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The k-Schur functions were first introduced by Lapointe, Lascoux
and Morse [18] in the hopes of refining the expansion of Macdonald
polynomials into Schur functions. Recently, an alternative defini-
tion for k-Schur functions was given by Lam, Lapointe, Morse,
and Shimozono [17] as the weighted generating function of starred
strong tableaux which correspond with labeled saturated chains
in the Bruhat order on the affine symmetric group modulo the
symmetric group. This definition has been shown to correspond
to the Schubert basis for the affine Grassmannian of type A [15]
and at t = 1 it is equivalent to the k-tableaux characterization
of Lapointe and Morse [22]. In this paper, we extend Haiman’s
dual equivalence relation on standard Young tableaux [12] to all
starred strong tableaux. The elementary equivalence relations can
be interpreted as labeled edges in a graph which share many of the
properties of Assaf’s dual equivalence graphs. These graphs display
much of the complexity of working with k-Schur functions and the
interval structure on S̃n/Sn. We introduce the notions of flattening
and squashing skew starred strong tableaux in analogy with jeu de
taquin slides in order to give a method to find all isomorphism
types for affine dual equivalence graphs of rank 4. Finally, we state
some open problems on other ways to generalize dual equivalence.

1. Introduction

Classically, the Schur functions have played a central role in the theory of
symmetric functions [27]. They also appear in geometry as representatives
for Schubert classes in the cohomology rings of Grassmannian manifolds,
and they appear in representation theory as the Frobenius characteristics of
irreducible Sn representations and as the trace for certain irreducible GLn

representations.
In [18], Lapointe, Lascoux, and Morse introduced a new larger fam-

ily of symmetric functions which includes the Schur functions, namely the
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k-Schur functions, with similar connections both to geometry and to rep-
resentation theory. The k-Schur functions were defined in hopes of refining
and ultimately proving the Macdonald Positivity Conjecture [26]. Precisely,
Lapointe, Lascoux, and Morse conjectured that the Macdonald polynomials
expand into k-Schur functions with polynomial coefficients in two parame-
ters q, t with nonnegative integer coefficients, and that the k-Schur functions
expand into Schur functions with polynomial coefficients with parameter t
and nonnegative integer coefficients. Haiman [11] has since shown that the
Macdonald polynomials are the Frobenius characteristic of a bigraded Sn-
module defined by Garsia and Haiman [7] using the geometry of the Hilbert
scheme of points in the plane. This resolved the n! Conjecture and provided
the first proof of Macdonald positivity.

At this time, a number of conjecturally equivalent definitions for k-Schur
functions exist [17, 18, 19, 20, 21, 22], making the term “k-Schur function”
rather ambiguous. In this paper, we advocate for the geometrically inspired
definition as the weighted generating function of starred strong tableaux pre-
sented by Lam, Lapointe, Morse and Shimozono [17]. This definition at t = 1
is equivalent to the k-tableaux characterization in [22] which has been shown
to represent the Schubert basis in the homology of the affine Grassmannian
of type A [15]. Furthermore, the starred strong tableaux are a natural gen-
eralization of standard tableaux which appear throughout combinatorics.

Recently, Lam, Lapointe, Morse and Shimozono proved that the k-Schur
functions as defined below except with t = 1 are Schur positive [16]. Their
approach shows how k-Schur functions relate to k+1-Schur functions when
the t is not included.

It is an open problem to show that the k-Schur functions including the
t statistic are Schur positive. Toward proving this conjecture, we define a
family of involutions on starred strong tableaux which generalize Haiman’s
elementary dual equivalence moves on standard Young tableaux [12]. Using
these involutions, one can put a graph structure on starred strong tableaux
which satisfies many of the same axioms as the dual equivalence graphs de-
fined by the first author in [1]. As our model for dual equivalence is based
on the poset of n-cores induced from Young’s lattice, our results extend to
k-Schur functions indexed by skew shapes. Our main result is that these
graphs, which we call affine dual equivalence graphs, are locally Schur pos-
itive when restricted to edges of 2 adjacent colors and the spin is constant
on connected components, see Definition 4.5 and Theorem 7.15.1

1Earlier, we announced the stronger result that k-Schur functions as defined here
are Schur positive. However, we have since realized that the proof is incomplete
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Jeu de taquin is an important algorithm in the theory of symmetric func-
tions related to Littlewood-Richardson coefficients. One of the properties of
jeu de taquin slides is that they commute with elementary dual equivalence
moves on tableaux [12, Lemma 2.3]. There is no known analog of jeu de
taquin for k-Schur functions at this time. Such an analog would in princi-
ple be useful for multiplying k-Schur functions and expanding again into
k-Schurs. One approach to finding such a jeu de taquin algorithm is to look
for sliding moves which commute with affine dual equivalence moves. In Sec-
tions 7.1 and 7.2, we describe two types of collapsing moves which commute
with affine dual equivalence in specified cases. These collapsing moves are
the analogs of removing empty rows and columns in a skew tableau via jeu
de taquin.

One of the main consequences of our results is a connection between
k-Schur functions and LLT polynomials which is realized by comparing the
graphs for the two functions. We expect that a better understanding of these
connections will ultimately show that an LLT polynomial expands into k-
Schur functions with coefficients that are polynomials in t with nonnegative
integer coefficients for an appropriate value of k. Given Haglund’s formula
expanding Macdonald polynomials positively into certain LLT polynomials
[9, 10], this would also establish the missing connection between Macdonald
polynomials and k-Schur functions.

The outline of the paper goes as follows. In Section 2, we review the basic
vocabulary on partitions, the affine symmetric group, symmetric functions
and quasisymmetric functions. In particular, we review an interesting order
preserving bijection between a quotient of the affine symmetric group with
the n-core partitions relating Bruhat order to a subposet of Young’s lattice.
In Section 3, one definition of k-Schur functions expanded into fundamen-
tal quasisymmetric functions is given following [17, Conjecture 9.11]. These
functions can be indexed by n-cores, minimal length coset representatives for
S̃n/Sn, or k = n− 1 bounded partitions since all three sets are in bijection.
In Section 4, we review dual equivalence on standard Young tableaux along
with the associated graph structures and axioms. In Section 5, we carefully
study the covering relations and the rank two intervals in the poset on n-
core partitions. In Section 6, we define the affine analog of dual equivalence
operations and prove the key result that these maps are involutions which
preserve the spin statistic. In Section 7, we use these maps to define the

for two reasons. First, the proof outline requires one to identify all isomorphism
types for 3-colored components in affine dual equivalence graphs. Our computer
verification relies on a halting problem which has not terminated. Second, the axiom
(4’) required in [1] is not known to hold for affine dual equivalence graphs.
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affine dual equivalence graph on starred strong tableaux of a given shape.
In particular, Theorem 7.15 spells out some of the useful properties of these
graphs. In Section 8, we mention some open problems on other generaliza-
tions of dual equivalence graphs. Finally, in the Appendix, we have included
some examples of k-Schur functions expanded both in quasisymmetric func-
tions and Schur functions along with their affine dual equivalence graphs.

2. Basic definitions and notations

2.1. Partitions

A partition λ is a weakly decreasing sequence of non-negative integers

λ = (λ1, λ2, . . . , λl), λ1 ≥ λ2 ≥ · · · ≥ λl > 0.

The Young diagram of a partition λ is the set of points (i, j) in N× N such
that 1 ≤ i ≤ λj . We draw the diagram so that each point (i, j) is represented
by the unit cell southwest of the point. Abusing notation, we will write λ for
both the partition and its diagram. For example, the diagram of (4, 3, 1) is

.

We may also represent λ by an infinite binary string as follows. Consider
the diagram of λ lying in the N× N plane with infinite positive axes. Walk
in unit steps along the boundary of λ, writing 1 for each vertical step and 0
for each horizontal step. For example, (4, 3, 1) becomes

· · · 1 1 1 0 1 0 0 1 0 1 0 0 0 · · · .

Note that this establishes a bijective correspondence between partitions and
doubly infinite binary strings s such that si = 1 for all i < l and si = 0 for
all i > r for some l, r ∈ Z.

For partitions λ, μ, we write μ ⊂ λ whenever the diagram of μ is con-
tained within the diagram of λ; equivalently μi ≤ λi for all i. Young’s lattice
is defined by the partial ordering on partitions given by containment.

A standard Young tableau of shape λ is a saturated chain in Young’s
lattice from the empty partition to λ. As moving from rank i− 1 to rank i
adds a single box, filling this added box with the letter i uniquely records the
chosen chain. Therefore standard Young tableaux are also characterized as
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bijective fillings of the cells of λ with the letters 1 tom so that entries increase

along rows and up columns. Let SYT(λ) denote the set of all standard

Young tableaux of shape λ, and let SYT denote the union of all SYT(λ).

For example, two standard tableau of shape (4, 3, 1) are

.(2.1)

When μ ⊂ λ, we may define the skew diagram λ/μ to be the set theoretic

difference λ−μ. A standard tableau of skew shape λ/μ is a saturated chain in

Young’s lattice from μ to λ, or, equivalently, a bijective filling of the cells of

λ/μ with entries 1 to m so that entries increase along rows and up columns.

An addable cell for a partition λ is any cell c such that c ∪ λ is again a

Young diagram of a partition. Similarly, a removable cell for a partition λ

is any cell c such that λ− c is again a Young diagram of a partition.

A connected skew diagram is one where exactly one cell has no cell im-

mediately north or west of it, and exactly one cell has no cell immediately

south or east of it. Two distinct connected components can meet at one

point but not along an edge of a cell. A connected skew diagram is neces-

sarily nonempty. A ribbon is a connected skew diagram containing no 2× 2

subdiagram. We may define addable and removable ribbons of λ just as with

cells; namely, a ribbon R is an addable (resp. removable) ribbon for a par-

tition λ if λ ∪R (resp. λ−R) is again a partition.

To each cell x of a diagram λ associate the content of x defined by

c(x) = i − j where the cell x lies in row j and column i. We also consider

the residue of x, defined as the content of x modulo n. The content and

residue of ribbons are defined with respect to the southeasternmost cell.

The head of a ribbon is its southeasternmost cell, and the tail of a ribbon

is its northwesternmost cell.

The hook length of x is the number of squares above and to the right of x

in λ including x itself. Define the bandwidth of a partition to be the number

of distinct contents occupied by its cells. Equivalently, the bandwidth of a

non-skew partition is its maximum hook length.

An n-core is a partition having no removable ribbon of length n. Equiv-

alently, no hook length of λ is divisible by n. Young’s lattice restricted to

n-cores gives another ranked partial order, but it is not a lattice. This partial

order on n-cores is central to the definition of k-Schur functions and strong

tableaux given in Section 3.



348 Sami H. Assaf and Sara C. Billey

2.2. Affine permutations

Here we briefly recall the necessary vocabulary on affine permutations. For a

more thorough treatment of the combinatorial aspects of Coxeter groups we

recommend [5], specifically see Section 8.3 for details on the affine symmetric

group. Recent developments on core partitions and connections to affine

Weyl groups can be found in [4, 13].

Given n, consider the set S̃n of all bijections w : Z −→ Z such that

w(i+ n) = w(i) + n ∀i ∈ Z and w(1) + w(2) + · · ·+ w(n) =
(
n+1
2

)
.

For example, given i, j ∈ Z such that i 	≡ j (all congruences should be taken

modulo n throughout the paper), the affine transposition ti,j ∈ S̃n is the

periodic bijection such that ti,j(i+ p ·n) = j+ p ·n, ti,j(j+ p ·n) = i+ p ·n,
and ti,j(k) = k for all k 	≡ i and k 	≡ j and all p ∈ Z. S̃n is known as

the affine symmetric group. It is the affine Weyl group of type An−1. As a

Coxeter group, S̃n is generated by the adjacent transpositions si = ti,i+1

for 0 ≤ i < n. If w = si1si2 · · · sip ∈ S̃n and p is minimal among all such

expressions for w, then si1si2 · · · sip is a reduced expression for w and the

length of w is p, denoted �(w) = p. The length function is the rank function

for the Bruhat order on S̃n. As a partial order, Bruhat order can be described

as the transitive closure of the relation w < ti,jw if �(w) < �(ti,jw). The

symmetric group Sn can be viewed as the parabolic subgroup of S̃n generated

by s1, . . . , sn−1.

Let Qn be the minimal length coset representatives for the quotient

S̃n/Sn. Bruhat order restricted to Qn is again a partial order ranked by the

length function. There is a rank preserving bijection from n-core partitions

to Qn which respects the Bruhat order. This correspondence leads to useful

criteria for Bruhat order on Qn in Theorem 2.3 and the covering relation in

Proposition 5.3 and Corollary 5.4. We follow [29] for terminology on partial

orders.

Definition 2.1. [14, 21, 28] Define the function

(2.2) C : Qn −→ n-core partitions

recursively as follows. Associate the empty partition with the identity in Qn;

namely, C(id) = ∅. If C(w) = λ and �(siw) > �(w), then C(siw) is obtained
from λ by adding every addable cell with residue i to λ.
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In [14, 21], C is shown to be a bijection. Denote C−1 by

(2.3) A : n-core partitions −→ Qn.

