# Cyclotomic Generating Functions 

Sara Billey<br>University of Washington

Based on joint work with:
Matjaž Konvalinka and Joshua Swanson
arXiv:1809.07386 and more coming soon!

BIRS: Asymptotic Algebraic Combinatorics March 14, 2019

## Outline

Motivating Example: $q$-enumeration of SYT's via major index

Cyclotomic Generating Functions

More Examples and Some Asymptotics

Open Problems

## Standard Young Tableaux

Defn. A standard Young tableau of shape $\lambda$ is a bijective filling of $\lambda$ such that every row is increasing from left to right and every column is increasing from top to bottom.

| 1 | 3 | 6 | 7 |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 8 | 7 |  |  |
| 4 |  |  |  |  |  |

Important Fact. The standard Young tableaux of shape $\lambda$, denoted SYT $(\lambda)$, index a basis of the irreducible $S_{n}$ representation indexed by $\lambda$.

## Counting Standard Young Tableaux

## Hook Length Formula.(Frame-Robinson-Thrall, 1954)

If $\lambda$ is a partition of $n$, then

$$
\# S Y T(\lambda)=\frac{n!}{\prod_{c \in \lambda} h_{c}}
$$

where $h_{c}$ is the hook length of the cell $c$, i.e. the number of cells directly to the right of $c$ or below $c$, including $c$.

Example. Filling cells of $\lambda=(5,3,1) \vdash 9$ by hook lengths:


So, $\# \operatorname{SYT}(5,3,1)=\frac{9!}{7 \cdot 5 \cdot 4 \cdot 2 \cdot 4 \cdot 2}=162$.
Remark. Notable other proofs by Greene-Nijenhuis-Wilf '79 (probabilistic), Eriksson '93 (bijective), Krattenthaler '95 (bijective), Novelli -Pak -Stoyanovskii'97 (bijective), Bandlow'08,

## $q$-Counting Standard Young Tableaux

Def. The descent set of a standard Young tableau $T$, denoted $D(T)$, is the set of positive integers $i$ such that $i+1$ lies in a row strictly below the cell containing $i$ in $T$.

The major index of $T$ is the sum of its descents:

$$
\operatorname{maj}(T)=\sum_{i \in D(T)} i
$$

Example. The descent set of $T$ is $D(T)=\{1,3,4,7\}$ so $\operatorname{maj}(T)=15$ for $T=$| 1 | 3 | 6 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 8 |  |  |
| 5 |  |  |  |  |.

Def. The major index generating function for $\lambda$ is

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}
$$

## $q$-Counting Standard Young Tableaux

Example. $\lambda=(5,3,1)$


$$
\begin{aligned}
& \operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}= \\
& \quad q^{23}+2 q^{22}+4 q^{21}+5 q^{20}+8 q^{19}+10 q^{18}+13 q^{17}+14 q^{16}+16 q^{15} \\
& +16 q^{14}+16 q^{13}+14 q^{12}+13 q^{11}+10 q^{10}+8 q^{9}+5 q^{8}+4 q^{7}+2 q^{6}+q^{5}
\end{aligned}
$$

Note, at $q=1$, we get back 162 .

## Computation of SYT $(\lambda)^{\text {maj }}(q)$

Thm.(Stanley's $q$-analog of the Hook Length Formula for $\lambda \vdash n$ )

$$
\operatorname{SYT}(\lambda)^{\mathrm{maj}}(q)=\frac{q^{b(\lambda)}[n]_{q}!}{\prod_{c \in \lambda}\left[h_{c}\right]_{q}}
$$

where

- $b(\lambda):=\sum(i-1) \lambda_{i}$
- $h_{c}$ is the hook length of the cell $c$
- $[n]_{q}:=1+q+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1}$
- $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$


## Corollaries of Stanley's formula

Thm.(Stanley's $q$-analog of the Hook Length Formula for $\lambda \vdash n$ )

$$
\operatorname{SYT}(\lambda)^{\mathrm{maj}}(q)=\frac{q^{b(\lambda)}[n]_{q}!}{\prod_{c \in \lambda}\left[h_{c}\right]_{q}}
$$

## Corollaries.

1. $\operatorname{SYT}(\lambda)^{\text {maj }}(q)=\operatorname{SYT}\left(\lambda^{\prime}\right)^{\mathrm{maj}}(q)$.
2. The coefficients of $\operatorname{SYT}(\lambda)^{\text {maj }}(q)$ are symmetric.
3. There is a unique min-maj and max-maj tableau of shape $\lambda$.

