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KOSTANT POLYNOMIALS AND THE COHOMOLOGY
RING FOR G/B

SARA C. BILLEY

The Schubert calculus for G/B can be completely determined by a certain
matrix related to the Kostant polynomials introduced in [1, Sect. 5]. The poly-
nomials are defined by vanishing properties on the orbit of a regular point under
the action of the Weyl group. For each element w in the Weyl group, the poly-
nomials also have nonzero values on the orbit points corresponding to elements
that are larger than w in the Bruhat order. Our main theorem is an explicit
formula for these values. The matrix of orbit values can be used to determine the
cup product for the cohomology ring for G/B, using only linear algebra or as
described in [14].

1. Introduction. Let G be a semisimple Lie group, H be a Cartan subgroup,
W be its corresponding Weyl group with generators al, a2,..., an, and B be a
Borel subgroup. Let [h*] be the algebra of polynomial functions on the Cartan
subalgebra h over . Fix a regular element O h such that ai(O) is a positive
integer for all simple roots ai. Any Weyl group element v acts on the right on O
by the action on the Cartan subalgebra. We define the following interpolating
polynomials by their values on the orbit of O.

Definition 1. A Kostant polynomial Kw is any element of [h*] of degree l(w)
(nonhomogeneous) such that

1, v=w,
(1.1) Kw(Ov)

0, l(v) < l(w) and v - w.

These polynomials were defined originally by Kostant and appear in [1, Thm.
5.9] for the finite case. They were later generalized by Kostant and Kumar in
[14], there denoted w-X- Kostant showed that Kw is unique modulo the ideal of
all elements of [h*] that vanish on the orbit of O under the Weyl group action.
Furthermore, he showed that the highest homogeneous component of a Kostant
polynomial represents a Schubert class in the cohomology ring of G/B. Indeed,
Carrell has shown there is a direct connection between the ring of polynomials
defined on the orbit OW and the cohomology ring of G/B. Namely, H*(G/B) is
isomorphic to the graded ring canonically associated to the polynomial ring of
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the variety given by the set of points OW (see [4]). This isomorphism has also
been given by Kostant and Kumar [14, Thm. 2.12] via the nil-Hecke ring.
The object of study for this paper is not precisely the Kostant polynomials

themselves but instead the values of the Kostant polynomials on the points in
the orbit of O under the Weyl group action. From the definition of Kw, we know
Kw(Ov) is zero if l(v) < l(w) and v -: w. However, the orbit values Kw(Ov), if
l(v) > l(w), are not specified (though they are completely determined). Our main
result, stated in Theorem 3, is an explicit formula for computing these orbit
values, namely,

(1.2)
1 k

w bq bi2...bi R(w) j=l

where b bib2.., bp is any fixed reduced word for v, R(w) is the set of all
reduced words for w, and the sum is over all sequences 1 < il < i2 < < ik < p
such that bilbi2.., bi, R(w). The scalar factor z appears in order to normalize
Kw(Ow) 1; see Section 4 for the definition. This formula is independent of
the chosen reduced word for v and exhibits the strong connection between the
Kostant polynomials and the Bruhat order.

In the case where G is SLn, the Kostant polynomials are the double Schubert
polynomials (multiplied by a scalar) introduced by Lascoux and Schiitzenberger
in [17]; see also [20]. We give the precise connection in Remark 1 of Section 8
for all of the classical groups. Note that our main theorem in this case gives
formulas for evaluating double Schubert polynomials at orbit points. These
values were originally studied by Lascoux and Schiitzenberger in [18] and [19].
Recently, Lascoux, Leclerc, and Thibon [15] have explained the interesting con-
nection between the Yang-Baxter equations and the specializations of double
Schubert polynomials, using techniques similar to those used in Section 3.
We begin with a review of a few results from the renowned paper [1] by

Bernstein, Gelfand, and Gelfand. In Section 3, we introduce the nil-Coxeter
algebra in order to prove that the orbit value formula is independent of the
choice of reduced word. The explicit formula for the orbit values is stated as a
theorem and is proved in Section 4. The orbit value formula is generalized in
Theorem 4 to give explicit formulas for the V-functions given by Kostant and
Kumar [14]. In Section 6 we explicitly show how the matrix of orbit values is
related to the cup product in the cohomology ring for the flag manifold G/B,
following Kostant’s original notion, which was extended in [14]. This beauti-
fully demonstrates the relationship between the structure constants for Schubert
cycles in the cohomology ring of G/B and the D matrix (see Proposition 5.5 for
the general definition). An example is given in Section 7, which may be helpful to
the reader.
While we prove Theorem 4 only for the finite case (i.e., for G semisimple), the

formula for the orbit values is equally valid for all Kac-Moody Lie algebras. In
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fact, Kumar has extended Theorem 4 to the case where W is the Weyl group of
an arbitrary Kac-Moody Lie algebra. We include his proof in the appendix.
The main results of this paper were announced in [2].

