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“Fingerprint, in the anatomical sense, is
a mark made by the pattern of ridges on
the pad of a human finger. The term has
been extended by metaphor to anything
that can uniquely distinguish a person or
object from another” [26].

S
uppose thatM is a mathematician and that
M has just proved theorem T . How isM to
know if her result is truly new, or if T (or
perhaps some equivalent reformulation
of T ) already exists in the literature? In

general, answering this question is a nontrivial
feat, and mistakes sometimes occur.

Certain mathematical results have canonical
representations, or fingerprints, and some families
of fingerprints have been collected into searchable
databases. If T is such a theorem, then M ’s
search will be greatly simplified. Note that the
searchable nature of a database is important here.
An analogue of “alphabetical order” does not exist
for all structures, and so it is important that M
be able to query the fingerprint of T instead of
needing to browse through all existing catalogued
results.
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A revolutionary mathematical tool appeared
online in 1996—Neil Sloane’s collection of integer
sequences, along with mathematical interpreta-
tions of the numbers, formulas for generating
them, computer code, references, and relevant
links. This was the On-Line Encyclopedia of Integer
Sequences (OEIS) [22], originally hosted on Sloane’s
website at AT&T Labs. Anyone with access to the
Internet could peruse the database, and anyone
could submit a sequence or supplemental data
to the database. All for free. Thanks to Sloane’s
tireless efforts and a worldwide community of
contributors, the collection has grown to well over
200,000 sequences to date, drawing results from
all areas of mathematics. The sequences in the OEIS
act as fingerprints for their associated entries, the
majority of which encode mathematical statements.
While the fingerprints in the OEIS have a specific
input structure, the sequences can arise in many
contexts, including arrays of data, coefficients
of polynomials, enumeration problems, subway
stops, and so on. The OEIS itself is the database
for these fingerprints. The impact on research is
clearly established by over 3,000 articles to date
citing the OEIS [23].

Fingerprinting has made an impact in many
scientific fields. For example, fingerprinting docu-
ments is crucial in computer science for reducing
duplication in Web search results, isotopic finger-
prints are used in fields ranging from chemistry to
archaeology, and there is of course extensive use
of fingerprinting in forensic science.

There are other families of mathematical results
that have their own identifying fingerprints, not
in the form of integer sequences. Searchable cata-
logues are already in use for some of these families,
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while no such directories yet exist for others. The
aim of this article is to give these resources greater
exposure and also to encourage the community
to create and support new fingerprint databases
for other mathematical structures. Note that what
we propose is not simply enhanced digital mathe-
matical resources. Rather, a fingerprint database
of theorems should be a searchable, collaborative
database of citable mathematical results indexed
by small, language-independent, and canonical
data.

Every day new tools for searching the scientific
literature are established. To be clear, this article
will be out of date the moment it is published.
In fact, active research at the intersection of
mathematics, computer science, and linguistics
is devoted to organizing mathematics into more
searchable formats, including the Mathematical
Knowledge Management and Intelligent Computer
Mathematics conferences. An example outside
of mathematics is biomedical natural language
processing, known as BioNLP [11]. We expect
that, one day, natural language processing will
be applicable to theorems and will significantly
facilitate M ’s search through the literature. The
question is, what can we do until then?

Rod Brooks and his group at MIT used the
phrase

“fast, cheap, and out of control”

to describe an emphasis on building small, cheap,
and redundant robots instead of overly complex
single machines [6]. We suggest that a similar
approach to fingerprinting theorems can make a
big impact in the near future, while more finessed
tools are being developed in the background. It
is better to start a theorem collection now—with
an imperfect but efficient fingerprint—than to
waste time awaiting an epiphany about the perfect
mechanism for encoding this data.

In a sense, we are proposing a new line of
research for mathematicians to address: what are
the fingerprintable theorems within each discipline
of mathematics, and what might those fingerprints
look like?

Known Results Can Be Hard to Find
Theorems are usually written in human-readable
language. They employ specialized vocabulary,
functions, and layers of hypotheses and implica-
tions. A theorem in one branch of mathematics
can resurface in another context, and the two
statements may bear little superficial resemblance
to each other. Search engines can help uncover
a result if it is accessible online and there is a
name associated with it, such as for a solution
to a famous conjecture, in which case the name,
or names, would be the fingerprint. For example,

one can easily ask a search engine for information
about Fermat’s Last Theorem, which would lead M
to discover that her result T was already proved
by Wiles [28].

Formulas are prevalent in mathematical research
but are inherently difficult to query. For example,
M would have to make decisions about notation,
variable names, and formatting. Moreover, even
if search engines did have a good mechanism
for querying formulas, it might not be especially
useful—a given formula can often be stated in a
variety of ways. For example, the following basic
trigonometric identities are equivalent:

sin2θ + cos2 θ = 1,

2 tan2 θ + 2 = 2 sec2 θ,

and

3+ 3 cot2 θ = 3 csc2 θ.

