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Famous Quotations

Arnold Ross (and PROMYS).
”Think deeply of simple things.”

Angela Gibney. Why do algebraic geometers love moduli spaces?

“It is just like with people, if you want to get to know

someone, go to their family reunion.”

Goal. Focus our attention on a particular family of varieties which are indexed
by combinatorial data where lots is known about their structure and yet lots is
still open.



Schubert Varieties

A Schubert variety is a member of a family of projective varieties whose points
are indexed by matrices and whose defining equations are determinantal minors.

Typical properties:
• This family of varieties is indexed by combinatorial objects; e.g. partitions,
permutations, or group elements.

• Some are smooth and some are singular.

• Their topological structure is often encoded by subsets and quotients of
polynomial rings including the symmetric functions.



Enumerative Geometry

Approximately 150 years ago. . . Grassmann, Schubert, Pieri, Giambelli, Severi,
and others began the study of enumerative geometry .

Early questions:
• What is the dimension of the intersection between two general lines in R

2?

• How many lines intersect two given lines and a given point in R3?

• How many lines intersect four given lines in R
3 ?

Modern questions:

• How many points are in the intersection of 2,3,4,. . . Schubert varieties in
general position?



Why Study Schubert Varieties?

1. It can be useful to see points, lines, planes etc as families with certain
properties.

2. Schubert varieties provide interesting examples for test cases and future
research in algebraic geometry.

3. Applications in discrete geometry, computer graphics, economics, chem-
istry and computer vision.
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Vector Spaces

• V is a vector space over a field F if it is closed under addition and multi-
plication by scalars in F.

• B = {b1, . . . , bk} is a basis for V if for every a ∈ V there exist unique
scalars c1, . . . , ck ∈ F such that

a = c1b1 + c2b2 + · · ·+ ckbk = (c1, c2, . . . , ck) ∈ F
k.

• The dimension of V equals the size of a basis.

• A subspace U of a vector space V is any subset of the vectors in V that
is closed under addition and scalar multiplication.

Fact. Any basis for U can be extended to a basis for V .



Projective Spaces

Defn.
• P(V ) = {1-dim subspaces of V } = V

〈d·a=a〉
.

1-dim subspaces = lines in V through 0 ←→ points in P(V )
2-dim subspaces = planes in V through 0 ←→ lines in P(V )

• Given a basis B = {b1, b2, . . . , bk} for V , the line spanned by
a = c1b1 + c2b2 + · · ·+ ckbk ∈ P(V ) has homogeneous coordinates

[c1 : c2 : · · · : ck] = [dc1 : dc2 : · · · : dck] for any d ∈ F.



The Grassmannian Varieties

Definition. Fix a vector space V over C (or R, Z2,. . . ) with basis B =
{e1, . . . , en}. The Grassmannian variety

G(k, n) = {k-dimensional subspaces of V }.

Question.

How can we impose the structure of a variety or a manifold on this set?



The Grassmannian Varieties

Answer. Relate G(k, n) to the vector space of k × n matrices.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

MU =





6 3 0 0
4 0 2 0
9 0 1 1





• U ∈ G(k, n) ⇐⇒ rows of MU are independent vectors in V ⇐⇒
some k × k minor of MU is NOT zero.



Plücker Coordinates

• Define fj1,j2,...,jk(M) to be the polynomial given by the determinant of
the matrix











x1,j1 x1,j2 . . . x1,jk

x2,j1 x2,j2 . . . x2,jk
...

...
...

...
xkj1 xkj2 . . . xkjk











• G(k, n) is an open set in the Zariski topology on k×n matrices defined
as the complement of the intersection over all k-subsets of {1, 2, . . . , n}
of the varieties V (fj1,j2,...,jk) where fj1,j2,...,jk(M) = 0.

• All the determinants fj1,j2,...,jk are homogeneous polynomials of degree
k so G(k, n) can be thought of as an open set in projective space.



The Grassmannian Varieties

Canonical Form. Every subspace in G(k, n) can be represented by a
unique matrix in row echelon form.

Example.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

≈





6 3 0 0
4 0 2 0
9 0 1 1



 ≈





2 1 0 0
2 0 1 0
7 0 0 1





≈〈2e1 + e2, 2e1 + e3, 7e1 + e4〉



Subspaces and Subsets

Example.

