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Symmetric Polynomials

Notation.
I Fix an alphabet of variables X = {x1, x2, . . . , xn}.

I The symmetric group Sn acts on C[x1, x2, . . . , xn] by
permuting the variables: w .xi = xw(i).

I A polynomial f ∈ C[x1, x2, . . . , xn] is symmetric if w .f = f for
all w ∈ Sn.

I Let Λn denote the ring of symmetric polynomials in
C[x1, x2, . . . , xn].



Symmetric Polynomials

Examples. Let [n] = {1, 2, . . . , n}.

Elementary: ek =
∑

A⊂[n]
|A|=k

∏
i∈A

xi

Homogeneous: hk =
∑

multisets A⊂[n]
|A|=k

∏
i∈A

xi

Power sum: pk =
n∑

i=1
xk

i

e2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

p2(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4

h2 = e2 + p2.



Symmetric Polynomials

Fact. Λn = C[e1, . . . , en] = C[h1, . . . , hn] = C[p1, . . . , pn]

Question. What other symmetric polynomials are “natural”?

Monomials: mλ = xλ1
1 xλ2

2 · · · x
λn
n + other monomials in Sn-orbit

Stanley’s chromatic symmetric functions on a graph G = (V ,E ):

XG(x1, . . . , xn) =
∑

c:V→[n]
proper coloring

∏
v∈V

xc(v).

Observe. These examples are all sums of products.
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Schur Polynomials

Defn. Given a partition λ = (λ1, . . . , λn), the Schur polynomial

sλ(x1, . . . , xn) =
∑

T∈SSYT (λ,n)

∏
i∈T

xi

where SSYT (λ, n) are the semistandard fillings of λ with positive
integers in [n]. Semistandard implies strictly increasing in columns
and leniently increasing in rows.

Example. For λ = (2, 1) and n = 2, SSYT (λ, n) has two fillings

1 1
2

1 2
2

so s(2,1)(x1, x2) = x2
1 x2 + x1x2

2 .



Boolean Product Polynomials

Question. What about products of sums?

Defn. For X = {x1, . . . , xn}, define

I (n, k)-Boolean Product Polynomial : For 1 ≤ k ≤ n,

Bn,k(X ) :=
∏

A⊆[n]
|A|=k

∑
i∈A

xi

I n-th Total Boolean Product Polynomial :

Bn(X ) :=
n∏

k=1
Bn,k(X ) =

∏
A⊆[n]
A6=∅

∑
i∈A

xi

Example. B2 = (x1)(x2)(x1 + x2) = x2
1 x2 + x1x2

2 = s(2,1)(x1, x2)



Boolean Product Polynomials

Question. What about products of sums?

Defn. For X = {x1, . . . , xn}, define

I (n, k)-Boolean Product Polynomial : For 1 ≤ k ≤ n,

Bn,k(X ) :=
∏

A⊆[n]
|A|=k

∑
i∈A

xi

I n-th Total Boolean Product Polynomial :

Bn(X ) :=
n∏

k=1
Bn,k(X ) =

∏
A⊆[n]
A6=∅

∑
i∈A

xi

Example. B2 = (x1)(x2)(x1 + x2) = x2
1 x2 + x1x2

2 = s(2,1)(x1, x2)



Boolean Product Polynomials

Examples.

B3,1 = (x1)(x2)(x3) = e3(x1, x2, x3) = s(1,1,1)(x1, x2, x3)

B3,2 = (x1 + x2)(x1 + x3)(x2 + x3) = s(2,1)(x1, x2, x3)

B3,3 = (x1 + x2 + x3) = e1(x1, x2, x3) = s(1)(x1, x2, x3)

B3 = s(1,1,1)s(2,1)s(1) = s(4,2,1) + s(3,3,1) + s(3,2,2).



Subset Alphabets

Defn. For 1 ≤ k ≤ n, define a new alphabet of linear forms

X (k) = {xA =
∑
i∈A

xi : A ⊂ [n], |A| = k}.

Then

Bn,k =
∏

A⊆[n]
|A|=k

xA = e(n
k)(X (k)).

Furthermore, for 1 ≤ p ≤
(n

k
)

define the symmetric polynomials

ep(X (k)) =
∑

S⊂k-subsets of[n]
|S|=p

∏
A∈S

xA.
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Schur Positivity

Theorem. For all 1 ≤ k ≤ n and 1 ≤ p ≤
(n

k
)
, the expansion

ep(X (k)) =
∑
λ

cλsλ(x1, . . . , xn)

has nonnegative integer coefficients cλ.

Corollary. Both Bn,k and Bn are Schur positive.



Proof Setup

Notation. Fix a complex vector bundle E of rank n. The total
Chern class c(E) is the sum of the individual Chern classes

c(E) = 1 + c1(E) + · · ·+ cn(E).

Via the Splitting Principle, we have c(E) =
∏n

i=1(1 + xi ) where the
xi for 1 ≤ i ≤ n are the Chern roots of E associated to certain line
bundles.



Prior Work

Thm.(Lascoux, 1978) The total Chern class of
∧2E and Sym2E is

Schur-positive in terms of the Chern roots x1, . . . , xn of E .
Specifically, there exist integers dλ,µ ≥ 0 for µ ⊆ λ such that

c(
∧2E) =

∏
1≤i<j≤n

(1 + xi + xj) = 2−(n
2)

∑
µ⊆δn−1

dγn,µ2|µ|sµ(X ),

c(Sym2E) =
∏

1≤i≤j≤n
(1 + xi + xj) = 2−(n

2)
∑
µ⊆δn

dδn,µ2|µ|sµ(X ).