If our mathematician M has discovered a new
statement of an existing formula, a search engine
might have difficulty detecting that her result is
equivalent to the known one.

There have been many ideas put forth for
improving the search tools for formulas in the
literature. In fact, search tools themselves can
contribute to mathematical results. Notably, Gödel
invented a numerical encoding of formulas as a
step toward proving his famous Incompleteness
Theorem [12]. However, the procedure is not
unique and it is certainly not efficient. For example,
the Gödel number of the formula “0 = 0” is
26 × 35 × 56 =243,000,000. More recently, Borwein
and Macklem addressed the question of how best to
add hyperlinks to electronically available textbooks
[4].

Of course, M ’s search through existing litera-
ture for any hint of her theorem T would have
been much harder prior to the Internet. There are
examples throughout mathematical history of the-
orems having been discovered, and subsequently
rediscovered independently—sometimes over and
over again. For example, the characterization of
higher-dimensional regular polytopes, attributed
to Schläfli, had been recovered at least nine other
times by the end of the nineteenth century [9].

Benefits of a Good Fingerprint Database
We wish to proselytize for the accumulation of
theorem fingerprints into databases. We urge the
reader to become a collector—a connoisseur, even!

First, though, we must explain how the OEIS
encodes theorems—after all, its primary purpose is
to collect and catalogue integer sequences. In fact,
the theorems can be found within the architecture
of this database—namely, by the inclusion of
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other fields associated with each sequence such as
“name”, “comments”, “formula”, and so on.

If our mathematician M is going to make use
of the OEIS, it is because she has encountered a
sequence of integer data within her work. Then
M runs a query against the OEIS, using her data.
Even a relatively small subsequence—perhaps just
two numbers—can sometimes determine a unique
entry in the OEIS. The responses from M ’s search
enable her to connect her data to known literature,
to find formulas, to make conjectures, and so on.

For example, if M enters 0,1,1,2,3,5,8,13,21
into the OEIS, the first option it returns is sequence
A000045, the Fibonacci numbers. Two of the
comments for this entry are

• F(n + 2) = number of subsets of {1,2,
. . . , n} that contain no consecutive integers,
and

• F(n + 1) = number of tilings of a 2 × n
rectangle by 2× 1 dominoes.

Thus this entry encodes a variety of results,
including the following.

Theorem ([22, A000045]). The subsets of
{1,2, . . . , n} containing no consecutive in-
tegers are in bijection with the tilings of a
2× (n+1) rectangle by 2×1 dominoes, and
these are each enumerated by the (n+2)nd
Fibonacci number.

In this way, each entry in the OEIS chronicles a
mathematical theorem, and the integer sequence
associated with the entry is that theorem’s finger-
print. The OEIS is arguably the most established
fingerprint database for theorems to date.

Other Fingerprint Databases
Depending on the structure of theorem T , the OEIS
is not the only tool of its kind available to the
curiousM . We will describe some of the fingerprint
databases for theorems that already exist in this
section. These databases augment the classical
approach to finding theorems in the literature,
including books, journals, MathSciNet, the arXiv,
and the World Digital Mathematics Library.

Permutation Patterns

The Database of Permutation Pattern Avoidance
(DPPA) [24] contains collections of permutations—
thought of as patterns—whose avoidance exactly
characterizes particular phenomena. The second
author started this database in 2005, and it has
grown to more than forty sets of patterns so
far. In addition to the patterns themselves, each
entry in the DPPA includes the phenomenon
(or phenomena) being characterized, references
to existing literature, and a link to the OEIS
whenever possible. The DPPA is searchable both
by permutation (pattern) and by keyword.

For example, if theoremT involves permutations
avoiding the two patterns 3412 and 4231, then the
DPPA would have directed M to entry P0005, for
the set {3412,4231}. The two descriptions for this
entry are

• permutations with rank symmetric order
ideals in the Bruhat order and

• permutations indexing smooth Schubert
varieties,

as described in [7], [17].
Each entry of the DPPA represents a character-

ization theorem. The theorem for the entry just
described would be as follows.

Theorem ([24, P0005]). The permutations
with rank symmetric order ideals in the
Bruhat order are exactly those that index
smooth Schubert varieties, and they are
precisely the permutations that avoid the
patterns 3412 and 4231.

The fingerprint for each DPPA theorem is its
associated set of patterns, and the DPPA itself is
the database for these fingerprints.

FindStat

FindStat [3] is a database of statistics on combina-
torial objects. It was created in 2011 by Berg and
Stump and currently catalogues over one hundred
statistics. If M has obtained some data about one
of these objects, then she could enter her data into
FindStat, and it would tell her if this particular
statistic is included in the database. If so, FindStat
would identify the standard vocabulary used for
that statistic. This would equip M with searchable
terminology, allowing her to discover any relevant
existing literature.