2. Divided difference equations. The divided difference equations, defined by
Bernstein, Gelfand, and Gelfand, are used to recursively compute the Schubert
classes starting from the unique Schubert class of dimension zero and working
up to higher dimensions. In this section we show that these operators also act
nicely on the Kostant polynomials. The divided difference equations for Kostant
polynomials also lead to a recursive method for computing the matrix of orbit
values for these polynomials. Much of the theory of Schubert classes and divided
difference operators was independently conceived by Demazure [5] around the
same time. We cite just one source for simplicity.
Given a semisimple Lie group and a Cartan subgroup there is a root system

A contained in some ambient vector space V with a positive definite symmetric
bilinear form (,fl). (See [11] for details on Lie groups and root systems.) Let
1, 2,..., n be a choice of simple roots in the root system. Let A+ (respectively,
A_) be the positive roots (respectively, negative roots) with respect to this choice
of simple roots. Let R be the ring of polynomials in the simple roots with
rational coefficients, that is, [1,2,... ,n]. R can be realized as a subring of
the ring of all polynomial functions on the Cartan subalgebra [h*].
For each simple root i, there is a corresponding simple reflection tri over the

hyperplane perpendicular to i. This action is given explicitly by ai(v)= v-
(V, OiOi, where

(2.1) (,)

The Weyl group W corresponding to the root system A is generated by the
simple reflections. The Weyl group of a semisimple Lie group is always finite,
and there exists a unique element w0 in W with longest length.
For each 1 < < n, the divided difference operator c3i R R acts on f R

by

(2.2) cif

Let I be the ideal generated by the Weyl group invariants of positive degree.
Every polynomial in I is killed by any divided difference operator. Hence, each
Oi acts on the quotient R/! as well. If e:H*(G/B,) R/! is the Borel iso-

This notation differs from the notation in [1] by a sign. The result is that we have interchanged
the positive and the negative roots from those used in [1].
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morphism and p: H,(G/B,) H*(G/B,) is the Poincar6 duality, then
define the Schubert class of w, w, in R/I to be the image of the Schubert cycle in
H,(G/B, ) corresponding to wwo under the composition of p and a.

PROPOSITION 2.1 [1, Thms. 3.14 and 3.15].
have the properties

The Schubert classes w e R/I

l(w) > l(wtri),
(2.3) cOi@w-

0, l(w) < l(wai).

Furthermore, the Schubert class wo is 9iven by

(2.4) wo (-1)lWl
IwI IIT(modI).

yeA+

The Schubert classes and the highest homogeneous component of the Kostant
polynomials are the same modulo I up to a constant. Below we give the correct
statement in our notation. An example of computing this coefficient is given in
Section 7.

PROPOSITION 2.2 [1]. Let Kw be the form of highest degree in Kw. Then the
imaoe ofKw in R/I is equal to

(2.5) (  aOwa_
The next theorem shows that the divided difference operators satisfy a

modified recursive formula. This theorem was also stated by Kostant and
Kumar in [14] in a different form. We include the proof because it demonstrates
the techniques we use to compute the Kostant polynomials.

THEOREM 1.
follows:

For w W, the divided difference operator Oi acts on Kw as

(2.6)
Kwh, l(w) > l(wtri)

cOiKw i(Owtri)

0, l(w) < l(wtri).

Proof. The Kostant polynomials are uniquely defined by their orbit values.
Therefore, we evaluate OiKw at different points in the orbit. For any v, w W and
any polynomial P R, one can check that the left action of w on P corresponds
with a right action on the orbit point Or, that is,

(2.7) P(Ovw) [wPl(Ov) [vwP](O).
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Applying the divided difference operator, we have

(2.8)

(2.9) I w(O ) Kw(Ooo )

If l(v)< l(w)- 1, then both terms in the numerator of (2.8) are zero by the
vanishing property (1.1), so OiKw(Ov)- O. Furthermore, if l(v)- l(w)- 1 and
w : vai, then OiKw(Ov) 0. Finally, if w vai and l(v) l(w) 1, then by (1.1)
and (2.7) we have

(2.10)  3iKw(Ov -Kw(Ovai

Therefore, OiKw has degree equal to l(w)- 1 and evaluates to zero on all orbit
elements corresponding to v such that l(v) < l(w) and v :/: wai. Hence, OiKw is
equal to Kw,/(i(Owai)).
COROLLARY 2.3. The orbit values Kw(Ov) can be computed recursively from

the top down. Namely, Kwo (Or) is 1 if v wo and is 0 otherwise. If w v wo, there
exists an such that l(w) < l(wtri); let u equal wtri. Then for any v IV,

(2.11) Kw(Ov) oi(Ow)iKu(Ov Ku(Ov) Ku(Ovi)
oi(Ow).

