# Boolean Product Polynomials and the Resonance Arrangement

Sara Billey University of Washington

Based on joint work with: Lou Billera and Vasu Tewari

FPSAC July 17, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



Schur Positivity via  $GL_n$  representation theory and vector bundles

Corollaries and Generalizations (Work in Progress)

Motivation

#### Notation.

- Fix an alphabet of variables  $X = \{x_1, x_2, \dots, x_n\}$ .
- ► The symmetric group S<sub>n</sub> acts on C[x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>] by permuting the variables: w.x<sub>i</sub> = x<sub>w(i)</sub>.
- ▶ A polynomial  $f \in \mathbb{C}[x_1, x_2, ..., x_n]$  is symmetric if w.f = f for all  $w \in S_n$ .

• Let  $\Lambda_n$  denote the *ring of symmetric polynomials* in  $\mathbb{C}[x_1, x_2, \dots, x_n]$ .

**Examples.** Let 
$$[n] = \{1, 2, ..., n\}$$
.  
Elementary:  $e_k = \sum_{\substack{A \subset [n] \ |A| = k}} \prod_{i \in A} x_i$   
Homogeneous:  $h_k = \sum_{\substack{multisets \ A \subset [n] \ |A| = k}} \prod_{i \in A} x_i$   
Power sum:  $p_k = \sum_{i=1}^n x_i^k$ 

 $e_2(x_1, x_2, x_3, x_4) = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$ 

$$p_2(x_1, x_2, x_3, x_4) = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

$$h_2 = e_2 + p_2.$$

**Fact.** 
$$\Lambda_n = \mathbb{C}[e_1, \ldots, e_n] = \mathbb{C}[h_1, \ldots, h_n] = \mathbb{C}[p_1, \ldots, p_n]$$

**Fact.** 
$$\Lambda_n = \mathbb{C}[e_1, \dots, e_n] = \mathbb{C}[h_1, \dots, h_n] = \mathbb{C}[p_1, \dots, p_n]$$

Question. What other symmetric polynomials are "natural"?



**Fact.** 
$$\Lambda_n = \mathbb{C}[e_1, \ldots, e_n] = \mathbb{C}[h_1, \ldots, h_n] = \mathbb{C}[p_1, \ldots, p_n]$$

**Question.** What other symmetric polynomials are "natural"?

*Monomials:*  $m_{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} + \text{other monomials in } S_n \text{-orbit}$ 

Stanley's chromatic symmetric functions on a graph G = (V, E):

$$X_G(x_1,\ldots,x_n) = \sum_{\substack{c:V \to [n] \ ext{proper coloring}}} \prod_{v \in V} x_{c(v)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Observe.** These examples are all sums of products.

# Schur Polynomials

**Defn.** Given a partition  $\lambda = (\lambda_1, \dots, \lambda_n)$ , the *Schur polynomial* 

$$s_{\lambda}(x_1,\ldots,x_n) = \sum_{T \in SSYT(\lambda,n)} \prod_{i \in T} x_i$$

where  $SSYT(\lambda, n)$  are the semistandard fillings of  $\lambda$  with positive integers in [n]. Semistandard implies strictly increasing in columns and leniently increasing in rows.

**Example.** For  $\lambda = (2, 1)$  and n = 2,  $SSYT(\lambda, n)$  has two fillings

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so  $s_{(2,1)}(x_1, x_2) = x_1^2 x_2 + x_1 x_2^2$ .

## **Boolean Product Polynomials**

Question. What about products of sums?

#### **Boolean Product Polynomials**

Question. What about products of sums?

**Defn.** For  $X = \{x_1, ..., x_n\}$ , define

▶ (n, k)-Boolean Product Polynomial: For  $1 \le k \le n$ ,

$$B_{n,k}(X) := \prod_{\substack{A \subseteq [n] \\ |A| = k}} \sum_{i \in A} x_i$$

n-th Total Boolean Product Polynomial:

$$B_n(X) := \prod_{k=1}^n B_{n,k}(X) = \prod_{\substack{A \subseteq [n] \ i \in A} \\ A \neq \emptyset} \sum_{i \in A} x_i$$
  
Example.  $B_2 = (x_1)(x_2)(x_1 + x_2) = x_1^2 x_2 + x_1 x_2^2 = s_{(2,1)}(x_1, x_2)$ 

