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Arnold Ross (and PROMYS).
"Think deeply of simple things.”

Angela Gibney. Why do algebraic geometers love moduli spaces?
“It is just like with people, if you want to get to know

someone, go to their family reunion.”

(=oal. Focus our microscope on a particular family of varieties which are indexed
by combinatorial data where lots is known about their structure and yet lots is still
open.



A Schubert variety is a member of a family of projective varieties which is defined
as the closure of some orbit under a group action in a homogeneous space G/ H .

Typical properties:
e They are all Cohen-Macaulay, some are “mildly” singular.

e They have a nice torus action with isolated fixed points.

e This family of varieties and their fixed points are indexed by combinatorial
objects; e.g. partitions, permutations, or Weyl group elements.



“Honey, Where are my Schubert varieties?”

Typical contexts:
e The Grassmannian Manifold, G(n,d) = GL,,/P.

e The Flag Manifold: Gl,,/B.

e Symplectic and Orthogonal Homogeneous spaces: Sps,,/B, O, /P
e Homogeneous spaces for semisimple Lie Groups: G/ P.

e Homogeneous spaces for Kac-Moody Groups: G/ P.

e Goresky-MacPherson-Kotwitz spaces.



The Flag Manifold

Defn. A complete flag Fg = (Fy,...,F,) in C™ is a nested sequence of
vector spaces such that dim(F;) = ¢ for 1 < ¢ < n. F, is determined by an

ordered basis {f1, f2,... fn) where F; = span{fi,..., f;).

Example.

Fo =(6e1 + 3e2, 4e; + 2e3, 9e1 + e3+ eq, e2)




Canonical Form.

Fo =(6e1 + 3e2, 4e; + 2e3, 9e1 +e3+ eq, e2)
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|40 20| |020 0 2 0
~“19 01 1| |01 1 0 70

01 0 0 10 0 -2 |10

%<2€1—|—€2, 2e1 + e3;, Tey + ey, €1>

Fl,(C) := flag manifold over C™ C [[,._,; G(n, k)
={complete flags Fg}

= B\ GL,(C), B = lower triangular mats.
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Flags and Permutations

Example. Feq = <2€1—|—€2, 261—|—€3, 761—|—€4, €1> ~

Note. If a flag is written in canonical form, the positions of the leading 1's form
a permutation matrix. There are 0's to the right and below each leading 1. This
permutation determines the position of the flag F¢ with respect to the reference
flag Ee = <ela €2, €3, €4 >




O 1 0 O 0O 1 1 1
O 01 0 1 2 3 4 0O 1 2 2
0O 0 0 1 _[2341]_2341_ 0O 1 2 3
I 1 0 O O_ ] 1 2 3 4
matrix two-line one-line rank
notation notation notation table
1234
2341
diagram of a rc-graph string diagram reduced
permutation grap & dlag word



Defn. C,(E,) = All flags Fy with position(Ee, Fy) = w

Example. F, =

Easy Observations.

€ Cazq1 = |

e dimc(Cy) = l(w) = # inversions of w.

= o O O

c o o =

©c O = O

©c = O O

0 0

0 0
bs,3 0
ba,s ba,a

- % X ¥

C oo

w = w + B is a B-orbit using the right B action, e.g.

= {F, € Fln | dim(E; N F}) = rk(w(z, j]) }

o =O

b2 ,2
bs3.2

ba,2

o= OO

bs3.3

ba,s3

0

% € C

b4,a

0




The Schubert Variety X,,(E,) in F1,,(C)

Defn. X, (E,) = Closure of Cy,(FE,4) under the Zariski topology

where Eq = (€1, €3, €3, €4 ).

Example.

Why?.

= {Fe € Fln | dim(E; N Fj) >rk(wls, j]) }

€ Xo2341(Fe) = <

=% X ¥

OO =

©C O = O

O = OO




Bruhat Order. The closure relation on Schubert varieties defines a nice
partial order.

