
Transformation Groups, Vol. 8, No. 4, 2003, pp. 321–332 c©Birkhäuser Boston (2003)
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Abstract. Kazhdan–Lusztig polynomials Px,w(q) play an important role in the study of
Schubert varieties as well as the representation theory of semisimple Lie algebras. We give
a lower bound for the values Px,w(1) in terms of “patterns”. A pattern for an element of
a Weyl group is its image under a combinatorially defined map to a subgroup generated by
reflections. This generalizes the classical definition of patterns in symmetric groups. This map
corresponds geometrically to restriction to the fixed point set of an action of a one-dimensional
torus on the flag variety of a semisimple group G. Our lower bound comes from applying a
decomposition theorem for “hyperbolic localization” [Br] to this torus action. This gives a
geometric explanation for the appearance of pattern avoidance in the study of singularities of
Schubert varieties.

1. Introduction

Many recent results on the singularities of Schubert varieties Xw in the variety Fn of
flags in Cn are expressed by the existence of certain patterns in the indexing permutation
w ∈ Sn. For example, Lakshmibai and Sandhya [LS] proved that Xw is singular if
and only if w contains either of the patterns 4231 or 3412 (see also [R] and [W]). A
permutation w ∈ Sn is said to contain the pattern w̃ ∈ Sk for k < n if the permutation
matrix of w has the permutation matrix of w̃ as a submatrix.

This implies that if w̃ ∈ Sk is any pattern for w and Xw̃ ⊂ Fk is singular, then
Xw is singular as well. In this paper, we give a general geometric explanation of this
phenomenon which works for the flag variety F and Weyl group W of any semisimple
algebraic group G.

Our result concerns the Kazhdan–Lusztig polynomials Px,w(q) ∈ Z≥0[q], x,w ∈ W .
Although defined purely combinatorially, they carry important information about repre-
sentation theory of Hecke algebras and Lie algebras (see [KL1, BB, BryK, BGS] among
many others), as well as geometric information about the singularities of Schubert va-
rieties Xw in F .

More precisely, Px,w(q) is the Poincaré polynomial (in q1/2) of the local intersection
cohomology of Xw at a generic point of Xx, and P1,w(1) = 1 if and only if Xw is
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rationally smooth [KL2]. If G is of type A, D or E, then Xw is singular if and only if
P1,w(1) > 1 (Deodhar [De] proved this for type A, while Peterson (unpublished) proved
it for all simply laced groups. See [CK]).

Our main result (Theorem 4) is a lower bound for Px,w(1) in terms of Kazhdan–
Lusztig polynomials of patterns appearing in x and other elements of W determined by
x and w. Here a pattern of an element of W is its image under a function φ : W →W ′,
which we define for any finite Coxeter group and any (not necessarily standard) parabolic
subgroup W ′ ⊂ W . It agrees with the standard definition of patterns in type A, but is
more general than the one using signed permutations used in [Bi] for types B and D.

One consequence of our result is the following:

Theorem 1. For any parabolic W ′ ⊂W , we have P1,w(1) ≥ P1,φ(w)(1).

In particular, this gives another proof that Xw̃ singular implies Xw singular in type A.
See also the remark after Theorem 10.

The definition of the pattern map φ is combinatorial, but it is motivated by the
geometry of the action of the torus T on F , and the proof of Theorem 4 is entirely
geometrical. For W ′ ⊂W parabolic, there is a cocharacter ρ : C∗ → T whose fixed point
set in F is a disjoint union of copies of the flag variety F ′ of a group G′ with Weyl group
W ′. The action of ρ gives rise to a “hyperbolic localization” functor which takes sheaves
on F to sheaves on F ′. Theorem 4 then follows from a “decomposition theorem” for
this functor, proved in [Br], together with the fact that hyperbolic localization preserves
local Euler characteristics.

If the action is totally attracting or repelling near a fixed point, hyperbolic localiza-
tion is just ordinary restriction or its Verdier dual. This gives stronger coefficient-by-
coefficient inequalities in some special cases (see Theorem 5). The attracting/repelling
case of [Br] has been known for some time; it was used in [BrM] to prove a conjecture
of Kalai on toric g-numbers of rational convex polytopes.

Matthew Dyer has recently given us a preprint [Dy] containing an inequality equiva-
lent to Theorem 4, which he proves using his theory of abstract highest weight categories.
It seems likely that his approach is dual to ours under some version of Koszul duality
[BGS].

