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1. Introduction

Fix a set of labeled disks {D1, D2, . . . , Dn} with radii r1, r2, . . . , rn
respectively. A branched polymer of order n in R2 is obtained by plac-
ing these disks in the plane in any configuration so that the disks form
a connected subset of the plane, their interiors are disjoint, and D1 is
centered at the origin. Branched polymers have been studied in con-
nection with molecular chemistry, statistical physics, random graphs,
and geometry [1, 2, 3, 4, 5]. By a beautiful result of Brydges and Im-
brie, the volume of the space of all possible branched polymers of order
n in the plane is (n − 1)!(2π)n−1 [1]. Observe this result implies that
the volume is independent of the specified radii. Kenyon and Win-
kler have recently provided a more elementary proof of this result [6].
In addition, Kenyon and Winkler give a recursive algorithm to grow
branched polymers in the plane uniformly at random. In this REU, we
implemented the Kenyon-Winkler algorithm and used it to examine
some of the properties of branched polymers in the plane pertaining to
abstract graph properties exhibited by the polymers. Several specific
conjectures follow after we introduce the key concepts and notation
following [6].

2. Background

Let X be a branched polymer of order n in the plane. We can asso-
ciate to X a graph G(X) with vertices {1, 2, . . . , n} and edges between
two vertices if the associated disks are touching in the plane. G(X) is
connected since X is connected. Note that we sometimes informally
refer to X as if it were the graph G(X) and to the disks in X as they
were the vertices of G(X). Let T be any spanning tree for G. Consider
T to be rooted at vertex 1. Then X can be encoded by the labeled
tree T and an (n− 1)-tuple of angles θi ∈ [0, 2π) for 2 ≤ i ≤ n. First,
D1 is placed with its center at the origin. Then recursively stepping
down the branches of T , if i is the parent of vertex j in T , then the
angle θj determines the point on the boundary of Di which is touching
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Dj as measured with respect to the positive horizontal ray through the
center of Di.

Given any labeled tree T of order n, let BPR(T ) be the set of
branched polymers with radii R = (r1, . . . , rn) such that the corre-
sponding graph contains T as a subgraph. By the encoding above
we see that BPR(T ) is in bijective correspondence with a subset of
[0, 2π)n−1 = (S1)n−1. In fact, BPR(T ) corresponds with a manifold
with boundary given by the subset of polymers whose graph strictly
contains T [6]. The space of all branched polymers of order n with
radii R, denoted BPR(n), is the union of the BPR(T ) over all labeled
trees of order n.

3. Kenyon-Winkler Simulation Algorithm

While it is easy to determine if a particular configuration of disks is a
branched polymer, it is not obvious how to construct one uniformly at
random. Given a particular tree T , not all angle vectors in (S1)n−1 will
lead to valid branched polymers. The probability that a polymer chosen
uniformly has a fixed tree T as a spanning subgraph of G(X) changes
with the radius vector R, in contrast to the invariance of volume for
BPR(n). Below we describe the algorithm due to Kenyon and Winkler
to “grow” a polymer X ∈ BPR(n) uniformly at random.

Before growing a polymer of order n, fix a radius vector (r1, . . . , rn)
that will determine the final radius of each disk grown. Begin by placing
D1 with radius r1 centered at the origin. For each 1 ≤ i ≤ n− 1, given
a branched polymer of order i with radii r1, . . . , ri, grow a polymer of
order i+ 1 by means of the following steps:

(1) Choose an integer j ∈ [1, i] uniformly and a real number θ ∈
[0, 2π) uniformly. Place a new disk Di+1 with radius 0 at the
point on the boundary of Dj specified by the angle θ as mea-
sured from the positive x-axis through the center of Dj. Almost
surely, Di+1 does not lie on the boundary of a disk other than
Dj, since there are only a finite number of disks already adja-
cent to Dj.

(2) Increase the radius of Di+1 while holding constant G(X), the
accompanying angle vector (θ2, . . . , θi+1), and the position of
D1 until either the radius reaches ri+1, in which case a new
order i + 1 polymer is generated as desired, or a collision oc-
curs between two disks in the polymer at some positive radius
r < ri+1, introducing a cycle C into G(X). (We refer to col-
lisions between arbitrary disks in the polymer because, as the
algorithm progresses, growing the radius of Di+1 may push two
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other disks together.) If a collision occurs, proceed to the next
step.

