 \\
\mathcal{S}_{w_0}(3421) &= x_1^2x_2^2x_3 \\
\end{align*}
\]
Cup Product in $H^*(\mathcal{F}l_n)$

Key Feature. Schubert polynomials have distinct leading terms, therefore expanding any polynomial in the basis of Schubert polynomials can be done by linear algebra just like Schur functions.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and Schützenberger’s transition equations. Works up to about $n = 15$.

Draw Back. Schubert polynomials don’t prove c_{uv}^w’s are nonnegative (except in special cases).
Cup Product in $H^*(\mathcal{F}l_n)$

Another Answer.

- By intersection theory: $[X_u] \cdot [X_v] = [X_u(E_{\bullet}) \cap X_v(F_{\bullet})]$

- Perfect pairing: $[X_u(E_{\bullet})] \cdot [X_v(F_{\bullet})] \cdot [X_{w_0 w}(G_{\bullet})] = c^w_{uv}[X_{id}]$

 $\implies [X_u(E_{\bullet}) \cap X_v(F_{\bullet}) \cap X_{w_0 w}(G_{\bullet})]$

- The Schubert variety X_{id} is a single point in $\mathcal{F}l_n$.

Intersection Numbers: $c^w_{uv} = \#X_u(E_{\bullet}) \cap X_v(F_{\bullet}) \cap X_{w_0 w}(G_{\bullet})$

Assuming all flags $E_{\bullet}, F_{\bullet}, G_{\bullet}$ are in sufficiently general position.
Example. Fix three flags R_\bullet, G_\bullet, and B_\bullet:

Find $X_u(R_\bullet) \cap X_v(G_\bullet) \cap X_w(B_\bullet)$ where u, v, w are the following permutations:

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example. Fix three flags R_\bullet, G_\bullet, and B_\bullet:

Find $X_u(R_\bullet) \cap X_v(G_\bullet) \cap X_w(B_\bullet)$ where u, v, w are the following permutations:

\[
\begin{array}{ccc}
R_1 & R_2 & R_3 \\
G_1 & G_2 & G_3 \\
B_1 & B_2 & B_3
\end{array}
\]

\[
\begin{array}{ccc}
P_1 & 1 & \\
P_2 & 1 & \\
P_3 & 1 & \\
\end{array}
\]
Intersecting Schubert Varieties

Example. Fix three flags R_\bullet, G_\bullet, and B_\bullet:

Find $X_u(R_\bullet) \cap X_v(G_\bullet) \cap X_w(B_\bullet)$ where u, v, w are the following permutations:

\[
\begin{array}{ccc}
R_1 & R_2 & R_3 \\
P_1 & 1 & \\
P_2 & 1 & \\
P_3 & 1 & \\
G_1 & G_2 & G_3 \\
B_1 & B_2 & B_3
\end{array}
\]
Intersecting Schubert Varieties

Schubert’s Problem. How many points are there usually in the intersection of d Schubert varieties if the intersection is 0-dimensional?

- Solving approx. n^d equations with $\binom{n}{2}$ variables is challenging!

Observation. We need more information on spans and intersections of flag components, e.g. $\dim(E_{x_1}^1 \cap E_{x_2}^2 \cap \cdots \cap E_{x_d}^d)$.
Theorem. (Eriksson-Linusson, 2000) For every set of d flags E_1, E_2, \ldots, E_d, there exists a unique permutation array $P \subset [n]^d$ such that

$$\dim(E_1^{x_1} \cap E_2^{x_2} \cap \cdots \cap E_d^{x_d}) = \text{rk}P[x].$$
Totally Rankable Arrays

Defn. For $P \subset [n]^d$,

- $\text{rk}_j P = \# \{k \mid \exists x \in P \text{ s.t. } x_j = k\}$.
- P is *rankable* of rank r if $\text{rk}_j(P) = r$ for all $1 \leq j \leq d$.
- $y = (y_1, \ldots, y_d) \preceq x = (x_1, \ldots, x_d)$ if $y_i \leq x_i$ for each i.
- $P[x] = \{y \in P \mid y \preceq x\}$
- P is *totally rankable* if $P[x]$ is rankable for all $x \in [n]^d$.

- Union of dots is totally rankable. Including X it is not.
Permutation Arrays

- Points labeled O are redundant, i.e. including them gives another totally rankable array with same rank table.

Defn. $P \subset [n]^d$ is a *permutation array* if it is totally rankable and has no redundant dots.

Open. Count the number of permutation arrays in $[n]^k$.
Permutation Arrays

Theorem. (Eriksson-Linusson) Every permutation array in $[n]^{d+1}$ can be obtained from a unique permutation array in $[n]^d$ by identifying a sequence of antichains.