This work was originally motivated by the following question asked by Francesco
Brenti: How can we describe the Weyl group elements w such that Pid,w(1) = 2? In
type A, we can show that if Pid,w(1) = 2, then the singular locus of the Schubert variety
Xw has only one irreducible component and w must avoid the patterns:

(526413) (546213) (463152)
(465132) (632541) (653421)

We conjecture the converse holds as well.
We outline the sections of this paper. In §2.1, we discuss pattern avoidance on

permutations and some applications from the literature. In §2.2 we describe the pattern
map for arbitrary finite Coxeter groups. §2.3 explains why the two notions agree for
permutations. The main result of §2.2 is proved in §2.4. In §3 we state our main theorem.
In §3.1 we highlight two particularly interesting special cases, including Theorem 1. Our
geometric arguments are in §4.
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2. Pattern avoidance

2.1. Classical pattern avoidance
We can write an element w of the permutation group Sn on n letters in a one-line
notation as w = w1w2 · · ·wn, i.e., w maps i to wi. We say a permutation w contains a
pattern v ∈ Sk if there exists a subsequence wi1wi2 · · ·wik

, with the same relative order
as v = v1 · · · vk. If no such subsequence exists we say w avoids the pattern v.

More formally, let a1 · · ·ak be any list of distinct positive integers. Define the flatten-
ing function fl(a1 · · · ak) to be the unique permutation v ∈ Sk such that vi > vj ⇐⇒
ai > aj . Then it is equivalent to say that w avoids v if no fl(wi1wi2 · · ·wik

) = v. For ex-
ample, w = 4536172 contains the pattern 3412, since fl(w1w4w5w7) = fl(4612) = 3412,
but it avoids 4321.

Several properties of permutations have been characterized by pattern avoidance and
containment. For example, as mentioned in the introduction, for the Schubert variety
Xw we have Schubert variety Xw is nonsingular if and only if P1,w = 1 if and only if
w avoids 3412 and 4231 [LS, C, De, KL2]. The element C′

w of the Kazhdan–Lusztig
basis of the Hecke algebra of W equals the product C′

sa1
C′

sa2
· · ·C′

sap
for any reduced

expression w = sa1sa2 · · · sap if and only if w is 321-hexagon-avoiding, [BiW1]. Here 321-
hexagon-avoiding means w avoids the five patterns 321, 56781234, 46781235, 56718234,
46718235.

The notion of pattern avoidance easily generalizes to the Weyl groups of types B,C,D
since elements can be represented in one-line notation as permutations with ± signs
on the entries. Once again, the properties P1,w = 1 and C′

w = C′
sa1
C′

sa2
· · ·C′

sap
can

be characterized by pattern avoidance [Bi, ?], though the list of patterns can be rather
long. More examples of pattern avoidance appear in [LasSc, St, BiP, BiW2, Ma, KLR,
Co, Co2].

2.2. Patterns in Coxeter groups
In this section, we generalize the flattening function for permutations to an arbitrary
finite Coxeter group W .

Let S be the set of simple reflections generating W . The set R of all reflections
is R =

⋃
w∈W wSw−1. Given w ∈ W , its length l(w) is the length of the shortest

expression for w in terms of elements of S. The Bruhat–Chevalley order is the partial
order ≤ on W generated by the relation

x < y if l(x) < l(y) and xy−1 ∈ R.

Each subset I ⊂ S generates a subgroup WI ; a subgroup W ′ ⊂W which is conjugate
to WI for some I is called a parabolic subgroup. The WI ’s themselves are known as
standard parabolic subgroups.

A parabolic subgroup W ′ = xWIx
−1 of W is again a Coxeter group, with simple

reflections S′ = xIx−1 and reflections R′ = R ∩W ′. Note that S′ 
⊂ S unless W ′ is
standard.

We denote the length function and the Bruhat–Chevalley order for (W ′, S′) by l′ and
≤′, respectively. If W ′ = WI , then

l′ = l|W ′ and ≤′ = ≤|W ′×W ′ ,
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but in general we only have l′(w) ≤ l(w) and x ≤′ y =⇒ x ≤ y. For instance, if
W ′ ⊂ S4 is generated by the reflections r23 = 1324 and r14 = 4231, then r23 ≤ r14
although they are not comparable for ≤′.