X'w:UC'v :UX’U

v<w v<w

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of
w < wti; <= w(t) < w(g).

Equivalently, tiw < w <= w(i) < w(j).

Example. Bruhat order on permutations in S3.

321

312 231

213 132

123
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21
21‘ ‘4231‘ ‘4312‘

‘2431‘ 34

12‘ ‘3241‘ ‘4132‘ ‘4213‘

1342 1423 23

1432 2341 2413 3142 3214 4123
4 21

1 43 3124

1243 1324 Zlf{{///

1234
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Consequences.
e The Schubert variety X,,, = U C, = Fl,, where wg =n...21.

v<wpg

e The cohomology ring of H*(X,,) has linear basis {[X,] | v < w}. There-
fore, the Poincare polynomial of H*(X,,) is

Y dim(H?*(X,))th = )t~

v<w

e Let T' = invertible diagonal matrices. The T'-fixed points in X,, are the
permutation matrices indexed by v < w.

o If u, ut;; are T-fixed points in X, they are connected by a T'-stable curve.
The set of all T-stable curves in X, are represented by the Bruhat graph
on [¢d, w].



(4321)

‘mzsn‘ ‘msla‘ ‘@423‘
(4132) ‘(4213‘ ‘(243n‘ ‘(341&‘ ‘(3243‘
(4123) (1432) ‘Q41$‘ ‘@143‘ @349‘ 6210‘
(1423) (2143) | | (@342 | |(3124) | | (2314
(1243) \(213@ (1324)

(1234)




Focus Point 1. The tangent space to the Schubert variety X, is completely
determined by the Bruhat graph.

e g = Lie algebra of Gl,, = @ x; ; (Chevalley basis)
1<i,j<n

e b = Lie algebra of B = @ Tij.
1<j<iln

e The tangent space to any point in GL,, /B looks like g/b = @ T;
1<i<j<n
where b is the Lie algebra of B.

e The basis for the tangent space at a point F € X,, C GL, /B is a
subset of the Chevalley basis for the whole space. The subset only depends
on which Schubert cell C,, contains F.

Theorem. (Lakshmibai-Seshadri, 1984) For v,w € S,

T,(Xw) = v-span{x; ; | t;jv < w}.



Example. T1234(X4231) = span{wi,j | tw S ’LU}.

‘8249‘ ‘@21@‘ ‘@133‘ ‘aasn‘

(3214) (@143 (2341) ‘m12$‘ ‘a41$‘ ‘u43a‘

dimX (4231)=>5 dimT;4(4231) = 6 — X (4231) is singular!



Focus Point 2. Simple criteria for characterizing singular Schubert varieties.

Theorem: (Carrell-Peterson,1994)
X is non-singular <= P, (t) = Z ') is palindromic.

v<w

Example: Ps412(t) = 1+ 3t 4+ 5t% + 4t +t* — X (3412) is singular.

Theorem: ( Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolpert))
X I1s non-singular << aw has no subsequence with the same relative order as
3412 and 4231.

w = 625431 contains 6241 ~ 4231 — Xgo25431 IS singular
Example: w = 612543 avoids 4231 —> Xeg12543 IS non-singul;
&3412



Consequences.
e (Haiman ca 1990) Let v,, be the number of w € S,, for which X (w) is

non-singular. Then the generating function V (t) = > v,t™ is given by

1 — 5t + 3t2 + t2/1 — 4t

1 — 6t + 8t2 — 4t3

V(t) =

e (Billey-Warrington, Kassel-Lascoux-Reutenauer, Manivel 2003) The bad pat-
terns in w can also be used to efficiently find the singular locus of X,,.

e (Billey-Postnikov 2005) Generalized pattern avoidance to all semisimple simply-
connected Lie groups G and characterized smooth Schubert varieties X,
by avoiding these generalized patterns. Only requires checking patterns of
types A39 BZa BSa CZa C39 D49 G2-

Open Problems.
e Give a purely geometric reason why rank 4 patterns are enough.

e |dentify the singular locus when G is an arbitrary semisimple Lie group.