Remark 2.2. Definition 2.1 can be used as an algorithm for generating n-
core partitions. The reader is encouraged to look ahead to Figure 1 to see
how the 3-core partitions up to rank 4 are generated.

Note that if λ is an n-core with an addable cell of residue i, then λ has
no removable cells of residue i. Similarly, if λ is an n-core with a removable
cell of residue i, then λ has no addable cells of residue i [21, §5].

The following beautiful theorem of Lascoux shows the power of the n-
core model for Qn.

Theorem 2.3. [23] Given v, w ∈ Qn, let μ = C(v) and λ = C(w) be the
corresponding n-core partitions. Then μ ⊂ λ in Young’s lattice if and only
if v < w in Bruhat order restricted to Qn.

2.3. Symmetric and quasisymmetric functions

We adopt notations for the standard bases for Λ, the ring of symmetric
functions, from [27]. For this paper, we are primarily interested in the Schur
functions sλ, indexed by partitions. The Schur functions form an orthonor-
mal basis for Λ with the Hall scalar product. The Schur functions also give
the irreducible characters for representations of the general linear group as
well as the Schubert basis for the cohomology of the Grassmannian [6].

We will use the expansion for Schur functions in terms of Gessel’s fun-
damental quasisymmetric functions [8] rather than in terms of monomials
on an alphabet X = {x1, x2, . . .}. The k-Schur functions will have a similar
expansion, presented in Section 3.3.

Definition 2.4. For σ ∈ {±1}m−1, the fundamental quasisymmetric func-
tion associated to σ, denoted Qσ, is given by

(2.4) Qσ(X) =
∑

i1≤···≤im
ij=ij+1⇒σj=+1

xi1 · · ·xim .

To connect quasisymmetric functions with Schur functions, for T a stan-
dard tableau on 1, . . . ,m, define the descent signature σ(T ) ∈ {±1}m−1 by
(2.5)

σi(T ) =

{
+1 if the content of i is less than the content of i+ 1,
−1 if the content of i+ 1 is less than the content of i.

}
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Note that in a standard tableau, consecutive entries may never appear along

the same diagonal so the content of the cells containing i and i+1 are never

equal. In particular, σ is well-defined on SYT.

Theorem 2.5. [8] The Schur function sλ can be expressed in terms of qua-

sisymmetric functions by

sλ(X) =
∑

T∈SYT(λ)

Qσ(T )(X).(2.6)

By Theorem 2.3, working with quasisymmetric functions instead of mono-

mials affords us the benefit of working with standard objects instead of semi-

standard objects. Furthermore, the expansion in (2.6) is independent of the

size of the alphabet X which could be finite or infinite.

3. k-Schur functions

In this section, we recall two analogs of standard Young tableaux for the

n-core poset called strong tableaux and starred strong tableaux from [17].

The spin statistic is defined on starred strong tableaux. These ingredients

are combined to give the definition of k-Schur functions in terms of their

expansion into fundamental quasisymmetric functions.

3.1. Strong tableaux

Consider the poset on n-core partitions induced from Young’s lattice. A

strong tableau of shape λ is a saturated chain

∅ ⊂ λ(1) ⊂ λ(2) ⊂ · · · ⊂ λ(m) = λ

in the n-core poset from the empty tableau to λ. We denote this chain by

the filling S of λ where all cells of λ(i)/λ(i−1) contain the letter i.

For example, from Figure 1, the strong tableaux for n = 3 of size m = 4

are

.
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Figure 1: Poset of 3-cores up to rank 5.

3.2. Starred strong tableaux

A starred strong tableau, S∗, is a strong tableau S where one connected
component of the cells containing i is chosen for each i, and the south-
easternmost cell of the chosen components are adorned with a ∗. There-
fore, the information contained in S∗ is equivalent to the pair (S, c∗) where
c∗ = (c1, c2, . . . , cm) is the content vector, namely ci is the content of the cell
containing i∗.

Let SST∗(λ, n) be the set of all starred strong tableaux of shape λ re-
garded as an n-core. For example, the 6 starred strong tableaux of shape
λ = (2, 2, 1, 1) are

.(3.1)

The following statistics on a starred strong tableau S∗ were first intro-
duced in [17]. Let n(i) denote the number of connected components of the
cells containing i of the underlying tableau S. Among such connected com-
ponents, let h(i) be the height, i.e. number of rows, of the starred connected
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component. Finally, let d(i∗) denote the depth of i∗ in S∗, defined to be the

number of components northwest of the component containing i∗. Define

the statistic spin on starred strong tableaux as follows,

(3.2) spin(S∗) =
∑
i

n(i) · (h(i)− 1) + d(i∗).

For example, the spins of the starred strong tableaux in equation (3.1), from

left to right, are 0, 1, 1, 2, 1, 2.

This spin statistic was dubbed “spin” based on similarities with the spin

statistic on ribbon tableaux that gives LLT polynomials [24]. We explore

deeper connections between LLT polynomials and k-Schur functions in Sec-

tion 8.

3.3. Quasisymmetric expansion

The k-Schur function s
(k)
λ (X; t) is the weighted generating function of starred

strong tableaux of shape ρ(λ), where ρ is the bijection between k-bounded

partitions and k + 1-cores introduced in [22]. In was also shown that the

rank of ρ(λ) in the n-core poset equals |λ| and it is conjectured that the

leading term of s
(k)
λ (X; t) in the Schur function expansion is sλ(X).

To define ρ on a k-bounded partition λ, from north to south slide each

row of λ east as far as necessary so that no cell has hook length greater than

k. Filling in the resulting skew diagram gives ρ(λ). To go back, remove all

cells of ρ(λ) with hook length greater than k and re-align the rows with the

western boundary. For example, we compute ρ(3, 3, 2, 1, 1) = (5, 4, 2, 1, 1)

when k = 4 as follows.

.

Throughout this paper, we fix n = k + 1 so that we relate n-cores with

k-Schur functions.

Rather than defining a semi-standard analog of strong tableaux to define

the expansion in terms of monomials as was given in [17], we formulate the

definition in terms of (standard) starred strong tableaux using quasisym-

metric functions. The two versions of the definition are easily seen to be

equivalent. We begin by defining the descent signature, σ ∈ {±1}m−1, of a
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starred strong tableau S∗ of rank m as follows.

(3.3)

σi(S
∗) =

{
+1 if the content of i∗ is less than the content of (i+ 1)∗,
−1 if the content of i∗ is greater than the content of (i+ 1)∗.

Remark 3.1. Since the union of cells containing i and those containing i+1

must be a valid skew shape, the southeasternmost cells containing i and i+1

may not lie on the same diagonal. Therefore σ is well-defined for all starred

strong tableaux.

Definition 3.2. Let ν be a k-bounded partition. The k-Schur function

indexed by ν is given by

(3.4) s(k)ν (X; t) =
∑

S∗∈SST∗(ρ(ν),n)

tspin(S
∗)Qσ(S∗)(X),

where the sum is over all standard starred strong tableaux of shape ρ(ν) in

the n = k + 1-core poset.

Remark 3.3. We may extend Definition 3.2 to skew strong tableaux in the

obvious way by considering all saturated chains from an n-core μ to an n-

core ν. The definitions for starred strong tableaux and spin extend trivially

to this setting. Consequently, all of our results for k-Schur functions also

extend to this skew setting.

4. Dual equivalence

The main idea behind a dual equivalence graph, introduced in [2], is to pro-

vide a structure whereby the quasisymmetric functions contributing to a

single Schur function are grouped together into equivalence classes, thereby

demonstrating the Schur positivity of the given quasisymmetric expansion.

For standard Young tableaux, the desired classes are precisely the dual equiv-

alence classes defined by Haiman [12]. An abstract dual equivalence graph is

defined by modeling the internal structure of these classes using Haiman’s

elementary dual equivalence relations. The connected components of a dual

equivalence graph are exactly the desired equivalence classes, namely the

sum over the quasisymmetric functions in a given connected component is

equal to a single Schur function. Dual equivalence graphs, and more gener-

ally D graphs, provide a structure whereby we may extend the notion of dual

equivalence to more general objects, in our case, starred strong tableaux.
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4.1. Dual equivalence on standard Young tableaux

We begin by constructing a graph on standard tableaux using dual equiv-
alence. Originally, Haiman defined an elementary dual equivalence on three
consecutive letters i− 1, i, i+1 of a permutation by switching the outer two
letters whenever the middle letter is not i:

(4.1) · · · i · · · i± 1 · · · i∓ 1 · · · ∼= · · · i∓ 1 · · · i± 1 · · · i · · · .

In Equation (4.1), i ± 1 acts as a witness to the i, i ∓ 1 exchange ensuring
they are not adjacent letters in the permutation.

The definition of dual equivalence extends naturally to standard Young
tableaux by applying the action to the permutation obtained by reading the
entries along content lines. For example, the content reading word of the
standard tableaux in (2.1) are 62153847 and 72153846. These two words are
dual equivalent both the 5 and the 8 act as a witness to the 6,7 exchange.
Thus, the two tableaux in (2.1) are dual equivalent. Note that in a standard
tableau, i and j may lie on the same content line only if |i − j| ≥ 3. In
particular, each of i−1, i and i+1 must lie on distinct content lines, making
equation (4.1) well-defined on standard tableaux.

It will also be helpful to think of dual equivalence on standard tableaux
in terms of Young’s lattice. Recall, that a standard tableau is equivalent to
a saturated chain in Young’s lattice with the empty partition as its unique
minimal element. The rank of the empty partition is 0. If two standard
tableaux S and T are dual equivalent via an elementary dual equivalence,
then the two corresponding saturated chains differ in exactly one element,
say at rank i. In this case, the elementary dual equivalence move interchanges
i, i + 1 and the restriction of the two chains to ranks i − 1, i, i + 1 form a
subposet of Young’s lattice isomorphic to B2, the Boolean poset on subsets
of {1, 2} ordered by containment. Indeed, any length two interval in Young’s
lattice is either isomorphic to B2 or a chain. In the first case, there is a dual
equivalence move available, and in the second case there is not.

We say that two standard tableaux are dual equivalent if one can be
obtained from the other by a sequence of elementary dual equivalences.
The following theorem of Haiman [12] together with Theorem 2.3 show that
the sum over the quasisymmetric functions in a dual equivalence class of
standard tableaux is precisely a Schur function.

Theorem 4.1. [12] Two standard tableaux of partition shape are dual equiv-
alent if and only if they have the same shape.
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Figure 2: The standard dual equivalence graphs G(4,1),G(3,2) and G(3,1,1).

Enrich the structure of these equivalence classes by tracking the sequence
of elementary dual equivalences taking one tableau to another. Whenever T
and U differ by an elementary dual equivalence for i− 1, i, i+ 1, connect T
and U with an edge colored by i. Additionally, we track the quasisymmetric
function corresponding to the given tableau by writing the descent signature
σ(T ), defined in Equation (2.5), below each tableaux. Let Gλ denote the
graph on all standard tableaux of shape λ. See Figure 2 for examples of Gλ.

Define the generating function associated to Gλ by

(4.2)
∑

v∈V (Gλ)

Qσ(v)(X) = sλ(X).

In particular, the generating function of any vertex-signed graph whose con-
nected components are all isomorphic to some Gλ is automatically Schur
positive.

4.2. Dual equivalence graphs and D graphs

Given any collection of objects with an associated signature function, the
goal is to build a graph on the given objects that mimics the structure
of these Gλ. To facilitate this, we recall the local characterization of dual
equivalence graphs presented in [2]. First, we need a bit of terminology.



356 Sami H. Assaf and Sara C. Billey

A signed, colored graph of degree m consists of the following data: a

vertex set V ; a signature function σ : V → {±1}m−1; and for each 1 < i < m,

a collection Ei of unordered pairs of vertices of V that represents the edges

colored i. We denote such a graph by G = (V, σ,E2 ∪ · · · ∪Em−1) or simply

(V, σ,E).

We say that two signed, colored graphs are isomorphic if there is a

bijection between vertex sets that respects signatures and color-adjacency.

Definition 4.2 gives criteria for when a signed, colored graph is isomorphic

to Gλ by Theorem 4.3.

Definition 4.2. A signed, colored graph G = (V, σ,E) of degree m is a dual

equivalence graph if the following hold:

(ax1) For w ∈ V and 1 < i < m, σ(w)i−1 = −σ(w)i if and only if there ex-

ists x ∈ V such that {w, x} ∈ Ei. Moreover, x is unique when it exists.

(ax2) Whenever {w, x} ∈ Ei, σ(w)i = −σ(x)i and

σ(w)h = σ(x)h if h < i− 2 or h > i+ 1.

(ax3) For {w, x} ∈ Ei, if σ(w)i−2 = −σ(x)i−2, then σ(w)i−2 = −σ(w)i−1;

if σ(w)i+1 = −σ(x)i+1, then σ(w)i+1 = −σ(w)i.