(3) The new disk cannot continue to grow as it did in the previous
step without some pair of disks in the polymer overlapping. In
order to allow Di+1 to continue growing, “remove” one of the
edges in the cycle C, that is, choose a spanning tree of G(X) to
encode X and continue to grow Di+1 while holding constant the
angles corresponding to the remaining edges and the position
of D1. Choosing which edge to remove is the key step in the
algorithm in order to insure the final polymer comes from the
uniform distribution. An edge will be deleted according to the
probability distribution described in Section 3.1. After breaking
the cycle, return to the previous step.

The algorithm is finished when each disk in turn has grown to its
specified radius.

3.1. Breaking Cycles. Let Xr be the polymer obtained in the growth
process where Di+1 has grown to radius r < ri+1 and G(Xr) contains
a cycle. The cycle necessarily contains Di+1. Let T be the graph
G(Xr−ε), just before the collision at radius r for some small ε > 0.
With probability 1, we can assume T is a tree and G(Xr) is a graph
with exactly one cycle. According to [6], the graphs with cycles only
occur on the boundary of BPR(T ) and graphs with multiple cycles
only occur in codimension 2. The cycle C in G(Xr) corresponds with
a polygon P inscribed in the plane with vertices given by the centers
of the disks in C.

Label the edges of the polygon P in counter clockwise order: say
E1, E2, . . . , Em so that Di+1 is centered at the vertex between edges E1

and E2. We think of the Ei’s both as edges and as vectors in the plane
so as vectors E1 + E2 + · · ·+ Em = 0.

Let Ti be the tree obtained from G(Xr) by removing edge Ei. Xr

now lies in the boundary of each submanifold BPR′(Ti) where R′ =
(r1, . . . , ri, r). For some of these trees, the corresponding local sub-
manifold near Xr loses volume as r increases, whereas for others it
gains volume.

From the proof of the Invariance Lemma [6, Sect. 5], we know that,
given an infinitesimal increase in r, the local volume changes near Xr

in each BPR′(Ti) sum to zero. One can observe that the local volume
near Xr is necessarily decreasing for both BPR′(T1) and BPR′(T2) by
our choice of labeling. Thus there must be at least one Ti for which
the volume change is positive as r increases. In order to preserve uni-
form measure, we must choose among the trees with positive volume



4 BILLEY, BOOTHBY, EICHWALD, AND FOX

change according to a distribution that weights the trees according to
the magnitude of their respective local volume changes.

Miraculously, there is a very simple way to determine the relative
local volume changes near Xr. Let φi be the angle associated with Ei
measured from the positive horizontal axis. Let U be the unit vector

with angle (φ1+φ2)
2

. Let wi = (U ·Ei), the dot product of U with Ei for
1 ≤ i ≤ m.

Proposition 3.1. [6, Prop. 10] Using the notation above, let vi be the
infinitesimal local volume change in BPR′(Ti) near Xr due to a small
increase in r. Then v1 is negative, and the vectors V = (v1, . . . , vm)
and W = (w1, . . . , wm) only differ by a scalar multiple.

From Proposition 3.1, we see that the positive infinitesimal volumes
vi are indexed by the positions of the positive values in the vector X =
(−w1)W = (x1, . . . , xm), a scaled multiple of W . Let S =

∑
xi>0 xi.

For 1 ≤ i ≤ m, let

pi =

{
xi

S
if xi > 0

0 if xi ≤ 0.

Now we return to the algorithm for growing the radius of Di+1 in
Xr. The pi’s determine a discrete probability distribution function on
the edges E1, . . . , Em in the cycle of G(Xr) containing Di+1. Choose a
number 1 ≤ k ≤ m according to the distribution (p1, . . . , pm). Delete
edge k from G(Xr). By construction, Xr ∈ BPR′(Tk) and increasing r
slightly will move Xr into the interior of BPR′(Tk).

3.2. Detecting Collisions. There are two types of collisions possible:
collisions betweenDi+1 and another disk, and collisions in which neither
disk is Di+1. In each case, we can easily solve for the smallest positive
value of the radius of Di+1 such that a collision occurs. The analysis is
simplified by holding the center of Di+1 fixed at the origin rather than
holding the center of D1 fixed and determining the location of all other
disks by taking i+ 1 to be the root of tree T .

