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New results based on joint work with Sami Assaf (preprint on arXiv).



Tale of Two Rings

Power Series Ring.: Z[[X]] over a a finite or countably infinite alphabet
X = {x1, x2, . . . , xn} or X = {x1, x2, . . . }.

Two subrings. of Z[[X]]:

• Symmetric Functions (SYM)

• Quasisymmetric Functions (QSYM)



Ring of Symmetric Functions

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a symmetric function if for all i

f(. . . , xi, xi+1, . . . ) = f(. . . , xi+1, xi, . . . ).

Example. x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + . . .



Ring of Symmetric Functions

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a symmetric function if for all i

f(. . . , xi, xi+1, . . . ) = f(. . . , xi+1, xi, . . . ).

Example. x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + . . .

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a quasisymmetric function if

coef(f ; xα1

1 xα2

2 . . . xαk

k ) = coef(f ; xα1

a xα2

b . . . xαk

c )

for all 1 < a < b < · · · < c.

Example. f(X) = x2
1x2 + x2

1x3 + x2
2x3 + . . .



Why study SYM and QSYM?

• Symmetric Functions (SYM): Used in representation theory, combina-
torics, algebraic geometry over past 200+ years.

• Quasisymmetric Functions (QSYM): 0-Hecke algebra representation the-
ory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert
calculus.

Take Math: 583A to find out more about the applications.



Monomial Basis of SYM

Defn. A partition of a number n is a weakly decreasing sequence of positive
integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0)

such that n =
∑

λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(6, 5, 2) −→

Defn/Thm. The monomial symmetric functions indexed by partitions of n

mλ = xλ1

1 xλ2

2 · · · xλk

k + xλ1

2 xλ2

1 · · · xλk

k + all other perms of vars

form a basis for SY Mn = homogeneous symmetric functions of degree n.

Fact. dimSY Mn = p(n) = number of partitions of n.



Monomial Basis of QSYM

Defn. A composition of a number n is a sequence of positive integers

α = (α1, α2, . . . , αk)

such that n =
∑

αi = |α|.

Defn/Thm. The monomial quasisymmetric functions indexed by composi-
tions of n

Mα = xα1

1 xα2

2 · · · xαk

k + xα1

2 xα2

3 · · · xαk

k+1 + all other shifts

form a basis for QSY Mn = homogeneous quasisymmetric functions of deg n.

Fact. dimQSY Mn = number of compositions of n = 2n−1.



Monomial Basis of QSYM

Fact. dimQSY Mn = number of compositions of n = 2n−1.

Bijection:

(α1, α2, . . . , αk) −→ {α1,

α1 + α2,

α1 + α2 + α3,

. . .

α1 + α2 + · · · + αk−1}



Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

p(n) ≈ 1

4n
√

3
eπ

√
2n
3



Schur basis for SYM

Let X = {x1, x2, . . . , xm} be a finite alphabet.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) and λp = 0 for p > k.

Defn. The following are equivalent definitions for the Schur functions Sλ(X):

1. Sλ =
det(x

λj+n−j

i
)

det(x
n−j

i
)

with indices 1 ≤ i, j ≤ m.

2. Sλ =
∑

xT summed over all column strict tableaux T of shape λ.

Defn. T is column strict if entries strictly increase along columns and weakly
increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

T = 7
4 7 7
2 2 3 4 8

xT = x2
2x3x2

4x3
7x8



Multiplying Schur Functions

Littlewood-Richardson Coefficients.

Sλ(X) · Sµ(X) =
∑

|ν|=|λ|+|µ|

cν
λ,µSν(X)

cν
λ,µ = # skew tableaux of shape ν/λ such that xT = xµ and the reverse

reading word is a lattice word.

Example. If ν = (4, 3, 2) , λ = (2, 1), λ = (3, 2, 1) then

2 3
1 2

1 1

readingword = 231211



Fundamental basis for QSYM

Defn. Let A ⊂ [p − 1] = {1, 2, . . . , p − 1}. The fundamental quasisym-
metric function

FA(X) =
∑

xi1 · · · xip

summed over all 1 ≤ i1 ≤ . . . ≤ ip such that ij < ij+1 whenever j 6∈ A.

Example. F++−+ = x1x1x1x2x2+x1x2x2x3x3+x1x2x3x4x5+. . .

Here + + −+ = {1, 2, 4} ⊂ {1, 2, 3, 4}.

Other bases of QSYM: quasi Schur basis (Haglund-Luoto-Mason-vanWilligenburg),
matroid friendly basis (Luoto)



A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive
relation on a set.