- i(Ov)

Corollary 2.3 gives an algorithm to compute the values Kw(Ov). We use this
corollary in Section 4 to prove the formula for orbit values.

3. The nil-Coxeter algebra. In this section, we allow W to be the Weyl
group for an arbitrary Kac-Moody Lie algebra. Let ’ w be the nil-Coxeter
algebra for W over the field K. In other words, if IV is generated by al, tr2,..., an
with relations given by (6itTj) mij-- 1, then is generated as an algebra over
R [tl,..., gn] by Ul, u2,..., un with the relations

(3.1) uiujuiuj .... ujuiujtti..; for j,

mij factors m factors

(3.2) u/2 -0.

As a vector space over R, a basis for is given by {Uw "w W}, where Uw rep-
resents the equivalent products UalUa2...Uap for any ala2...ap R(w). The Weyl
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group acts on by acting on the elements in R, and the generators ui are fixed
by all elements in the Weyl group.

Following the notation of Fomin and Kirillov [8, Sect. 1], we define the Yang-
Baxter operators hi R by

(3.3) hi(x) exu’ 1 + XUi.

The relations among the Weyl group generators impose relations on the hi(x)’s
as well. It is well known that a minimal set of relations among the generators
of a Weyl group are of the form (tritrj) m’j 1. If W is the Weyl group of a semi-
simple Lie algebra, then the only possibilities for mij are 2, 3, 4, or 6. Note, if
mij 2, 3, 4, 6, then (i, Oj)(Oj, Oi) is 0, 1, 2, 3, respectively. If the Lie algebra is
any Kac-Moody Lie algebra, then is also a possibility for mij. If mij , then
(ti, )(j, i) > 4. See [13, Prop. 3.13] for details.

PROPOSITION 3.1 [8].
Baxter equations:

The Yang-Baxter operators satisfy the following Yang-

(3.4) hi(x)hj(y) hj(y)hi(x), if (aitrj) 2 1,

(3.5) hi(x)hj(x + y)hi(y) hj(y)hi(x + y)hj(x), if (O’iO’j) 3 1,

(3.6)
hi(x)hj(x + y)hi(x + 2y)hj(y)

hj(y)hi(x + 2y)hj(x + y)hi(x), if (O’iO’j)4 1,

(3.7)
hi(x)hj(3x + y)hi(2x + y)hj(3x + 2y)hi(x + y)hj(y)

hj(y)hi(x + y)hj(3x + 2y)hi(2x + y)hj(3x + y)hi(x), if (O’iO’j) 6 1.

It is well known (see [12, p. 14]) that the set of roots (O’blO’b2 ...O’bk_lObk"
1 < k < p} is equal to A+ c vA_ and hence is independent of the choice of
reduced word. We define a family of polynomials that are closely related to this
set.

Definition 2. For any v e W and any reduced word a ala2...ap for v,
define a root polynomial for a in the nil-Coxeter algebra by

p

(3.8) l. H hai Tal O’a2 O’ai_ oa,
i=1

For example, if the root system is of type A2, the Weyl group is the symmetric
group $3. Let 1 and 2 be the simple roots. For i= 1,2, trii =- and tr
1 + 2 for different from j. The word 121 is a reduced word of the permutation
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[3, 2, 1] (written in one-line notation). Then Rlal is given by

(3.9) 121 (1 + OlUl)(I + 0"102U2)(1 + O’lO’2glttl)

(3.10)

(3.11)

(3.12)

(1 + olu)(1 + (o1 nt- o2)u2)(1 + o2ttl)

1 + (1 - 02)(U[2,1,3] -- U[1,3,2]) -t- (012 -t- 012)U[2,3,1]

-+- (0102 q- 22)U[3,1,2]-+- (1202 -q- o1o22)u[3,2,1].

In fact, we show in the next theorem that 9ta for a R(v) depends only on the
Weyl group element v and not on the choice of reduced word. Therefore, we can
define the root polynomial for v, 9tv to be 9ta for any a R(v).

TI-mOREM 2. For any v W, choose any reduced word a ala2...ap R(v).
Then

p

(3.13) 9 H hai(’altTa2 "’ai-lai)
i=1

is well defined.
Independently, Stembridge has shown that this theorem holds for all Coxeter

groups [23]. His proof does not depend on case-by-case computations.

Proof. It is well known that the following graph is connected for any v W:
Vertices R(v) and Edges { (a, b) la, b} differ by a simple relation of the form
(ij)m= (ji)n. Therefore, we only need to show that (3.13) is the same for two
reduced words a and b, which differ by a simple relation. Say a r. s. t and
b r-s’ t, where r and t are the initial and final subsequences that a and b have
in common, s iji..., s’ jij..., and s, s’ are reduced words for the same ele-
ment in W.