## Motivation for $q$-Counting Standard Young Tableaux

Thm.(Lusztig-Stanley 1979) Given a partition $\lambda \vdash n$, say

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum_{k \geq 0} b_{\lambda, k} q^{k} .
$$

Then $b_{\lambda, k}:=\#\{T \in \operatorname{SYT}(\lambda): \operatorname{maj}(T)=k\}$ is the number of times the irreducible $S_{n}$ module indexed by $\lambda$ appears in the decomposition of the coinvariant algebra $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I_{+}$in the homogeneous component of degree $k$.

## Key Questions for SYT $(\lambda)^{\text {maj }}(q)$

Recall SYT $(\lambda)^{\mathrm{maj}}(q)=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum b_{\lambda, k} q^{k}$.
Existence Question. For which $\lambda, k$ does $b_{\lambda, k}=0$ ?

Distribution Question. What patterns do the coefficients in the list $\left(b_{\lambda, 0}, b_{\lambda, 1}, \ldots\right)$ exhibit?

Unimodality Question. For which $\lambda$, are the coefficients of SYT $(\lambda)^{\text {maj }}(q)$ unimodal, meaning

$$
b_{\lambda, 0} \leq b_{\lambda, 1} \leq \ldots \leq b_{\lambda, m} \geq b_{\lambda, m+1} \geq \ldots ?
$$

## $q$-Counting Standard Young Tableaux

Example. $\lambda=(5,3,1)$

$\operatorname{SYT}(\lambda)^{\mathrm{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum b_{\lambda, k} q^{k}=$
$q^{23}+2 q^{22}+4 q^{21}+5 q^{20}+8 q^{19}+10 q^{18}+13 q^{17}+14 q^{16}+16 q^{15}$
$+16 q^{14}+16 q^{13}+14 q^{12}+13 q^{11}+10 q^{10}+8 q^{9}+5 q^{8}+4 q^{7}+2 q^{6}+q^{5}$

Notation: (000001245810131416161614131085421)

## $q$-Counting Standard Young Tableaux

Examples. $(2,2) \vdash 4:\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)$
$(5,3,1):(000001245810131416161614131085421)$
$(6,4) \vdash 10:(0000112244668787866442211)$
(6, 6) $\vdash$ 12: (0 000001011224355769798979675
534221101 )
$(11,5,3,1) \vdash 20:(138163257991602543865768321184$ 164522553031402752656811868910979137061695920758 25200302963614342734501635839967523774708830599925 112370125492139307153624168431183493198778214017 229161243913258222271780284542296200306733315853 323571329629334085336727337662336727334085329629 323571315853306733296200284542271780258222243913 229161214017198778183493168431153624139307125492 1123709992588305774706752358399501634273436143 3029625200207581695913706109798689681152654027

## Visualizing Major Index Generating Functions



Visualizing the coefficients of $\operatorname{SYT}(5,3,1)^{\text {maj }}(q)$ :

$$
(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)
$$

## Visualizing Major Index Generating Functions



Visualizing the coefficients of $\operatorname{SYT}(11,5,3,1)^{\text {maj }}(q)$.
Question. What type of curve is that?

## Visualizing Major Index Generating Functions



Visualizing the coefficients of $\operatorname{SYT}(10,6,1)^{\mathrm{maj}}(q)$ along with the Normal distribution with $\mu=34$ and $\sigma^{2}=98$.

## Visualizing Major Index Generating Functions



Visualizing the coefficients of $\operatorname{SYT}(8,8,7,6,5,5,5,2,2)^{\mathrm{maj}}(q)$

## Cyclotomic Polynomials

Def. The irreducible factors of $q^{n}-1$ over the integers are called cyclotomic polynomials. There is one for each positive integer $d$, given by

$$
\Phi_{d}(q)=\prod_{d \mid n}\left(q^{d}-1\right)^{\mu(n / d)}=\frac{q^{n}-1}{\prod_{c \mid n, c<n} \Phi_{c}(q)},
$$

where $\mu(n / d)$ is the Möbius function given by

$$
\mu(k)= \begin{cases}1 & k=1 \\ 0 & k>1 \text { has repeated prime factors } \\ (-1)^{\ell} & k>1 \text { is product of } \ell \text { distinct prime factors. }\end{cases}
$$