U = RowSpan





5 9 h1 0 0 0 0 0 0 0
5 8 0 9 7 9 h1 0 0 0
4 6 0 2 6 4 0 3 h1 0



 ∈ G(3, 10).

position(U) = {3, 7, 9}
Definition.

If U ∈ G(k, n) and MU is the corresponding matrix in canonical form then
the columns of the leading 1’s of the rows of MU determine a subset of size k
in {1, 2, . . . , n} := [n]. There are 0’s to the right of each leading 1 and 0’s
above and below each leading 1. This k-subset determines the position of U
with respect to the fixed basis.



The Schubert Cell Cj in G(k, n)

Defn. Let j = {j1 < j2 < · · · < jk} ∈ [n]. A Schubert cell is

Cj = {U ∈ G(k, n) | position(U) = {j1, . . . , jk}}

Fact. G(k, n) =
⋃

Cj over all k-subsets of [n]

Example. In G(3, 10),

C{3,7,9} =











∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0











• Observe dim(C{3,7,9}) = 13.

• In general, dim(Cj) =
∑

ji − i.



Schubert Varieties in G(k, n)

Defn. Let j = {j1 < j2 < · · · < jk} ∈ [n]. A Schubert variety is

Xj = Closure of Cj under Zariski topology.

Question. In G(3, 10), what polynomials vanish on C{3,7,9}?

C{3,7,9} =











∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0











Answer. All minors fj1,j2,j3 with







4 ≤ j1 ≤ 8
or j1 = 3 and 8 ≤ j2 ≤ 9

or j1 = 3, j2 = 7 and j3 = 10







In other words, the canonical form for any subspace in Xj = Cj has 0’s to the
right of column ji in each row i.



k-Subsets and Partitions

Defn. A partition of a number n is a weakly increasing sequence of non-
negative integers

λ = (λ1 ≤ λ2 ≤ · · · ≤ λk)

such that n =
∑

λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(2, 5, 6) −→

Fact. There is a bijection between k-subsets of {1, 2, . . . , n} and partitions
whose Ferrers diagram is contained in the k × (n− k) rectangle given by

shape : {j1 < . . . < jk} 7→ (j1 − 1, j2 − 2, . . . , jk − k).



A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive
relation on a set.

Defn. Young’s Lattice
If λ = (λ1 ≤ λ2 ≤ · · · ≤ λk) and µ = (µ1 ≤ µ2 ≤ · · · ≤ µk) then
λ ⊂ µ if the Ferrers diagram for λ fits inside the Ferrers diagram for µ.

⊂ ⊂

Facts.

1. Xj =
⋃

shape(i)⊂shape(j)

Ci.

2. The dimension of Xj is |shape(j)|.

3. The GrassmannianG(k, n) = X{n−k+1,...,n−1,n} is a Schubert variety!



Enumerative Geometry Revisited

Question. How many lines intersect four given lines in R3 ?

Translation. Given a line in R3, the family of lines intersecting it can be
interpreted in G(2, 4) as the Schubert variety

X{2,4} =

(

∗ 1 0 0
∗ 0 ∗ 1

)

with respect to a suitably chosen basis determined by the line.

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?

Modern Solution. Use Intersection Theory!



Intersection Theory

• Schubert varieties induce canonical elements of the cohomology ring for
G(k, n) called Schubert classes: [Xj].

• Multiplication of Schubert classes corresponds with intersecting Schubert
varieties with respect to different bases.

[Xi][Xj] =
[

Xi(B
1) ∩Xj(B

2)
]

• Schubert classes add and multiply just like Schur functions. Schur func-
tions are a fascinating family of symmetric functions indexed by partitions
which appear in many areas of math, physics, theoretical computer science.

• Expanding the product of two Schur functions into the basis of Schur
functions can be done via linear algebra:

SλSµ =
∑

cνλ,µSν .

• The coefficients cνλ,µ are non-negative integers called the Littlewood-
Richardson coefficients. In a 0-dimensional intersection, the coefficient
of [X{1,2,...,k}] is the number of subspaces in Xi(B

1) ∩Xj(B
2).



Enumerative Solution

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?



Enumerative Solution

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?