Detection of Di+1-branch collisions. Let N(Di+1) be the set of disks
that are adjacent to Di+1. If a disk Dk ∈ N(Di+1), define B(k\i+1) to
be the maximal connected subgraph of X containing Dk but not Di+1.
Suppose φ is the angle of the vector from the center of Di+1 to the
center of Dk measured counterclockwise from the x-axis. Let r be the
change in radius and r0 be the initial radius of Di+1. As r increases,
B(k \ i + 1) will move in the direction of the vector ~v = 〈cosφ, sinφ〉.
For a given Dl ∈ B(k \ i + 1) with initial center (a0, b0), the center as
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a function of r is

(a, b) = (a0 + r cosφ, b0 + r sinφ)

Suppose Dl has radius rl. When the distance between the center
of Dl and the center of Di+1 is r + r0 + rl, Dl and Di+1 are tangent,
i.e. a collision occurs. Thus we can solve for the value of r such that
a collision occurs using the distance formula. We collect terms in the
equation

(a0 + r cosφ− 0)2 + (b0 + r sinφ− 0)2 = (r + r0 + rl)
2

and find that the quadratic terms cancel, leaving us with a linear equa-
tion in r,

a2
0 + b0 − r2

l = 2r(rl − (a0 cosφ+ b0 sinφ))

which we solve to obtain

r =
a2

0 + b20 − r2
l

2(rl − (a0 cosφ+ b0 sinφ))
.

In our implementation, we apply this formula to each disk in X and
record the smallest positive value of r thus obtained as well as which
disk collided with Di+1.

Detection of branch-branch collisions. We will now consider the col-
lision of two disks that are in different branches of Di+1. Let Dj, Dk ∈
N(Di+1), Dj and Dk distinct, and let φj and φk be the angles at which
Dj and Dk attach to Di+1, respectively. Suppose Dl ∈ B(j \ i+ 1) and
Dm ∈ B(k \ i + 1), and suppose that their initial centers are (a0, b0)
and (c0, d0), respectively. Then the centers of Dl and Dm as functions
of r are:

(a, b) = (a0 + r cosφj, b0 + r sinφj)(3.1)

(c, d) = (c0 + r cosφk, d0 + r sinφk)(3.2)

Let rl be the radius of Dl and rm be the radius of Dm. A collision
occurs if the distance between Dl and Dm is rl + rm. Again, we use the
distance formula to solve for r. Substitute (3.1) and (3.2) into

(a− c)2 + (b− d)2 = (rl + rm)2

to obtain [
(cosφj − cosφk)

2 + (sinφj − sinφk)
2
]
r2+

[2(a0 − c0)(cosφj − cosφk) + 2(b0 − d0)(sinφj − sinφk)] r+[
(a0 − c0)2 + (b0 − d0)

2 − (rl + rm)2
]

= 0,

and solve for r with the quadratic formula. Of the solutions obtained,
we keep the smallest positive solution if one exists or nothing otherwise.
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Figure 1. A few “organic”-looking trees

We apply this formula to each pair of disks (Dl, Dm) fulfilling the
above preconditions, recording the value of r and the corresponding
pair of disks whenever a positive solution is found. To determine when
a collision first occurs as r increases, then, we compare the minimum
positive value of r found for each type of collision.

4. Applications

The simulation algorithm for branch polymers can be adapted to
model physical forms in nature. Different possible models include or-
ganic tree growth, the chemical reactions in polyethanol and polyesters,
and the growth of cancerous tumors. The images in Figure 4 below were
created with slight modifications to our implementation of the Kenyon-
Winkler algorithm to create models of two-dimensional organic trees.

These trees were created by restricting the attachment angle and
allowing for collisions instead of the edge breaking process. As before,
D1 is fixed at the origin with unit radius. D2 is attached to D1 at an
angle theta2 such that theta2 ∈ [π

2
− π

6
, π

2
+ π

56
]. Suppose DiskX ∈

BPR(T ) and DiskX 6= Disk1.
Say Di is attached to its parent at an angle of θi relative to the x-

axis. A new disk Dj can be grown off of Di only at an angle in the
range [θi − π

6
, θi + π

6
]. As Dj expands its radius from zero to one, if

there is a collision, Dj ceases to expand further and the cycle remains
intact. At this point a new disk then begins to grow from a randomly
chosen disk. This construction is guaranteed to produce a branched
polymer, but we don’t know in advance what the radius vector will be.

5. Open Problems

There are many open problems on branched polymers. Kenyon and
Winkler posed several interesting problems in [6]. After implementing
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the algorithm to generate planar branched polymers, we have made a
few observations which lead to more questions. We summarize this list
below. Unless otherwise noted, all of these problems refer to branched
polymers with disks of unit radius, denoted BP1(n).

(1) Compute BP1(T ) for each T [6]. See data in appendix for trees
up to order 10.

(2) We conjecture that the expected percentage of disks with a
given vertex degree in the graph stabilizes rather quickly also
to approximately the distribution [0.23, 0.56, 0.19, 0.011, 10−5, 0]
so about 23% have degree 1, 56% have degree 2 etc.

