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1. Tale of Two Rings: Symmetric Functions and Quasisymmetric Functions
2. Schur functions, LLT polynomials and Macdonald polynomials
3. k-Schur functions

4. Affine dual equivalence graphs

New results based on joint work with Sami Assaf (preprint on arXiv).



Power Series Ring.: Z[[X]] over a a finite or countably infinite alphabet
X ={x1,22,..., ¢} or X = {x1,x2,...}.
Two subrings. of Z[[X]]:

e Symmetric Functions (SYM)

e Quasisymmetric Functions (QSYM)



Ring of Symmetric Functions

Defn. f(xy,x2,...) € Z[[X]] is a symmetric function if for all 4

f(...,wi,wi+1,...) :f(...,wi+1,:137;,...).

Example. 22x5 4+ 2225 + 2221 + 2225 + ...



Defn. f(xy,x2,...) € Z[[X]] is a symmetric function if for all %

f(...,:vi,wi+1,...) :f(...,a:i_|_1,w7;,...).

Example. z2z + 2323 + 221 + v2235 + . ..

Defn. f(xy,x2,...) € Z[[X]] is a quasisymmetric function if
coef (fsx{x5? ... 2 %) = coef(fi 0 xp? ... xo%)
foralll<a<b<---<ec

Example. f(X) = z?x2 + x3x3 + v223 + . ..



e Symmetric Functions (SYM): Used in representation theory, combina-
torics, algebraic geometry over past 200+ years.

e Quasisymmetric Functions (QSYM): 0-Hecke algebra representation the-
ory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert
calculus.

Take Math: 583A to find out more about the applications.



Defn. A partition of a number 1 is a weakly decreasing sequence of positive
Integers

A=A1 222> A >0)
such that n = ) A\; = |A|.

Partitions can be visualized by their Ferrers diagram

(69 59 2) -

Defn/Thm. The monomial symmetric functions indexed by partitions of n

A1 Az |,

my = T35 ’“ -+ a:z acl . e azz’“ + all other perms of vars

form a basis for SY M,, = homogeneous symmetric functions of degree n.

Fact. dimSY M,, = p(n) = number of partitions of n.



Defn. A composition of a number n is a sequence of positive integers
a=(a1,q2,...,0k)

such that n = > a; = |a|.

Defn/Thm. The monomial quasisymmetric functions indexed by composi-
tions of n

My =z x5 - cxp + x5ty .- wg_’f_l + all other shifts
form a basis for QSY M,, = homogeneous quasisymmetric functions of deg n.

Fact. dimQSY M,, = number of compositions of n = 271,



Fact. dimQSY M,, = number of compositions of n = 27—,

Bijection:

(a17a27°"9ak:) — {alv
a1 + ag,

o1 + O + (g,

oy +az+ -+ ap_1}



Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

(n) ~ ——e™VF
n)=< (& 3
P 4n\/§




Let X = {x1,®2,...,T,n} be a finite alphabet.
Let A= (A1 2 A2 2>+ 2> A >0)and A, =0 forp > k.

Defn. The following are equivalent definitions for the Schur functions S (X):

Aj+n—g

1. Sy = de;:fgw@_j) ) with indices 1 < i, < m.

2. Sx =Y xT summed over all column strict tableaux T of shape .

Defn. T is column strict if entries strictly increase along columns and weakly
increase along rows.

Example. A column strict tableau of shape (5,3, 1)

T 2 2.3

T = T = ToT3T, T,y
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Littlewood-Richardson Coefficients.

Sx(X)-Su(X)= ) = &, (X)
v|=IAl+p

cy pw = # skew tableaux of shape v/ such that 1 = x* and the reverse
reading word is a lattice word.

Example. If v = (4,3,2) , A= (2,1), A = (3,2, 1) then

2(3 readingword = 231211
1

o | Y




Defn. Let AC [p—1] = {1,2,...,p — 1}. The fundamental quasisym-
metric function

FA(X) :Zazil---wip

summed over all 1 < 27 < ... < ¢, such that 7; < 241 whenever 37 € A.
Example. F-I—-l-—-l— = L1 T1L1L2L2+ L1 T2XLo2X3L3+ L1 L2L3L4Ts+. . .
Here + + —+ = {1,2,4} C {1,2,3,4}.