# **Boolean Product Polynomials**

#### Examples.

$$B_{3,1} = (x_1)(x_2)(x_3) = e_3(x_1, x_2, x_3) = s_{(1,1,1)}(x_1, x_2, x_3)$$
  

$$B_{3,2} = (x_1 + x_2)(x_1 + x_3)(x_2 + x_3) = s_{(2,1)}(x_1, x_2, x_3)$$
  

$$B_{3,3} = (x_1 + x_2 + x_3) = e_1(x_1, x_2, x_3) = s_{(1)}(x_1, x_2, x_3)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$B_3 = s_{(1,1,1)}s_{(2,1)}s_{(1)} = s_{(4,2,1)} + s_{(3,3,1)} + s_{(3,2,2)}.$$

#### Subset Alphabets

**Defn.** For  $1 \le k \le n$ , define a new alphabet of linear forms

$$X^{(k)} = \{ x_{A} = \sum_{i \in A} x_{i} : A \subset [n], |A| = k \}.$$

Then

$$B_{n,k} = \prod_{\substack{A\subseteq [n]\\|A|=k}} x_A = e_{\binom{n}{k}}(X^{(k)}).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

#### Subset Alphabets

**Defn.** For  $1 \le k \le n$ , define a new alphabet of linear forms

$$X^{(k)} = \{ x_{\mathcal{A}} = \sum_{i \in \mathcal{A}} x_i : \mathcal{A} \subset [n], |\mathcal{A}| = k \}.$$

Then

$$B_{n,k} = \prod_{\substack{A \subseteq [n] \\ |A|=k}} x_A = e_{\binom{n}{k}}(X^{(k)}).$$

Furthermore, for  $1 \le p \le {n \choose k}$  define the symmetric polynomials

$$e_p(X^{(k)}) = \sum_{\substack{S \subset k \text{-subsets of}[n] \ |S| = p}} \prod_{A \in S} x_A.$$

#### Schur Positivity

**Theorem.** For all  $1 \le k \le n$  and  $1 \le p \le {n \choose k}$ , the expansion

$$e_{\rho}(X^{(k)}) = \sum_{\lambda} c_{\lambda} s_{\lambda}(x_1, \ldots, x_n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has nonnegative integer coefficients  $c_{\lambda}$ .

**Corollary.** Both  $B_{n,k}$  and  $B_n$  are Schur positive.

# **Proof Setup**

**Notation.** Fix a complex vector bundle  $\mathcal{E}$  of rank *n*. The *total Chern class*  $c(\mathcal{E})$  is the sum of the individual Chern classes

$$c(\mathcal{E}) = 1 + c_1(\mathcal{E}) + \cdots + c_n(\mathcal{E}).$$

Via the Splitting Principle, we have  $c(\mathcal{E}) = \prod_{i=1}^{n} (1 + x_i)$  where the  $x_i$  for  $1 \le i \le n$  are the *Chern roots* of  $\mathcal{E}$  associated to certain line bundles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Prior Work

**Thm.**(Lascoux, 1978) The total Chern class of  $\bigwedge^2 \mathcal{E}$  and  $\operatorname{Sym}^2 \mathcal{E}$  is Schur-positive in terms of the Chern roots  $x_1, \ldots, x_n$  of  $\mathcal{E}$ . Specifically, there exist integers  $d_{\lambda,\mu} \ge 0$  for  $\mu \subseteq \lambda$  such that

$$c(\wedge^{2}\mathcal{E}) = \prod_{1 \leq i < j \leq n} (1 + x_{i} + x_{j}) = 2^{-\binom{n}{2}} \sum_{\mu \subseteq \delta_{n-1}} d_{\gamma_{n},\mu} 2^{|\mu|} s_{\mu}(X),$$
  
$$c(\operatorname{Sym}^{2}\mathcal{E}) = \prod_{1 \leq i \leq j \leq n} (1 + x_{i} + x_{j}) = 2^{-\binom{n}{2}} \sum_{\mu \subseteq \delta_{n}} d_{\delta_{n},\mu} 2^{|\mu|} s_{\mu}(X).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here  $\gamma_n = (n - 1, ..., 1, 0)$  and  $\delta_n = (n, ..., 2, 1)$ .