Here γn = (n − 1, . . . , 1, 0) and δn = (n, . . . , 2, 1).



Binomial Determinants

Lascoux showed that for µ = (µ1, . . . , µn) ⊆ λ = (λ1, . . . , λn),

dλ,µ = det
((

λi + n − i
µj + n − j

))
1≤i ,j≤n

≥ 0.

Thm.(Gessel-Viennot 1985) dλ,µ counts the number of
nonintersecting lattice paths from heights λ+ δn along the y -axis
to main diagonal points µ+ δn using east or south steps.

This highly influential theorem was inspired by Lascoux’s theorem!
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Vector Bundle Approach to Schur Positivity

Notation. Fix a complex vector bundle E of rank n over a
smooth projective variety V . The total Chern class

c(E) = 1 + c1(E) + · · ·+ cn(E) =
n∏

i=1
(1 + xi )

where the xi for 1 ≤ i ≤ n are the Chern roots of E .

Construct another vector bundle Sλ(E) over V by applying the
Schur functor from GLn-representation theory on each fiber.

Thm.(Fulton) The Chern roots of Sλ(E) are indexed by
semistandard tableaux:

{xT =
∑
i∈T

xi for T ∈ SSYT (λ, n)}.



Vector Bundle Approach to Schur Positivity

Notation. For any partitions λ and µ, consider the Schur function
sµ on the alphabet of Chern roots on Sλ(E), denoted sµ(Sλ(E)).

Example. Take n = 3, λ = (1, 1), then the Chern roots of Sλ(E)
are the variables in the alphabet

X (2) = {x1 + x2, x1 + x3, x2 + x3}.

For µ = (2, 1), expand

sµ(Sλ(E)) =s(2,1)(x1 + x2, x1 + x3, x2 + x3)
=2s(3)(x1, x2, x3) + 5s(2,1)(x1, x2, x3) + 4s(1,1,1)(x1, x2, x3).

Note. This operation is not plethysm sµ[sλ].
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Key Ingredient

Thm.(Pragacz 1996) Let λ be a partition, and let
I E1, . . . , Ek be vector bundles,
I Y1, . . . ,Yk be the alphabets consisting of their Chern roots,
I µ(1), . . . , µ(k) be partitions.

Then, there exists nonnegative integers c(ν(1),...,ν(k)) such that

sλ(Sµ(1)(E1)⊗· · ·⊗Sµ(k)(Ek)) =
∑

ν1,...,νk

c(ν(1),...,ν(k))sν1(Y1) · · · sνk (Yk).

Pragacz’s proof uses work of Fulton-Lazarsfeld on numerical
positivity for ample vector bundles. The Hard Lefschetz theorem is
a key component.



Corollaries

Cor. For any partitions λ, µ, sµ(Sλ(E)) is Schur positive.

Cor. The expansion of ep(X (k)) is Schur positive since the Chern
roots of S1k (E) = X (k) and ep = s1p .

Cor. The analogue of Lascoux’s theorem holds for all Schur
functors Sλ(E)), e.g.

c(
∧kE) =

∏
A⊆[n],|A|=k

1 +
∑
i∈A

xi

 =
∑
p≥0

ep(X (k)).

Question. What are the Schur expansions?



Boolean Product Expansions for Bn,n−1

Thm. For n ≥ 2,

Bn,n−1 =
n∏

i=1
(x1 + x2 + . . .+ xn − xi ) =

∑
λ`n

aλsλ(X )

where aλ is the number of T ∈ SYT (λ) with smallest ascent given
by an even number.

More generally, consider

Bn,n−1(X ; q) :=
n∏

i=1
(h1(X ) + qxi )

=
n∑

j=0
qjej(X )h(1n−j )(X ).

**New**: Brendon Rhoades has a new graded Sn-module with
Bn,n−1(X ; q) as the graded Frobenius characteristic.



Motivation

Defn. Consider the real variety V (Bn). Since each factor of Bn is
linear, this variety is a hyperplane arrangement called the
Resonance Arrangement or All-Subsets Arrangement Hn. Each
hyperplane is orthogonal to a nonzero 0-1-vector in Rn.

Open. Find the characteristic polynomial for Hn. Use it to count
the number of regions and number of bounded regions by
Zaslavsky’s Theorem.

Thm.(Cavalieri-Johnson-Markwig, 2011) The regions of Hn are
the domains of polynomiality of double Hurwitz numbers.



Motivation

Further Connections. See Lou Billera’s talk slides
“On the real linear algebra of vectors of zeros and ones”

1. The chambers of the Resonance Arrangement Hn can be
labeled by maximal unbalanced collections of 0-1 vectors. See
Billera-Moore-Moraites-Wang-Williams, 2012.

2. Minimal balanced collections determine the minimum linear
description of cooperative games possessing a nonempty core
in Lloyd Shapley’s economic game theory work from 1967.
Finding a good formula for enumerating them is still open.

3. Hadamard’s maximal determinant problem from 1893 can be
rephrased in terms of finding maximal absolute value
determinants of 0-1 matrices.



Many Thanks!
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