Other bases of QSYM: quasi Schur basis (Haglund-Luoto-Mason-vanWilligenburg),
matroid friendly basis (Luoto)



Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive
relation on a set.

Defn. Young’s Lattice on all partitions is the poset defined by the relation
A C p if the Ferrers diagram for A fits inside the Ferrers diagram for p.

C C

Defns. A standard tableau T of shape A is a saturated chain in Young's
lattice from @ to .

Example. T =[7

DN | O
WO




Thm.(Gessel, 1984) For all partitions A,

Sa(X) = Z Fpr)(X)

summed over all standard tableaux T' of shape A.

Defn. The descent set of T, denoted D(T), is the set of indices ¢ such that
1 + 1 appears northwest of z.

Example. Expand S(3,2) in the fundamental basis

4 3|5 314
1 1]2

2
3 1{2]4 1

=N
o[~
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314
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S3,2)(X) = Frq 1 (X)+F4 4 (X)+Fy (X)) +F_ (X)) +F_



Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr 2005)

H,(X;q,t) = Y  gmoegmain)py .y
weS,

where D(w) is the descent set of w in one-line notation.

Thm. (Haiman 2001) Expanding IA{/“(X; q,t) into Schur functions

(X q, t) — S‘S‘ S‘ Ci,j,04 tJSA7

J | A=|u]

the coefficients ¢; ; » are all non-negative integers.
— Macdonald polynomials are Schur positive,

Open I. Find a “nice” combinatorial algorithm to compute ¢;_j x showing
these are non-negative integers.



Defn. Let i1 = (p@, u®, ..., u*)) be a list of partitions.
LLT;(X;q) = Z qi"”“(T)FD(w_l)

summed over all bijective fillings w of i where each p(® filled with rows and
columns increasing. Each w is recorded as the permutation given by the content
reading word of the filling.

Thm. Forall i = (p™, @, ..., uk)
1. LLTy(X;q) is symmetric. (Lascoux-Leclerc-Thibon)

2. LLTy(X;q) is Schur positive. (Assaf**)

** Proof still in revision/verification stage.



Open II. Find a “nice” combinatorial algorithm to compute the expansion
coefficients for LLT"s to Schurs.

Known. Each IA{/,,,(X; q,t) expands as a positive sum of LLT's so Open Il
implies Open |. (Haiman-Haglund-Loehr)



Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

k spin(S™
Sg\ (X5 q) = Z g ) Fpy gey.
S*€SST (k)

Nice Properties.: Consider {s§"’>(x; q=1)}
1. These are a Schubert basis for the homology ring of the affine Grassman-
nian of type Ag. (Lam)

2. Structure constants are related to Gromov-Witten invariants of flag man-
ifolds (Lapointe-Morse,Peterson, Lam-Shimozono).

3. There exists a k-Schur analog the Murnaghan-Nakayma rule. (Bandlow-
Schilling-Zabrocki)



Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

k spin(S™
Sg\ (X5 q) = Z g ) Fpy gey.
S*€SST (k)

Nice Conjectures.: Consider {S(X;q)} with ¢ an indeterminate
1. Macdonald polynomials expand as a positive sum of k-Schurs. (LLLMS)

2. LLT's expand as a positive sum of k-Schurs (Assaf-Haiman)



Theorem. (Lam-Lapointe-Morse-Shimozono, 2011) At q = 1, {Sgk)(X; 1)}
is Schur positive. In fact, each k-Schur expands as a positive sum of k + 1-
Schurs.

Conjecture. (see Assaf-Billey preprint) Using this definition the k-Schur
function Sik)(X; q) expands as a positive sum of Schur functions.

Benefits.
e Significantly reduces number of terms in the expansion so easier to store
and manipulate.

e Simplifies computations of products in the homology ring.

e Each k-Schur can be associated to an S,,-module.



Defn. A partition X is an n-core if it has no hooks of length n.

Example. (3,3,1,1) is a 4-core:

OO
I
DN | =

Defn. The n-core poset is the partial order on n-cores ordered by containment
of Ferrers diagrams.

Thim. (Lascoux) The m-core poset is isomorphic to Bruhat order on Sy, /Sy.



Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Example. n = 3: pClLIClL]C C




Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Example. n = 3: pClLIClL]C C —

=N | QO |~
UL] AN




Defn. A strong tableau is a saturated chain of inclusions in the 12-core poset.

Example. n = 3: pClLIClL]C C —

=N | QO |~
UL] AN

oot
= DN |~ | O OT
= OO0 | ON
= DN |~ | O OT
= OO0 | ON
= DN |~ | O OF
= OO0 | ON
(\V] RN (S § [y

9|95
3|5

2(3
Note, 2's live in connected, identical ribbons, shifted in diagonal with offset n.




Defn. A starred strong tableau S* € SST(u, n) is a strong tableau S along
with a choice of 2-ribbon for each 2 € S. Place % in SE corner of the “starred”
2-ribbon.

Example. Al SST'sforn =3 and u = (2,2,1,1)

1 1 4 4
3+ 3 I3 3
244 2+ 4 24> 24"
143 1¥3* 143 1¥3*




Defn. A starred strong tableau S* € SST(\,n) is a strong tableau S of

shape A along with a choice of z-ribbon for each ¢ € S. Place * in SE corner
of the “starred” 2-ribbon.

Example. Al SST'sforn =3 and u = (2,2,1,1)

1 1 4 4
3+ 3 I3 3
244 2+ 4 24> 24"
143 1¥3* 143 1¥3*

——— —+- ——+ —+-

D(S*):={¢ : (¢+ 1)*lies NW of ¢*inS*}



Definition.

k spin(S™
Sg\ )(X§CI) = Z g5 Fp5e).
S*E€SST(\k)

SST= Starred Strong Tableaux on the n-core poset. Here n = k + 1.

D(S*) = Descent Set of S*

spin(S*) = Yyes (@) (i) — 1] + d(3)
e n(2) = number of connected ¢-ribbons in S
e h(z) = height of ¢*-ribbon
e d(i) = number of i-ribbons NW of ¢*-ribbon



Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.



Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be
characterized by 6 axioms.



Theorem. (Haiman 1992) The graph on all standard tableaux on partitions
of size n with edges given by dual equivalence has exactly one connected com-
ponent for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be
characterized by 6 axioms.

Theorem. (Assaf-Billey) There exists an analogous graph structure on starred
strong tableaux that satisfy the first 3 of Assaf’'s axioms and every vertex in a
connected component of the graph has the same spin.



Assaf Machine.

Goal: Given any G(V) = Z Fp(ry, show G(V) is Schur positive.
TeV
1. Impose a graph structure on V' by finding a family of involutions ¢; for

1<i<n Set E; = {(x,¢p(x)) : x € V,¢p(x) # x}. Each (V, E;)
Is a matching.

2. Show graph satisfies Assaf’'s axioms including local Schur positivity on
every connected component of (V, E;_1 UE; U E;,1).

Update: Computer verification of local Schur positivity for the graphs on k-Schur
functions needs to find all possible graph isomorphism types forn = 2,...,9.
So far n = 2, 3,4, 5 finished. Case n = 6 running on 8 processors. There are
15,041 interval bottoms to check. Many take minutes, some have taken a week.

http://www.math.washington.edu/~billey/kschur/d-graphs-11-2011.pdf



Questions.

1. What is the value of a computer proof?

2. What data needs to be stored to convince reader that computer verification
Is complete?

3. How long is too long?

4. What are the standards for publishing a computer assisted proof?



Geometry Combinatorics Rep Theory

Grassmannians Schur functions Sn, GL, irreducible reps

Affine Grassmannians k-Schur 777
(Li-Chung Chen 4 Haiman)

Hilbert Schemes Macdonald polynomials Garsia-Haiman module
of points in plane (n!-theorem)



Geometry Combinatorics Rep Theory

Grassmannians Schur functions Sn, GL, irreducible reps
T
Affine Grassmannians k-Schur 27777
(Li-Chung Chen 4 Haiman)
T
Hilbert Schemes Macdonald polynomials Garsia-Haiman module
of points in plane (n!-theorem)

Theorem.(A-B) k-Schur functions are Schur positive.

Conjecture.(Lapointe-Morse) Macdonald polynomials are k-Schur positive
for the right k.

Open. Find a direct geometric connection from Hilbert Schemes to Affine
Grassmannians.