# **Binomial Determinants**

Lascoux showed that for  $\mu = (\mu_1, \dots, \mu_n) \subseteq \lambda = (\lambda_1, \dots, \lambda_n)$ ,

$$d_{\lambda,\mu} = \det\left( egin{pmatrix} \lambda_i + n - i \ \mu_j + n - j \end{pmatrix} 
ight)_{1 \leq i,j \leq n} \geq 0.$$

・ロト・日本・ヨト・ヨー うへの

#### **Binomial Determinants**

Lascoux showed that for  $\mu = (\mu_1, \dots, \mu_n) \subseteq \lambda = (\lambda_1, \dots, \lambda_n)$ ,

$$d_{\lambda,\mu} = \det\left( egin{pmatrix} \lambda_i + n - i \ \mu_j + n - j \end{pmatrix} 
ight)_{1 \leq i,j \leq n} \geq 0.$$

**Thm.**(Gessel-Viennot 1985)  $d_{\lambda,\mu}$  counts the number of nonintersecting lattice paths from heights  $\lambda + \delta_n$  along the *y*-axis to main diagonal points  $\mu + \delta_n$  using east or south steps.

This highly influential theorem was inspired by Lascoux's theorem!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Vector Bundle Approach to Schur Positivity

**Notation.** Fix a complex vector bundle  $\mathcal{E}$  of rank *n* over a smooth projective variety *V*. The *total Chern class* 

$$c(\mathcal{E}) = 1 + c_1(\mathcal{E}) + \cdots + c_n(\mathcal{E}) = \prod_{i=1}^n (1 + x_i)$$

where the  $x_i$  for  $1 \le i \le n$  are the *Chern roots* of  $\mathcal{E}$ .

Construct another vector bundle  $\mathbb{S}^{\lambda}(\mathcal{E})$  over V by applying the Schur functor from  $GL_n$ -representation theory on each fiber.

**Thm.**(Fulton) The Chern roots of  $\mathbb{S}^{\lambda}(\mathcal{E})$  are indexed by semistandard tableaux:

$$\{x_T = \sum_{i \in T} x_i \text{ for } T \in SSYT(\lambda, n)\}.$$

#### Vector Bundle Approach to Schur Positivity

**Notation.** For any partitions  $\lambda$  and  $\mu$ , consider the Schur function  $s_{\mu}$  on the alphabet of Chern roots on  $\mathbb{S}^{\lambda}(\mathcal{E})$ , denoted  $s_{\mu}(\mathbb{S}^{\lambda}(\mathcal{E}))$ .

**Example.** Take n = 3,  $\lambda = (1, 1)$ , then the Chern roots of  $\mathbb{S}^{\lambda}(\mathcal{E})$  are the variables in the alphabet

$$X^{(2)} = \{x_1 + x_2, x_1 + x_3, x_2 + x_3\}.$$

For  $\mu = (2, 1)$ , expand

$$s_{\mu}(\mathbb{S}^{\lambda}(\mathcal{E})) = s_{(2,1)}(x_1 + x_2, x_1 + x_3, x_2 + x_3)$$
  
= 2s\_{(3)}(x\_1, x\_2, x\_3) + 5s\_{(2,1)}(x\_1, x\_2, x\_3) + 4s\_{(1,1,1)}(x\_1, x\_2, x\_3).

#### Vector Bundle Approach to Schur Positivity

**Notation.** For any partitions  $\lambda$  and  $\mu$ , consider the Schur function  $s_{\mu}$  on the alphabet of Chern roots on  $\mathbb{S}^{\lambda}(\mathcal{E})$ , denoted  $s_{\mu}(\mathbb{S}^{\lambda}(\mathcal{E}))$ .

**Example.** Take n = 3,  $\lambda = (1, 1)$ , then the Chern roots of  $\mathbb{S}^{\lambda}(\mathcal{E})$  are the variables in the alphabet

$$X^{(2)} = \{x_1 + x_2, x_1 + x_3, x_2 + x_3\}.$$

For  $\mu = (2, 1)$ , expand

$$s_{\mu}(\mathbb{S}^{\lambda}(\mathcal{E})) = s_{(2,1)}(x_1 + x_2, x_1 + x_3, x_2 + x_3)$$
  
= 2s\_{(3)}(x\_1, x\_2, x\_3) + 5s\_{(2,1)}(x\_1, x\_2, x\_3) + 4s\_{(1,1,1)}(x\_1, x\_2, x\_3).