The following theorem/definition generalizes the flattening function for permutations.

Theorem 2. Let W ′ ⊂W be a parabolic subgroup. There is a unique function φ : W →
W ′, the pattern map for W ′, satisfying the following:

(a) φ is W ′-equivariant: φ(wx) = wφ(x) for all w ∈W ′, x ∈W ,
(b) If φ(x) ≤′ φ(wx) for some w ∈W ′, then x ≤ wx.

In particular, φ restricts to the identity map on W ′.

If W ′ = WI is a standard parabolic, then (b) can be strengthened to “if and only if”.
In this case the result is well known.

To show uniqueness, note that (a) implies that φ is determined by the set φ−1(1),
and (b) implies that φ−1(1) ∩W ′x is the unique minimal element in W ′x. Existence is
more subtle; it is not immediately obvious that the function so defined satisfies (b). We
give a construction of a function φ that satisfies (a) and (b) in Section 2.4.

2.3. Relation with classical patterns

Take integers 1 ≤ a1 < · · · < ak ≤ n, and let Σ = {a1, a2, . . . , ak}. Define a generalized
flattening function flΣ : Sn → Sk by flΣ(w) = fl(wi1wi2 . . . wik

), where wij ∈ Σ for all
1 ≤ j ≤ k and 1 ≤ i1 < i2 < . . . < ik ≤ n.

Let W ′ ⊂ Sn be the subgroup generated by the transpositions rai,aj for all i < j.
It is parabolic; conjugating by any permutation z with zi = ai for 1 ≤ i ≤ k gives an
isomorphism ι : Sk →W ′, where Sk ⊂ Sn consists of permutations fixing the elements
k + 1, . . . , n.

The function ι ◦ flΣ satisfies the properties of Theorem 2, and so ι ◦ flΣ(w) = φ(w).
Property (a) follows since left multiplication by a permutation w ∈W ′ acts only on the
values in the set {a1, a2, . . . , ak}. To prove (b), note that if vi = wi for two permutations
v, w ∈ Sn, then v ≤ w if and only if fl(v̂) ≤ fl(ŵ) where v̂, ŵ are the sequences obtained
by removing the ith entry from each. This implies that ι ◦ flΣ(x) ≤′ ι ◦ flΣ(wx) if and
only if x ≤ wx.

For example, take Σ = {1, 4, 6, 7}; the associated subgroup W ′ ⊂ S7 is generated by
{r14, r46, r67}. If x = 6213475 then y = 1243675 is the unique minimal element in W ′x
and x = r46r14y, so φ(x) = r46r14. This agrees with the classical flattening using the
isomorphism W ′ ∼= S4 given by r14 → s1, r46 → s2, r67 → s3: in fact,

fl{1,4,6,7}(6213475) = fl(6147) = 3124 = s2s1.

To obtain the most general parabolic subgroup of Sn, let Σ1, . . . ,Σl be disjoint
subsets of 1 . . . n. To each Σj is associated a parabolic subgroup W ′

j as before, and then

W ′ = W ′
1W

′
2 . . .W

′
l
∼= S|Σ1| × · · · × S|Σl|

is a parabolic subgroup. The corresponding flattening function is

w → (flΣ1(w), . . . ,flΣl
(w)).
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In types B and D, the flattening function of [Bi] given in terms of signed permutations
can also be viewed as an instance of our pattern map. The group W ′ of signed permu-
tations which fix every element except possibly the ±ai, 1 ≤ i ≤ k is parabolic. Multi-
plication on the left by w ∈ W ′ acts only on the values in the set {±a1,±a2, . . . ,±ak}
and if vi = wi for two signed permutations v, w, then v ≤ w if and only if fl(v̂) ≤ fl(ŵ)
where v̂, ŵ are the sequences obtained by removing the ith entry from each. It follows
that v → fl(v̂) satisfies the conditions of Theorem 2

There are other types of parabolic subgroups in types B and D which give rise to
other pattern maps. For instance, the group W ′ of all unsigned permutations is a
parabolic subgroup of either Bn or Dn. In this case the pattern map “flattens” the signed
permutation to an unsigned one (e.g.,−4, 2, 1,−3 → 1432). Other cases of pattern maps
for classical groups are more difficult to describe combinatorially.