(ax4) For all 3 < i < m, every connected component of (V, σ,Ei−2 ∪Ei−1 ∪
Ei) is either an isolated vertex or it is isomorphic to a graph in Fig-

ure 3 after the signature function is restricted to positions [i−2, i+1].

If m = 4, every connected component of (V, σ,E2 ∪ E3) is either an

isolated vertex or it is isomorphic to a connected component in an in-

duced subgraph of a graph in Figure 3 using only 2-edges and 3-edges

and restricting the signature function to positions [i− 1, i+ 1].

(ax5) Whenever |i− j| ≥ 3, {w, x} ∈ Ei and {x, y} ∈ Ej , there exists v ∈ V

such that {w, v} ∈ Ej and {v, y} ∈ Ei.

(ax6) Between any two vertices of a connected component of (V, σ,E2∪· · ·∪
Ei), there exists a path containing at most one edge in Ei.

Comparing Figure 2 with Figure 3, the largest possible connected com-

ponents of (V, σ,Ei−2 ∪Ei−1 ∪Ei) are exactly the graphs for Gλ when λ is a

partition of 5. Taking this comparison to its ultimate conclusion yields the

following result.
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Figure 3: Possible 3-color connected components of a dual equivalence graph
with at least two vertices. Isolated vertices are also possible.

Theorem 4.3. [2] For λ a partition of m, Gλ is a dual equivalence graph of

degree m. Moreover, every connected component of a dual equivalence graph

of degree m is isomorphic to Gλ for a unique partition λ of m.

In practice, Axioms 1, 2 and 5 are trivially verified if Ei is the set of pairs

{(w, φi(w)) : w 	= φi(w)} determined by a family of involutions φi : V −→ V

such that for all w ∈ V :

1. If σ(w)i−1,i = +−, then σ(φi(w))i−1,i = −+, and vice versa.

2. Fixed points of φi are precisely those w such that σ(w)i−1,i = ++ or

−−.

3. The signatures σ(w) and σ(φi(w)) agree outside the range of indices

i− 2 ≤ j ≤ i+ 2.

4. The involutions φi and φj commute whenever |j − i| ≥ 3.

Axiom 3 is typically verified by keeping track of a witness in each case. The

real difficulty lies in Axioms 4 and 6.

In [2], the first author extended the notion of dual equivalence in order to

apply it to the LLT and Macdonald polynomials. For the extension, Axiom 6

is no longer required and Axiom 4 is replaced by a weaker axiom. Using

this generalized notion of dual equivalence, it was shown that connected

components have Schur positive generating functions but not necessarily a

single Schur function. We use the same technique here to prove that the

terms in a k-Schur function can be partitioned in connected components of

a graph which are locally Schur positive. Therefore, we review the necessary

material from [2] below.

Definition 4.4. Let G = (V, σ,E) be a signed, colored graph. Define the

generating function associated to G to be
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FG(X) =
∑
v∈V

Qσ(v)(X).

Definition 4.5. A signed, colored graph G = (V, σ,E) of degree m is a D

graph if Axioms 1, 2, 3 and 5 (from Definition 4.2) hold for G. A D graph is

said to be locally Schur positive on h-colored edges, denoted LSPh, provided

for all 2 ≤ h < i < m:

(LSPh) Every connected component of (V, σ,Ei−h+1∪· · ·∪Ei) using h con-

secutive edge sets with signatures restricted to positions [i−h, i+1]

has a symmetric and Schur positive generating function.

For example, all of the graphs on Page 396 are locally Schur positive on

2-colored edges and 3-colored edges. Notice that any D graph satisfying Ax-

ioms 4 and 6 necessarily implies the graph is LSPh for all h by Theorem 4.3.

Observe that the signature function of a D graph can be recovered from

the edges plus a single sign in any one signature on any one vertex via the

axioms. Thus each graph in Figure 3 can be assigned signature functions in

exactly 2 ways which make them into a D graph. The third graph can only

be signed in one way up to isomorphism.

5. Poset on n-cores

In order to define an analog of dual equivalence for starred strong tableaux,

we must first understand saturated chains in the n-core poset. In this section,

we do this by exploiting the connection between n-cores and S̃n using the

abacus model for partitions.

5.1. Covering relations

We can describe the n-core poset more directly using the abacus model for

cores from [14]. Consider the diagram of a partition λ, not necessarily an

n-core, lying in the N × N plane with infinite positive axes. Walk in unit

steps along the boundary of λ placing a bead (•) on each vertical step and

a spacer (◦) on each horizontal step. Then straighten the boundary to get a

doubly infinite rod with the main diagonal marked by a vertical line. This

gives the binary string uniquely representing λ when beads are replaced by

1’s and spacers by 0’s. For example, we construct the string for (4, 2) as

follows.
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Define the content of a bead or spacer to be the content of the diagonal
immediately southeast. Indexing each bead or spacer by its content gives an
injective map from partitions to binary strings. The abacus associated to λ
is the binary string of λ with beads and spacers indexed by their content.

Remark 5.1. Given any doubly infinite binary string s such that si is a bead
for all i < l and si is a spacer for all i > r for some l, r, there is a unique
re-indexing of s making it an abacus associated to a (unique) partition.

Interchanging a bead on the abacus of μ with a spacer m places to
its right corresponds to adding a ribbon of length m to μ, and similarly
interchanging a bead with a spacer m positions to its left removes an m-
ribbon from μ. In particular, if the moving bead lands in position s, then
the head of the added ribbon will have content s− 1.

Divide the abacus into n rods, each containing all beads and spacers of
the same residue. Removing an n-ribbon from the boundary of λ precisely
corresponds to moving a bead left along its rod. Therefore λ is an n-core
precisely when each rod is an infinite string of beads followed by an infinite
string of spacers. Define the content of a rod to be the content of the bead
or spacer immediately to the right of the vertical line marking the main
diagonal. We will identify a rod by its content throughout the paper. Con-
tinuing with the previous example, taking n = 3 gives the following abacus
decomposition of (4, 2), showing rods 1, 2 and 3.

Remark 5.2. Rotating the bottom row of the n-rod abacus for μ to the
top and shifting all beads in that row one column to the right will again
represent the abacus for μ, but now shifted so that the rods have contents
0, . . . , n−1 from top to bottom. Similarly, rotating the top row down to the
bottom and shifting all beads left on that row gives the n-rod abacus for μ
with contents 2, . . . , n + 1. Thus, the abacus can be represented by n rods
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of contents k, k + 1, k + 2, . . . , k + n− 1 for any integer k by scrolling up or
down.

Define the length of each rod of the n-rod abacus as follows. For i =
1, 2, . . . , n, define the length of the rod with content i to be the number of
beads on the rod with positive content minus the number of spacers on the
rod with nonpositive content (at most one of these numbers is nonzero).
For example, the lengths of rods 1, 2, 3 for the 3-core (4, 2) are 2,−1,−1. In
line with Remark 5.2, define the length of the remaining rods by setting the
length of rod i − n equal to one plus the length of rod i. It is sometimes
convenient to rescale the lengths of the rods so that the rods 1, 2, . . . , n
have nonnegative length with at least one having length 0. For now, we are
concerned only with the relative lengths of the rods.

Affine permutations act on n-core partitions as discussed in Section 2.2.
This action can be stated in terms of abaci as well. Recall we can represent
a partition by an infinite binary string. Since affine permutations are bijec-
tions from Z to Z, we can apply such a bijection to any binary string. If
the binary string represents an n-core then any affine transposition applied
to the binary string will also represent an n-core. We leave it to the reader
to verify this action is consistent with the action of simple affine transpo-
sitions acting on n-cores described earlier. In particular, the action of an
affine transposition on an n-core can be thought of pictorially as exchanging
two rods of its abacus and modifying all n-translates of these two rods ac-
cordingly. The following observations, also noted in [17], follow easily from
the abacus model.

Proposition 5.3. The following statements hold for an n-core μ and tr,s ∈
S̃n with r < s, r 	≡ s:

1. The abacus for tr,sμ is obtained from the abacus for μ by swapping the
lengths of the two rods with contents r and s. All rods with content
distinct from r, s mod n have the same length in μ and tr,sμ.

2. In the n-core poset, tr,sμ > μ if and only if the rod of content r has
larger length than the rod of content s in μ.

3. An n-core λ covers μ if and only if λ = tp,qμ for some pair p < q, p 	≡ q
such that in the abacus for μ there is a bead at position p, a spacer at
position q, and no rod between p and q has length weakly between the
length of rod p and the length of rod q. Furthermore, the head and tail
of one ribbon in λ/μ have contents q − 1 and p respectively.

Proof. The first statement follows form the action of an affine permutation
on infinite binary strings. The second statement is immediate since moving
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beads right adds ribbons and moving beads left removes ribbons. The third
statement also follows from this interpretation.

Proposition 5.3 is enough to describe precisely what λ/μ may look like
when λ covers μ in the n-core poset. The condition on the lengths of the
rods that lie between the interchanging rods of the abacus implies that the
connected components of λ/μ are identical ribbons. By Remark 5.2, the two
rods being exchanged must have distinct residues and no rod between them
may have the same residue as either of them. The contents across which the
beads move determine the contents contained in the ribbons, and the fact
that both rods are beads followed by spacers ensures that the ribbons lie
on consecutive residues. These observations reprove the following statement
due to Lam, Lapointe, Morse and Shimozono.

Corollary 5.4. [17, Prop. 9.5] Let μ be an n-core and tr,s an affine trans-
position such that tr,sμ covers μ in the n-core poset. Then 0 < s − r < n
and the connected components of tr,sμ/μ are identical shape ribbons with cell
residues from r mod n to s− 1 mod n. Moreover, if rod r has k > 0 more
beads than rod s, then tr,sμ/μ has exactly k identical ribbons. If the head
of the first ribbon lies in a cell with content c, then the head of the other
ribbons have content c+ n, c+ 2n, . . . , c+ (k − 1)n.

By Corollary 5.4, for a strong tableau S of shape λ, call the connected
components of λi/λi−1 the i-ribbons of S. Recall from Section 3.2 that a
starred strong tableau consists of a strong tableau plus a choice of i-ribbon
for each i present in S. We use the next definition and corollary to relate
the starred strong tableaux to saturated chains labeled by certain sequences
of transpositions.

Definition 5.5. Let μ ⊂ λ be n-cores, and let T (λ/μ, n) be the set of all
transposition sequences (tr1s1 → tr2s2 → · · · → trmsm) such that

1. the product trmsm · · · tr2s2tr1s1μ = λ as elements of S̃n/Sn;
2. for each 1 ≤ i ≤ m, we have 0 < si − ri < n;
3. for each 0 ≤ i < m, the abacus for μ(i) = trisi · · · tr2s2tr1s1μ contains

a bead at position ri+1, a spacer at position si+1, and every rod with
content between ri+1 and si+1 has length strictly smaller than both
the length of rod ri+1 and the length of rod si+1 or strictly larger than
both.

By Proposition 5.3, condition (3) above implies μ = μ(0) < μ(1) < · · · <
μ(m) = λ forms a saturated chain in the n-core poset. The following is a
consequence of Proposition 5.3 and Corollary 5.4.
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Corollary 5.6. Let μ ⊂ λ be n-cores. There exists a bijection from skew
starred strong tableaux S∗ ∈ SST∗(λ/μ, n) to T (λ/μ, n) given by mapping

S∗ �→ (tr1s1 → tr2s2 → · · · → trmsm)

where si − 1 and ri are the contents of the head and tail of the i-ribbon
containing i∗ in S∗.

For example, this bijection maps

.

5.2. Intervals of length two

As motivation, recall that an elementary dual equivalence on standard
tableaux may be defined in terms of interval exchanges in Young’s lattice.
Though the induced poset on n-cores in not as nice as Young’s lattice,
Björner and Brenti [5] showed that any interval of length two is either a
chain or isomorphic to B2.

Definition 5.7. Let S = (∅ = μ0 ⊂ μ1 ⊂ · · · ⊂ μm) be a saturated chain
in the n-core poset such that the interval [μi−1, μi+1] is not a chain for
0 < i < m. The i-interval swap on S, denoted swapi,i+1(S) = swapi+1,i(S),
replaces μi with the unique other n-core at rank i in [μi−1, μi+1].

For example, from Figure 1 we see that a 2-interval swap on the chain

results in the chain

.

In terms of the strong tableaux, the same 2-interval swap gives

.(5.1)



Affine dual equivalence and k-Schur functions 363

Figure 4: Possible rod exchanges for a length two interval.

By Definition 5.5, the same two saturated chains can be represented by
the following transposition sequence

swap2,3 (t0,1 → t1,2 → t2,3 → t−2,−1) = t0,1 → t−1,0 → t1,3 → t−2,−1,

where only the two transpositions in the middle are modified. In general, the
map swapi,i+1(S) always modifies the ith and the i + 1st transpositions in
any transposition sequence representing the saturated chain S and leaves all
other transpositions in the sequence fixed. The two new transpositions are
not unique however since we have not yet described how the stars will move.
This extension will be called a bswap and introduced in Section 6. First, we
need a complete understanding of how the i-ribbons and the i + 1-ribbons
can appear in a strong tableau and how they change under an i-interval
swap.