Fact. Each $q$-integer $[n]_{q}=\left(q^{n}-1\right) /(q-1)$ factors into a product of distinct cyclotomic polynomials

$$
[n]_{q}=1+q+\cdots+q^{n-1}=\prod_{1<d \mid n} \Phi_{d}(q) .
$$

## Cyclotomic Polynomials

Examples.

$$
\begin{aligned}
& \Phi_{1}(q)=q-1 \\
& \Phi_{2}(q)=q+1 \\
& \Phi_{3}(q)=q^{2}+q^{1}+1 \\
& \Phi_{4}(q)=q^{2}+1 \\
& \Phi_{5}(q)=q^{4}+q^{3}+q^{2}+q^{1}+1 \\
& \Phi_{6}(q)=q^{2}-q^{1}+1 \\
& \Phi_{7}(q)=q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q^{1}+1 \\
& \Phi_{8}(q)=q^{4}+1 \\
& \Phi_{9}(q)=q^{6}+q^{3}+1 \\
& \Phi_{10}(q)=q^{4}-q^{3}+q^{2}-q^{1}+1
\end{aligned}
$$

## Cyclotomic Polynomials

## Bigger Example.

$$
\begin{aligned}
& \Phi_{105}(q)=q^{48}+q^{47}+q^{46}+q^{43}-q^{42}-2 q^{41}-q^{40}-q^{39}+q^{36}+q^{35}+ \\
& q^{34}+q^{33}+q^{32}+q^{31}-q^{28}-q^{26}-q^{24}-q^{22}-q^{20}+q^{17}+q^{16}+q^{15}+ \\
& q^{14}+q^{13}+q^{12}-q^{9}+-1 q^{8}-2 q^{7}-q^{6}-q^{5}+q^{2}+q^{1}+1
\end{aligned}
$$

## "Fast" Computation of SYT $(\lambda)^{\text {maj }}(q)$

Thm.(Stanley's $q$-analog of the Hook Length Formula for $\lambda \vdash n$ )

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q)=\frac{q^{b(\lambda)}[n]_{q}!}{\prod_{c \in \lambda}\left[h_{c}\right]_{q}}
$$

Trick for conjectures. Cancel all of the cyclotomic factors of the denominator from the numerator, and then expand the remaining product.

## Existence Question

Recall $\operatorname{SYT}(\lambda)^{\text {maj }}(q)=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum b_{\lambda, k} q^{k}$.

Existence Question. For which $\lambda, k$ does $b_{\lambda, k}=0$ ?

## Existence Question

Recall SYT $(\lambda)^{\text {maj }}(q)=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum b_{\lambda, k} q^{k}$.

Existence Question. For which $\lambda, k$ does $b_{\lambda, k}=0$ ?
Cor of Stanley's formula. For every $\lambda \vdash n \geq 1$ there is a unique tableau with minimal major index $b(\lambda)$ and a unique tableau with maximal major index $\binom{n}{2}-b\left(\lambda^{\prime}\right)$. These two agree for shapes consisting of one row or one column, and otherwise they are distinct.

## Patterns on Tableaux

Example. The min-maj and max-maj tableaux for ( $6,4,3,3,1$ ).


## Existence Question

Recall SYT $(\lambda)^{\text {maj }}(q)=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\sum b_{\lambda, k} q^{k}$.

Existence Question. For which $\lambda, k$ does $b_{\lambda, k}=0$ ?
Cor of Stanley's formula. The coefficient of $q^{b(\lambda)+1}$ in $\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q)=0$ if and only if $\lambda$ is a rectangle.
If $\lambda$ is a rectangle with more than one row and column, then coefficient of $q^{b(\lambda)+2}$ is 1 .

Question. Are there other internal zeros?

## Classifying All Nonzero Fake Degrees

Thm.(Billey-Konvalinka-Swanson, 2018 )
For any partition $\lambda$ which is not a rectangle,

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}
$$

has no internal zeros. If $\lambda$ is a rectangle with at least two rows and columns, $\operatorname{SYT}(\lambda)^{\text {maj }}(q)$ has exactly two internal zeros, one at degree $b(\lambda)+1$ and the other at degree $\operatorname{maxmaj}(\lambda)-1$.