The first author and Postnikov [BiP] have used these more general pattern maps to
reduce significantly the number of patterns needed to recognize smoothness and rational
smoothness of Schubert varieties. They reduce the list even further by generalizing
pattern maps to the case of “root system embeddings” which do not necessarily preserve
the inner products of the roots; for instance, there is a root system embedding of A3

into B3. We do not know of a geometric interpretation of these more general pattern
maps.

2.4. Spanning subgroups and the reflection representation

To prove Theorem 2 we use the action of W on its root system. See [H, Section 1] for
proofs of the following facts.

We have the following data: a representation of W on a finite-dimensional real vector
space V , a W -invariant subset Φ ⊂ V (the roots), a subset Π ⊂ Φ (the positive roots),
and a bijection r → αr between R and Π.

These data satisfy the following properties: Φ is the disjoint union of Π and −Π.
The vectors {αs}s∈S form a basis for V ; a root α ∈ Φ is positive if and only if it can
be expressed in this basis with nonnegative coefficients. For any r ∈ R and w ∈ W , we
have

rw > w ⇐⇒ αr ∈ wΠ. (1)

Given a linear function H : V → R, define

ΠH = {α ∈ Φ | H(α) > 0}.

Call H generic if Φ∩kerH = ∅. If we take H1(αs) = 1 for all s ∈ S, then H1 is generic
and Π = ΠH1 . If we put Hw = H1 ◦ w−1, then ΠHw = wΠ. Conversely, if H is generic,
then ΠH = wΠ for a unique w ∈ W .

Proposition 3. Let W ′ ⊂ W be a subgroup generated by reflections. Then W ′ is
parabolic if and only if there is a subspace V ′ ⊂ V so that the subgroup W ′ is generated
by R′ = {r ∈ R | αr ∈ V ′}. If so, then V ′ is W ′-stable, and putting Φ′ = Φ ∩ V ′,
Π′ = Π ∩ V ′, and α′

r = αr for r ∈ R′ gives the reflection representation of W ′.

Proof. See [H, §1.12]. �
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Remark. In type A, all subgroups generated by reflections are parabolic. In other types
this is no longer the case – for instance, the subgroup W ′ ∼= (Z2)n of Bn generated by
reflections in the roots {±ej} is not parabolic for any n ≥ 2, since these roots span V .

We now prove the existence of the function φ from Theorem 2. Let V ′ ⊂ V be as
in Proposition 3. Given w ∈ W , we have wΠ = ΠHw , and so wΠ ∩ V ′ = Π′

H′ , where
Π′ = Π ∩ V and H ′ = Hw|V ′ . It follows that there is a unique φ(w) ∈ W ′ so that

φ(w)Π′ = wΠ ∩ V ′.

We show that the function φ defined this way satisfies (a) and (b) from Theorem 2.
Any w ∈ W ′ fixes V ′, so if x ∈ W , then

φ(wx)Π′ = (wxΠ) ∩ V ′ = w(xΠ ∩ V ′) = wφ(x)Π′,

giving (a).
To prove (b), it will be enough to show that φ(x) ≤′ φ(rx) implies x ≤ rx for any

x ∈ W , r ∈ R′, since these relations generate the Bruhat–Chevalley orders on W and
W ′. We have

φ(x) <′ φ(rx) = rφ(x) ⇐⇒ αr ∈ φ(x)Π′ = xΠ ∩ V ′

=⇒ αr ∈ xΠ
=⇒ x < rx.

3. The main result

Suppose now that W is the Weyl group of a semisimple complex algebraic group G.
Let W ′ ⊂W be parabolic, and let φ : W →W ′ be the pattern map of Theorem 2. For
any x ∈W , define a partial order on W ′x by “pulling back” the Bruhat order from W ′:
if w,w′ ∈ W ′, say wx ≤x w

′x if and only if φ(wx) ≤′ φ(w′x). By Theorem 2, this is
weaker than the Bruhat order on W ′x.

Our main result is the following.

Theorem 4. If x,w ∈ W , then

Px,w(1) ≥ ∑
y∈M(x,w;W ′) Py,w(1)P ′

φ(x),φ(y)(1),

where M(x,w;W ′) is the set of maximal elements with respect to ≤x in [1, w] ∩W ′x,
and P ′ denotes the Kazhdan–Lusztig polynomial for the Coxeter system (W ′, S′).