Let tr(al...ap) denote the element of W obtained from the product

TalO’a2.’’O’av. One can easily verify that for any position

(3.14)

since (1 + ainu) ai(1 + u). Hence,

(3.15)

(3.16)

}a lr (r)9ts. a(r)cr(s)lt,

9tb 9t,. a(r)9ts,, cr(r)cr(s’)9t.

Since tr(s) tr(s’), in order to show 9ta 9b we only need to show
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Assuming W is the Weyl group for a Kac-Moody Lie algebra, we know that s
and s’ must be of one of the following forms:

s j, s’ =ji,

(3.17)
s iji, s’ jij,

s ijij, s’ jiji,

s ijijij, s’ jijiji.

For each case we compute

(3.18) 9ts h, oi hj aioj hi criojoi

(3.19) 9ts, hj oj h, trj, hj trjtr,oj

and then use Proposition 3.1 to show equality. One could alternatively expand
the equations below and compare terms. For these computations, we rely heavily
on the table in [11, Ch. 3, p. 45], on the formula for a reflection air=
v- (v, i)i for any vector v in the span of the simple roots, and on the fact that
O’ilO’i "’’O’ip_lOi Oi if O’ilO’i "O’ip O’i "’’7ip_ (see [12, Thm. 1.7]).

Case 1" (s ij, s’ ji). If (o’io’j) 2 1, then (i, j) (j, i> 0. Hence,
trioj oj and trji i. Therefore,

(3.20) 9ts- hi(ai)hj(j),

(3.21) tls,- hj(j)h,(ti),

so by (3.4), we have 9ts s,.
Case 2: (s= iji, s’ =jij). If (triaj)3= 1, then (i,j)- (j,i) =-1. Hence,

o’ioj Oi + Oj and trji oi + j. Therefore,

(3.22) 9ts h o hj o + oj h oj

(3.23) 9s, hj(oj)hi(i + oj)hj(ai),

so by (3.5), we have 9ts 9s,.

Case 3: (s ijij, s’= jiji). Assume without loss of generality that ti is the
short root, then (i, j) -1 and (, ti) -2. Using the fact that tritrjoioj Oj,
we compute the following table:

(3.24)
O’i O’j O’i Oj j O’j O’i O’j O O

trjO’iOj triOj 2i "if- O’i O’jO O’jO O -’]’- Oj
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Therefore,

(3.25) 9s h,(o,)hj(2a, + og)h,(o, + og)hj(og)

(3.26) + +

so by (3.6), we have 9ts 9te.
Case 4: (s ijijij, s’= jijiji). Assume without loss of generality that ei is the

short root, then (ei, e) =-1 and (e,ei) =-3. Again we compute the expan-
sion of certain positive roots into the sum of ei and e:

(3.27) O’j tT O’j O’i Oj O’i Oj 30 "d- Oj tTiO’jtTitTjOi tTjOi i + Oj,

tTiO’jtTiOj tTjtTiOj 3i nu 209, tTj tTi tTj Oi O’i tTj Oi 20i -]- Oj.

Therefore,

9ts hi(oi)hj(3oi + og)hi(2oi + og)hj(3oq + 2oj)hi(oi -+- oj)hj(og)

(3.29) Rs, hj(og)hi(oi + og)hj(3oi + 2og)hi(2ai + og)hj(3oi +

so by (3.7), we have 9s 9s,.

4. Orbit value formula. In this section, we prove the orbit value formula
(1.2) in a slightly altered form. Instead of using the Kostant polynomials as
originally defined, we prefer to work with a modified version/w. We begin with
some preliminary notation, state the relationship between/w and Kw, and prove
the orbit value theorem for/.

Let v e W, and fix a reduced word bib2.., bp R(v). Recall that the roots in
the set A+ cvA_ are given by {O’blO’b2 "’’O’bi_lObi" 1 < < p}. In other words, for
each initial sequence of the chosen reduced word, abltrb2.., abj_lo% is a positive
root in the set A+ vA_. Let

(4.1) rb(j) rb, b2...b, (j) erbl erb2 O’bj_ (Obj)

denote the jth positive root. Let nv be the polynomial in @[h*] obtained as

(4.2)
e A+rvA_

Note that zro is equal to the product rb(1)rb(2).., r(p) if b has length p.



214 SARA C. BILLEY

Next, we introduce a variation on the Kostant polynomial/v, which equals
nv(O)Ko. This allows us to get rid of the denominator in (1.2). In other words, we
define Ko in analogy with the Kostant polynomials by

(4.3) /o(Ow) { 0,n(O)’ W---V,

l(w) < l(v) and w v.