Solution.
[

X{2,4}

]

= S(1) = x1 + x2 + x3 + x4

By the recipe, compute

[

X{2,4}(B
1) ∩X{2,4}(B

2) ∩X{2,4}(B
3) ∩X{2,4}(B

4)
]

= S4
(1) = 2S(2,2) + S(3,1) + S(2,1,1).

Answer. The coefficient of S2,2 = [X1,2] is 2 representing the two lines
meeting 4 given lines in general position.



Littlewood-Richardson Rules

There are many combinatorial algorithms to compute the Littlewood-Richardson
coefficients cνλ,µ. One of my favorites is based on Knutson-Tao-Woodward
puzzles.

Example. (Warning: picture is not accurate without description.)



Recap

1. G(k, n) is the Grassmannian variety of k-dim subspaces in Rn.

2. The Schubert varieties in G(k, n) are nice projective varieties indexed by
k-subsets of [n] or equivalently by partitions in the k×(n−k) rectangle.

3. Geometrical information about a Schubert variety can be determined by
the combinatorics of partitions.

4. Intersection theory applied to Schubert varieties can be used to solve prob-
lems in enumerative geometry.



Generalizations

”Nothing is more disagreeable to the hacker than duplication of effort. The
first and most important mental habit that people develop when they learn
how to write computer programs is to generalize, generalize, generalize.: –Neil
Stephenson ”In the Beginning was the Command Line”

Same goes for mathematicians!



The Flag Manifold

Defn. A complete flag F• = (F1, . . . , Fn) in Cn is a nested sequence of
vector spaces such that dim(Fi) = i for 1 ≤ i ≤ n. F• is determined by an
ordered basis 〈f1, f2, . . . fn〉 where Fi = span〈f1, . . . , fi〉.

Example.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉
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The Flag Manifold

Canonical Form.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉

≈









6 3 0 0
4 0 2 0
9 0 1 1
0 1 0 0









=









3 0 0 0
0 2 0 0
0 1 1 0
1 0 0 −2

















2 1 0 0
2 0 1 0
7 0 0 1
1 0 0 0









≈〈2e1 + e2, 2e1 + e3, 7e1 + e4, e1〉

Fln(C) := flag manifold over Cn ⊂ ∏n

k=1 G(n, k)

={complete flags F•}

= B \GLn(C), B = lower triangular mats.



Flags and Permutations

Example. F• = 〈2e1+e2, 2e1+e3, 7e1+e4, e1〉 ≈









2 h1 0 0
2 0 h1 0
7 0 0 h1
h1 0 0 0









Note. If a flag is written in canonical form, the positions of the leading 1’s
form a permutation matrix. There are 0’s to the right and below each leading
1. This permutation determines the position of the flag F• with respect to the
reference flag E• = 〈e1, e2, e3, e4 〉.
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Many ways to represent a permutation









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









=

[

1 2 3 4
2 3 4 1

]

= 2341 =









0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4









matrix
notation

two-line
notation

one-line
notation

rank
table

∗ . . .
∗ . . .
∗ . . .
. . . .

= = (1, 2, 3)

1234

2341

diagram of a
permutation

string diagram
reduced
word



The Schubert Cell Cw(E•) in Fln(C)

Defn. Cw(E•) = All flags F• with position(E•, F•) = w

= {F• ∈ Fln | dim(Ei ∩ Fj) = rk(w[i, j])}

Example. F• =









2 h1 0 0
2 0 h1 0
7 0 0 h1
h1 0 0 0









∈ C2341 =























∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0









: ∗ ∈ C















Easy Observations.
• dimC(Cw) = l(w) = # inversions of w.

• Cw = w ·B is a B-orbit using the right B action, e.g.















0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0





























b1,1 0 0 0

b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4















=















b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4

b1,1 0 0 0

















The Schubert Variety Xw(E•) in Fln(C)

Defn. Xw(E•) = Closure of Cw(E•) under the Zariski topology

= {F• ∈ Fln | dim(Ei ∩ Fj)≥rk(w[i, j])}
where E• = 〈e1, e2, e3, e4 〉.