Conjecturally this should hold for any finite Coxeter group W . There is a stronger
formulation when W ′ is a standard parabolic subgroup of W ; see the next section.

Example. Take W = S4, w = 4231, x = 2143. Let W ′ ∼= S2 × S2 be the group
generated by reflections r13 = 3214, r24 = 1432. Then W ′x = {2143, 4123, 2341, 4321}.
All but 4321 are in the interval [1, w], so the maximal elements of [1, w] ∩ W ′x are
4123 = r24x and 2341 = r13x. Theorem 4 gives

P2143,4231(1) ≥ P4123,4231(1)P ′
1,r24

(1) + P2341,4231(1)P ′
1,r13

(1)

= 1 · 1 + 1 · 1 = 2,

which holds since P2143,4231(q) = 1 + q.
Note that this shows X4231 is singular, even though all the Schubert varieties corre-

sponding to terms on the right-hand side are smooth.
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Example. One can calculate P1234567,6734512(1) = 44 in type A. This is the maximum
value of Px,w(1) for any x,w ∈ S7. Let W ′ ⊂ S9 be the subgroup generated by the
reflections {r13, r34, r45, r57, r78, r89}; it is a parabolic subgroup isomorphic to S7. If
w = 869457213 and x = 163457289, then W ′x = W ′w so M(x,w;W ′) = {w}, giving
φ(x) = 1234567 and φ(w) = 6734512. Hence

Px,w(1) ≥ P ′
1234567,6734512(1)Pw,w(1) = 44.

3.1. Special cases/applications

The complicated interaction of the multiplicative structure of W and the Bruhat–
Chevalley order makes computing the set M(x,w;W ′) difficult. We mention two cases
in which the answer is nice:

(a) If w and x lie in the same W ′-coset, then M(x,w;W ′) = {w}. In this case
Theorem 4 says

Px,w(1) ≥ P ′
φ(x),φ(w)(1).

This allows us to prove Theorem 1 from the introduction: Given w ∈W , let x ∈W ′w
satisfy φ(x) = 1. Then

P1,w(1) ≥ Px,w(1) ≥ P ′
1,φ(w)(1).

The first inequality comes from the monotonicity of Kazhdan–Lusztig polynomials [I],
[BrM2, Corollary 3.7].

(b) If either W ′ or x−1W ′x is a standard parabolic subgroup of W , then M(x,w;W ′)
has only one element. The case where x = 1 was studied by Billey, Fan, and Losonczy
[BiFL].

In this case the inequality will hold coefficient by coefficient rather than just at q = 1:

Theorem 5. If W ′ or x−1W ′x is a standard parabolic subgroup, then

[qk]Px,w ≥ ∑
i+j=k[qi]Py,w[qj ]P ′

φ(x),φ(y),

where M(x,w;W ′) = {y}. Here the notation [qk]P means the coefficient of qk in the
polynomial P .

If both (a) and (b) hold, then Theorem 5 is implied by a well known equality (see
[P, Lemma 2.6]):

Theorem 6. If W ′ or x−1W ′x is a standard parabolic subgroup of W and w ∈ W ′x,
then

Px,w(q) = P ′
φ(x),φ(w)(q).

Theorem 6 can be thought of as a generalization of a theorem due to Brenti and
Simion:

Theorem 7. [BreS] Let u, v ∈ Sn. For any 1 ≤ i ≤ n such that {1, 2, . . . , i} appear
in the same set of positions (though not necessarily in the same order) in both u and v,
then

Pu,v(q) = Pu[1,i],v[1,i](q) · Pfl(u[i+1,n]),fl(v[i+1,n])
(q),
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where u[j, k] is obtained from u by only keeping the numbers j, j + 1, . . . , k in the order
they appear in u.

We demonstrate the relationship between the two theorems in an example. Let
I1 = {s1, s2, s3}, I2 = {s5, s6, s7}, I = I1 ∪ I2. Let W ′ = WI

∼= WI1 ×WI2 . Any pair
x,w in the same coset of W ′\W satisfies the conditions of Theorem 7 and Theorem 6.
Take x = 25174683 and w = 48273561. Then Theorem 6 gives

P25174683,48273561(q) = P ′
φ(25174683),φ(48273561)(q)

= P ′
21435768,42318756(q) = P2143,4231(q)P1324,4312(q)

agreeing with Theorem 7. The last equality results because we have Px1×x2,w1×w2(q) =
Px1,w1(q)Px2,w2(q) for any x1 × x2, w1 ×w2 in the reducible Coxeter group WI1 ×WI2 .