## Classifying All Nonzero Fake Degrees

Thm.(Billey-Konvalinka-Swanson, 2018 )
For any partition $\lambda$ which is not a rectangle,

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}
$$

has no internal zeros. If $\lambda$ is a rectangle with at least two rows and columns, $\operatorname{SYT}(\lambda)^{\text {maj }}(q)$ has exactly two internal zeros, one at degree $b(\lambda)+1$ and the other at degree $\operatorname{maxmaj}(\lambda)-1$.

Proof Outline. We identify block and rotation rules on tableaux giving rise to two posets on SYT $(\lambda)$ - exceptional cases for rectangles which is ranked according to maj.

## Strong and Weak Poset on $\operatorname{SYT}(3,2,1)$



## Classifying All Nonzero Fake Degrees

Cor. The irreducible $S_{n}$-module indexed by $\lambda$ appears in the decomposition of the degree $k$ component of the coinvariant algebra if and only if $b_{\lambda, k}>0$ as characterized above.

Similar results hold for all Shepard-Todd groups $G(m, d, n)$.
See arXiv:1809.07386 for more details.

## Converting $q$-Enumeration to Discrete Probability

Distribution Question. What is the limiting distribution(s) for the coefficients in SYT $(\lambda)^{\text {maj }}(q)$ ?

## From Combinatorics to Probability.

If $f(q)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots+a_{n} q^{n}$ where $a_{i}$ are nonnegative integers, then construct the random variable $X_{f}$ with discrete probability distribution

$$
\mathbb{P}\left(X_{f}=k\right)=\frac{a_{k}}{\sum_{j} a_{j}}=\frac{a_{k}}{f(1)} .
$$

If $f$ is part of a family of $q$-analog of an integer sequence, we can study the limiting distributions.

## Converting $q$-Enumeration to Discrete Probability

Example. For $\operatorname{SYT}(\lambda)^{\text {maj }}(q)=\sum b_{\lambda, k} q^{k}$, define the integer random variable $X_{\lambda}[\mathrm{maj}]$ with discrete probability distribution

$$
\mathbb{P}\left(X_{\lambda}[\mathrm{maj}]=k\right)=\frac{b_{\lambda, k}}{|\operatorname{SYT}(\lambda)|}
$$

We claim the distribution of $X_{\lambda}$ [maj] "usually" is approximately normal for most shapes $\lambda$. Let's make that precise!

## Standardization

## Thm.(Adin-Roichman, 2001)

For any partition $\lambda$, the mean and variance of $X_{\lambda}[\mathrm{maj}]$ are

$$
\mu_{\lambda}=\frac{\binom{|\lambda|}{2}-b\left(\lambda^{\prime}\right)+b(\lambda)}{2}=b(\lambda)+\frac{1}{2}\left[\sum_{j=1}^{|\lambda|} j-\sum_{c \in \lambda} h_{c}\right],
$$

and

$$
\sigma_{\lambda}^{2}=\frac{1}{12}\left[\sum_{j=1}^{|\lambda|} j^{2}-\sum_{c \in \lambda} h_{c}^{2}\right] .
$$

Def. The standardization of $X_{\lambda}[\mathrm{maj}]$ is

$$
X_{\lambda}^{*}[\mathrm{maj}]=\frac{X_{\lambda}[\mathrm{maj}]-\mu_{\lambda}}{\sigma_{\lambda}} .
$$

So $X_{\lambda}^{*}$ [maj] has mean 0 and variance 1 for any $\lambda$.

## Asymptotic Normality

Def. Let $X_{1}, X_{2}, \ldots$ be a sequence of real-valued random variables with standardized cumulative distribution functions $F_{1}(t), F_{2}(t), \ldots$. The sequence is asymptotically normal if

$$
\forall t \in \mathbb{R}, \quad \lim _{n \rightarrow \infty} F_{n}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-x^{2} / 2}=\mathbb{P}(N<t)
$$

where $N$ is a Normal random variable with mean 0 and variance 1 .

## Asymptotic Normality

Def. Let $X_{1}, X_{2}, \ldots$ be a sequence of real-valued random variables with standardized cumulative distribution functions
$F_{1}(t), F_{2}(t), \ldots$. The sequence is asymptotically normal if

$$
\forall t \in \mathbb{R}, \quad \lim _{n \rightarrow \infty} F_{n}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-x^{2} / 2}=\mathbb{P}(N<t)
$$

where $N$ is a Normal random variable with mean 0 and variance 1 .