Example.









h1 0 0 0
0 ∗ h1 0
0 ∗ 0 h1
0 h1 0 0









∈ X2341(E•) =























∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0























Why?.
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Five Fun Facts

Fact 1. The closure relation on Schubert varieties defines a nice partial order.

Xw =
⋃

v≤w

Cv =
⋃

v≤w

Xv

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

w < wtij ⇐⇒ w(i) < w(j).

Example. Bruhat order on permutations in S3.

132

231

123

321

213

312

�
�
�

@@��

@@ ��

@
@
@

Observations. Self dual, rank symmetric, rank unimodal.



Bruhat order on S4

4 2 3 1

3 1 2 4

4 2 1 3

1 2 3 4

3 4 2 1

1 2 4 3

3 2 1 4

2 1 3 4

2 3 1 4

3 2 4 12 4 3 1

2 3 4 1 4 1 2 3

4 1 3 2

1 4 2 3

1 4 3 2

4 3 1 2

3 1 4 2

1 3 4 2

3 4 1 2

2 1 4 3

1 3 2 4

2 4 1 3

4 3 2 1



Bruhat order on S5

(3 4 2 1 5)

(2 4 1 5 3)

(3 4 2 5 1)

(4 5 3 1 2)

(4 1 3 5 2)

(2 3 4 1 5)

(3 4 1 2 5)

(4 2 1 5 3)

(3 5 4 1 2)

(1 5 3 2 4) (2 3 4 5 1)

(5 3 4 1 2)

(5 1 3 2 4)

(2 4 5 3 1)

(4 1 3 2 5)

(2 1 4 3 5)

(2 5 3 1 4)

(5 4 1 2 3)

(5 2 1 3 4)

(2 5 4 1 3)

(3 5 4 2 1)

(5 1 4 3 2)

(1 3 4 2 5)

(5 4 1 3 2)

(1 5 4 2 3)

(3 1 4 2 5)

(5 4 2 3 1) (4 5 3 2 1)

(1 4 2 3 5)

(5 3 4 2 1)

(1 2 3 5 4)

(2 5 4 3 1)

(1 3 5 4 2)

(1 2 4 5 3)

(2 1 5 4 3)

(3 1 5 4 2) (2 4 3 5 1)

(5 2 3 4 1)

(1 4 3 5 2)

(2 3 5 4 1)

(2 4 3 1 5)

(3 2 4 5 1)

(5 1 4 2 3)

(5 4 3 1 2)

(2 4 1 3 5)

(1 5 4 3 2)

(2 3 5 1 4)(4 2 1 3 5)

(4 2 3 5 1)

(4 2 3 1 5)

(5 4 2 1 3)

(1 2 3 4 5)

(4 1 5 2 3)

(5 2 3 1 4)

(3 2 4 1 5)

(1 2 4 3 5)

(5 2 4 1 3) (4 3 5 1 2)

(5 4 3 2 1)

(2 1 5 3 4)(1 4 3 2 5)

(4 1 5 3 2)

(5 2 4 3 1)

(1 3 5 2 4)

(2 3 1 4 5)

(1 2 5 4 3)

(3 1 5 2 4)

(5 3 1 4 2)

(1 5 2 4 3)

(4 3 5 2 1)

(3 5 2 4 1)

(5 1 2 4 3)

(1 3 2 4 5)

(2 3 1 5 4)

(3 2 5 1 4)

(3 1 2 4 5)

(4 1 2 5 3)

(5 3 2 1 4)

(2 5 1 4 3)

(5 3 2 4 1)

(3 5 2 1 4)

(1 3 2 5 4)

(3 5 1 4 2)

(1 4 5 2 3)

(3 1 2 5 4)

(3 2 5 4 1)

(3 5 1 2 4)

(4 3 2 5 1)

(4 3 2 1 5) (5 3 1 2 4) (4 3 1 5 2) (3 4 5 1 2)

(1 4 5 3 2)(2 4 5 1 3)

(3 4 5 2 1)

(4 1 2 3 5)

(4 5 2 1 3)

(4 3 1 2 5)

(3 2 1 4 5)

(4 2 5 1 3)

(2 5 1 3 4)

(2 5 3 4 1)(4 5 1 2 3) (5 2 1 4 3)

(1 4 2 5 3)

(1 2 5 3 4)

(1 5 3 4 2)