4. Geometry of flag varieties

Let G be a connected semisimple linear algebraic group over C. It acts transitively
on the flag variety F of Borel subgroups of G by conjugation: g · B = gBg−1. For any
g ∈ G, the point B ∈ F is fixed by g if and only if g ∈ B.

Fix a Borel subgroup and a maximal torus T ⊂ B ⊂ G. The Weyl group W =
NG(T )/T is a finite Coxeter group. The point g · B ∈ F is fixed by T if and only if
g ∈ NG(T )B, and so g → g · B induces a bijection between W and FT . We abuse
notation and refer to w ∈W and the corresponding point of F by the same symbol.

Every B-orbit on F contains a unique T -fixed point; for w ∈W , the Bruhat cell Cw is
the B-orbit B ·w. The Schubert varietyXw is the closure of Cw; we haveXw =

⋃
x≤w Cx

and so Xx ⊂ Xw ⇐⇒ x ≤ w.

4.1. Torus actions
Let ρ : C∗ → T be a cocharacter of T , and let G′ be the centralizer of T0 = ρ(C∗).

Theorem 8. [Sp, Theorem 6.4.7] G′ is connected and reductive; T is a maximal torus
in G′. If T0 fixes a point B0 ∈ F so that T0 ⊂ B0, then B0 ∩G′ is a Borel subgroup of
G′.

Let F ′ ∼= G′/B′ be the flag variety of G′, and put Fρ = FT0 . Using Theorem 8, we
can define a G′-equivariant algebraic map ψ : Fρ → F ′ by ψ(B0) = (B0) ∩G′.

Fix a maximal torus and Borel subgroup of G′ by setting B′ = B ∩G′, T ′ = T . The
Weyl group of G′ is W ′ = NG′(T ′)/T ′ = W ∩ (G′/B′). The Schubert varieties of F ′

defined by the action of B′ are indexed by elements of W ′; denote them by X ′
w, w ∈ W ′.

Proposition 9. W ′ is a parabolic subgroup of W , and all parabolic subgroups arise in
this way for some choice of ρ.

This is well known; the groupsG′ which arise this way are Levi subgroups of parabolic
subgroups of G. The second half of the statement (which is the only part we need) can
be deduced from [Sp, 6.4.3 and 8.4.1], for instance.

Now we can connect the pattern map φ defined by Theorem 2 to geometry.

Theorem 10. The map ψ restricts to an isomorphism on each connected component of
Fρ. The restriction ψ|FT : FT → (F ′)T is the pattern map φ, using the identifications
FT = W , (F ′)T = W ′. In particular, the components of Fρ are in bijection with
W ′\W .



LOWER BOUNDS FOR KL POLYNOMIALS 329

Proof. To show the first assertion, it is enough to show that ψ is a finite map, since it
is G′-equivariant and its image F ′ is maximal among the compact homogeneous spaces
for G′. But ψ(g ·B) ∈ (F ′)T =⇒ T ⊂ g · B =⇒ g ·B ∈ FT , a finite set.

Certainly ψ takes T -fixed points to T -fixed points, so it induces a function W →W ′

by restriction. We need to show that it satisfies the properties of Theorem 2. The
W ′-equivariance (a) follows immediately from the G′-equivariance of ψ.

To see property (b), take x ∈ W and w ∈ W ′, and suppose that ψ(x) ≤′ ψ(wx).
This implies that ψ(x) ∈ B′ · ψ(wx), and since x and wx lie in the same component of
Fρ, we must have x ∈ B′ · wx ⊂ B · wx. Thus x ≤ wx. �

Remark. Given w ∈ W , let Y ∼= F ′ be the component of Fρ which contains w. Then
one can show that Xw ∩ Y ∼= X ′

φ(w). Therefore, X ′
φ(w) singular implies that Xw is

singular, using the result of Fogarty and Norman [FN]: a linearly algebraic group G
is linearly reductive (this class includes all tori) if and only if for all smooth algebraic
G-schemes X the fixed point scheme XG is smooth.