Using the abacus model for cores and Proposition 5.3, we can explicitly
describe the result of an i-interval swap on a strong tableau S = (∅ ⊂ μ1 ⊂
· · · ⊂ μm) in terms of the two rod exchanges corresponding to the covering
relations in the interval [μi−1, μi+1]. In order to analyze two consecutive
rod exchanges, we extend the n-rod abacus picture to include extra rods
above as necessary so that the four rods to be exchanged all appear as
rows of the picture with the longer row above the shorter row. Ignoring
the rods which are untouched by the exchange and choosing representatives
of the exchanging rods as close together as possible, there are four natural
cases to consider, each depicted in Figure 4: disjoint, interleaving, nested
and abutting. There are three possible ways for the rod exchanges to be
abutting; the two depicted and also the reverse of the right hand side. For
the first three cases in Figure 4, the corresponding transpositions will have
four distinct residues whereas for the abutting case, they will have only two
or three distinct residues.

The easiest case to consider is a disjoint exchange. Here we assume all of
the residues of the rods to be exchanged are distinct, lest we actually have
an abutting exchange. Further, we can assume the exchanging rods have
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contents a < b < c < d with n > d − a > 0 since the rods are as close
together as possible. The two exchanges in this case clearly commute, and
taking either first raises the rank by exactly one by Corollary 5.4. In the
strong tableau, such an i-interval swap will happen precisely when the cells
of the i-ribbons and (i + 1)-ribbons have no residues in common, and the
effect of the swap will be to exchange all i’s for i+ 1’s and conversely.

The case of an interleaving exchange is only slightly more interesting,
though the conclusion of this case is noteworthy. Labeling the residues of
the exchanging rods a < b < c < d from top to bottom, again we assume
all four residues to be distinct lest we be pulled into the abutting case. The
assumption that these two exchanges each increase the rank in the poset
forces rod a longer than rod c and similarly rod b longer than rod d by
Proposition 5.3. Suppose μi−1 ⊂ ta,cμ

i−1 = μi ⊂ tb,dta,cμ
i−1 = μi+1; the

other case is similarly resolved. By Proposition 5.3, this means the length of
rod b does not lie between the lengths of rods a and c and that the length
of rod a does not lie between the lengths of rods b and d. Recall, we chose
a picture for the abacus so that the length of rod b is larger than the length
of rod d and the length of rod a is longer than the length of rod c. These
statements together imply that the lengths of rods a and c do not interleave
the lengths of rods b and d, and so the transpositions taken in the other order
each raise the rank by exactly one, thus μi−1 ⊂ tb,dμ

i−1 ⊂ ta,ctb,dμ
i−1 = μi+1

is a valid strong tableau. In this new strong tableau, the contents of the i-
ribbons and i + 1-ribbons will not overlap, though the residues will. It is
also important to note that the i-ribbons and i+1-ribbons will not have the
same residues for their heads or tails. In this case, the i-interval swap again
simply exchanges all i’s for i + 1’s and conversely. We summarize the key
observation in this case as follows.

Proposition 5.8. An i-ribbon and an i+ 1-ribbon in a strong tableau have
overlapping contents if and only if the contents of one ribbon are strictly
contained in the contents of the other. Furthermore, the contents of the head
and tail of the longer ribbon do not occur among the contents of the shorter
ribbon.

More generally, we say two ribbons are nested if the second condition of
Proposition 5.8 holds. We also say two ribbons R1 and R2 are independent
if R1 ∪R2 has two connected components as a skew shape.

In the case of a nested exchange, again label the rod contents a < b <
c < d from top to bottom. We can assume d− a < n by Corollary 5.4. Here
the two corresponding transpositions commute, and each will raise the rank
by exactly one. The interesting feature of this case lies in way the nested



Affine dual equivalence and k-Schur functions 365

Figure 5: A nested exchange is show on two 4-core skew strong tableaux.

ribbons can appear in the corresponding strong tableaux. See Figure 5 for

example.

By Proposition 5.3, neither the length of rod b nor the length of rod c

may lie between the lengths of rods a and d. If both rod b and rod c are

longer than rod a or both shorter than rod d (necessarily rod a is longer

than rod d), then the i-ribbons and i + 1-ribbons will have no contents in

common, though the residues of one ribbon will be strictly contained within

the residues of the other. Furthermore, both the heads and tails of the i-

ribbons and i+ 1-ribbons have distinct residues.

On the other hand, if rod b is longer than rod a and rod c is shorter

than rod d (necessarily rod b is longer than rod c), then the content of every

instance of the longer ribbon (corresponding to ta,d) overlaps the content of

a shorter ribbon (corresponding to tb,c) and there must be an instance of the

shorter ribbon containing a cell of content b− 1 which occurs independently

from all of the longer ribbons. An i-interval swap changes all entries in all of

the shorter ribbons that appear independently of the longer ribbons and all

entries of the longer ribbons that are not on the same content as a shorter

ribbon.

For example, we can apply a nested exchange to the 4-core partition

(4, 1, 1, 1) encoded as an abacus with 4 rods, numbered 1, 2, 3, 4, with lengths

(−1, 0, 0, 1). The nested exchange is more clear if we instead consider the

same abacus but with rods numbered −1, 0, 1, 2 by scrolling (−1, 0, 0, 1) back

two steps to (1, 2,−1, 0) via Remark 5.2. Now, we are in the case where

a = −1, b = 0, c = 1, d = 2, rod a has length 1, rod b has length 2, rod c has

length −1, and rod d has length 0. These rod lengths satisfy the conditions of

a nested exchange of the second type described above. Applying the nested

exchange corresponding to the two commuting transpositions t−1,2t0,1 results

in rod lengths (0,−1, 2, 1) which encode the 4-core partition (5, 3, 3, 1, 1). In

terms of strong tableaux, the two transposition sequences t−1,2 → t0,1 and

t0,1 → t−1,2 applied to μ = (4, 1, 1, 1) are related by swap7,8 as shown below.

This discussion proves the following lemma.
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Lemma 5.9. If an i-ribbon and an i+ 1-ribbon are nested, then

1. At least two copies of the shorter ribbon occur independently from the
longer ribbon, with at least one on either side of the consecutive se-
quence of copies of the longer ribbon.

2. Every copy of the longer ribbon nests a copy of the shorter ribbon.
3. Both the heads and tails of the i-ribbons and i+1-ribbons have distinct

residues.
4. An i-interval swap is possible.

The final case of an abutting exchange will involve exactly three distinct
indices on the transpositions, though possibly only two distinct residues.
Let μ be an n-core partition represented as an n rod abacus with three
highlighted rods among them with contents a < b < c from top to bottom
on which we can apply an abutting exchange. Suppose that the three residues
of a, b, c are all distinct. This is necessarily the case for the right hand side of
Figure 4. Say the two exchanges correspond with the transposition sequence
(ta,c → ta,b). Then by Proposition 5.3, we know rod a is strictly longer than
rod c. Similarly, since we can apply tab to the partition tacμ, we also know
that rod c is longer than rod b, so the three rod lengths are totally ordered.
We note that tb,cta,b = ta,bta,c so this equation along with the total order on
the lengths of the rods ensures that an interval swap is possible. The new
transposition sequence after applying this interval swap would be (ta,b →
tb,c) which corresponds with the left hand side of the abutting exchange
pictured in Figure 4. If the two exchanges correspond with the transposition
sequence (ta,b → ta,c), examining the required rod length inequalities again
we see that (tb,c → ta,b) is a valid transposition sequence on the same rank
2 interval. This again corresponds with the left hand side of the abutting
exchange pictured in Figure 4. If the right hand side of Figure 4 is turned
upside down, a similar analysis holds. Furthermore, the interval swaps form
an involution on the two chains in any interval isomorphic to B2 so we have
covered all possible cases of an abutting exchange in the form of the left
hand side of the abutting picture of Figure 4 as well. Hence in all cases of
an abutting exchange with three distinct residues, there exists an interval
swap determined above.

Assuming that [μi−1, μi+1] is isomorphic to B2, one way to recognize if
an abutting exchange is required for swapi,i+1(S) is that an i-ribbon and an
i+1-ribbon together form a ribbon shape. In this case, we will say these two
ribbons abut each other. From the transpositions pictured in the abutting
case of Figure 4 and Corollary 5.4, we observe that the sum of the lengths
of an i-ribbon and an i + 1-ribbon is necessarily less than n and exactly
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one of the two ribbon types occurs without abutting a copy of the other. In
this instance, the i-interval swap will change all entries of the non-abutting
ribbons and all entries in their n-translates. For example, the 2-ribbon abuts
a 3-ribbon in the strong tableau on the left in (5.1).

The other way to recognize if an abutting exchange is required for
swapi,i+1(S) is that, among the i, i+1-ribbons, one ribbon is strictly longer
than the other and the longer ribbon contains an n-translate of the shorter
and the heads or tails of the two ribbons have the same residue depending
on if the shared rod is a or c. See for example, the 2-ribbon and 3-ribbon in
the strong tableau on the right in (5.1). Here an interval swap will change all
entries of the shorter ribbons and all entries of the longer ribbons that are
not part of an n-translate of the shorter. This case is also recovered from the
left hand side of Figure 4 when the lengths of the three rods are all distinct;
we omit details as the case is completely parallel.

Following the details of the abutting exchange case carefully, we have
the following.

Proposition 5.10. Suppose swapi,i+1(S) is obtained from S by an abutting
exchange. Assume the corresponding transpositions are indexed by 3 distinct
residues mod n. Then either

• No i-ribbon abuts any i + 1-ribbon, but one of these ribbons strictly
contains an n-translate of the other with a shared head or tail occurring
on a consecutive residue.

• OR, all instances of one ribbon type abut the other while the other will
also have at least one components which is non-abutting and the sum
of the length of an i-ribbon and an i + 1-ribbon is at most n − 1. In
this case, if an i+ 1-ribbon abuts an i-ribbon from the north, then the
non-abutting ribbons lie always southeast of the abutting ribbons, and
if an i-ribbon abuts an i+1-ribbon from the west, then the non-abutting
ribbons lie always northwest of the abutting ribbons.

Finally, consider an abutting exchange as in the left hand side of the
abutting case in Figure 4. If the three rod lengths are distinct and the three
residues are distinct, then the exchange is covered by Prop 5.10. In each
of the remaining cases, we claim the interval [μi−1, μi+1] is a chain so an
i-interval swap is not possible.

Proposition 5.11. Let S = (∅ = μ0 ⊂ μ1 ⊂ · · · ⊂ μm) be a saturated chain
in the n-core poset. Then the interval between μi−1 and μi+1 in the n-core
poset is a chain if and only if each i-ribbon abuts an i + 1-ribbon and each
i + 1-ribbon abuts an i-ribbon. Moreover, the length of an i-ribbon plus the
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length of a i+1-ribbon is less than or equal to n, with equality if and only if
μi+1/μi−1 is a single connected ribbon shaped component starting and ending
with i+ 1-ribbons.

Proof. Assume [μi−1, μi+1] is a chain. Then by the previous analysis of two
consecutive rod exchange cases examined in this section above, one can show
that a length 2 chain corresponds with a transposition sequence of the form
tb,c → ta,b with a < b < c or a > b > c.

Assume a and c have different residues (both necessarily have distinct
residues from b). In this case, ta,btb,c = ta,cta,b, and by Proposition 5.3 we
can assume 0 < c− a < n. Thus, we see from the n-rod abacus model that
the skew shape μi+1/μi−1 is the union of a positive number of n-translates
of a single ribbon shape of length less than n and none of these ribbons
overlap in content. More precisely, i-ribbons and i+1-ribbons always occur
in connected pairs and the sum of their lengths is strictly less than n. For
example, the 3-ribbons and 4-ribbons in the first strong tableau in (3.1)
have this property, and interpreting this strong tableau as a saturated chain
one can see the corresponding chain property from the poset in Figure 1 on
ranks 2 to 4.

If, on the other hand, a and c have the same residue, then we can as-
sume c = a+n by choosing to label the exchanging rods as close together as
possible. Hence, the length of the ribbons corresponding to ta,b and those cor-
responding to tb,a+n necessarily add to n so μi+1/μi−1 is a single connected
ribbon shaped component. Furthermore, recall that rod c is one shorter
than the length of rod a by Remark 5.2 and the fact c = a + n. If rod b
is shorter than rod a, then the chain corresponds with the transposition
sequence ta,b → tb,c, otherwise the transpositions happen in the reverse or-
der. In either case, by considering how ribbons are created using the abacus
model and Proposition 5.3, we observe that the ribbon μi+1/μi−1 is tiled
by an alternating sequence of i-ribbons and i+ 1-ribbons and it begins and
ends with an i+1-ribbon. The last tableau in (3.1) has this property on the
3-ribbons and 4-ribbons, as does the strong tableau underlying both pictures
in Figure 10 on the 2, 3-ribbon and the 1, 2-ribbon.