(1 3 4 5 2)(1 5 2 3 4)

(2 1 3 4 5)

(3 1 4 5 2)(5 1 2 3 4)

(2 1 3 5 4)

(3 2 1 5 4)

(4 5 1 3 2)

(2 1 4 5 3)

(4 5 2 3 1)

(3 4 1 5 2)

(4 2 5 3 1)

(5 1 3 4 2)



10 Fantastic Facts on Bruhat Order

1. Bruhat Order Characterizes Inclusions of Schubert Varieties

2. Contains Young’s Lattice in S∞

3. Nicest Possible Möbius Function

4. Beautiful Rank Generating Functions

5. [x, y] Determines the Composition Series for Verma Modules

6. Symmetric Interval [0̂, w] ⇐⇒ X(w) rationally smooth

7. Order Complex of (u, v) is shellable

8. Rank Symmetric, Rank Unimodal and k-Sperner

9. Efficient Methods for Comparison

10. Amenable to Pattern Avoidance



Singularities in Schubert Varieties

Defn. Xw is singular at a point p ⇐⇒
dimXw = l(w) < dimension of the tangent space to Xw at p.

Observation 1. Every point on a Schubert cell Cv in Xw looks locally the
same. Therefore, p ∈ Cv is a singular point ⇐⇒ the permutation matrix v
is a singular point of Xw.

Observation 2. The singular set of a varieties is a closed set in the Zariski
topology. Therefore, if v is a singular point in Xw then every point in Xv is
singular. The irreducible components of the singular locus of Xw is a union of
Schubert varieties:

Sing(Xw) =
⋃

v∈maxsing(w)

Xv.



Singularities in Schubert Varieties

Fact 2. (Lakshmibai-Seshadri) A basis for the tangent space to Xw at v is
indexed by the transpositions tij such that

vtij ≤ w.

Definitions.
• Let T = invertible diagonal matrices. The T -fixed points in Xw are the
permutation matrices indexed by v ≤ w.

• If v, vtij are permutations in Xw they are connected by a T -stable curve.
The set of all T -stable curves in Xw are represented by the Bruhat graph
on [id, w].



Bruhat Graph in S4

(2 3 4 1)(2 4 1 3)

(1 2 3 4)

(1 3 4 2)(1 4 2 3)

(3 2 4 1)(2 4 3 1)

(2 1 3 4)

(4 2 1 3)

(1 4 3 2) (3 1 4 2) (3 2 1 4)

(2 3 1 4)

(4 1 2 3)

(1 3 2 4)

(3 1 2 4)

(3 4 1 2)

(4 2 3 1) (3 4 2 1)

(2 1 4 3)

(1 2 4 3)

(4 3 1 2)

(4 1 3 2)

(4 3 2 1)



Tangent space of a Schubert Variety

Example. T1234(X4231) = span{xi,j | tij ≤ w}.

(4 2 3 1)

(2 1 3 4)

(1 2 3 4)

(2 4 3 1)

(3 2 1 4)

(4 1 3 2)(3 2 4 1)

(1 4 3 2)(4 1 2 3)(3 1 4 2)

(1 4 2 3)

(1 3 2 4)

(1 3 4 2)

(4 2 1 3)

(2 1 4 3)

(1 2 4 3)

(2 4 1 3)

(2 3 1 4)(3 1 2 4)

(2 3 4 1)

dimX(4231)=5 dimTid(4231) = 6 =⇒ X(4231) is singular!



Five Fun Facts

Fact 3. There exists a simple criterion for characterizing singular Schubert
varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper)
Xw is non-singular ⇐⇒ w has no subsequence with the same relative order
as 3412 and 4231.

Example:
w = 625431 contains 6241 ∼ 4231 =⇒ X625431 is singular
w = 612543 avoids 4231 =⇒ X612543 is non-singular

&3412



Five Fun Facts

Consequences of Fact 3.

• (Billey-Warrington, Kassel-Lascoux-Reutenauer, Manivel 2000) The bad
patterns in w can also be used to efficiently find the singular locus of Xw.

• (Bona 1998, Haiman) Let vn be the number of w ∈ Sn for which X(w)
is non-singular. Then the generating function V (t) =

∑

n vnt
n is given

by

V (t) =
1− 5t + 3t2 + t2

√
1− 4t

1− 6t + 8t2 − 4t3
.

