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Branching (chemistry)

From Wikipedia, the free encyclopedia
(Redirected from Branched pobymer

In palymer chemistry, branching occurs by the replacement of a substituent, e.g., a hydrogen atem, on a monomer subunit, by another covalently bonded

chain of that polymer; or. in the case of a graft copolymer, by a chain of ancther type. In crosslinking rubber by vulcanization, short sulfur branches link

polyisoprene chains (or a synthetic variant) into a multiply-branched thermosetting elastomer. Rubber can also be so completely vulcanized that it becomes a

rigid solid, so hard it can be used as the bit in a smoking pipe. Polycarbonate chains can be crosslinked to form the hardest, most impact-resistant
thermosetting plastic, used in safety glasses.[1]&

Branching may result from the formation of carbon-carbon or various other types of covalent bonds. Branching by ester and amide bonds is typically by a condensation reaction, producing one

molecule of water (or HCI) for each bond formed.

Polymers which are branched but not crosslinked are generally thermoplastic. Branching sometimes occurs spontaneously during synthesis of
polymers; e.g., by free-radical polymerization of ethylene to form polyethylene. In fact, preventing branching to produce linear polyethylene requires
special methods. Because of the way polyamides are formed, nylon would seem to be limited to unbranched. straight chains. But "star" branched
nylon can be produced by the condensation of with palyamines having three or more amino groups. Branching also occurs
naturally during enzymatically-catalyzed polymerization of glucose to form polysaccharides such as glycogen (animals), and amylopectin, a form of
starch (plants). The unbranched form of starch is called amylose.

The ultimate in branching is a completely crosslinked network such as found in Bakelite, a phenol-formaldehyde thermoset resin.
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Modeling Branched Polymers

Given n labeled disks ‘ ° Q o ‘

a branched polymer of order n is a placement of
the disks in the plane such that

=Disk 1 has its center at (0,0)
*"The union forms a connected subset of the plane

<

®*No two disks overlap.

b




Embedding Branched Polymers

Notation:

* R=(ry,r,,...,r,)=list of radii for disks 1,2,...,n
* BP.(n)=branched polymers of order n.
 TG(P) =tangency graph of polymer P

Two embeddings of BPg:

a) BPg(n)—C" list centers of disks as complex numbers

b) BP4(n) %U S™1  union over all labeled trees of order n
record angles of attachment from each disk to its parent.



Volume of BP;(n)

Example: 2 disks i
vol(BPr(2)) = 21T | '

Example: 3 disks, R=(1,1,1)"
vol(BP.(3)) = 3 (4/3 ) 2
p— 2 (2 '|T)2

Example: 3 disks, R=(1,€,€)
vol(BP;(3)) = (211)? + ¥2 (2 11)? + ¥2(211)?
=2 (2 m)?



Volume of BP;(n)

Theorem (Brydges-Imbrie) For any choice of radii,
the space of branched polymers has volume

(n-1)! (2 )2

Theorem (Brydges-Imbrie) The space of 3-
dimensional branched polymers has volume

nn-1(2 -|-|-)n-1

See also “Branched polymers” by Richard Kenyon and Peter Winkler,
Amer. Math. Monthly 116 (2009).



Stratifying BP;(n)

Def: Given any graph G with n nodes, Iet
BPr(G) :={ P € BP;(n) : TG(P) =

/{\ ) pcpp -(G)

Facts: BPg(n) = U BP,(G) union over all labeled graphs G with n
nodes. The boundary of BPg(n) consists of all BP;(G) where G has at
least one cycle.




Volume of each strata

Open Problem: Given radii R=(r,,r,,...,r,,), what is
vol(BPy(T)) for any labeled tree T of order n?

Note: vol(BPg(G)) =0 if G contains a cycle.

Question: How can we approximate the
volumes for the vol(BPg(T))’s ?



Kenyon-Winkler Algorithm

Input: R=(ry,r,,...,r,)
Output: uniformly chosen branched polymer of order n

Start: Place disk 1 centered at origin.
Loop: For each j>1,

 Choose an integeri €[1,j) uniformly and a real number
® in [0,2 1T ) uniformly.

* Place a new disk labeled j with radius O at the point on
the boundary of disk i specified at the angle .

* Begin to grow the radius of disk j.




Growing disk j

* Increase the radius of disk j while holding
constant the tangency graph, the angle vector,
and the center of disk 1 until either

a) The radius reaches

b) Or collision occurs between two disks in
the polymer introducing a cycle into
TG(P).
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Growing disk j

* Increase the radius of disk j while holding
constant the tangency graph, the angle vector,
and the center of disk 1 until either

a) The radius reaches

b) Or collision occurs between two disks in
the polymer introducing a cycle into
TG(P).




Choosing a spanning tree

If a cycle occurs while growing disk j, we must
delete an edge from the tangency graph to
continue growing without overlap.

But, which one?

'4




Choosing a spanning tree

* Label the edges around the cycle E, ..., E, in
counter clockwise order so that E, and E,
meet at the center of disk j.

* T =tree obtained from TG(P) by removing E..

* Among all T, such that locally vol(BP(T,)) is
increasing near P, choose with probability
proportional to these positive volume forms.



Choosing a spanning tree

Miraculously, there is a very simple way to determine
the relative local volume changes near P.

« O, = angle of E; measured from the positive horizontal axis.

* U=unit vector with angle (®, +®, )/2.

* w,=(U-E)

v, is negative
Theorem (Kenyon-Winkler) Let v, be the infinitesimal local volume
change in BP(T,) near P due to a small increase in radius. Then

V=(vy,...,v,) and W =(wy,...,w,)

only differ by a scalar multiple and v, is negative



Kenyon-Winkler Algorithm

Input: R=(ry,r,,...,r)
Output: uniformly chosen branched polymer of order n
Start: Place disk 1 centered at origin.