(3) Based on our data, we conjecture that the following quantities
all follow the same asymptotic growth for BP1(n):
(a) Combinatorial diameter: maximal path length between

pairs of disks in the polymer, where path length is mea-
sured between disk centers.

(b) Geometric diameter: maximal distance between pairs of
points in the polymer, where distance is measured in the
Euclidean metric.

(c) Geometric radius: maximal distance from points in the
polymer to the center of mass.

(d) Distance from the center of mass to the origin.
Moreover, the ratios between these quantities seem to stabilize
rather quickly. What are their exact values? Also, while the
values above appear to grow linearly in n, we have no proof of
this, and no conjecture for a better formula – for small n, any
linear function is wildly inaccurate.

(4) Given a vertex v ∈ T of degree k, are the gaps between the
neighbors around Dv equidistributed? Equivalently, is the vol-
ume of polymers with fixed neighbors D2, . . . , Dk around D1

invariant under small changes in angle among θ2, . . . , θk.

(5) Given an algorithm to uniformly produce a random polymer of
order n; if one selects any orderk subpolymer, in a uniformly
random manner, is the result a random order k polymer? This
defines a weak notion of self-similarity. Is there a stronger one?

(6) Given a minimal bounding circle for a polymer, what is the
expected density; the ratio between the area of that circle and
the total area of the polymer?
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(7) One can define eccentricity in a number of ways. If we consider
the smallest (in surface area, perhaps) ellipse that a polymer fits
into, what is the eccentricity of that ellipse? Similarly, we can
bound the polymer in a rectangle, and look at the ratio between
its side lengths. This is intended to measure the tendency of
branched polymers to be “stringy” and oblong – is this even
the right notion?

(8) From a combinatorial perspective, it is interesting to consider
the possible trees that may be realized. How many trees on n
vertices can be embedded in the plane, if the edges have length
1 and the vertices are placed at hexagonal lattice points? It
isn’t difficult to count the number of such trees for up to 8
vertices, and already, the sequence does not appear in Sloane’s
encyclopedia.

Appendix A. Frequencies of Degree Sequences and Trees

The following data was collected by running the Kenyon-Winkler
algorithm to grow 1 million unit polymers of each order 5, 6, · · · 10.

From the polymers generated, we observed that the degree sequences
of the underlying trees had the following frequencies, in percentage.
Degree sequences which provably have zero volume have been denoted
by 0, whereas those with zero observed frequency have been denoted
0.0.

The frequencies of individual trees are given in Figures A - A, and
are given in proportion, not percentage. Several trees (for example,
a central vertex with 9 neighbors) cannot be realized as trees of unit
polymers,

Order 5
(1 1 1 1 4) 0.7718
(1 1 1 2 3) 35.4813
(1 1 2 2 2) 63.7469

Order 6
(1 1 1 1 1 5) 0.0038
(1 1 1 1 2 4) 1.8194
(1 1 1 1 3 3) 3.1142
(1 1 2 2 2 2) 46.2374
(1 1 1 2 2 3) 48.8252
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0.007718 0.354813 0.637469

Figure 2. Order 5 Tree Frequencies

Order 7
(1 1 1 1 1 1 6) 0
(1 1 1 1 1 2 5) 0.0088
(1 1 1 1 1 3 4) 0.2313
(1 1 1 1 2 2 4) 2.6841
(1 1 1 1 2 3 3) 9.9973
(1 1 2 2 2 2 2) 32.5268
(1 1 1 2 2 2 3) 54.5517

Order 8
(1 1 1 1 1 1 2 6) 0
(1 1 1 1 1 1 3 5) 0.0005
(1 1 1 1 1 1 4 4) 0.0027
(1 1 1 1 1 2 2 5) 0.0146
(1 1 1 1 1 3 3 3) 0.5554
(1 1 1 1 1 2 3 4) 0.8296
(1 1 1 1 2 2 2 4) 3.2738
(1 1 1 1 2 2 3 3) 19.0304
(1 1 2 2 2 2 2 2) 22.2310
(1 1 1 2 2 2 2 3) 54.0620