• (Billey-Postnikov 2001) Generalized pattern avoidance to all semisimple
simply-connected Lie groups G and characterized smooth Schubert vari-
eties Xw by avoiding these generalized patterns. Only requires checking
patterns of types A3, B2, B3, C2, C3, D4, G2.



Five Fun Facts

Fact 4. There exists a simple criterion for characterizing Gorenstein Schubert
varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)

Xw is Gorenstein ⇐⇒

• w avoids 31542 and 24153 with Bruhat restrictions {t15, t23} and
{t15, t34}

• for each descent d in w, the associated partition λd(w) has all of its inner
corners on the same antidiagonal.



Five Fun Facts

Fact 5. Schubert varieties are useful for studying the cohomology ring of the
flag manifold.

Theorem (Borel): H∗(Fln) ∼=
Z[x1, . . . , xn]

〈e1, . . . en〉
.

• The symmetric function ei =
∑

1≤k1<···<ki≤n

xk1
xk2

. . . xki
.

• {[Xw] | w ∈ Sn} form a basis for H∗(Fln) over Z.

Question. What is the product of two basis elements?

[Xu] · [Xv] =
∑

[Xw]cwuv.



Cup Product in H∗(Fln)

Answer. Use Schubert polynomials! Due to Lascoux-Schützenberger, Bernstein-
Gelfand-Gelfand, Demazure.

• BGG: If Sw ≡ [Xw]mod〈e1, . . . en〉 then

Sw − siSw

xi − xi+1

≡ [Xwsi
] if l(w) < l(wsi)

[Xid] ≡ xn−1
1 xn−2

2 · · ·xn−1 ≡
∏

i>j

(xi − xj) ≡ . . .

Here deg[Xw] = codim(Xw).

• LS: Choosing [Xid] ≡ xn−1
1 xn−2

2 · · ·xn−1 works best because product
expansion can be done without regard to the ideal!



Schubert polynomials for S4

Sw0(1234) = 1
Sw0(2134) = x1

Sw0(1324) = x2 + x1

Sw0(3124) = x2
1

Sw0(2314) = x1x2

Sw0(3214) = x2
1x2

Sw0(1243) = x3 + x2 + x1

Sw0(2143) = x1x3 + x1x2 + x2
1

Sw0(1423) = x2
2 + x1x2 + x2

1

Sw0(4123) = x3
1

Sw0(2413) = x1x
2
2 + x2

1x2

Sw0(4213) = x3
1x2

Sw0(1342) = x2x3 + x1x3 + x1x2

Sw0(3142) = x2
1x3 + x2

1x2

Sw0(1432) = x2
2x3 + x1x2x3 + x2

1x3 + x1x
2
2 + x2

1x2

Sw0(4132) = x3
1x3 + x3

1x2

Sw0(3412) = x2
1x

2
2

Sw0(4312) = x3
1x

2
2

Sw0(2341) = x1x2x3

Sw0(3241) = x2
1x2x3

S = x x2x + x2x x



Cup Product in H∗(Fln)

Key Feature. Schubert polynomials have distinct leading terms, therefore
expanding any polynomial in the basis of Schubert polynomials can be done by
linear algebra just like Schur functions.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and
Schützenberger’s transition equations. Works up to about n = 15.

Draw Back. Schubert polynomials don’t prove cwuv’s are nonnegative (ex-
cept in special cases).



Cup Product in H∗(Fln)

Another Answer.

• By intersection theory: [Xu] · [Xv] = [Xu(E•) ∩Xv(F•)]

• Perfect pairing: [Xu(E•)] · [Xv(F•)] · [Xw0w(G•)] = cwuv[Xid]

||

[Xu(E•) ∩Xv(F•) ∩Xw0w(G•)]

• The Schubert variety Xid is a single point in Fln.

Intersection Numbers: cwuv = #Xu(E•) ∩Xv(F•) ∩Xw0w(G•)
Assuming all flags E•, F•, G• are in sufficiently general position.