Focus Point 3. There exists a simple criterion for characterizing Gorenstein
Schubert varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)
X Is Gorenstein <—-

e w avoids 35142 and 42513 with Bruhat restrictions {t15,t23} and {t15, t34]

e for each descent d in w, the associated partition Ag(w) has all of its inner
corners on the same antidiagonal.

Defn. X is Gorenstein if it is CM and its canonical sheaf is a line bundle.
Their proof verifies a dependence relation among certain Schubert polynomials.



Focus Point 4. Schubert varieties are useful for studying the cohomology
ring of the flag manifold.

VA E 2 T

S,, — invariants

Theorem (Borel): H* (Fl,,) =

o {[Xw] | we S,} form a basis for H*(Fl,,) over Z.

(Question. What is the product of two basis elements?

[ Xu] - [Xo] = Z[Xw]cgv'



Answer. Use Schubert polynomials! Due to Lascoux-Schiitzenberger, Bernstein-
Gelfand-Gelfand, Demazure.

e BGG: Fixw € S,, and let &, = [X]mod(S,, — invariants). For any ¢
such that w < wt; ;41,

6'w - t'i 7 wa . .
0; S, = L = [Xws,|mod(S,, — invariants)
Li — Lit1

So by choosing a representative for [X;4], we get reps for all [ X]:

[(Xiq] = 22 2l 2y = 1_[(:1:z —xj)=...

(]

o LS: Choosing [X;q] = 7 ‘a2 ... x,_1 works best because product
expansion can be done without regard to the ideal!



Suwo(1232) = 1

6w0(2134) = I1

Suwo(1324) = T2 + 1

6w0(312~.4) — CB%

6w0(2314) — L1L2

6w0(3214) — 51335132

Suwo(1243) = T3 + T2 + @1
Suwo(2143) = T1T3 + T1X2 + *3
Swo(1423) = T2 + T1x2 + T3
6wo(412~.3) — wi’

Swo(2413) = T1L3 + TIX2
6w0(4213) — wi’iﬂz

Swo(1342) = T2T3 + 1T3 + T1T2
Swo(3142) = TIT3 + TIX2
6w0(1432) — 51335133 + T1x23 + $%$3 + :131:133 —+ :1:%:1;2
Suwo(4132) = LT3 + TIT2
6wo(3412) — w%w%

6w0(4312) — 513‘;’5133

6wo(2341) — L1L2L3

6wo(3241) — w%wzi%

2 2
T1T5r3 + T]T2x3

Swo(2431)



Theorem. (Billey-Jockush-Stanley, Fomin-Stanley 1993) Schubert polynomials
have all nonnegative coefficients:

Swow = Z o

DeRC—graphs(w)

Example.

2 2 2 2
Swo1432 = T5T3 + T1T2x3 + T3 + T1x; + T T2

Theorem. (Kogan-Miller, Knutson-Miller 2004) Matrix Schubert varieties de-
generate to a union of toric varieties indexed by faces in the Gelfand-Tsetlin poly-
tope. These faces are in bijection with rc-graphs.



Key Feature. Schubert polynomials have distinct leading terms, therefore
expanding any polynomial in the basis of Schubert polynomials can be done by
linear algebra.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and
Schutzenberger's transition equations. Works up to about n = 15.

Draw Back. Schubert polynomials don't prove ¢¥ 's are nonnegative (except
in special cases).



Another Approach:.

e By intersection theory: [X,] - [Xo] = [Xu(Fe) N X4 (Fy)]

o Perfect pairing: [ Xy (Fe)] * [Xo(Fo)] * [Xwow(Ge)] = € [Xid]
|
[ Xw(Ee) N Xy (Fo) N Xupgw(Go)l

e The Schubert variety X ;4 is a single point in Fl,,.