Hypergeometric Series

Every hypergeometric series can be written in
a canonical form, and this form serves as the
fingerprint for these objects. It has long been
common to store identities for these series in
tables, listed in a given order by these canonical
forms. For example, Bailey published such a
collection in 1935 [2]. Perhaps this book is the
original fingerprint database for theorems.

The modern approach has taken research in
hypergeometric identities one step further. The
WZ method for finding identities involving hyper-
geometric series has been described in the book
A = B by Petkovšek, Wilf, and Zeilberger [19]. Using
these algorithms, one can determine definitively
if a hypergeometric series has a closed form or
not. If there is a closed form, then the WZ method
will produce it, given enough computational time
and memory. Furthermore, this procedure will
give a proof certificate that can be used to check
the identity. Many new identities and new proofs
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of known identities have been found using the
WZ method, for example [10]. What this resource
currently lacks is a way to connect results to
existing literature, pointing our mathematician M
to what is already known about each identity.

The National Institute of Standards and Tech-
nology’s (NIST) Digital Library of Mathematical
Functions (DLMF) also includes many hypergeo-
metric identities indexed by canonical form and
some references. We should point out, however,
that neither the WZ method nor the DLMF form
a fingerprint database for theorems themselves
in their current form. Perhaps there could be a
collaborative effort to catalogue all known hyper-
geometric identities with extensive references and
entries searchable by their canonical forms. If so,
all new identities found by the WZ method could
include their proof certificate as a comment. This
could provide a useful place to “publish” proof
certificates.

Constructing a Fingerprint Database Is Not
Always Easy
An important asset of the OEIS, the DPPA, FindStat,
and the WZ method is that the fingerprints they
use are language independent. More precisely, their
input is entirely numerical and canonical—free
from specialized vocabulary. This seems to be a
necessary feature of a good fingerprint database
for theorems.

Another desirable feature of a productive finger-
print database is that it should reference existing
literature whenever possible. Cross-references
within a single database and between different
databases can only enhance the state of knowledge.
Features like computer code and external links can
be highly beneficial when relevant. For example,
any integer sequence associated with a theorem in
a new fingerprint database should reference the
relevant OEIS entry.

Because mathematics is so broad and develops
so quickly, a fingerprint database for theorems
should be collaborative—publicly available and
welcoming additions from anyone, subject to
editorial standards. The Wikipedia model for an
open database is a highly successful model of
this idea. However, one does not need to learn
MediaWiki before starting a collection of theorem
fingerprints; rather, one could simply ask for new
database entries to be submitted in some kind of
standard format which can easily be added to the
database.

Finally, it is most convenient for the fingerprint
to be encoded in a small amount of data. There
is a natural conflict between keeping fingerprints
small and uniquely identifying each object in the
database. Certainly some compromises to one or
both of these might be necessary. An efficient

fingerprint encryption may be permitted to return
some false positives, but it should never return
a false negative. The possibility of false positives
is all the more reason for additional fields within
the database entries, to distinguish the true from
the false positives. For example, querying the first
nine Fibonacci numbers will return many false
positives in the OEIS, but M can weed through
them by reading through their full records.

There are certainly some challenges to creating
a fingerprint database for theorems. These include
identifying the right data structure as the finger-
print, determining a canonical format, addressing
structures that have no obvious numerical data,
and compactly encoding a given fingerprint. We
hope these obstacles will not be too daunting,
though, because an imperfect resource is still
better than no resource at all. Two examples are
given below.

Example: Fingerprinting Graphs

Theorems about finite graphs deserve a fingerprint
database. There exist numerous classification
theorems in graph theory that equate graph
containment with important properties. One of the
monumental results of the twentieth century is the
Graph Minor Theorem by Robertson and Seymour
[21]:

Any family F of graphs that is closed under
taking minors can be characterized as the
set of all graphs whose minors avoid a finite
list L(F).

This result certainly suggests that graphs can
fingerprint theorems. The Wagner formulation
of Kuratowski’s Theorem is an example of this
situation [16], [25]:

A simple graph G is planar if and only if
G has no minor isomorphic to the graphs
known as K3,3 and K5.

Graphs arise as classification tools in many fields
of mathematics, including Hales’s proof of Kepler’s
Conjecture [14] and the classification of finite
Coxeter groups [15, Chapter 2 and Section 6.4].