Defn. Young’s Lattice on all partitions is the poset defined by the relation
λ ⊂ µ if the Ferrers diagram for λ fits inside the Ferrers diagram for µ.

⊂ ⊂

Defns. A standard tableau T of shape λ is a saturated chain in Young’s
lattice from ∅ to λ.

Example. T = 7
4 5 9
1 2 3 6 8



Schur functions

Thm.(Gessel,1984) For all partitions λ,

Sλ(X) =
∑

FD(T )(X)

summed over all standard tableaux T of shape λ.

Defn. The descent set of T , denoted D(T ), is the set of indices i such that
i + 1 appears northwest of i.

Example. Expand S(3,2) in the fundamental basis

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

S(3,2)(X) = F++−+(X)+F+−+−(X)+F+−++(X)+F−++−(X)+F−+−+(



Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr 2005)

H̃µ(X; q, t) =
∑

w∈Sn

qinvµ(w)tmajµ(w)FD(w−1)

where D(w) is the descent set of w in one-line notation.

Thm. (Haiman 2001) Expanding H̃µ(X; q, t) into Schur functions

H̃µ(X; q, t) =
∑

i

∑

j

∑

|λ|=|µ|

ci,j,λqitjSλ,

the coefficients ci,j,λ are all non-negative integers.

=⇒ Macdonald polynomials are Schur positive,

Open I. Find a “nice” combinatorial algorithm to compute ci,j,λ showing
these are non-negative integers.



Lascoux-Leclerc-Thibon Polynomials

Defn. Let µ̄ = (µ(1), µ(1), . . . , µ(k)) be a list of partitions.

LLTµ̄(X; q) =
∑

qinvµ(T )FD(w−1)

summed over all bijective fillings w of µ̄ where each µ(i) filled with rows and
columns increasing. Each w is recorded as the permutation given by the content
reading word of the filling.

Thm. For all µ̄ = (µ(1), µ(2), . . . , µ(k))
1. LLTµ̄(X; q) is symmetric. (Lascoux-Leclerc-Thibon)

2. LLTµ̄(X; q) is Schur positive. (Assaf∗∗)

** Proof still in revision/verification stage.



Lascoux-Leclerc-Thibon Polynomials

Open II. Find a “nice” combinatorial algorithm to compute the expansion
coefficients for LLT ’s to Schurs.

Known. Each H̃µ(X; q, t) expands as a positive sum of LLT’s so Open II
implies Open I. (Haiman-Haglund-Loehr)



k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

S
(k)
λ (X; q) =

∑

S∗∈SST (µ,k)

qspin(S∗)FD(S∗).

Nice Properties.: Consider {S
(k)
λ (X; q = 1)}

1. These are a Schubert basis for the homology ring of the affine Grassman-
nian of type Ak. (Lam)

2. Structure constants are related to Gromov-Witten invariants of flag man-
ifolds (Lapointe-Morse,Peterson, Lam-Shimozono).

3. There exists a k-Schur analog the Murnaghan-Nakayma rule. (Bandlow-
Schilling-Zabrocki)



k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

S
(k)
λ (X; q) =

∑

S∗∈SST (µ,k)

qspin(S∗)FD(S∗).

Nice Conjectures.: Consider {S
(k)
λ (X; q)} with q an indeterminate

1. Macdonald polynomials expand as a positive sum of k-Schurs. (LLLMS)

2. LLT’s expand as a positive sum of k-Schurs (Assaf-Haiman)



Schur Positivity of k-Schurs

Theorem. (Lam-Lapointe-Morse-Shimozono, 2011) At q = 1, {S
(k)
λ (X; 1)}

is Schur positive. In fact, each k-Schur expands as a positive sum of k + 1-
Schurs.

Conjecture. (see Assaf-Billey preprint) Using this definition the k-Schur

function S
(k)
λ (X; q) expands as a positive sum of Schur functions.

Benefits.
• Significantly reduces number of terms in the expansion so easier to store

and manipulate.

• Simplifies computations of products in the homology ring.

• Each k-Schur can be associated to an Sn-module.



n-core poset

Defn. A partition λ is an n-core if it has no hooks of length n.

Example. (3,3,1,1) is a 4-core:

1
2
5 2 1
6 3 2

Defn. The n-core poset is the partial order on n-cores ordered by containment
of Ferrers diagrams.