THEOREM 3. Let v, w W, and fix a reduced word b bib2.., bp for w. The
orbit values ofKv are given by

(4.4) /(Ow)
bi bi ...bi R(v)

rb(il)rl(i2) r(ik)lo,

where rb(j) is defined by (4.1), the sum is over all sequences 1 < il < i2 <... <
ik < p such that bilbi2.., bik R(v), and we evaluate the right-hand side at O. Fur-
thermore, the sum in (4.4) is independent of the choice of b R(w).
The proof follows two key lemmas.

LEMMA 4.1. For v,w W, choose any reduced word b bib2.., bp R(w),
and define

(4.5) ((v, w) Z rb(il)rb(i2).., rb(ik).
bq bi ...bi R(v)

((v, w) is independent of the choice of b R(w).

Proof. The sum in (4.5) is the coefficient of uo in the root polynomial 9tw
from Section 3. It was shown in Theorem 2 that 9tw is well defined for any choice
of reduced word. Therefore, the coefficient of uo in 9tw is also independent of our
choice of reduced word for w.

LEMMA 4.2.
((V, W) by

Let ((v, w) be the polynomial defined in (4.5), and let s’i act on

(4.6) i((v, w)

Then we have

(4.7)

w) wo,)

f W)
w)

O,

V > VC:Ti,

v < vcYi.

Proof. Equation (4.7) can be obtained easily from the root polynomial. From
(3.14), we have

(4.8) 9tw 91w,,, wri(1 + oiui) 9tw,,, (1 woiui).
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Comparing coefficients of uo, we obtain

(4.9)
wo,) wo,),

w)
V Vt7b

v < vo’i.

215

Now, (4.7) follows from (4.9) by rearranging terms and substituting ((vai, w) for
(Vtri, wtri) in the case v > vai. I---i

Proof of Theorem 3. We show that (4.4) holds by decreasing induction on the
length of v. For the longest element in W, wo, we know/w0 (Ow0) nwo (O) and
/w0 (Ow) 0 for all w W such that l(w) < l(wo). This agrees with (4.4) since for
any b bib2.., bp . R(w0), there is exactly one term in the sum

(4.10)
7gwo

rb(il)rb(i2) rb(ik)
bi biE...bi eR(wo) I 0,

bib2.., bp R(wo),

bib2.., bp R(w) and w wo.

Therefore, we can assume by induction that (4.4) holds for all u W such that
l(u) > l(v). Let u be vai for some fixed such that l(u) l(v) / 1. Then we have
the following chain of equalities:

(4.11) /o(Ow) c3i,(Ow) (by Corollary 2.3)

(4.12)

(4.13)

-w i(O)

w) (by induction)

(4.14) ((v, W)lo (by Lemma 4.2)

r(il)r(i2) r(ik)lo(4.15) Z
bq bi ...bi e R(v)

(by definition (4.5)).

COROLLARY 4.3. The value (v(Ow) nv(O)Kv(Ow) is a nonnegative integer,
provided i(O) is a positive integer for each simple root i.

Proof. Each positive root , is the sum of simple roots, so the value (O) is
also a nonnegative integer. Therefore, (4.4) evaluated at O is the sum of products
of nonnegative integers.

The following corollaries were also shown in [14].
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COROLLARY 4.4. The orbit values Kv(Ow) and Kv(Owtri) (respectively, ((v, w)
and ((v, wcri)) are equal if and only if l(v) < l(vtri).

Proof. This follows directly from Lemma 4.2.

COROLLARY 4.5. The orbit value Kv(Ow) (respectively, ((v, w)) is different
from zero if and only if v < w in the Bruhat order.

Proof. By the definition of Bruhat order, any reduced word for w has a sub-
sequence that is a reduced word for v if and only if v < w in Bruhat order.
Therefore, the corollary follows directly from Theorem 3 (respectively, the defini-
tion of ((v, w) given in (4.5)). U]

5. Kostant and Kumar’s -functions. In this section we introduce the family
of functions for v W defined by Kostant and Kumar. Using the orbit value
formula in Theorem 3, we give explicit formulas for the values of on elements
in W. The O-functions are interesting because their product expansions are
related to the product expansion of the/v’s, yet they are defined independently
from a choice of orbit point or any quotient ideal. We use the same notation as
in [14] wherever possible. The exception to this rule is that we have inter-
changed the roles of w and w-1 in all of their formulas.

Definition 3. Let Q be the field of rational functions on the Cartan sub-
algebra h, that is, the quotient field of R [1,..., an]. Let f be the Q-module
of all functions from W to Q.

PgoaosITIOn 5.1 [14, Props. 4.20 and 4.24]. There exists a family offunctions
v W Rfor v W with the following properties.

(i) V(w) equals zero unless v < w and W(w) 1-Ira/wa_ Zw.
(ii) Let i act on f by

(5.1) (’iff)w
(w) (wtri).

woi

Then we have

(5.2) z’i ’’ v > vai,

0, V < Vcri.