One could enumerate the results of a graph
theorem, say, by counting the graphs of each
size possessing a certain property. The resulting
sequence could be an entry in the OEIS. However,
a graph theorem database would still be relevant
because it could track more specific graph proper-
ties through further refinement and cataloguing.
Moreover, and perhaps more persuasively, count-
ing graphs is not an easy computational problem,
so this partial enumerative fingerprint would not
uniquely identify the appropriate entry in the OEIS.
For example, the linklessly embeddable graphs in
Euclidean space are characterized by avoiding the
Petersen family of graphs, which include seven
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graphs having between six and ten vertices each.
It is computationally infeasible to compute the
number of linklessly embeddable graphs on six,
seven, eight, nine, and ten vertices, which would be
the first few times at which this sequence differs
from the sequence enumerating all graphs.

There currently exist many online resources
for graph data, such as House of Graphs [5] and
the tools listed at [27]. However, none of these
resources is a database of theorems (at present). It
is inherently difficult to fingerprint graph theorems
using searchable, canonical, and concise numerical
data. In particular, there is not an obvious choice
for the best way to fingerprint a graph.

The adjacency matrix of a graph describes the
graph uniquely in numerical data. Often in graph
theory, a classification theorem depends only on
isomorphism classes. This could pose a problem if
the fingerprint of a graph is its adjacency matrix,
because isomorphic graphs can have different
adjacency matrices. For example, the graph with
two adjacent vertices and one isolated vertex could
be represented by any of0 1 0

1 0 0
0 0 0

 ,
0 0 1

0 0 0
1 0 0

 , and

0 0 0
0 0 1
0 1 0

 .
We can, of course, handle this difficulty by choosing
a canonical representative in each isomorphism
class, such as the adjacency matrix whose row
reading word is smallest in lexicographic order.
However, finding such a canonical adjacency matrix
is no easy task: there is no known polynomial
time algorithm for testing graph isomorphism. In
fact, it is an open question whether the graph
isomorphism problem is NP-complete.

Degree sequences are an attractive choice for
fingerprints because they are much easier to encode
than adjacency matrices. If one were to fingerprint
graph families by lists of degree sequences written
in lexicographic order, then K3,3 and K5 would be
encoded as the list [[3,3,3,3,3,3], [4,4,4,4,4]].
Querying this list in a database of graph theorems,
the mathematician M would learn that these two
graphs are related to planar graphs via Kuratowski’s
Theorem.

On the other hand, a degree sequence does not
determine a unique graph. For example, both

and

have degree sequence [2,2,2,1,1].
Theorems about specific graphs or families

of graphs may be rare enough that the compro-
mises one makes when fingerprinting by degree
sequences might not result in too many false
positives. Indeed, as we have said before, it is
better to have a collection of theorems with an
imperfect fingerprint than to have no collection at
all!

Example: Finite Groups

The finite simple groups have been completely clas-
sified [29]. These groups fall into six families, and
the title for each group is given by a combination
of letters and numbers. For example, one group
is denoted 3D4(q3). These groups, and various
details about them, are collected in the ATLAS
of Finite Group Representations [1]. To date, this
resource includes more than 5,000 representations
of more than 700 groups.

The current implementation of the ATLAS does
not allow users to search the database by numerical
invariants of the groups; thus it is not a fingerprint
database as we have defined it. To find the details
of a group, one must know its title or something
about where it fits into the classification.

To make the ATLAS into a fingerprint database,
one would have to add a feature where groups
could be detected by some numerical invariant(s).
For example, an additional search box could be
added to the main webpage to access the database
by entering the order of a group. Then the order
would act as the fingerprint. There are groups of
the same order already in the database, but perhaps
the number of coincidences is small enough that a
user could prune the results via the many other
entries available. Additional invariants might also
be used to refine the search.

What Should Happen Next
We believe that many families of theorems can
be fingerprinted—some identified by obvious data
structures, others perhaps by less obvious struc-
tures. We encourage everyone in the mathematical
community to look at their own work for results
that can be identified by some form of compact
data. In fact, any structure that has a canonical
parameterization merits this attention. Addition-
ally, a long-term benefit of having these databases
is that structures amenable to fingerprinting may
also be amenable to computer proof verification
systems and learning algorithms, as with the Four
Color Theorem [13], [20] and permutation patterns
[18].

Clever insight, beyond what is currently common
practice, might be necessary to find an appropriate
fingerprint. In fact, the need to find theorem
fingerprints can drive future research.

Many disciplines of mathematics would benefit
from the greater context of a theorem database.
The accessibility of mathematical research in the
last few decades has flourished. In the past few
years alone, we have seen substantial growth as
measured in mathematics articles posted on the
arXiv, increasing from 4,654 articles in 2002 to
24,176 articles in 2012 [8]. With this level of
productivity, fingerprint databases are even more
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valuable. These resources—both the ones that
currently exist and those that we hope the readers
will create—enhance experimental mathematics,
help researchers make unexpected connections
between areas of mathematics, and even improve
the refereeing process. We encourage everyone to
follow Neil Sloane’s lead and to take up such a
collection.

Hats off to Neil!
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