Question. In what way can a sequence of partitions approach infinity?

## The Aft Statistic

Def. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$, let

$$
\operatorname{aft}(\lambda):=n-\max \left\{\lambda_{1}, k\right\} .
$$

Example. $\lambda=(5,3,1)$ then $\operatorname{aft}(\lambda)=4$.


Look it up: Aft is now on FindStat as St001214

## Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)
Suppose $\lambda^{(1)}, \lambda^{(2)}, \ldots$ is a sequence of partitions, and let $X_{N}:=X_{\lambda(N)}[\mathrm{maj}]$ be the corresponding random variables for the maj statistic. Then, the sequence $X_{1}, X_{2}, \ldots$ is asymptotically normal if and only if $\operatorname{aft}\left(\lambda^{(N)}\right) \rightarrow \infty$ as $N \rightarrow \infty$.

## Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)
Suppose $\lambda^{(1)}, \lambda^{(2)}, \ldots$ is a sequence of partitions, and let $X_{N}:=X_{\lambda(N)}[\mathrm{maj}]$ be the corresponding random variables for the maj statistic. Then, the sequence $X_{1}, X_{2}, \ldots$ is asymptotically normal if and only if $\operatorname{aft}\left(\lambda^{(N)}\right) \rightarrow \infty$ as $N \rightarrow \infty$.

Question. What happens if aft $\left(\lambda^{(N)}\right)$ does not go to infinity as $N \rightarrow \infty$ ?

## Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)
Let $\lambda^{(1)}, \lambda^{(2)}, \ldots$ be a sequence of partitions. Then $\left(X_{\lambda(N)}[\text { maj }]^{*}\right)$ converges in distribution if and only if
(i) $\operatorname{aft}\left(\lambda^{(N)}\right) \rightarrow \infty$; or
(ii) $\left|\lambda^{(N)}\right| \rightarrow \infty$ and $\operatorname{aft}\left(\lambda^{(N)}\right)$ is eventually constant; or
(iii) the distribution of $X_{\lambda^{(N)}}^{*}$ [maj] is eventually constant.

The limit law is $\mathcal{N}(0,1)$ in case (i), $\Sigma_{M}^{*}$ in case (ii), and discrete in case (iii).

Here $\Sigma_{M}$ denotes the sum of $M$ independent identically distributed uniform $[0,1]$ random variables, known as the Irwin-Hall distribution or the uniform sum distribution.

## Distribution Question: From Combinatorics to Probability

Example. $\lambda=(100,2)$ looks like the distribution of the sum of two independent uniform random variables on $[0,1]$ :


## Distribution Question: From Combinatorics to Probability

Example. $\lambda=(100,2,1)$ looks like the distribution of the sum of three independent uniform random variables on $[0,1]$ :


## Distribution Question: From Combinatorics to Probability

Example. $\lambda=(100,3,2)$ looks like the normal distribution, but not quite!


## Proof ideas: Characterize the Moments and Cumulants

## Definitions.

- For $d \in \mathbb{Z}_{\geq 0}$, the $d$ th moment

$$
\mu_{d}:=\mathbb{E}\left[X^{d}\right]
$$

- The moment-generating function of $X$ is

$$
M_{X}(t):=\mathbb{E}\left[e^{t X}\right]=\sum_{d=0}^{\infty} \mu_{d} \frac{t^{d}}{d!},
$$

- The cumulants $\kappa_{1}, \kappa_{2}, \ldots$ of $X$ are defined to be the coefficients of the exponential generating function

$$
K_{X}(t):=\sum_{d=1}^{\infty} \kappa_{d} \frac{t^{d}}{d!}:=\log M_{X}(t)=\log \mathbb{E}\left[e^{t X}\right]
$$

## Nice Properties of Cumulants

1. (Familiar Values) The first two cumulants are $\kappa_{1}=\mu$, and $\kappa_{2}=\sigma^{2}$.
2. (Shift Invariance) The second and higher cumulants of $X$ agree with those for $X-c$ for any $c \in \mathbb{R}$.
3. (Homogeneity) The $d$ th cumulant of $c X$ is $c^{d} \kappa_{d}$ for $c \in \mathbb{R}$.
4. (Additivity) The cumulants of the sum of independent random variables are the sums of the cumulants.
5. (Polynomial Equivalence) The cumulants and moments are determined by polynomials in the other sequence.