To prove the reverse direction, assume each i-ribbon abuts an i + 1-
ribbon and conversely. Then by Corollary 5.4 we can infer that the chain
μi−1 ⊂ μi ⊂ μi+1 corresponds to an abutting exchange. If all three contents
of the exchanging rods have distinct residues, then either [μi−1, μi+1] is a
chain or we would find a contradiction to the second case of Proposition 5.10.

If there are only two distinct indices among the exchanging rods then
the relative lengths of these rods determine the only possible exchange se-
quence taking μi−1 to μi+1 by Proposition 5.3. Thus, [μi−1, μi+1] is again a
chain.
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Table 1: Summary of length two interval types

#res #dis Type Exchange Skew Shape
2 2 C3 abutting One long ribbon alternating i’s and

i+ 1’s, starting and ending with i+ 1.

3 2 C3 abutting Every component is an identical ribbon
composed of one i-ribbon abutting one
i+ 1 ribbon.

3 3 B2 abutting Long ribbons contain n-translate of shor-
ter ribbons. One short ribbon occurs
independently.

4 2,3,4 B2 disjoint All ribbons are non-overlapping,
i-ribbons don’t abut i+ 1-ribbons or vice
versa. No n-translate of one ribbon type
overlaps the other.

4 4 B2 interleaving All ribbons are non-overlapping, i-ribbons
don’t abut i+ 1-ribbons or vice versa.
Some n-translate of an i-ribbon overlaps
an i+ 1-ribbon with distinct heads and
tails.

4 4 B2 nested Either all ribbons are non-overlapping, or
all longer ribbons overlap shorter ribbons
and at least one short ribbon occurs inde-
pendently NW (SE) of each long ribbon.
These two cases distinguished by compar-
ing rod lengths.

Corollary 5.12. If a strong tableau S = (μ0 ⊂ μ1 ⊂ μ2) is the result of an
abutting exchange, then μ2/μ0 is the union of ribbons with nonoverlapping
content. If every ribbon in μ2/μ0 is an identical n-translate of the first, then
the interval [μ0, μ2] is a chain.

Proof. This follows from the characterization of all abutting exchanges in
this subsection, Propositions 5.10 and 5.11.

Table 1 summarizes the discussion above characterizing all possible length
two intervals determined by two consecutive rod exchanges. Assume the
initial n-core is μ. First apply ta,b then tc,d assuming 0 < b − a < n,
0 < d − c < n, rod a longer than rod b, rod c longer than rod d, and all
4 indices appear in the smallest possible interval of Z which satisfies these
conditions. Let #res be the number of distinct residues among a, b, c, d mod
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n. Let #dis be the number of distinct rod lengths among rods a, b, c, d in
μ. The interval [μ, tcdtabμ] is either isomorphic to B2 or the chain C3 with
3 elements. The two interval types are distinguished by considering #res
and #dis or equivalently by considering the skew shape as partitions of
tcdtabμ/μ.

6. Affine dual equivalence

We now have all the ingredients to construct an analog of dual equivalence
for starred strong tableaux, which we call affine dual equivalence. Though our
equivalence relation will not share all of the properties of dual equivalence
on tableaux, we will go on in Section 7 to construct a signed colored graph
from our elementary equivalence relations that we show to be a D graph.

While the elementary equivalence relations will have a somewhat com-
plicated description, there are essentially only two cases: one that precisely
mirrors dual equivalence, and another that is a close approximation when
the former is not applicable. Remarkably, the relations also preserve the spin
statistic on starred strong tableaux.

6.1. Elementary equivalences

In this subsection, we describe a family of involutions ϕi on all starred
strong tableaux of a given shape that will define the elementary affine dual
equivalence on i−1, i, i+1. Recall that a starred strong tableau S∗ of shape
λ can be represented by a strong tableau S = (∅ ⊂ λ(1) ⊂ λ(2) ⊂ · · · ⊂ λ(m))
with λ(m) = λ and a vector c∗ = (c1, c2, . . . , cm) where ci is the content of
the cell of S∗ containing i∗. In this case, we will say the rank of S∗ is m.

Definition 6.1. Let S∗ = (S, c∗) be a starred strong tableau of rank m. Fix
1 < i < m. Consider the locations of (i−1)∗, i∗, (i+1)∗ in S∗. The i-witness,
or simply the witness when i is fixed, is chosen among {i − 1, i, i + 1} as
follows.

1. If ci−1 	= ci+1, then ci−1, ci, ci+1 are all distinct since consecutive rib-
bons cannot have heads or tails of the same content by the analysis in
Section 5.2. In this case, the witness is the index of the median of the
set {ci−1, ci, ci+1}.

2. If ci−1 = ci+1, then we have three cases to consider.

(a) If the (i − 1)-ribbons and (i + 1)-ribbons have the same length,
then i+ 1 is the witness.
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Figure 6: The witnesses from left to right are 3,1,3 demonstrating parts 2(a),
2(b) and 2(c) respectively in Definition 6.1.

(b) If the (i − 1)-ribbons and (i + 1)-ribbons have different lengths
and ci−1 > ci, then the witness is the letter indexing the longer
ribbons among the (i− 1)-ribbons and the (i+ 1)-ribbons.

(c) If the (i − 1)-ribbons and (i + 1)-ribbons have different lengths
and ci−1 < ci, then the witness is the letter indexing the shorter
ribbons among the (i− 1)-ribbons and the (i+ 1)-ribbons.

In Figure 6, we give three examples where the witness is computed using
Part (2) of Definition 6.1. Note, i − 1, i, i + 1 have been replaced by 1, 2, 3
in the examples to emphasize that we only care about 3 consecutive values
when computing the witness. The exact value of i is irrelevant.

Note that when S∗ is a Young tableau, the contents of the unique cells
containing i − 1, i and i + 1 must all be distinct, ensuring that the witness
is always the index of the median of the set {ci−1, ci, ci+1}.

Next we define the involution ϕi on starred strong tableaux that will
serve as a model for dual equivalence. Intuitively, if i and j are witnessed
by h in S∗, then an elementary dual equivalence move should be based on
the map swapi,j where {h, j} = {i−1, i+1}. This would be straightforward
but for the difficulty of defining how the stars should behave under such
an action. We obtained these rules experimentally guided by the principle
that the stars should move as little as possible while preserving the spin
statistic, always remaining in the same connected component of the union
of cells in S∗ containing i− 1, i, i+ 1 but necessarily switching which letter
they adorn whenever i 	= h. This will be the action of ϕi whenever such a
move is possible without changing the witness. However, if the interval is
a chain and the starred letters both lie in the same connected component,
then neither an interval swap nor a star swap is possible. We overcome this
challenge by exchanging saturated chains of length three.
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Definition 6.2. Fix a starred strong tableau S∗ = (S, c∗) of rank m with
1 < i < m. Let h be the i-witness for S∗. If h 	= i, then let j be defined by
{i − 1, i + 1} = {j, h}. Let Sq be the union of all q-ribbons and let Sq∗ be
the connected component of Sq containing q∗ for 1 ≤ q ≤ m. We will say Sq

nests Sp∗ if the content of every cell of Sp∗ is also the content of a cell in
Sq but no head or tail of a ribbon in Sq has the same content as the head
or tail of Sp∗ . Similarly, a connected skew shape A nests another connected
skew shape B provided the content of every cell of B is the content of some
cell of A, but the largest and smallest contents of cells in A are not the
contents of any cells in B. Let bq be the content of the ribbon tail for Sq∗ .
We will say Si and Sj are not abutting if bi, bj , (ci+1), (cj +1) have distinct
residues, otherwise Si and Sj are abutting. Let Bi and Bj be the connected
components of Si ∪ Sj containing i∗ and j∗, respectively.

Then ϕi(S
∗) is defined by the first case that applies below. N.B. The

order matters.

(6.1)

ϕi(S
∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ if i = h,

bswapi,j(S
∗) if Si and Sj are not abutting,

bswapi,j(S
∗) if Bi and Bj have different shapes

and neither nests Sh∗ ,

snakehi,j(S
∗) if bh ≡ bj and ch ≡ cj ,

bswapi,jbswapi,h(S
∗) if Si or Sj nests Sh∗ ,

doublehi,j(S
∗) if Bi or Bj nests Sh∗ ,

stari,j(S
∗) if Bi 	= Bj but they have

the same shape.

Here the map ϕi depends on four types of ribbon swaps: basic swap,
snake swap, double swap, and star swap. Each of these maps are defined
below with an example on starred strong tableaux. One can already observe
that for every starred strong tableau of rank m at least one of the conditions
for ϕi must be met whenever 1 < i < m.

Note that the ribbon swaps will only be well-defined under certain cir-
cumstances. We prove, in a series of lemmas following the definitions, that
the circumstances where a ribbon swap is applied in (6.1) will be precisely
the circumstances when the ribbon swap is well-defined and ϕi acts as an
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involution. The lemmas then immediately imply Theorem 6.12, which says
that ϕi : SST

∗(λ/μ, n) → SST∗(λ/μ, n) is a well-defined involution. To show
ϕi is an involution, it is essential to keep track of the witness h∗. We advise
the reader to pay careful attention to the witness in each of the ribbon swap
definitions and examples.

The basic swap, denoted bswapi,j(S
∗), is the result of an interval swap

on S and interchanging the blocks containing i∗ and j∗

bswapi,j(S
∗) = (swapi,j(S), c

∗(Bi ↔ Bj)).

For example, if n = 4 and i = 4 then ϕ4 = bswap4,5 interchanges

.(6.2)

In the left tableau, B4 is the cell of content 3 filled by 4∗ and B5 is the set
of cells with contents {−1,−2} filled by 4, 5∗. In the right tableau B5 is the
cell of content 3 and B4 is the set of cells with contents {−1,−2}. Note,
the star in the {−1,−2} block must move when applying the map in either
direction so as to return a valid starred strong tableau with a star at the
head of an i-ribbon and a j-ribbon.

A description of the operation c∗(Bi ↔ Bj) is given specifically as fol-
lows. Let dp = cp +1 for each p so that the p-ribbons in S∗ correspond with
applying the transposition tbp,dp

. Let rp = dp−bp be the length of a p-ribbon
in S∗. Let εp be the unit vector with a 1 in the p-th position. Assume p < q,
then define

(6.3)

flopq,p(c
∗) = flopp,q(c

∗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tp,q(c
∗)− rp · εp if dp ≡ dq and |Bp| < |Bq|,

tp,q(c
∗)− rq · εq if dp ≡ dq and |Bp| > |Bq|,

tp,q(c
∗) + rq · εq if bq ≡ dp and |Bp| > |Bq|,

tp,q(c
∗) + rp · εp if bp ≡ dq and |Bp| < |Bq|,

tp,q(c
∗) otherwise.

Therefore, formally we define

bswapi,j(S
∗) = (swapi,j(S), flopi,j(c

∗)).

We prove bswapi,j(S
∗) is always a valid starred strong tableau in Lemmas 6.5

and 6.6.
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Remark 6.3. Observe that flopi,j(c
∗) = ti,j(c

∗ if and only if Si and Sj are

not abutting. It might seem easier to remove this case from the definition

of a flopi,j , however, that would add extra cases later when we discuss the

case Si or Sj nests Sh∗ .

Remark 6.4. Note that when S∗ is a Young tableau, it is impossible for the

cell containing i to abut the cell containing j when h 	= i is the witness.

Therefore the required ribbon swap in this case will always be ϕi(S
∗) =

bswapi,j(S
∗) = (swapi,j(S), ti,j(c

∗)). Hence ϕi reduces to the usual elemen-

tary dual equivalence relation on Young tableaux.

The snake swap, denoted snakehi,j(S
∗), is the result of moving the stars

on all three ribbons i−1, i, i+1 while keeping the underlying strong tableau

fixed. If i− 1 is the witness, the moves are based on the permutation 231 =

t12t23; if i+1 is the witness, the moves are based on the permutation 312 =

t23t12. Either way, j will become the i-witness of snakehi,j(S
∗). Assuming h

is the witness, then

(6.4)

snakehi,j(S
∗) =

{
(S, ti,jti,h(c

∗)− rj · εi + rh · εh) if (cj < ci) xor (i < j),

(S, ti,jti,h(c
∗) + ri · εi − ri · εh) otherwise.

We will show in the proof of Theorem 6.12 that snakehi,j is only applied

when Si∪Sj and Si∪Sh are both single connected ribbons so [λ(i−2), λ(i+1)]

is a chain by Proposition 5.11. When h = i + 1, the stars move away from

the diagonal of content ch along these ribbons and when h = i− 1 the stars

move in toward the diagonal of content ch along these ribbons. The star

on the witness toggles between h and j by sliding along the diagonal with

content ch. For example, if n = 2 and i = 3, then ϕ3 = snake43,2 maps

.

The inverse map is given by snake23,4 applied to the tableau on the right.