This produces the 3-dimensional array

$$P = \{(4, 4, 1), (2, 4, 2), (4, 2, 2), (3, 1, 3), (1, 4, 4), (2, 3, 4)\}. $$
Unique Permutation Array Theorem

Theorem. (Billey-Vakil, 2005) If

\[X = X_{w_1}(E^1_\bullet) \cap \cdots \cap X_{w_d}(E^d_\bullet) \]

is nonempty 0-dimensional intersection of \(d \) Schubert varieties with respect to flags \(E^1_\bullet, E^2_\bullet, \ldots, E^d_\bullet \) in general position, then there exists a unique permutation array \(P \in [n]^{d+1} \) such that

\[X = \{ F_\bullet \mid \dim(E^1_{x_1} \cap E^2_{x_2} \cap \cdots \cap E^d_{x_d} \cap F_{x_{d+1}}) = \text{rk}P[x] \}. \]

Furthermore, we can recursively solve a family of equations for \(X \) using \(P \).

Open Problem. Can one find a finite set of rules for moving dots in a 3-d permutation array which determines the \(c^w_{uv} \)'s analogous to one of the many Littlewood-Richardson rules?

Recent Progress. Izzet Coskun’s Mondrian tableaux.
Generalizations of Schubert Calculus for G/B

\[
\begin{align*}
\text{A: } & GL_n \\
\text{B: } & SO_{2n+1} \\
\text{C: } & SP_{2n} \\
\text{D: } & SO_{2n} \\
\text{Semisimple Lie Groups} \\
\text{Kac-Moody Groups} \\
\text{GKM Spaces} \\
\end{align*}
\times
\begin{align*}
\text{cohomology} \\
\text{quantum} \\
\text{equivariant} \\
\text{K-theory} \\
\text{eq. K-theory} \\
\end{align*}
\]

Recent Contributions from: Bergeron, Berenstein, Billey, Brion, Buch, Carrell, Ciocan-Fontanine, Coskun, Duan, Fomin, Fulton, Gelfand, Goldin, Graham, Griffeth, Guillemin, Haibao, Haiman, Holm, Huber, Ikeda, Kirillov, Knutson, Kogan, Kostant, Kresh, S. Kumar, A. Kumar, Lam, Lapointe, Lascoux, Lenart, Miller, Morse, Naruse, Peterson, Pitti, Postnikov, Purhboo, Ram, Richmond, Robinson, Shimozono, Sottile, Sturmfels, Tamvakis, Thomas, Vakil, Winkle, Yong, Zara...
Some Recommended Further Reading

Some Recommended Further Reading

Generally, these published papers can be found on the web. The books are well worth the money.
Advice to Offer (STRONGLY)

- Work hard. Ask questions. Prove lemmas beyond what is written in the textbook. Memorize all of the mathematical vocabulary words and named theorems asap, preferably by the next lecture. Trust nothing in a math lecture or textbook, check every single statement to practice your skills. Learn to program, and write programs to learn math. You are worth more on the job market as a mathematician if you can program. Do an REU. Take a class in mathematical modeling.
Advice to Offer (STRONGLY)

- Apply for every fellowship for grad school you can find. Check out the National Physical Science Consortium, the NSF, DOE, the Navy, the Ford Foundation, AWM, MAA, and the AMS.
Advice to Offer (STRONGLY)

- Find a way to enjoy the process. Be proactive about making your environment work for you. Look for people who can be your mentors at all stages. Be a mentor to others. Teach what you know. Be generous.
Advice to Offer (STRONGLY)

- Read Cathy O’Neil’s blog: mathbabe.org.

- More of my advice is linked on my website; search on “sara math”.
Advice to Offer (STRONGLY)

• Work hard. Ask questions. Prove lemmas beyond what is written in the textbook. Memorize all of the mathematical vocabulary words and named theorems asap, preferably by the next lecture. Trust nothing in a math lecture or textbook, check ever single statement to practice your skills. Learn to program, and write programs to learn math. You are worth more on the job market as a mathematician if you can program. Do an REU. Take a class in mathematical modeling.

• Take feedback on your work with an enthusiastic attitude toward learning. Every question or comment is a gift. If you find yourself feeling defensive, ponder the statement “Don’t take it personally”.

• Apply for every fellowship for grad school you can find. Check out the National Physical Science Consortium, the NSF, DOE, the Navy, the Ford Foundation, AWM, MAA, and the AMS.

• Find a way to enjoy the process. Be proactive about making your environment work for you. Look for people who can be your mentors at all stages. Be a mentor to others. Teach what you know. Be generous.

• Read Cathy O’Neil’s blog: mathbabe.org. More of my advise is linked on my website; search on “sara math”.