## Examples of Cumulants and Moments

Example. Let $X=\mathcal{N}\left(\mu, \sigma^{2}\right)$ be the normal random variable with mean $\mu$ and variance $\sigma^{2}$. Then the cumulants are

$$
\kappa_{d}= \begin{cases}\mu & d=1 \\ \sigma^{2} & d=2 \\ 0 & d \geq 3\end{cases}
$$

and for $d>1$,

$$
\mu_{d}= \begin{cases}0 & \text { if } d \text { is odd } \\ \sigma^{d}(d-1)!! & \text { if } d \text { is even }\end{cases}
$$

Example. For a Poisson random variable $X$ with mean $\mu$, the cumulants are all $\kappa_{d}=\mu$, while the moments are $\mu_{d}=\sum_{i=1}^{d} \mu^{i} S_{i, d}$.

## Cumulants for Major Index Generating Functions

Thm.(Billey-Konvalinka-Swanson, 2019)
Let $\lambda \vdash n$ and $d \in \mathbb{Z}_{>1}$. If $\kappa_{d}^{\lambda}$ is the $d$ th cumulant of $X_{\lambda}[\mathrm{maj}]$, then

$$
\begin{equation*}
\kappa_{d}^{\lambda}=\frac{B_{d}}{d}\left[\sum_{j=1}^{n} j^{d}-\sum_{c \in \lambda} h_{c}^{d}\right] \tag{1}
\end{equation*}
$$

where $B_{0}, B_{1}, B_{2}, \ldots=1, \frac{1}{2}, \frac{1}{6}, 0,-\frac{1}{30}, 0, \frac{1}{42}, 0, \ldots$ are the Bernoulli numbers (OEIS A164555 / OEIS A027642).

Remark. We use this theorem to prove that as aft approaches infinity the standardized cumulants for $d \geq 3$ all go to 0 proving the Asymptotic Normality Theorem.

## Cumulants for Major Index Generating Functions

Thm.(Billey-Konvalinka-Swanson, 2019)
Let $\lambda \vdash n$ and $d \in \mathbb{Z}_{>1}$. If $\kappa_{d}^{\lambda}$ is the $d$ th cumulant of $X_{\lambda}[\mathrm{maj}]$, then

$$
\begin{equation*}
\kappa_{d}^{\lambda}=\frac{B_{d}}{d}\left[\sum_{j=1}^{n} j^{d}-\sum_{c \in \lambda} h_{c}^{d}\right] \tag{1}
\end{equation*}
$$

where $B_{0}, B_{1}, B_{2}, \ldots=1, \frac{1}{2}, \frac{1}{6}, 0,-\frac{1}{30}, 0, \frac{1}{42}, 0, \ldots$ are the Bernoulli numbers (OEIS A164555 / OEIS A027642).

Remark. We use this theorem to prove that as aft approaches infinity the standardized cumulants for $d \geq 3$ all go to 0 proving the Asymptotic Normality Theorem.

Remark. Note, $\kappa_{2}^{\lambda}$ is exactly the Adin-Roichman variance formula.

## Cumulants of certain $q$-analogs

Thm.(Chen-Wang-Wang-2008 and Hwang-Zacharovas-2015) Suppose $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ are multisets of positive integers such that

$$
f(q)=\frac{\prod_{j=1}^{m}\left[a_{j}\right]_{q}}{\prod_{j=1}^{m}\left[b_{j}\right]_{q}}=\sum c_{k} q^{k} \in \mathbb{Z}_{\geq 0}[q]
$$

Let $X$ be a discrete random variable with $\mathbb{P}(X=k)=c_{k} / f(1)$. Then the $d$ th cumulant of $X$ is

$$
\kappa_{d}=\frac{B_{d}}{d} \sum_{j=1}^{m}\left(a_{j}^{d}-b_{j}^{d}\right)
$$

where $B_{d}$ is the $d$ th Bernoulli number (with $B_{1}=\frac{1}{2}$ ).
Example. This theorem applies to

$$
\operatorname{SYT}(\lambda)^{\operatorname{maj}}(q):=\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(T)}=\frac{q^{b(\lambda)}[n]_{q}!}{\prod_{c \in \lambda}\left[h_{c}\right]_{q}}
$$