The double swap, denoted doublehi,j(S
∗), is the result of two interval

swaps on S and another “almost permutation” of the three relevant indices

in the content vector. Precisely,

doublehi,j(S
∗) =

{(
swapi,jswapi,h(S), ti,jti,h(c

∗) + rh · εh
)

if bh ≡ bj ,(
swapi,jswapi,h(S), ti,jti,h(c

∗)− rh · εi
)

if ch ≡ cj .
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Since doublehi,j is only applied when Bi or Bj nests Sh∗ but neither Si or
Sj nests Sh∗ , we can conclude that the nesting block is a ribbon and that
Sj contains a cell with the same content as either the head or tail of Sh∗

by considering all possible rank 2 abutting rod exchanges. Thus, when its
applied either bh ≡ bj or ch ≡ cj . For example, if n = 3 and i = 4, then ϕ4

interchanges the following tableaux via double swaps:

.

The star swap, denoted stari,j(S
∗), is the result of moving the star on i∗

to the adjacent j-ribbon and vice versa while keeping the underlying strong
tableau fixed. To be precise, if Bi and Bj are distinct and both Bi and Bj

contain both an i and j-ribbon, then both blocks have the same shape by
Proposition 5.10 and Proposition 5.11. Say f is the offset of the contents of
Bj from Bi, so ci + f is the content of the head of the i-ribbon in Bj and
cj − f is the content of the head of the j-ribbon in Bi. Then

stari,j(S
∗) = (S, c∗ + f · εi − f · εj).

For example, if n = 4 and i = 6, then ϕ6 = star6,7 interchanges

.

6.2. A well-defined involution

Given the complicated definition of the affine dual equivalence relations, it
is not obvious that ϕi is well-defined, much less that it is an involution.
Our next task is to establish these two facts. In the course of doing so, we
provide many more examples of the action of ϕi, though in the interest of
space only the relevant cells in the strong tableaux are shown. Since the
argument involves many details, it may comfort the reader to know that
the conclusion of this subsection Theorem 6.12 has also been verified by
computer using the techniques from Section 7.

For each of the following lemmas and proofs, we assume all of the nota-
tion from Definition 6.2. In particular, assume 1 < i < m, and let S∗ be a
starred strong tableau with i-ribbons in the skew shape Si, j-ribbons in the
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shape Sj , the block Bi is the connected component of Si ∪ Sj containing i∗,
etc. We can assume i 	= h throughout the proofs, otherwise ϕi(S

∗) = S∗ by

definition.

Lemma 6.5. Assume i 	= h and that Si and Sj are not abutting. Then

bswapi,j(S
∗) is a valid starred strong tableau that satisfies the same assump-

tions and bswapi,jbswapi,j(S
∗) = S∗.

Proof. In this case, a swapi,j(S) is well defined and bi, bj , di, dj are all dis-

tinct mod n by the classification of rod exchanges for rank 2 intervals
in Section 5.2. Unless Si and Sj come from an interleaving rod exchange

with some i-ribbon nested in an i + 1-ribbon or vice versa, the interval
swap will simultaneously change all i’s to j’s and conversely. Therefore

ϕi(S
∗) = bswapi,j(S

∗) = (swapi,j(S), ti,j(c
∗)) is a well-defined starred strong

tableau with stars in the original cells in S∗, though now adorning the op-
posite letter among {i, j} from before. When Si and Sj come from an inter-

leaving rod exchange with some i-ribbon nested in an i + 1-ribbon or vice
versa, then the interval swap will change all entries in the shorter ribbon

appearing independently as well as entries in the longer ribbon not on the
same content as a shorter ribbon. In particular, the shape of the blocks Bi

and Bj remains unchanged. Therefore bswapi,j(S
∗) is again a valid starred

strong tableau. In this case, the star adorning the longer ribbon remains in
place, and the star adorning the shorter ribbon remains if the shorter ribbon

is not nested in a longer, otherwise it slides one position along the diagonal;
see Figure 7 for an example.

Consequently, in order to show ϕi is an involution in this case, it remains
only to show that h remains the witness after applying bswapi,j . Since the

effect on the content vector is merely to interchange ci and cj , the result
follows provided ch 	= cj . However, the contrary case forces an i-ribbon to

abut both the i−1-ribbon and i+1-ribbon with heads on content ci−1 = ci+1.
This would force the tail of the i-ribbons to be on the next diagonal in order
to create a valid skew shape, contradicting the assumption that Si and Sj

are not abutting. Hence, bswapi,j is an involution in this case.

Henceforth, we can assume that Si and Sj are abutting, and thus both

Bi and Bj must have ribbon shape by Corollary 5.12.

Lemma 6.6. Assume i 	= h and that Si and Sj are abutting. Further assume

that Bi and Bj have different ribbon shapes but neither nests Sh∗. Then T ∗ =
bswapi,j(S

∗) is a starred strong tableau that satisfies the same assumptions
and bswapi,j(T

∗) = S∗.
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Figure 7: The action of ϕi when Si and Sj are nested, hence not abutting.

Figure 8: The action of ϕi when Si ∪ Sj is abutting and Sh is not nested.

Proof. Since Bi and Bj have different shapes, the map swapi,j will toggle
between each block containing only one letter and exactly one of these blocks
containing both letters as shown in Figure 8. By Proposition 5.10 one can
deduce how the stars move in the blocks Bi and Bj in order to adorn the
other letter. These moves are summarized in the function flopi,j(c

∗). Hence,
T ∗ = ϕi(S

∗) = bswapi,j(S
∗) is a well defined starred strong tableau. Fur-

thermore, by inspection we have that bswapi,j(T
∗) = S∗. Thus, ϕi(S

∗) is an
involution provided h is also the i-witness of T ∗.

Observe that the only way for the witness to change is if h∗ lies on a di-
agonal within a block containing both i’s and j’s, and h∗ lies weakly between
their respective heads. Let I and J be the abutting i-ribbon and j-ribbon in
the block overlapping h∗. By Proposition 5.8, consecutive ribbons may not
have partially overlapping contents. Therefore if an h-ribbon has content
overlapping an i-ribbon, one of the two must be nested. By assumption, Sh∗

is not nested inside either Bi or Bj , hence is not nested in I. On the other
hand, if h-ribbons nest i-ribbons, then they must also nest j-ribbons, oth-
erwise a swapi,h(S) is possible and will leave i-ribbons and j-ribbons with
partially overlapping contents, again contradicting Proposition 5.8. There-
fore h-ribbons and i-ribbons may not have overlapping contents, so the cell
containing h∗ must overlap J in content.

If J lies southeast of I, this forces the h∗-ribbon to overlap I or be
nested in J , neither of which is possible. Thus J must lie northwest of
I, hence the head of the h-ribbon is forced to have the same content as
the head of J . Furthermore, the h∗-ribbon must be longer than J since by
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Figure 9: The action of ϕi when i−1-ribbons and i+1-ribbons share a head
and tail.

assumption h-ribbons are not nested in I ∪ J . Therefore when h∗ and j∗ lie
on the same diagonal, h remains the i-witness for ϕi(S

∗) using part (2) of
Definition 6.1.

Lemma 6.7. Assume i 	= h and that ch ≡ cj and bh ≡ bj. Then snakehi,j(S
∗)

is a well-defined starred strong tableau that satisfies the same assumptions
with the roles of h and j reversed and snakeji,h(snake

h
i,j(S

∗)) = S∗.

Proof. Recall the notation dp = cp + 1 so that the p-ribbons in S∗ corre-
spond with applying the transposition tbp,dp

for each p. By the assumptions
then, tbi−1,di−1

= tbi+1,di+1
as affine permutations. By Corollary 5.6, S∗ is

associated to a transposition sequence (tb1d1
→ tb2d2

→ · · · → tbmdm
). In or-

der for tbi−1di−1
→ tbidi

→ tbi+1di+1
to be a valid consecutive triple in the

transposition sequence, tbidi
must not commute with the other two. Hence

at least one i+1-ribbon completely overlaps some i−1-ribbon, sharing both
a head and tail, and i-ribbons must abut each such pair from both sides.
By Proposition 5.11, this means Si ∪Sj and Si ∪Sh are both ribbons, hence
snakehi,j is well-defined on S∗.

By inspecting (6.4), we see that T ∗ = snakehi,j(S
∗) is a starred strong

tableau on the same underlying strong tableau S with j as its i-witness, so
ϕi(T

∗) = snakeji,h(T
∗) = S∗. For example, see Figure 9.

Henceforth, we will assume that Si and Sj are abutting and either ch 	≡ cj
or bh 	≡ bj . The next case to consider is whenBi orBj nests Sh∗ , including the
possibility that Si or Sj nests Sh∗ . Note that if Bi = Bj , then Bi necessarily
nests Sh∗ in order for h to be the witness. The following technical lemma
will be useful.

Lemma 6.8. Assume i 	= j, Si and Sj are abutting, either ch 	≡ cj or bh 	≡
bj, and Bi or Bj nests Sh∗. Then, some connected component of Sh∪Si∪Sj

is a single h-ribbon.
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Proof. If some h-ribbon is nested in an i-ribbon, then the claim follows
immediately from Lemma 5.9. Similarly, one can also show that if some
h-ribbon is nested in a j-ribbon, then the claim follows by examining the
relative rod lengths in the exchanges. So, assume that some connected com-
ponent of Si∪Sj contains both i’s and j’s and nests an h-ribbon. By Propo-
sition 5.8, we may further assume that the nested h-ribbon shares a head
or tail with the j-ribbon. Necessarily the h-ribbon and j-ribbon must both
abut an i-ribbon on the diagonal of shared content in the strong tableau.
Therefore we have one of the following two types of transposition sequences
corresponding to the i−1, i, i+1 ribbons in S∗, drawn schematically assum-
ing a < b < c < d ≤ a+ n.

(6.5)

To ease notation we assume h = i−1 and j = i+1 and we are doing the
rod exchange on the left in (6.5), noting that the other cases are completely
analogous. In this case, analyzing the transposition sequence tb,c → ta,b →
tb,d shows that initially the length of rod(b) cannot be weakly between the
lengths of rod(a) and rod(d) or else the transpositions don’t each increase
the rank by exactly one at each step. Furthermore, the length of rod(b)
cannot be less than the length of rod(d) because otherwise there would be
no i+1-ribbon with content overlapping any i−1-ribbon by the definition of
a transposition sequence from Definition 5.5 and Corollary 5.6 contradicting
the assumption that some connected component of Si ∪ Sj contains both
i’s and j’s and nests an h-ribbon. Therefore, the length of rod(b) is strictly
greater than the length of rod(a) so, by Corollary 5.6 again, there must an
i− 1-ribbon occurring independently from all i, i+ 1-ribbons.

Lemma 6.9. Assume i 	= h, that Si and Sj are abutting, and either ci−1 	≡
ci+1 or bi−1 	≡ bi+1. Further assume that Si or Sj nests Sh∗. Then U∗ =
ϕi(S

∗) = bswapi,jbswapi,h(S
∗) is a starred strong tableau that satisfies the

same assumptions except with the roles of j and h reversed. Furthermore,
ϕi(U

∗) = S∗.

Proof. By Lemma 6.8, we know some h-ribbon appears independently from
all i-ribbons. So by Proposition 5.11, the interval corresponding to the i, h-
ribbons in the n-core poset is not a chain. Therefore, T = swapi,h(S) is a
valid strong tableau. Similarly, in T , some i-ribbon appears independently
of all j-ribbons, making U = swapi,j(T ) well defined. In each case, the swap
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is just applying a nested ribbon exchange. Thus, we observe that T ∗ =
bswapi,h(S

∗) is a valid starred strong tableau. Similarly, some i-ribbon in
T ∗ appears independently of all j-ribbons in T ∗, making U∗ = bswapi,j(T

∗)
well defined. The contents of the stars on h, i, j, will simply be permuted
since each basic swap is just applying a nested ribbon exchange. Therefore,
in U∗ the i-witness is j, Si and Sh are abutting and Sh or Si must nest Sj∗ so
ϕi applied to U∗ is applied according to the same case as S∗. Since bswapi,j is
an involution when it can be applied, it clearly follows that ϕi(U

∗) = S∗.

Lemma 6.10. Assume i 	= h, that Si and Sj are abutting, and either ci−1 	≡
ci+1 or bi−1 	≡ bi+1. Further assume that Bi or Bj nests Sh∗ but neither Si

nor Sj nests Sh∗. Then U∗ = doublehi,j(S
∗) is a valid starred strong tableau

that satisfies the same assumptions except with the roles of j and h reversed.
Furthermore, doubleji,h(U

∗) = S∗.