In [14], the functions were defined to be dual to their v elements. How-
ever, properties (i) and (ii) in Proposition 5.1 characterize the -functions
uniquely for the finite Weyl groups. We state an explicit formula for (w) and
show that the formula satisfies properties (i) and (ii) as well.

THEOREM 4. Let W be a finite Weyl group. For any v W, the function
W - R defined in Proposition 5.1 is given explicitly by

(5.3) O(w) rb(il)rb(i2) rb(ik),
bq bi2 ...bik e R(v)
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where w W, b is any reduced wordfor w, and rb(j) is the jth positive root defined
by (4.1).

Proof. By Corollary 4.5, the right-hand side of (5.3) vanishes if v w. Also, if
v w, the right-hand side is Zw as defined in (4.2). Assuming IV is a finite group,
there exists a unique longest element w0. Applying Proposition 5.1, we see that
(5.3) holds for v w0. Now, the proof follows by decreasing induction from
Lemma 4.2 and property (ii) of Proposition 5.1, as in the proof of Theorem 3.

The following corollary originally appeared in [14] and also follows directly
from Theorem 4.

COROLLARY 5.2. For any v, w W, V(w) is homogeneous of defree l(v).
In Section 6, we use the -functions to arrive at a uniform approach to

expanding products of Kostant functions and hence Schubert classes. We include
the relevant facts about expanding products of -functions here. From the defini-
tion of v in Proposition 5.1, one can see that the set { v W} is a Q-basis for
all functions in f.

LEMMA 5.3. Let

(5.4) uo EpuWW

be the expansion of the product into the basis {i}. The coefficients puW can be
determined recursively by

1 1
puWo U(w)V(w) Epuvt(w)

7r’w 7w t<w

starting with w u and going up in length.

Proof. By Proposition 5.1(i), one has V(w)= 0 for all w e W such that
l(w) < l(v) and v w. Therefore, the expansion of any function f: IV R into
the basis {} is given by f ,wewCww, where

(5.6) Cw f(w) E ct(w)
w t<w

The next proposition says that in fact the rational functions in (5.5) can be
simplified to polynomials.

PROPOSITION 5.4 [14, Prop. 5.2]. The coefficients puW are homogeneous poly-
nomials in R of delree l(u) + l(v) l(w). In particular, if l(u) + l(v) l(w), then
puW is a constant.
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Kostant and Kumar have shown that the coefficients p,W in (5.4) can also
be completely determined as coefficients in a product of matrices. Let D- Id,v]
be the matrix with entries indexed by u, v W and let the entry d,v be defined as
u(v).2 If the elements of W are ordered in a way that respects the length func-
tion, then D is upper-triangular with nonzero entries along the diagonal.

PROPOSITION 5.5 [14] Fix u W. Let Du be the diagonal matrix with duv
along the diagonal. Let Pu be the matrix of coefficients [puW] from (6.1). Then

(5.7) Pu D. Du D-1.

6. Determination of the cup product in the cohomology ring of G/B. In this
section we describe the main application of Theorems 3 and 4. The highest
homogeneous component of a Kostant polynomial represents a Schubert class.
Therefore, the highest homogeneous component of the product of Kostant poly-
nomials represents the product of Schubert classes. We show that one can find
the expansion of products of Kostant polynomials in the basis of Kostant poly-
nomials by using the vectors of orbit values. This method of computing the cup
product is much more efficient than previously known techniques that involved
multiplying polynomials and possibly reducing modulo the ideal of invariants.
Also, since it extends to the exceptional root systems, it is more complete than
the existing theory of Schubert polynomials defined by Lascoux and Schiitzen-
berger [16]; see also [3], [7], [9], [20], [21], and many more.
We define the orbit value function " W -, 7l, to be the function with value

/o(Ow) V(w)[o on the point w W. Applying Corollary 4.3, we see that
(w) is always a nonnegative integer. Fix a total order on the Weyl group ele-
ments that respects the partial order determined by length. Let lWl denote the
set of functions from W to the rational numbers . Note the set {3 v W} is
a basis for lWl since (v) - 0 and (w) 0 for all v < w in the chosen total
order.

Multiplication of Kostant polynomials corresponds to pointwise multiplica-
tion of orbit value functions as we see in the next statement.

LEMMA 6.1 Say" , w wPuv Then we have

w w(6.1) . puv(O)o,

and the product ofKostant polynomials i, (modulo the ideal of all polynomials
that vanish on the orbit of O) expands with the same coefficients

(6.2) /u"/ EP,w(o)/w,

W Wwhere pu(O) is the evaluation Ofpuo on the point 0 h.