4.2. Hyperbolic localization

Let X be a normal complex variety with an action of C∗. Let X◦ = XC∗
, and let

X◦
1 . . . X

◦
r be the connected components of X◦. For 1 ≤ k ≤ r, define a variety

X+
k = {x ∈ X | lim

t→0
t · x ∈ X◦

k},

and let X+ be the disjoint (disconnected) union of all the X+
k . The inclusions X◦

k ⊂
X+

k ⊂ X induce maps

X◦ f→X+ g→X.

Let Db(X) denote the constructible derived category of Q-sheaves on X .

Definition. Given S ∈ Db(X), define its hyperbolic localization

S!∗ = f !g∗S ∈ Db(X◦).

Hyperbolic localization is better adapted to C∗-equivariant geometry than ordinary
restriction. It was first studied by Kirwan [Ki], who showed that if S is the intersection
cohomology sheaf of a projective variety with a linear C∗-action, then S and S!∗ have
isomorphic hypercohomology groups.

We will need two properties of hyperbolic localization from [Br]. For any S ∈ Db(X)
and p ∈ X , we let χp(X) denote the Euler characteristic of the stalk cohomology at p.

Proposition 11. [Br, Proposition 3] If p ∈ X◦, then

χp(S) = χp(S!∗).

Further, hyperbolic localization satisfies a decomposition theorem [Br, Theorem 2].
When applied to X = F and the action given by ρ, this gives the following.
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Theorem 12. Let Lw, and L′
v be the intersection cohomology sheaves of the Schubert

varieties Xw and X ′
v, respectively. For any w ∈ W and 1 ≤ k ≤ r, there is an isomor-

phism
ψ∗((Lw)!∗|F◦

k
) ∼= ⊕m

j=1 L
′
vj

[dj ],

for some vj ∈W ′ (not necessarily distinct) and dj ∈ 2Z.

Here we use the fact that hyperbolic localization preserves B′-equivariance. The fact
that dj ∈ 2Z follows from the purity of the stalks of simple mixed Hodge modules of
Schubert varieties.

4.3. Proof of Theorem 4
The description of Kazhdan–Lusztig polynomials as the local intersection cohomology
Poincaré polynomials of Schubert varieties [KL2] implies that for any u, v ∈ W , we have

Pu,v(1) = χu(Lv) =
∑

i dimQ H2i((Lv)u).

Now, given x,w ∈W , let F◦
k be the component of Fρ which contains x, and thus all

of W ′x. For every y ∈ W ′, let ay be the number of j for which vj = y in Theorem 12.
For any z ∈W ′x we have, using Theorem 12 and Proposition 11,

Pz,w(1) = χz(Lw) = χφ(z)

(
ψ∗((Lw)!∗|F◦

k
)
)

=
∑m

j=1 χφ(z)

(
L′

vj
[dj ]

)
(2)

=
∑

y∈W ′z ayP
′
φ(z),φ(y)(1)

(note that the shift [dj ] does not change the Euler characteristic, since dj ∈ 2Z).
If z /∈ [1, w], then equation (2) implies az = 0, since Pz,w = 0, P ′

z,z = 1, and all the
terms in the sum are nonnegative. Using (2) again shows that if y ∈M(x;w;W ′), i.e., y
is maximal in [1, w]∩W ′x, then ay = Py,w(1). Finally, evaluating (2) at x and keeping
only the terms with y ∈M(x,w;W ′) proves Theorem 4.

4.4. Proof of Theorem 5
Suppose first that x−1W ′x = WI is a standard parabolic subgroup. Take μ to be any
dominant integral cocharacter which annihilates a root αr if and only if r ∈W ′, and let
ρ = Ad(x)μ. Then the action of ρ is completely repelling near the component F◦

k of Fρ

which contains W ′x = xWI , meaning that F+
k = F◦

k , in the notation of §4.2.
This implies that hyperbolic localization to F◦

k is just ordinary restriction: setting
h : F◦

k → Fρ for the inclusion, we have

(S!∗)|F◦
k

= h!f !g∗S = (fh)!g∗S = (fh)∗g∗S = S|F◦
k
,

since both h and fh are open immersions. The same argument given for Theorem 4
now proves Theorem 5, using local Poincaré polynomials instead of local Euler charac-
teristics.

If instead W ′ = WI , we can use the anti-involution g → g−1 to replace left cosets by
right cosets, since Px−1,w−1 = Px,w for all x,w ∈ W .
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