Thm. (Lascoux) The n-core poset is isomorphic to Bruhat order on S̃n/Sn.



n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Example. n = 3: ∅ ⊂ ⊂ ⊂ ⊂



n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Example. n = 3: ∅ ⊂ ⊂ ⊂ ⊂ −→ 4
3
2 4
1 3



Strong tableaux in the n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Example. n = 3: ∅ ⊂ ⊂ ⊂ ⊂ −→ 4
3
2 4
1 3

n = 4: 3

5 5
3 5

4 5 5
2 3 5
1 1 4 5 5

2 3 5
1 1 4 5 5

2 3 5
1 1 4 5 5

2 3 5
2 3

Note, i’s live in connected, identical ribbons, shifted in diagonal with offset n.



Starred Strong tableaux

Defn. A starred strong tableau S∗ ∈ SST(µ, n) is a strong tableau S along
with a choice of i-ribbon for each i ∈ S. Place ∗ in SE corner of the “starred”
i-ribbon.

Example. All SST’s for n = 3 and µ = (2, 2, 1, 1)

4∗

3∗

2∗ 4
1∗ 3

4∗

3
2∗ 4
1∗3∗

4
3∗

2∗4∗

1∗ 3

4
3
2∗4∗

1∗3∗



Starred Strong tableaux

Defn. A starred strong tableau S∗ ∈ SST(λ, n) is a strong tableau S of
shape λ along with a choice of i-ribbon for each i ∈ S. Place ∗ in SE corner
of the “starred” i-ribbon.

Example. All SST’s for n = 3 and µ = (2, 2, 1, 1)

4∗

3∗

2∗ 4
1∗ 3

4∗

3
2∗ 4
1∗3∗

4
3∗

2∗4∗

1∗ 3

4
3
2∗4∗

1∗3∗

− − − − + − − − + − +−

D(S∗) := {i : (i + 1)∗lies NW of i∗inS∗}



k-Schur Functions

Definition.

S
(k)
λ (X; q) =

∑

S∗∈SST (λ,k)

qspin(S∗)FD(S∗).

SST= Starred Strong Tableaux on the n-core poset. Here n = k + 1.

D(S∗) = Descent Set of S∗

spin(S∗) =
∑

i∈S n(i)[h(i) − 1] + d(i)

• n(i) = number of connected i-ribbons in S

• h(i) = height of i∗-ribbon

• d(i) = number of i-ribbons NW of i∗-ribbon



Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.



Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be
characterized by 6 axioms.



Affine Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be
characterized by 6 axioms.

Theorem. (Assaf-Billey) There exists an analogous graph structure on starred
strong tableaux that satisfy the first 3 of Assaf’s axioms and every vertex in a
connected component of the graph has the same spin.



Attempted Proof for Schur Positivity

Assaf Machine.

Goal: Given any G(V ) =
∑

T ∈V

FD(T ), show G(V ) is Schur positive.

1. Impose a graph structure on V by finding a family of involutions φi for
1 < i < n. Set Ei = {(x, φ(x)) : x ∈ V, φ(x) 6= x}. Each (V, Ei)
is a matching.

2. Show graph satisfies Assaf’s axioms including local Schur positivity on
every connected component of (V, Ei−1 ∪ Ei ∪ Ei+1).

Update: Computer verification of local Schur positivity for the graphs on k-Schur
functions needs to find all possible graph isomorphism types for n = 2, . . . , 9.
So far n = 2, 3, 4, 5 finished. Case n = 6 running on 8 processors. There are
15,041 interval bottoms to check. Many take minutes, some have taken a week.

http://www.math.washington.edu/∼billey/kschur/d-graphs-11-2011.pdf



Computer Assisted Proofs

Questions.

1. What is the value of a computer proof?

2. What data needs to be stored to convince reader that computer verification
is complete?

3. How long is too long?

4. What are the standards for publishing a computer assisted proof?



Big Picture

Geometry Combinatorics Rep Theory

Grassmannians Schur functions Sn, GLn irreducible reps

Affine Grassmannians k-Schur ????
(Li-Chung Chen + Haiman)

Hilbert Schemes Macdonald polynomials Garsia-Haiman module
of points in plane (n!-theorem)



Big Picture

Geometry Combinatorics Rep Theory

Grassmannians Schur functions Sn, GLn irreducible reps
↑

Affine Grassmannians k-Schur ????
(Li-Chung Chen + Haiman)

↑
Hilbert Schemes Macdonald polynomials Garsia-Haiman module
of points in plane (n!-theorem)

Theorem.(A-B) k-Schur functions are Schur positive.

Conjecture.(Lapointe-Morse) Macdonald polynomials are k-Schur positive
for the right k.

Open. Find a direct geometric connection from Hilbert Schemes to Affine
Grassmannians.