Order 9
(1 1 1 1 1 1 1 3 6) 0
(1 1 1 1 1 1 2 2 6) 0
(1 1 1 1 1 1 1 4 5) 0.0
(1 1 1 1 1 1 2 3 5) 0.0033
(1 1 1 1 1 1 2 4 4) 0.0102
(1 1 1 1 1 2 2 2 5) 0.0173
(1 1 1 1 1 1 3 3 4) 0.0529
(1 1 1 1 1 2 2 3 4) 1.7496
(1 1 1 1 1 2 3 3 3) 2.4499
(1 1 1 1 2 2 2 2 4) 3.4818
(1 1 2 2 2 2 2 2 2) 14.8640
(1 1 1 1 2 2 2 3 3) 28.2088
(1 1 1 2 2 2 2 2 3) 49.1622

Order 10
(1 1 1 1 1 1 1 1 4 6) 0
(1 1 1 1 1 1 1 1 5 5) 0
(1 1 1 1 1 1 1 2 3 6) 0
(1 1 1 1 1 1 2 2 2 6) 0
(1 1 1 1 1 1 1 2 4 5) 0.0
(1 1 1 1 1 1 1 3 3 5) 0.0
(1 1 1 1 1 1 1 3 4 4) 0.0010
(1 1 1 1 1 1 2 2 3 5) 0.0058
(1 1 1 1 1 2 2 2 2 5) 0.0191
(1 1 1 1 1 1 2 2 4 4) 0.0268
(1 1 1 1 1 1 3 3 3 3) 0.1021
(1 1 1 1 1 1 2 3 3 4) 0.2539
(1 1 1 1 1 2 2 2 3 4) 2.7840
(1 1 1 1 2 2 2 2 2 4) 3.3697
(1 1 1 1 1 2 2 3 3 3) 6.0166
(1 1 2 2 2 2 2 2 2 2) 9.8128
(1 1 1 1 2 2 2 2 3 3) 35.4370
(1 1 1 2 2 2 2 2 2 3) 42.1712
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0.018194 0.253684 3.8e-05 0.234568 0.462374 0.031142

Figure 3. Order 6 Tree Frequencies

0.002313 0.321238 0.0 0.012192 0.04787 0.076123 8.8e-05 0.325268 0.02385 0.014649

0.176409

Figure 4. Order 7 Tree Frequencies

0.003518 0.021348 0.005554 0.057685 2.7e-05 0.004944 0.002218 0.0 0.10667 0.0

7.1e-05 0.019345 0.050422 0.008449 0.01651 7.5e-05 0.22231 0.094947 0.217715 5e-06

0.044339 0.121288 0.00256

Figure 5. Order 8 Tree Frequencies

0.145266 4.9e-05 0.0 0.0 0.003306 0.0 0.000352 5.2e-05 0.033535 0.006091

0.000679 1.1e-05 0.0 0.001562 0.012734 0.005615 0.00259 0.01631 0.008879 0.000177

1.5e-05 0.14864 0.002188 0.060471 0.011281 3.1e-05 0.013119 9.3e-05 0.003789 0.142165

0.037665 0.057773 5e-05 7e-06 0.0 0.024257 0.002886 0.001761 0.03427 0.0

0.001621 0.027349 0.039648 0.08091 0.00942 0.000573 0.06281

Figure 6. Order 9 Tree Frequencies

We also greatly appreciate the advise and collaboration with Bruce
Eichinger and Jim Morrow.



REU PROJECT ON BRANCH POLYMERS 11

0.0 2.4e-05 0.003165 0.002152 0.001522 0.008528 0.000368 0.023397 0.001805 0.006948

0.000152 0.000397 0.002019 0.043848 0.000132 0.0 0.0 0.026375 0.000927 0.0

0.006222 0.00856 0.007209 3.6e-05 4e-06 0.0 0.0 0.015282 2e-06 0.000887

3.5e-05 0.000889 6e-06 0.00165 1.5e-05 0.000279 0.001728 0.0 0.004592 0.011105

0.09581 0.037609 0.009888 0.018199 0.00323 0.02994 0.008132 0.00142 0.000129 0.002303

0.093199 0.019058 2.9e-05 0.0 0.002281 4.3e-05 4e-06 0.000334 0.003646 0.003294

0.0 2.2e-05 0.098128 0.010353 0.0 0.002358 0.001069 0.005844 0.021878 0.006116

6e-06 0.0 6.8e-05 0.001462 0.017953 4e-06 6e-06 0.000212 0.053479 0.008067

7e-06 0.046524 0.005855 0.020816 0.0 0.0 0.0 0.078938 0.0 0.000132

1e-05 0.0 0.000683 0.0 0.024644 0.0 6.3e-05 0.000386 0.012761 0.003727

1.1e-05 0.025332 0.001097 0.000494 0.001686 0.041001

Figure 7. Order 10 Tree Frequencies
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