Note that our d,, corresponds with d,,-- in [14].
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Proof. The expansion of oU. oV follows by simply evaluating uv pww

on any point x W and then evaluating at O.
The expansion of any polynomial into Kostant polynomials (modulo the ideal

of functions that vanish on the orbit) is completely determined by its orbit
values. Since the orbit values are the same as the corresponding values of o-
functions, the expansions have the same coefficients.

It is easy to compute the expansion of any function in lWl into the sum of the
because of their upper-triangular form. The expansion only involves linear

algebra on vectors of nonnegative integers. Furthermore, each of the formulas in
(5.5) and (5.7) can be evaluated at O to obtain a similar formula for puW(O). The
evaluation can be computed at each step in the recursive formula analogous to
(5.5), therefore polynomial division never needs to be computed in the expansion
of " w in the expan-oo. Hence, we propose that one compute the coefficients c,

Ww w by computing 3" Puo(O)osion of ,v Cu
COROLLARY 6.2. If we have

(6.3) " Z P.w(o))’
wW

then the product of Schubert classes u and v expand as

(6.4) u" $ puW(O)w.
l(w)=l(u)+l(v)

Proof. First note that the coefficient puW(O) is a constant if l(w) l(u) + l(v)
by Proposition 5.4. Hence, the sum in (6.4) is independent of the choice of O e h.
By Proposition 2.2 we know that the highest homogeneous component of K is
equal to the Schubert class v (modulo I). Therefore, ,v is equal to the high-
est homogeneous component of/u/. The highest homogeneous component
in the expansion of K,K is the sum of all terms in the expansion with l(w)
l(u) + l(v). Therefore, the corollary follows from Lemma 6.1.

7. An example. In this section we compute the Kostant polynomial for the
permutation [3, 1,2] (written in one-line notation). This establishes our con-
ventions for the action of the Weyl group for different modules. We need to
make several choices in order to begin our computations.

Let {ei 1 < < 3} be unit coordinate vectors in the ambient vector space. For
i= 1,2, let ai be the simple roots /i+1- i. Let O be an indeterminate point
(01,02,03). Let v $3; then evaluation of a polynomial f(Xl,X2, X3) on the point
Ov gives f(o(1), o(2), or(3)).
Next we compute K[3,1,2]. One can easily verify that the polynomial

(x1-o1)(x1-o2) vanishes on the four permutations [1,2,3], [2,1,3], [1,3,2],
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[2, 3, 1] and not on [3, 1, 2]. Normalizing this polynomial we have

(7.1) (X1 01)(X1 02)
K[3’1’2] (03 Ol)(O3 02)"

Note, A+ c [3, 1, 2]A_ {/33 -/31,/33 -/32}, SO the denominator in (7.1) is equal to

(7.2) [3,1,2] H
A+ [3,1,2]A_

(O) (03 O1)(O3 02).

Lascoux and Schiitzenberger have shown that there exists a particularly nice
set of representatives called Schubert polynomials for the Schubert classes of
SLn/B. They established this theory in [16] and then extended it, along with
several others, notably Macdonald in [20]. Lascoux and Schiitzenberger’s choice
of the top Schubert polynomial in Sn is w0 x’-11-2""x-1. These repre-
sentatives are then stable under the inclusion of Sn into S,+I.
To continue our example, we can check that [3,1,2] is tEX21X2 X. Compar-

ing this with the highest homogeneous component of K[3,1,2], we see

(7.3) K3, 1
1,2] [3,1,2].

7Z[3,1,2]

In Table 1 we give the orbit values for $4 on the orbit point O (1,2, 3, 4).
Using the table, one can verify that

(7.4) [,1,2,4]/[1,3,4,2] [,1,4,2] 1] _+_ O’0 _[_ [03,2,4, [4,1,3,2]

(Note that the permutations on the left-hand side of (7.4) do not all have the
same length.) Therefore,

(7.5) [3,1,2,4][1,3,4,2] [3,2,4,1] q- [4,1,3,2].

8. Concluding remarks.

Remark 1. The Kostant polynomials and the double Schubert polynomials
defined by Lascoux and Schiitzenberger [17] are closely related in the case
of SLy. Let w(X, Y) be the double Schubert polynomial indexed by w on the
two alphabets X and Y. Then ffw(X1,X2,... ,Xn)--w(X, O). This fact can be
proven in several ways: using the vanishing properties of the double Schubert
polynomials as originally proven by Lascoux and Schtitzenberger 1 7], using the
combinatorial interpretation for the terms in a double Schubert polynomial
defined by Fomin and Kirillov [6], or by divided difference equations as shown
by Shimozono [22].
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TABLE 1
Type A orbit value matrix $4