## Corollaries of the Distribution Theorem

1. Asymptotic normality also holds for block diagonal skew shapes with aft going to infinity.
2. New proof of asymptotic normality of $[n]_{q}!=\sum_{w \in S_{n}} q^{\operatorname{maj}(w)}=\sum_{w \in S_{n}} q^{\operatorname{inv}(w)}$ due to Feller (1944).
3. New proof of asymptotic normality of $q$-multinomial coefficients due to Diaconis (1988), Canfield-Jansen-Zeilberger (2011).
4. New proof of asymptotic normality of $q$-Catalan numbers due to Chen-Wang-Wang(2008).

## Corollaries of the Distribution Theorem

1. Asymptotic normality also holds for block diagonal skew shapes with aft going to infinity.
2. New proof of asymptotic normality of $[n]_{q}!=\sum_{w \in S_{n}} q^{\operatorname{maj}(w)}=\sum_{w \in S_{n}} q^{\operatorname{inv}(w)}$ due to Feller (1944).
3. New proof of asymptotic normality of $q$-multinomial coefficients due to Diaconis (1988), Canfield-Jansen-Zeilberger (2011).
4. New proof of asymptotic normality of $q$-Catalan numbers due to Chen-Wang-Wang(2008).

Question. Using Morales-Pak-Panova $q$-hook length formula, can we prove an asymptotic normality for most skew shapes?

## Cyclotomic Generating Functions

Def. A polynomial $f(q)$ with nonnegative integer coefficients is a cyclotomic generating function provided it satisfies one of the following equivalent conditions:
(i) (Rational form.) There are multisets $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ of positive integers and $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ such that

$$
\begin{equation*}
f(q)=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{\left[a_{j}\right]_{q}}{\left[b_{j}\right]_{q}}=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{1-q^{a_{j}}}{1-q^{b_{j}}} . \tag{2}
\end{equation*}
$$

## Cyclotomic Generating Functions

Def. A polynomial $f(q)$ with nonnegative integer coefficients is a cyclotomic generating function provided it satisfies one of the following equivalent conditions:
(i) (Rational form.) There are multisets $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ of positive integers and $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ such that

$$
\begin{equation*}
f(q)=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{\left[a_{j}\right]_{q}}{\left[b_{j}\right]_{q}}=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{1-q^{a_{j}}}{1-q^{b_{j}}} . \tag{2}
\end{equation*}
$$

(ii) (Cyclotomic form.) The polynomial $f(q)$ can be written as a non-negative integer times a product of cyclotomic polynomials and factors of $q$.

## Cyclotomic Generating Functions

Def. A polynomial $f(q)$ with nonnegative integer coefficients is a cyclotomic generating function provided it satisfies one of the following equivalent conditions:
(i) (Rational form.) There are multisets $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ of positive integers and $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ such that

$$
\begin{equation*}
f(q)=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{\left[a_{j}\right]_{q}}{\left[b_{j}\right]_{q}}=\alpha q^{\beta} \cdot \prod_{j=1}^{m} \frac{1-q^{a_{j}}}{1-q^{b_{j}}} . \tag{2}
\end{equation*}
$$

(ii) (Cyclotomic form.) The polynomial $f(q)$ can be written as a non-negative integer times a product of cyclotomic polynomials and factors of $q$.
(iii) (Complex form.) The complex roots of $f(q)$ are each either a root of unity or zero.

## Cyclotomic Generating Functions

## More examples of cyclotomic generating functions:.

1. Stanley: $s_{\lambda}\left(1, q, q^{2}, \ldots, q^{m}\right)$.
2. Björner-Wachs: $q$-hook length formula for forests.
3. Macaulay: Hilbert series of polynomial quotients $k\left[x_{1}, \ldots, x_{n}\right] /\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ where $\operatorname{deg}\left(x_{i}\right)=b_{i}, \operatorname{deg}\left(\theta_{i}\right)=a_{i}$, and $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is a homogeneous system of parameters $k\left[x_{1}, \ldots, x_{n}\right] /$.
4. Chevalley: Length generating function restricted to minimum length coset representatives of a finite reflection group modulo a parabolic subgroup.