Intersection Numbers: ¢ = # X (Fe) N Xy (Fo) N Xepyw(Ge) assuming all
flags Eo, Fo, G are in sufficiently general position. Hence all ¢ are nonnegative
integers!

Open Problem. Find a combinatorial method to compute ¢, .



Example. Fix three flags Rq, Go, and B:

Find X, (Re) N X, (Ge) N Xy (Be) Where u, v, w are the following permuta-
tions:

R1 R2 R3 Gl Gz G3 B1 Bz B3

P11 1 1
P 1 1 1
Ps3 |1 1 1




Example. Fix three flags Rq, Go, and B:

Find X, (Re) N X, (Ge) N Xy (Be) Where u, v, w are the following permuta-
tions:

R1 R2 R3 Gl Gz G3 B1 Bz B3

P11 1 1
P 1 1 1
Ps3 |1 1 1




Example. Fix three flags Re, Go, and B:

Find X, (Re) N Xy (Ge) N Xy (Be) Where u, v, w are the following permuta-
tions:

Ry Ry R3 (G4 Go(Gs By By Bsg

P17 1 1
Ps 1 1 1
Ps (1 1 1




Schubert’s Problem. How many points are there usually in the intersection
of d Schubert varieties if the intersection is 0-dimensional?

n) variables is challenging!

e Solving approx. n? equations with (2

Observation. We need more information on spans and intersections of flag
components, e.g. dim(E;}1 N Egz NN Egd).



Theorem. (Eriksson-Linusson, 2000) For every set of d flags EY, E2, ...

o
there exists a unique permutation array P C [n]® such that

dim(E; NEZ N---NEY) = rkP[x].

Ry R R3 R1 RxR3 RiR2Rs3

Bl |®
Bz_ |® '@2
B3 (D11 1{1(2 1{2(3

9



Theorem.(Billey-Vakil 2005) If
X =X, (EH) NN Xya(EY)

is nonempty O-dimensional intersection of d Schubert varieties with respect to flags
El E2,...,E% in general position, then there exists a unique permutation array
P € [n]9t1 such that

X ={F, |dim(E;, NE2 N---NE! NF,, ) =rkP[z].} (1)

d+1
Furthermore, we can recursively solve a family of equations for X using P.
Open Problem. Can one find a finite set of rules for moving dots in a 3-

d permutation array which determines the ¢ 's analogous to Vakil's moves on
checkerboards? (Vakil's rules only involve patterns in Sy.)



1995-2005: A Highly Productive Decade.

( A: GL, )
B: SOz, 41 ( cohomolgy )
C. SPs, quantum
< D: 502, > X < equivariant >
Semisimple Lie Groups K-theory
Kac-Moody Groups | €q. K-theory |
| GKM Spaces )

Contributions from: Bergeron, Billey, Brion, Buch, Carrell, Ciocan-Fontainine,
Coskun, Duan, Fomin, Fulton, Gelfand, Goldin, Graham, Griffeth, Guillemin,
Haibao, Haiman, Holm, Kirillov, Knutson, Kogan, Kostant, Kresh, S. Kumar,
A. Kumar, Lascoux, Lenart, Miller, Peterson, Pitti, Postnikov, Ram, Robinson,
Sottile, Tamvakis, Vakil, Winkle, Yong, Zara. ..

See also A. Yong's slides on “Enumerative Formulas in Schubert Calculus”

http://math.berkeley.edu/ ayong/slides.html



Focus Point 5. (Kazhdan-Lusztig, 1980) Poincare polynomials for the inter-
section cohomology sheaf of X, at a point in C,, is determined by the Kazhdan-
Lusztig polynomial P, .,(q)

Y dim(IC2*(Xw))q* = Pyw(a).

This proves that P, .,(g) has nonnegative integer coefficients!