Proof. Similar to the proof of Lemma 6.9, we know that both T = swapi,h(S)
and U = swapi,j(T ) are valid strong tableaux. However, each of these swaps
are abutting exchanges instead of nested exchanges. The final result of
swapi,j(swapi,h(S)) is much like a single interval swap in the case of nested
i, i+ 1-ribbons: all independently occurring h’s change to j’s and all letters
of Si ∪ Sj not on the same diagonal as an h will change with i’s becom-
ing h’s and j’s becoming i’s; for example, see Figure 10. The shape and
contents of the nested ribbon remains the same, but these are j-ribbons in
swapi,j(swapi,h(S)). Therefore, U

∗ = doublehi,j(S) is a well-defined starred
strong tableau with a star placed at the head of some p-ribbon for each p.
The effect of ϕi on the content vector for S∗ is an involution by inspection.
Since j-ribbons are now nested in U∗, we only need to show j becomes the
i-witness in U∗ in order to prove ϕi is an involution on such an S∗. This
will clearly be the case so long as ch 	= cj both before and after applying
doublehi,j . Assuming ch = cj , an i-ribbon will be forced to lie southeast of Sh∗

and Sj∗ by the definition of the witness. However, after applying ϕi(S
∗), h-

ribbons and j-ribbons will share a tail instead, so the witness indeed changes
as desired.

Lemma 6.11. Assume i 	= h, that Si and Sj are abutting, and either ci−1 	≡
ci+1 or bi−1 	≡ bi+1. Further assume that Bi and Bj have the same shape but
lie on distinct content diagonals, each have ribbon shape, and neither nests
Sh∗. Then T ∗ = stari,j(S

∗) is a valid starred strong tableau that satisfies the
same assumptions. Furthermore stari,j(T

∗) = S∗.

See Figure 11 for an example.
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Figure 10: The action of ϕ2 = doublehi,j when Si∗ ∪ Sj∗ nests Sh∗ .

Figure 11: The action of ϕi when h∗ overlaps Si∗ ∪Sj∗ without being nested.

Proof. The result of a star swap is clearly a valid starred strong tableau. We
only need to prove that the i-witness of T ∗ is still h so it satisfies the same
conditions when ϕi is applied, proving it is an involution.

Since blocks Bi and Bj have the same shape by assumption, both blocks
contain i’s and j’s. The only way for the witness to change is if h∗ lies on
a diagonal within a block containing both i’s and j’s, and h∗ lies weakly
between their respective heads. The proof that h remains the witness is the
same as the argument at the end of the proof of Lemma 6.10.

We have covered every case in the definition of ϕi from (6.1). The fol-
lowing theorem now follows directly from the previous 7 lemmas.

Theorem 6.12. For each 1 < i < m, the map ϕi is a well-defined involution
on all starred strong tableaux of a fixed n-core λ of rank m.

Remark 6.13. The cases in (6.1) partition the set of all starred strong
tableaux into 7 distinct ϕi-types. From the lemmas, we observe that the
type of S∗ and ϕi(S

∗) is always the same.

6.3. Preservation of spin

Next we show that the involution ϕi has the added feature of preserving the
spin statistic. Recall from (3.2) that spin is defined by

spin(S∗) =
∑
i

n(i) · (h(i)− 1) + d(i∗),
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where n(i) is the number of i-ribbons, h(i) is the height of an i-ribbon and
d(i∗) is the depth of the starred i-ribbon. We will show that ϕi preserves
the spin by tracking the contribution for i− 1, i and i+ 1.

Proposition 6.14. For any starred strong tableau S∗, we have spin(ϕi(S
∗))=

spin(S∗).

Proof. Recall the notation from Definition 6.2. Assume i 	= h. If Si and Sj

are disjoint, interleaving or nested with non-overlapping content, then ϕi

acts by simultaneously replacing all i’s with j’s and conversely. The contri-
bution to spin for ribbons other than i, j is unchanged, and these two swap
contributions, thereby preserving the statistic. If any two ribbons of Si and
Sj are nested with overlapping contents, then recall that ϕi does not change
the shape of the shorter ribbon nor the height (nor width) of the longer
ribbon, and the stars remain on the same diagonals. This ensures that con-
tributions to spin for i and j are exchanged, and all other contributions are
unchanged.

We may now assume that Si and Sj are abutting for the remainder of
the proof. If ϕi acts by stari,j , then this affects only the depths of i∗ and
j∗. We claim d(i∗) + d(j∗) is preserved since every connected component of
Si ∪ Sj inclusively between Bi and Bj have the same shape when stari,j is
applied. Hence, ϕi again preserves spin.

The remaining ϕi-types are more complicated, so they will be covered
separately in Lemmas 6.15, 6.16, 6.17, and 6.18.

Lemma 6.15. Assume i 	= h and that Si and Sj are abutting. Further
assume that Bi and Bj have different ribbon shapes but neither nests Sh∗.
Then ϕi(S

∗) = bswapi,j(S
∗) and spin(ϕi(S

∗)) = spin(S∗).

Proof. Recall from the proof of Lemma 6.6 that each connected component
of Si ∪ Sj is a ribbon, in particular one of Bi and Bj is a longer ribbon
containing an n-translate of the shorter. Let nl and ns denote the number
of the longer ribbons and shorter ribbons in Si ∪ Sj , respectively, and let
hl and hs denote their respective heights. Let dl be the number of longer
ribbons northwest of the starred long ribbon, and similarly let ds denote the
number of shorter ribbons northwest of the starred short ribbon.

Supposing that the connected components of Si ∪ Sj each contain a
unique letter, the contributions for i and j to spin are

spinS∗(i) = ns(hs − 1) + ds,(6.6)

spinS∗(j) = nl(hl − 1) + dl.(6.7)
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On the other hand, letting T ∗ = bswapi,j(S
∗), some connected component

of Ti ∪ Tj contains both i’s and j’s. By Proposition 5.10, this implies that
in every component containing both letters, the smaller entries are south of
the larger entries if and only if the shorter ribbons appear independently to
the southeast. Armed with this observation, we conclude that if the longer
ribbon among Bi and Bj contains both i’s and j’s, then the contribution to
spin for i and j in T ∗ is

spinT ∗(i) = (ns + nl)(hs − 1) + (ds + εnl),(6.8)

spinT ∗(j) = nl(hl − hs + (1− ε)− 1) + dl,(6.9)

where ε is 1 if the shorter ribbons appear independently southeast of the
longer (equivalently, the larger entry abuts the shorter from the north),
and 0 if the shorter ribbons appear independently northwest of the longer
(equivalently, the smaller entry abuts the larger from the west). Noting the
equality between (6.6) plus (6.7) and (6.8) plus (6.9) shows spin is once
again preserved.

Lemma 6.16. Assume i 	= h and that ch ≡ cj and bh ≡ bj. Then ϕi(S
∗) =

snakehi,j(S
∗) and spin(ϕi(S

∗)) = spin(S∗).

Proof. When ϕi acts by snakehi,j , then the difference spin(S∗)− spin(ϕi(S
∗))

only depends on the change in depth for h∗, i∗, j∗ since both S∗ and ϕi(S
∗)

have the same underlying strong tableau. Furthermore, we have that i− 1-
ribbons and i + 1-ribbons both have length n minus the length of an i-
ribbon. In this case, there is one more i + 1-ribbon than i-ribbon and one
more i-ribbon than i − 1-ribbon. Using the intuitive definition of snakehi,j
following (6.4) we see that moving the witness from i− 1 to i+ 1 increases
the depth of the witness by one, and similarly moving from i + 1 to i − 1
decreases the depth by one. As the stars on i and j move in or out along
their respective ribbons, one star necessarily moves to an abutting ribbon
joined on an east/west edge and the other star moves to abutting ribbon
joined on a north/south edge. Moving a star across a north/south edge will
not change the depth of the star, but moving a star across an east or west
edge will increase or decrease the depth by one, respectively, canceling the
contribution from moving the witness. Therefore the total contribution to
spin from i− 1, i, i+ 1 remains the same after applying snakehi,j .

Lemma 6.17. Assume i 	= h, that Si and Sj are abutting, and either
ci−1 	≡ ci+1 or bi−1 	≡ bi+1. Further assume that Si or Sj nests Sh∗. Then
spin(ϕi(S

∗)) = spin(S∗).
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Figure 12: An example of ϕi acting via ϕi = doublehi,j .

Proof. This follows from Lemma 6.15 where bswapi,j is shown to preserve

spin.

Lemma 6.18. Assume i 	= h, that Si and Sj are abutting, and either ci−1 	≡
ci+1 or bi−1 	≡ bi+1. Further assume that Bi or Bj nests Sh∗ but neither Si

nor Sj nests Sh∗. Then ϕi(S
∗) = doublehi,j(S

∗) and spin(ϕi(S
∗)) = spin(S∗).

Proof. We may assume, from the analysis in Lemma 6.10, that some h-

ribbon and j-ribbon share a head or tail. Also from Lemma 6.10, some h-

ribbon must appear independently of all i-ribbons. Furthermore, by Propo-

sition 5.10, if i- or j-ribbons appear independently of the other, then they

do so on the opposite side of abutting i- and j-ribbons from h-ribbons. Sup-

posing first that the combined lengths of an i-ribbon plus a j-ribbon is less

than n, reading from northwest to southeast or from southeast to northwest

one sees isolated h-ribbons followed by abutting i- and j-ribbons nesting

h-ribbons. There are then three options for what follows: isolated j-ribbons;

isolated abutting i- and h-ribbons; or no further i-, j- or h-ribbons. For ex-

ample, see Figure 12. Note that, in particular, S∗ has isolated j-ribbons if

and only if doublehi,j(S
∗) has isolated abutting i- and h-ribbons.

To assess the contributions to spin, assume that S∗ has no isolated abut-

ting i- and h-ribbons, as in the right hand side of Figure 12. Let hw and

dw denote the height and depth of the starred h-ribbon, respectively, and

let nw denote the number of isolated witness ribbons. For the example, we

have nw = 1, hw = 1, dw = 0. Let nl be the number of i-ribbons, each with

height hl and the starred one with depth dl. Let ns be the number of isolated

j-ribbons, and let hs and ds denote the height and depth, respectively, of

j-ribbons. For the example, we have nl = 2, hl = 2, dl = 1 and ns = 1,

hs = 2, ds = 0.

The contribution to spin from i−1, i, i+1 in S∗, where S∗ has no isolated

abutting i- and h-ribbons, is given by
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spinS∗(h) = (nl + nw)(hw − 1) + dw,(6.10)

spinS∗(i) = nl(hl − 1) + dl,(6.11)

spinS∗(j) = (nl + ns)(hs − 1) + ds.(6.12)

Following the description of how doublehi,j acts on these ribbons, we may
similarly compute the contributions of i − 1, i, i + 1 to the spin of T ∗ =
doublehi,j(S

∗). With h and j defined relative to T ∗, we have

spinT ∗(h) = (nl + nw + ns)(hw − 1) + (dw + εns),(6.13)

spinT ∗(i) = (nl + ns)(hs − hw + (1− ε)− 1) + ds,(6.14)

spinT ∗(j) = nl(hl + hw − (1− ε)− 1) + dl,(6.15)

where, similar to before, ε is 0 if the witness originally existed only to the
left of abutting i- and j-ribbons and 1 otherwise. Adding the contributions
in either case miraculously yields the same result, thereby showing that the
spin statistic is preserved.

If i-ribbons and j-ribbons have lengths adding to n, we regard the abut-
ting i- and j-ribbons which together nest an h-ribbon as abutting pairs, and
the leftover max(i, j)-ribbon as isolated. For example, in Figure 10, we re-
gard the left side as having 1-ribbons abutting 2-ribbons from the west with
an isolated abutting 2-ribbon and 3-ribbon to the northwest, and the right
side we regard as having 2-ribbons abutting 3-ribbons from the west with an
isolated 3-ribbon to the northwest. That is to say, Figure 10 is the same as
Figure 12 for the purposes of calculating spin. In this case, note that S∗ has
no isolated abutting i- and h-ribbons precisely when h = i− 1. Moreover, in
this case we always have ns = 1. With this alteration, the analysis of spin
is precisely as before, again showing that spin is preserved.

The results in Theorem 6.12 and Proposition 6.14 naturally extend to
skew partitions as well since the proofs only involve intervals of rank 3 in
the n-core poset.

Theorem 6.19. Let μ ⊂ ν be n-cores of lengths �(μ) = p and �(ν) = q.
Then, for p < i < q, the map ϕi is a well-defined, spin preserving, involution
on all starred strong skew tableaux for ν/μ. In particular, spin is constant
on affine dual equivalence classes.

7. A graph on starred strong tableaux

In this section, we construct a vertex-signed, edge-colored graph from our
elementary affine dual equivalence map ϕi. The main goal of this section
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is to show that this graph is, in fact, an LSP2 graph by Definition 4.5.
In order to establish this, we introduce two operations on starred strong
tableaux which together show that there are only finitely many isomorphism
types for 2-colored connected components. The reduction to finitely many
isomorphism types can be viewed as an (incomplete) analog of the jeu de
taquin algorithm for starred strong tableaux. This analogy is summarized
in Remark 7.12.

Definition 7.1. For an n-core ν, the affine dual equivalence graph G(n)
ν is

the signed, colored graph with vertex set Vν given by the set of all starred
strong tableaux S∗ of shape ν, with signature function σ(S∗) obtained from
the reading word on the starred letters in S∗, and for each 1 < i < �(ν),
the set of i-colored edges, Ei, is the set of all pairs {S∗, ϕi(S

∗)} such that
S∗ 	= ϕi(S

∗). This definition also extends to skew shapes ν/μ in the n-core
poset. For S∗ ∈ SST∗(ν/μ, n), let [S∗] denote the connected component of

the affine dual equivalence graph G(n)
ν/μ containing S∗.