## Cyclotomic Generating Functions

Remark. Corresponding with each cyclotomic generating function $f(q)$, there is a discrete random variable $X_{f}$ supported on $\mathbb{Z}_{\geq 0}$ with probability generating function $f(q) / f(1)$ and higher cumulants for $d \geq 2$,

$$
\kappa_{d}^{f}=\frac{B_{d}}{d} \sum_{j=1}^{m}\left(a_{j}^{d}-b_{j}^{d}\right)
$$

Therefore, we can study asymptotics for interesting sequences of of cyclotomic generating functions much like SYT.

## Recent Progress

Thm. There exists statistics determining asymptotic normality and other limiting distributions in the following cases:

1. Stanley: $s_{\lambda}\left(1, q, q^{2}, \ldots, q^{m}\right)$.
2. Björner-Wachs: $q$-hook length formula for forests.
3. Iwahori-Matsumoto, Stembridge-Waugh, Zabrocki: Coxeter length generating function restricted to coset representatives of the extended affine Weyl group of type $A_{n-1} \bmod$ translations by coroots. The associated statistic is baj - inv.

## Beyond Cyclotomic Generating Functions

Another family of polynomials:
Thm.(Douvropoulos, N. Williams conjecture) There exists a cyclic sieving phenomena for factorizations of Coxeter elements along with the $q$-analog of $n^{n-2}$ given by $[n]_{q^{2}} \cdots[n]_{q^{n-1}}$

The coefficients of $[n]_{q^{2}} \cdots[n]_{q^{n-1}}$ also appear to be normal...


## Local Limit Conjecture

Conjecture. Let $\lambda \vdash n>25$. Uniformly for all $n$ and for all integers $k$, we have

$$
\mid \mathbb{P}\left(X_{\lambda}[\text { maj }]=k\right)-N\left(k ; \mu_{\lambda}, \sigma_{\lambda}\right) \left\lvert\,=O\left(\frac{1}{\sigma_{\lambda} \operatorname{aft}(\lambda)}\right)\right.
$$

where $N\left(k ; \mu_{\lambda}, \sigma_{\lambda}\right)$ is the density function for the normal distribution with mean $\mu_{\lambda}$ and variance $\sigma_{\lambda}$.

The conjecture has been verified for $n \leq 50$ and $\operatorname{aft}(\lambda)>1$.
Up to $n=50$, the constant $1 / 9$ works.
At $n=50,1 / 10$ does not.

## Unimodality Question

Conjecture. The polynomial $\mathrm{SYT}^{\text {maj }}(q)$ is unimodal if $\lambda$ has at least 4 corners. If $\lambda$ has 3 corners or fewer, then $\operatorname{SYT}^{\text {maj }}(q)$ is unimodal except when $\lambda$ or $\lambda^{\prime}$ is among the following partitions:

1. Any partition of rectangle shape that has more than one row and column.
2. Any partition of the form $(k, 2)$ with $k \geq 4$ and $k$ even.
3. Any partition of the form $(k, 4)$ with $k \geq 6$ and $k$ even.
4. Any partition of the form $(k, 2,1,1)$ with $k \geq 2$ and $k$ even.
5. Any partition of the form $(k, 2,2)$ with $k \geq 6$.
6. Any partition on the list of 40 special exceptions of size at most 28.

## Unimodality Question

## Special Exceptions.

$$
\begin{gathered}
(3,3,2),(4,2,2),(4,4,2),(4,4,1,1) \\
(5,3,3),(7,5),(6,2,1,1,1,1) \\
(5,5,2),(5,5,1,1),(5,3,2,2),(4,4,3,1) \\
(4,4,2,2),(7,3,3),(8,6),(6,6,2) \\
(6,6,1,1),(5,5,2,2),(5,3,3,3),(4,4,4,2) \\
(11,5),(10,6),(9,7),(7,7,2) \\
(7,7,1,1),(6,6,4),(6,6,1,1,1,1),(6,5,5) \\
(5,5,3,3),(12,6),(11,7),(10,8) \\
(15,5),(14,6),(11,9),(16,6),(12,10),(18,6), \\
(14,10),(20,6),(22,6)
\end{gathered}
$$

## Conclusion

## Many Thanks!

To you all for listening, to the organizers of this workshop, and to BIRS for creating the mathematical atmosphere.