Applications in many areas of mathematics:

1. Pyw(g) =1 < X (w) is (rationally) smooth at v. (KL, 1980)

2. {C! = ¢!™/2%" P, ,,T,} in the Hecke algebra useful for computing
irreducible representations of Hecke algebras. (KL, 1979)

3. Py (1) = multiplicity in decomposition series for Verma modules (Beilinson-
Berstein, Brylinski-Kashiwara, 1981).

4. P;g.. (1) used in Haiman's Immanent Conjectures. (Haiman, 1993)



Recursive Formula. (K-L) Base cases: Py =1, Py = 0if v £ w.
Otherwise for s = ¢; ;41 s.t. sw < w

_ l(w)—=1l(=)
Pv,'w(Q) — ql cPs'v,s'w + qcP'v,sw — Z “(zv S’IU)q 2 Pv,z

z<sw
p(z,y) = coeff of ql(y)_lz(Z)_1 in P, ,(q)
and
0 v<sv
C —
1 v > sv.

Observation. This formula only depends on Bruhat order.

Theorem.(Brenti) In fact, P, ., can be computed by only knowing the poset
on [td, w] after removing the labels on the vertices.



Below are all Kazhdan—Lusztig polynomials with v = id and w € S5 which are

different from 1:

w

-Pid,'w

(14523)
(25341)
(35124)
(35412)
(42351)
(43512)
(51342)
(52431)
(53421)

(15342)
(34125)
(35142)
(41523)
(42513)
(45132)
(52314)
(53142)
(54231)

(24513)
(34152)
(35241)
(42315)
(42531)
(45213)
(52413)
(53241)

q+1

(34512) (45123)
(45231) (53412)

(52341)

(45312)




Surprising Theorem.(Polo, 1999) Any polynomial P(q) € Z>o[g] with
constant term 1 is the Kazhdan-Lusztig polynomial for some pair of permutations.

Surprising Counterexamples.(McLarnan-Warrington 2003)
0-1 Conjecture: p(v,w) € {0,1}. True for all of Sg. False in Sio:

1 (4321098765, 9467182350) = 4.

Conclusion. Our microscope is too smalll We need better tools to understand
them.

Open. Give a combinatorial formula for the coefficients of P, .,(q) and/or
identify a “nice” basis for IC,(Xy).



o P, = 1forallv < wiff wis 3412, 4231-avoiding.
e Say w is 321-hexagon avoiding i.e. avoiding 5 patterns

321 56781234 56718234
46781235 46718235

Then following are equivalent (Billey-Warrington 2001):

1. w is 321-hexagon-avoiding.

2. Ppo= Y q¥forallz <w.
c€E(x,w)
3. ) dim(IC*(Xw))q" = )  Pow(q) = (14 q)'™).
() v<w

e Let 3 be a group generated by a subset of transpositions, o € S, /3,
v = ov’ and w = ow’ for v’, w’ € . Then by (Billey-Braden, 2003)

Pyw(1) 2 Py (1).



(Question. Is there a master formula that relates Schubert polynomials and
Kazhdan-Lusztig polynomials?

Evidence. Kumar's criteria (1996) for testing if Fy is a smooth point in X,
asks if a Kostant polynomial has a nice factorization:

Z 1D oo e X — H ,8

ajaz...areK(v,w) BES (v,w)

Kostant polynomials can also be used to expand [X,] « [X] and determine the

Con S Therefore, singularities and cohomology ARE related!



“Combinatorics is the equivalent of nanotechnology in mathematics.”

Key open problems:
1. Find a combinatorial formula for the structure constants in the cup product

of H*(Fl,).

2. Find a combinatorial formula for the coefficients of the Kazhdan-Lusztig
polynomials.

3. Find a unified formula or connection between Schubert polynomials and
Kazhdan-Lusztig polynomials.

4. Give a geometric explanation for the prevalence of properties characterized
by pattern avoidance.

5. Give a formula for the multiplicity of a Schubert variety.