Intersecting Schubert Varieties

Example. Fix three flags R•, G•, and B•:

��
��
��
���

�
�
�

�
�
�
�

Find Xu(R•)∩Xv(G•) ∩Xw(B•) where u, v, w are the following permu-
tations:

R1 R2 R3 G1 G2 G3 B1 B2 B3

P 1

P 2

P 3

1
1

1

1
1

1

1
1

1
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Intersecting Schubert Varieties

Example. Fix three flags R•, G•, and B•:

��
��
��
���

�
�
�

�
�
�
�

Find Xu(R•)∩Xv(G•) ∩Xw(B•) where u, v, w are the following permu-
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Intersecting Schubert Varieties

Schubert’s Problem. How many points are there usually in the inter-
section of d Schubert varieties if the intersection is 0-dimensional?

• Solving approx. nd equations with

(

n
2

)

variables is challenging!

Observation. We need more information on spans and intersections of flag
components, e.g. dim(E1

x1
∩ E2

x2
∩ · · · ∩ Ed

xd
).



Permutation Arrays

Theorem. (Eriksson-Linusson, 2000) For every set of d flagsE1
• , E

2
• , . . . , E

d
• ,

there exists a unique permutation array P ⊂ [n]d such that

dim(E1
x1
∩ E2

x2
∩ · · · ∩ Ed

xd
) = rkP [x].

����
��

�
�
�
�

R1 R2 R3 R1 R2 R3 R1 R2 R3

B1

B2

B3 h1 1 1

h1
1 1 2

h1
h1 2

1 2 3

G1 G2 G3



Totally Rankable Arrays

Defn. For P ⊂ [n]d,

• rkjP = #{k | ∃x ∈ P s.t. xj = k}.

• P is rankable of rank r if rkj(P ) = r for all 1 ≤ j ≤ d.

• y = (y1, . . . , yd) � x = (x1, . . . , xd) if yi ≤ xi for each i.

• P [x] = {y ∈ P | y � x}

• P is totally rankable if P [x] is rankable for all x ∈ [n]d.

•
•

X

•
•

1 1 1
1

1 1 2

1
1 2

1 2 3

• Union of dots is totally rankable. Including X it is not.



Permutation Arrays

•
•

•
• O
O

1 1 1
1

1 1 2

1
1 2

1 2 3

• Points labeled O are redundant, i.e. including them gives another totally
rankable array with same rank table.

Defn. P ⊂ [n]d is a permutation array if it is totally rankable and has no
redundant dots.

•
•

•
•

∈ [4]2.

Open. Count the number of permutation arrays in [n]k.



Permutation Arrays

Theorem. (Eriksson-Linusson) Every permutation array in [n]d+1 can be
obtained from a unique permutation array in [n]d by identifying a sequence of
antichains.

sh

sh

sh

•
sh

•

sh
sh

•
•

This produces the 3-dimensional array

P = {(4, 4, 1), (2, 4, 2), (4, 2, 2), (3, 1, 3), (1, 4, 4), (2, 3, 4)}.

4
4 2

3
2 1



Unique Permutation Array Theorem

Theorem.(Billey-Vakil, 2005) If

X = Xw1(E1
•) ∩ · · · ∩Xwd(Ed

•)

is nonempty 0-dimensional intersection of d Schubert varieties with respect to
flags E1

• , E
2
• , . . . , E

d
• in general position, then there exists a unique permuta-

tion array P ∈ [n]d+1 such that

X = {F• | dim(E1
x1
∩ E2

x2
∩ · · · ∩ Ed

xd
∩ Fxd+1

) = rkP [x].} (1)

Furthermore, we can recursively solve a family of equations for X using P .

Open Problem. Can one find a finite set of rules for moving dots in a 3-d
permutation array which determines the cwuv’s analogous to one of the many
Littlewood-Richardson rules?

Recent Progress. Izzet Coskun’s Mondrian tableaux.