1234

1243 0 0 0 2 0 0 2 3 2 0 3 3 2 2 3 3 2 3

1324 0 0 0 2 0 2 2 2 3 2 2 3 2 4 2 3 4 3 4 4

2134 0 0 0 0 0 2 0 2 2 3 2 2 3 3 2 3 3 3

1342 0 0 0 0 2 0 0 0 0 2 6 0 2 0 0 6 6 2 2 0 6 6 2 6

1423 0 0 0 0 0 2 0 0 0 2 0 3 0 0 2 3 0 6 2 3 6 3 6 6

2143 0 0 0 0 0 0 0 0 0 3 4 0 3 3 6 4 6 3 6 9 6 9

2314 0 0 0 0 0 0 0 2 0 0 2 3 0 2 0 3 2 6 0 3 6 3 6 6

3124 0 0 0 0 0 0 0 0 2 0 0 0 2 2 6 0 2 2 6 6 2 6 6 6

1432 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 6 0 6 2 0 12 6 6 12

2341 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 6 0 0 0 6 6 0 6

2413 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 12 0 3 12 3 12 12

3142 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 6 4 6 0 6 12 6 12

3214 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 6 0 6 6 6 12 12

4123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 6 0 6 6 6

2431 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 12 6 0 12

3241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 12 0 12

3412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 12 0 12 12

4132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 12 6 12

4213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 12 12

3421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 12

4231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 12

4312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12

4321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

In [19], Lascoux and Schtitzenberger show that all the vanishing properties
for the double Schubert polynomials follow from two facts. First, the double
Schubert polynomials satisfy the divided difference equations, and second, the
double Schubert polynomial indexed by the longest element of the symmetric
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group vanishes on all other permutations and evaluates to the product of the
positive roots on itself. Theorem 1 generalizes this statement for the other semi-
simple Lie groups.

Remark 2. The Kostant polynomials for the other classical groups are
related to the double Schubert polynomials as defined by Fulton [9] and also
those defined by Pragacz and Ratajski [21]. In both cases, Graham [10] has
shown that the vanishing properties for the double Schubert polynomials,
indexed by the longest element in the Weyl group, follow from their geometric
construction. The vanishing properties for the other classes then follow from
Theorem 1. The vanishing properties for Fulton’s top double Schubert poly-
nomial have also been shown independently by Shimozono and myself, using
only theory of symmetric functions.

Fulton has shown that certain specializations of double Schubert polynomials
determine the degree of a degeneracy locus. Is it possible to show that the orbit
values in Theorem 3 always determine the degree of some variety? This would
give geometric meaning to these nonnegative integers.

Remark 3. It is well known that the structure constants for G/B are non-
negative integers. We have observed in our calculations that in fact all of the
coefficients puwo(o) are nonnegative integers. Can one give formulas analogous to
(4.4) for these coefficients that would prove they are nonnegative? Is there a geo-
metrical meaning to the coefficients that would prove nonnegativity?

Remark 4. Carrell [4] has shown that H*(G/B) is isomorphic to the graded
ring canonically associated to the polynomial ring of the variety given by the set
of points OW. Furthermore, the cohomology for a Schubert variety H*(Xw) is
isomorphic to the graded ring associated to the polynomial ring of the variety
given by the set of points (Ou’w < w-I} (see [4]). Therefore, the w-functions
can be used to compute the cup product in any H*(Xw) in a similar way to that
described in Section 6.

APPENDIX

Here we outline the proof by Kumar that extends Theorem 4 to any Kac-
Moody Lie algebra. The critical difference in his proof is to start the induction
from the identity element and give a recursive formula for building up the orbit
values from there.

LEMMA A.1. Let W be the Weyl group for an arbitrary Kac-Moody Lie alge-
bra. Let v and w be any two elements of W. Then we have

(A.1) (w)
(wtri), v < vtri.

Proof. Proposition 5.1(ii) implies (w) (wtri) if v < wri. Using this fact,
the proof follows by rearranging terms (5.2).
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TI-mOREM 5. Let W be the Weyl group of an arbitrary Kac-Moody Lie alge-
bra. Using the notation from Lemma A.1, we have

(A.2) CV(w) ((v, w),

where ((v, w) is the polynomial defined in (4.5).

Proof. If w is the identity element in W, there is nothing to prove. Otherwise,
pick a reflection tri such that w > wai. First assume v > wri, then by Lemma A.1

(A.3)  O(w)

By (upward) induction on the length of w, we have the validity of the theorem
for V(wai) and v’(wtri). From (A.3) and (4.9), it is easy to see that we get the
validity of the theorem for O(w).
So consider the case v < vtr (still assuming wtr < w). In this case, Lemma A.1

implies

(A.4) (w) (wai).

Again by induction the theorem is true for O(wtri), and hence we get the validity
of the theorem for v(w).
Observe that we have implicitly used Lemma 4.1 in the proof above since we

use the fact that one can choose a reduced word for w that ends in i.
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