**Note.** This operation is not plethysm  $s_{\mu}[s_{\lambda}]$ .

### Key Ingredient

**Thm.**(Pragacz 1996) Let  $\lambda$  be a partition, and let

- $\mathcal{E}_1, \ldots, \mathcal{E}_k$  be vector bundles,
- Y<sub>1</sub>,..., Y<sub>k</sub> be the alphabets consisting of their Chern roots,
   µ<sup>(1)</sup>,...,µ<sup>(k)</sup> be partitions.

Then, there exists nonnegative integers  $c_{(\nu^{(1)},\ldots,\nu^{(k)})}$  such that

$$s_{\lambda}(\mathbb{S}^{\mu^{(1)}}(\mathcal{E}_1)\otimes\cdots\otimes\mathbb{S}^{\mu^{(k)}}(\mathcal{E}_k))=\sum_{
u_1,\dots,
u_k}c_{(
u^{(1)},\dots,
u^{(k)})}s_{
u_1}(Y_1)\cdots s_{
u_k}(Y_k).$$

Pragacz's proof uses work of Fulton-Lazarsfeld on numerical positivity for ample vector bundles. The Hard Lefschetz theorem is a key component.

#### Corollaries

**Cor.** For any partitions  $\lambda, \mu$ ,  $s_{\mu}(\mathbb{S}^{\lambda}(\mathcal{E}))$  is Schur positive.

**Cor.** The expansion of  $e_p(X^{(k)})$  is Schur positive since the Chern roots of  $\mathbb{S}^{1^k}(\mathcal{E}) = X^{(k)}$  and  $e_p = s_{1^p}$ .

**Cor.** The analogue of Lascoux's theorem holds for all Schur functors  $\mathbb{S}^{\lambda}(\mathcal{E})$ ), e.g.

$$c(\wedge^{k}\mathcal{E}) = \prod_{A\subseteq [n], |A|=k} \left(1 + \sum_{i\in A} x_{i}\right) = \sum_{p\geq 0} e_{p}(X^{(k)}).$$

Question. What are the Schur expansions?

Boolean Product Expansions for  $B_{n,n-1}$ 

Thm. For 
$$n \ge 2$$
,  

$$B_{n,n-1} = \prod_{i=1}^n (x_1 + x_2 + \ldots + x_n - x_i) = \sum_{\lambda \vdash n} a_\lambda s_\lambda(X)$$

where  $a_{\lambda}$  is the number of  $T \in SYT(\lambda)$  with smallest ascent given by an even number.

More generally, consider

$$egin{aligned} B_{n,n-1}(X;q) &:= \prod_{i=1}^n (h_1(X) + qx_i) \ &= \sum_{j=0}^n q^j e_j(X) h_{(1^{n-j})}(X). \end{aligned}$$

\*\*New\*\*: Brendon Rhoades has a new graded  $S_n$ -module with  $B_{n,n-1}(X;q)$  as the graded Frobenius characteristic,  $A_n = S_n = S_n = S_n$ 

#### Motivation

**Defn.** Consider the real variety  $V(B_n)$ . Since each factor of  $B_n$  is linear, this variety is a hyperplane arrangement called the *Resonance Arrangement* or *All-Subsets Arrangement*  $\mathcal{H}_n$ . Each hyperplane is orthogonal to a nonzero 0-1-vector in  $\mathbb{R}^n$ .

**Open.** Find the characteristic polynomial for  $\mathcal{H}_n$ . Use it to count the number of regions and number of bounded regions by Zaslavsky's Theorem.

**Thm.**(Cavalieri-Johnson-Markwig, 2011) The regions of  $\mathcal{H}_n$  are the domains of polynomiality of double Hurwitz numbers.

#### Motivation

**Further Connections.** See Lou Billera's talk slides "On the real linear algebra of vectors of zeros and ones"

- 1. The chambers of the Resonance Arrangement  $\mathcal{H}_n$  can be labeled by maximal unbalanced collections of 0-1 vectors. See Billera-Moore-Moraites-Wang-Williams, 2012.
- Minimal balanced collections determine the minimum linear description of cooperative games possessing a nonempty core in Lloyd Shapley's economic game theory work from 1967. Finding a good formula for enumerating them is still open.
- 3. Hadamard's maximal determinant problem from 1893 can be rephrased in terms of finding maximal absolute value determinants of 0-1 matrices.

# Many Thanks!