Generalizations of Schubert Calculus for G/B

1992-2012: A Highly Productive Score.







































A: GLn

B: SO2n+1

C: SP2n

D: SO2n

Semisimple Lie Groups
Kac-Moody Groups
GKM Spaces







































×























cohomology
quantum
equivariant
K-theory
eq. K-theory























Recent Contributions from: Bergeron, Berenstein, Billey, Brion, Buch, Carrell,
Ciocan-Fontainine, Coskun, Duan, Fomin, Fulton, Gelfand, Goldin, Graham,
Griffeth, Guillemin, Haibao, Haiman, Holm, Huber, Ikeda, Kirillov, Knutson,
Kogan, Kostant, Kresh, S. Kumar, A. Kumar, Lam, Lapointe, Lascoux, Lenart,
Miller, Morse, Naruse, Peterson, Pitti, Postnikov, Purhboo, Ram, Richmond,
Robinson, Shimozono, Sottile, Sturmfels, Tamvakis, Thomas, Vakil, Winkle,
Yong, Zara. . .



Some Recommended Further Reading

1. “Schubert Calculus” by Steve Kleiman and Dan Laksov. The American
Mathematical Monthly, Vol. 79, No. 10. (Dec., 1972), pp. 1061-1082.

2. “The Symmetric Group” by Bruce Sagan, Wadsworth, Inc., 1991.

3. ”Young Tableaux” by William Fulton, London Math. Soc. Stud. Texts,
Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1997.

4. “Determining the Lines Through Four Lines” by Michael Hohmeyer and
Seth Teller, Journal of Graphics Tools, 4(3):11-22, 1999.

5. “Honeycombs and sums of Hermitian matrices” by Allen Knutson and
Terry Tao. Notices of the AMS, February 2001; awarded the Conant prize
for exposition.



Some Recommended Further Reading

6. “A geometric Littlewood-Richardson rule” by Ravi Vakil, Annals of Math.
164 (2006), 371-422.

7. “Flag arrangements and triangulations of products of simplices” by Sara
Billey and Federico Ardila, Adv. in Math, volume 214 (2007), no. 2,
495–524.

8. “A Littlewood-Richardson rule for two-step flag varieties” by Izzet Coskun.
Inventiones Mathematicae, volume 176, no 2 (2009) p. 325–395.

9. “Sage:Creating a Viable Free Open Source Alternative to Magma, Maple,
Mathematica, and Matlab” by William Stein. http://wstein.org/books/
sagebook/sagebook.pdf, Jan. 2012.

Generally, these published papers can be found on the web. The books are well
worth the money.



Advice to Offer (STRONGLY)

• Work hard. Ask questions. Prove lemmas beyond what is written in the
textbook. Memorize all of the mathematical vocabulary words and named
theorems asap, preferably by the next lecture. Trust nothing in a math
lecture or textbook, check ever single statement to practice your skills.
Learn to program, and write programs to learn math. You are worth more
on the job market as a mathematician if you can program. Do an REU.
Take a class in mathematical modeling.



Advice to Offer (STRONGLY)

• Apply for every fellowship for grad school you can find. Check out the
National Physical Science Consortium, the NSF, DOE, the Navy, the Ford
Foundation, AWM, MAA, and the AMS.



Advice to Offer (STRONGLY)

• Find a way to enjoy the process. Be proactive about making your envi-
ronment work for you. Look for people who can be your mentors at all
stages. Be a mentor to others. Teach what you know. Be generous.



Advice to Offer (STRONGLY)

• Read Cathy O’Neil’s blog: mathbabe.org.

• More of my advice is linked on my website; search on “sara math”.



Advice to Offer (STRONGLY)

• Work hard. Ask questions. Prove lemmas beyond what is written in the
textbook. Memorize all of the mathematical vocabulary words and named
theorems asap, preferably by the next lecture. Trust nothing in a math
lecture or textbook, check ever single statement to practice your skills.
Learn to program, and write programs to learn math. You are worth more
on the job market as a mathematician if you can program. Do an REU.
Take a class in mathematical modeling.

• Take feedback on your work with an enthusiastic attitude toward learning.
Every question or comment is a gift. If you find yourself feeling defensive,
ponder the statement “Don’t take it personally”.

• Apply for every fellowship for grad school you can find. Check out the
National Physical Science Consortium, the NSF, DOE, the Navy, the Ford
Foundation, AWM, MAA, and the AMS.

• Find a way to enjoy the process. Be proactive about making your envi-
ronment work for you. Look for people who can be your mentors at all
stages. Be a mentor to others. Teach what you know. Be generous.

• Read Cathy O’Neil’s blog: mathbabe.org. More of my advise is linked on
my website; search on “sara math”.