Loop: For each j>1,

 Choose an integer i €[1,j) uniformly and a real number @
IN [0,2 1T ) uniformly.

* Place a new disk labeled j with radius 0 at the point on the
boundary of disk i specified at the angle ®.

* Begin to grow the radius of disk j up to r,, When a
collision occurs, a cycle forms in the graph Choose a
spanning tree in proportion to the local changes in
volume with respect to each tree.



Example 2000 disks

-200
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Example 100 disks
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Data Inspired Conjectures

Fix R=(1,1,...,1)

* Collected data approximating the frequency
each tree up to order 10 occurs among
uniformly chosen random branched polymers.

* Conjectured distribution on vertex degrees:
[0.23, 0.56, 0.19, 0.011, 10~7-5, 0]

* Conjectured relationship between diameter of
T and expected diameter of P in BP(T).



Stratifying BP;(n)

+ BP.(G) := {P EBP,(n) : TG(P) = G }
* BP.(n) = U BP;(G) (manifold with boundary)

Questions:
Could BP(n) have a cell decomposition?

What does each BP,(G) look like?
What are the “points” in this stratification?




Rigid Graphs

What are the “points” in this stratification?

BP.(G) = BP,(G) iff dim(BP4(G))=1 iff

The only continuous motions of the embedding of
G which preserve edge lengths are rotations and

!

translations.

Def: G is infinitesimally rigid.



Laman’s Theorem

Theorem: G is minimally infinitesimally rigid for
generic embeddings iff

HE; =2 #V; -3
and for all subgraphs H of G, #E, < 2 #V, -3.

Note: Non-generic embeddings of a graph can
exist which satisfy Laman’s condition but
aren’t infinitesimally rigid!



Rigid Graphs

Application: We can use Laman’s criterion to
identify “points” in BPg(n).

Corollary: For generic radii, dim(BPg(G)) =1 iff G
contains a spanning subgraph satisfying
Laman’s condition.



Rigid Components

Question: What is dim(BP(G)) in general?

Def: His arigid component of G if H is
infinitesimally rigid and no other rigid
subgraph of G properly contains H.




Attachment Graph

Assume G has rigid components C,,...,C,.

Note: Two rigid components share at most one

vertex. ”
Def: A(G) = attachment graph

Init:  V={1,2,..k} E={ij: C, C overlap}
Replace all cliques by spanning trees.




Example

Def: A(G) = attachment graph
Init: V={1,2,..,k} E={ij:C, C, overlap}
Replace all cliqgues by spanning trees.




Generic Dimension Formula

Theorem (Anderson-Billey): For generic radii,
each connected component of BP,(G) is a
manifold of dimension

dim(BPR(G)) = 3 #V,(g) - 2#Ex ) — 2
= #V, ) — 2 # (bd faces A(G)),

assuming the analogus dimension formula holds
for each proper connected subgraph of A(G).



Example

Here: dim(BP(G))= #V, — 2 # (bd faces A(G))
=5-2%1= 3.




Proof Qutline

* Write equations for BP(G) in terms of
translation and rotation of rigid components
(3k variables).

e Each edge of A(G) defines 2 equations.

 Compute the Jacobian and apply Submersion
Theorem.



General Dimension Formula

Theorem (Anderson-Billey): For all radii, BP(G)
is a variety of dimension

dim(BPR(G)) =3 #V, ) -2#E,-2-corank(CritJ)

Example: take R=(1,1,...,1) and the tangency
graph




Review

Stratifying BP:(n)
* BP;(G):={PEBPy(n):TG(P)=G}
* BPy(n)=U BP,(G)
Questions:
What does each BP;(G) look like?

Answer: finite number of manifolds with given
dimension determined by G (generically).

What are the “points” in this stratification?
Answer: BP(G)’s of dimension -- rigid graphs.




Mészaros-Postnikov Theorem

Meészaros-Postnikov (2009) give generalization of
BP(n) using the theory of hyperplane
arrangements.

Recall: Given n labeled disks with radiir, ..., r,, a
branched polymer is a placement of the disks in
the plane such that

»Disk T has—itseenterat (0,0)
»The union forms aconmected-subset-of the plane

="No two disks overlap.




Braid arrangement to BP(n)

Braid arrangement: hyperplanes in V given by

hijj=x;—x;=0 V1<i<j<n

Lj

V=c"/(1,1..,1)

Branched polymers:

BP,={x €V: |h;(x)| =1+ 1}



Generalized Polymers

Definition: For any central hyperplane
arrangement A defined by linear forms
h_i(x)=0 and real numbers r_i, define

BP, = {x € C™: |h;(x)| = 1}




Generalized Polymers

Theorem (Mészaros-Postnikov):
The g-volume of BP, is (—2m)" %4y ,(—q)
and the usual volume is obtained by setting g=0.

Theorem (M-P): BP, & C, = € \U {X: hjy, = 0}

have the same cohomology ring given by the
Orlik-Solomon algebra.

Open (M-P): What is H*(BP(n)) ?



Open Problems

1. Whatis vol(BPg(T)) ? Open for R=(1,1,...,1).

. Conjectured distribution on vertex degrees:
[0.23, 0.56, 0.19, 0.011, 10>, 0].

. What is expected diameter of P in BPg(T)?

4. |1s BP,(G) contractible?

. What is H*(BP(n)) ?

-- See (Mészaros-Postnikov hyperplane arr.)