For example, for n = 3 and μ = (5, 3, 1) the affine dual equivalence graph
is shown on page 395.

Recall that ϕi is an involution which preserves the spin statistic by The-
orem 6.19. In order to justify our terminology of affine dual equivalence. We
want to prove that the graph induced by these involutions satisfies Axioms
1, 2, 3, 5 from Definition 4.2 and local Schur positivity on all two adjacent
colored connected components. Thus each affine dual equivalence graph is
LSP2. The key will be reducing local Schur positivity to a finite verification.
The reduction is achieved with the help of flattening rows and squashing
and/or cloning columns.

7.1. The flattening map

Here we define an iterative procedure to flatten an n-core partition down
to an m-core partition for any 1 ≤ m < n. We will extend this procedure
to starred strong tableaux in a way that commutes with the affine dual
equivalence involutions.

Definition 7.2. For any m+1-core λ and any 1 ≤ d ≤ m+1, define λ(d) to
be the unique partition associated to the binary string obtained by removing
all beads and spacers with content congruent to d modulo m + 1 from the
abacus of λ. In particular, λ(d) is an m-core.

We note that the above definition makes sense in light of Remark 5.1 and
the characterization of n-cores in terms of the n-rod abacus. For example,
regarding (7, 4, 4, 2, 2) as a 4-core, (7, 4, 4, 2, 2)(2) is the 3-core (6, 4, 2).
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Remark 7.3. For n-cores μ ⊂ ν, if some transposition sequence from μ to ν
leaves rod d fixed then every transposition sequence from μ to ν leaves rod d
fixed. This follows from the observation that any saturated chain from μ to
ν can be obtained from any other by some sequence of interval exchanges,
none of which may change which rods are fixed.

Proposition 7.4. Let μ ⊂ ν be m + 1-cores such that some (equivalently,
every) transposition sequence from μ to ν fixes rod d. Then the interval [μ, ν]
in the m+1-core poset is isomorphic to [μ(d), ν(d)] in the m-core poset. This
isomorphism extends to a bijection on skew strong tableaux which preserves
the number of i-ribbons for each i.

Remark 7.5. Proposition 7.4 can be used in reverse: given μ < ν in the
m-core poset, we can lift the interval [μ, ν] to an isomorphic interval in the
m+ 1-core posets with the same nice implications on strong tableaux. This
map is implemented by using the inverse procedure of adding in an extra
rod between any two existing rods. This can be done precisely when the
length of the inserted rod never has length weakly between the length of
two interchanging rods. For instance, we may always take the rod to be
longer than all other rods or shorter than all other rods.

Proof. Since the length of rod d for each m+ 1-core λ in the interval [μ, ν]
is constant, the covering relations in the m+1-core poset restricted to [μ, ν]
depend on rod d only in the sense that it must not have length weakly
between that of the two exchanging rods, covering relations in mapping
[μ, ν] down to the m-core poset are preserved. Since rod d is fixed in every
transposition sequence from μ to ν, the map from λ to λ(d) is surjective on
the interval [μ(d), ν(d)].

Conversely, given any m-core γ ∈ [μ(d), ν(d)], we can lift it to an m+ 1-
core by reversing the procedure. The reverse procedure is injective and also
preserves the covering relations. Hence the intervals are isomorphic.

The bijection on skew strong tableaux is obtained in the obvious way,
by mapping the saturated chain

S = (μ = μ0 ⊂ μ1 ⊂ μ2 ⊂ · · · ⊂ μk = ν)
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to the chain

S(d) = (μ(d) = μ
(d)
0 ⊂ μ

(d)
1 ⊂ μ

(d)
2 ⊂ · · · ⊂ μ

(d)
k = ν(d)).

To see that this bijection preserves the number of i-ribbons, recall from
Corollary 5.4 that the number of i-ribbons of a strong tableau is equal to
the difference in length of the interchanging rods taking λi−1 to λi. Since
the map from m + 1-cores to m-cores preserves the relative lengths of all
rods other than rod d, this number is clearly preserved.

By Proposition 7.4, the following map is well defined.

Definition 7.6. Let μ ⊂ ν be m + 1-cores such that some (equivalently,
every) transposition sequence from μ to ν does not touch rod d. Define the
flattening map

fld : SST∗(ν/μ,m+ 1) −→ SST∗(ν(d)/μ(d),m)

sending S∗ ∈ SST∗(ν/μ,m + 1) to the underlying strong tableau S(d) with
the stars placed on each i-ribbon in such a way as to preserve the depth.

Note that the flattening map does not, in general, preserve the spin
statistic because it can shorten the height of ribbons.

Proposition 7.7. Let μ ⊂ ν be m + 1-cores such that some transposi-
tion sequence from μ to ν does not touch rod d. The flattening map fld :
SST∗(ν/μ,m + 1) −→ SST∗(ν(d)/μ(d),m) is a bijection preserving the sig-
nature of a starred strong tableau and it commutes with the involutions ϕi

for all 1 < i < �(ν)− �(μ).

Proof. To see fld preserves the signature σ(S∗), recall from Definition 5.5
and Corollary 5.6 that the content of i∗ is determined by an excess bead on
the longer rod in the ith exchange on the n-rod abacus. Since the relative
order among the beads on the abacus is unchanged by the procedure in
Definition 7.2, the contents of i∗, (i+ 1)∗ will form a decent in σ(S∗) if and
only if there is a corresponding descent in σ(fld(S

∗)). This proves σ(S∗) =
σ(fld(S

∗)).
To show fld(ϕi(S

∗)) = ϕi(fld(S
∗)), simply note that the cases in the defi-

nition of ϕi depend only on the types of rod exchanges in the corresponding
3-interval of the m+ 1 or m-core poset respectively. But, the relative order
among the endpoints of the exchanging rods and the isomorphism type of
the interval are persevered by the flattening map. Hence the flattening map
and the involution commute.
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Corollary 7.8. Let μ ⊂ ν be n-cores with ν lying r ranks above μ. If
2r < n, then for m = 2r, there exists m-cores μ̂ ⊂ ν̂ such that there exists
a bijection from SST∗(ν/μ, n) to SST∗(ν̂/μ̂,m) that preserves the signature
and commutes with the involutions ϕi for all 1 < i < �(ν) − �(μ). Thus,
the affine dual equivalence graphs of ν̂/μ̂ and ν/μ are isomorphic as signed
colored graphs.

Proof. If rank(ν) − rank(μ) = r, then every transposition sequence from μ
to ν has exactly r elements and at most 2r distinct subscripts. Therefore, by
Proposition 7.4, we can find an interval isomorphic to [μ, ν] in the m-core
poset after removing all fixed rods on this interval. This isomorphism pre-
serves the number of i-ribbons for each i. Thus, it extends to an isomorphism
from SST∗(ν/μ, n) to SST∗(ν̂/μ̂,m) by requiring the depth of the starred i-
ribbon to be constant under this map for each i. The length of the i-ribbons
and the contents of the i-ribbons can change under this bijection. However,
the relative order among the contents of the ribbons will not change since
the depth is preserved and the length differences of the remaining rods are
exactly the same. We concluded that the signature is preserved under the
bijection. Furthermore, the conditions for the witness and for the involutions
ϕi for all 1 < i < �(ν)−�(μ) only depend on the relative order of the contents
and lengths of consecutive ribbons. These relative orders will be unchanged
by the bijection on starred strong tableaux. This allows us to conclude that
the affine dual equivalence graphs of ν̂/μ̂ and ν/μ are isomorphic as signed
colored graphs.

7.2. The cloning map

Whereas flattening removes rows of the abacus, cloning adds columns. Anal-
ogous to flattening, we will define cloning on starred strong tableaux so that
it preserves the signatures. In some cases, cloning commutes with the affine
dual equivalence operators ϕi.

Definition 7.9. For any n-core μ, define μ(j) to be the unique partition
associated to the abacus obtained by cloning the column of the n-rod aba-
cus of μ containing positions j, j + 1, . . . , j + n − 1. Specifically, let β be
the binary string encoding the abacus for μ. Then μ(j) is the abacus asso-
ciated to the string obtained from β by inserting a copy of the substring
βj , βj+1, . . . , βj+n−1 into the abacus for μ between positions j − 1 and j.

Cloning a column has the effect of extending some of the rods in the
n-rod abacus, hence μ(j) is also an n-core. To see the effect of cloning on
partitions, consider taking (5, 2, 2) regarded as a 4-core and cloning the
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column beginning with content 0. This gives (5, 2, 2)(0) = (7, 4, 4, 2, 2), as
depicted below.

Observe that for fixed μ, different values for j can lead to the same n-
core μ(j). For instance, taking any j ∈ {−4, . . . , 0} results in (5, 2, 2)(j) =
(7, 4, 4, 2, 2).

In order for flattening to preserve a covering relation in the n-core poset,
the transposition sequence simply needs to avoid the rod being removed.
The situation for cloning is more subtle. Covering relations are not always
preserved even when the replicated column is disjoint from the indexing
transposition. It is immediate from Proposition 5.3 that if tr,sμ > μ is a
covering relation in the n-core poset, then (tr,sμ)(j) covers μ(j) in the n-core
poset if and and only if for every r < h ≤ s the relative order of the lengths
of rods h, r and s is the same in both μ and μ(j). We call such a j a cloneable
index for μ ⊂ tr,sμ. More generally, j is a cloneable index for the interval
[μ, ν] provided cloning the column beginning at j of every core partition
in the interval results in another isomorphic interval in the n-core poset.
This happens if and only if no rod in the n-rod abacus representing any
element in the interval has a rightmost bead of content j, j+1, . . . , j+n−1.
Similarly, we say j is a cloneable index for S∗ ∈ SST∗(ν/μ, n) provided j is
a cloneable index for [μ, ν]. The clone of S∗, denoted clj(S

∗), is defined to be
the saturated chain obtained from S by cloning, the column beginning with
j in each n-rod abacus in the chain and leaving all the stars with content
less than j at the same depth and increasing the depth by 1 for all stars with
content at least j. Note, all i-ribbons will have the same shape in S∗ and
clj(S

∗) since the relative order of the rod lengths is unchanged by cloning a
column. See Figure 13 for example.

Observe that if S∗ ∈ SST∗(ν/μ, n) and j is a cloneable index for S∗, then
j is a cloneable index for every other starred strong tableau in SST∗(ν/μ, n)
as well since the definition of a cloneable index only depends on the interval
[μ, ν].

Definition 7.10. Assume that S∗ has a cloneable index at j and that
T ∗ = clj(S

∗) ∈ SST∗(β/α, n). Define the cloning map on components

clj : [S
∗] −→ SST∗(β/α, n)
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Figure 13: An example of the cloning map on a starred strong tableau. The
cloned cells are red in the electronic version.

by cloning each starred strong tableaux in [S∗] at the column beginning with
j. The inverse map to cloning, when it is defined, will be denoted by

sqj : [T
∗] −→ [S∗]

and we call it the squashing map.

As with the flattening map, the cloning map does not, in general, pre-
serve the spin statistic since it may alter the number of i-ribbons and/or it
may alter the depth of the starred ribbons. Nonetheless, once the cloning
map commutes with the ϕi’s on a connected component of an affine dual
equivalence graph then we can clone the same column any number of times
and get an isomorphic component.

The following proposition is the analog of Proposition 7.7.

Proposition 7.11. Assume that S∗ ∈ SST∗(ν/μ, n) has a cloneable index at
j and that T ∗ = clj(S

∗). Further assume that cloning the column beginning
at j commutes with the involutions ϕi for all 1 < i < �(ν) − �(μ) on the
component [S∗]. Then j is a cloneable index for every starred strong tableaux
in [T ∗]. Moreover, if U∗ = clj(T

∗), then clj : [T ∗] −→ [U∗] is a bijection
preserving the signature of each starred strong tableau and it commutes with
the involutions ϕi for all 1 < i < �(ν) − �(μ). Thus, [S∗] ≈ [T ∗] ≈ [U∗] as
signed, colored graphs.

Proof. The fact that j is again a cloneable index for T ∗ follows directly from
the characterization of j being a cloneable index for the interval containing
S∗ in terms of rod lengths.

To see that [T ∗] is isomorphic to [U∗] as signed colored graphs, one
must check that the affine dual equivalence maps ϕi commute with the
cloning map from [T ∗] to [U∗]. This follows since the conditions for the
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affine dual equivalence map on rank 3 intervals are unchanged at each step
by removing n consecutive content diagonals that contains no head or tail of
a starred ribbon in any of the starred strong tableaux in [U∗] and that the
cells in those n diagonals must necessarily be a copy of the next n-translate
down.

Remark 7.12. As a consequence of Propositions 7.7 and 7.11, we observe
that the process of flattening and squashing a component in an affine dual
equivalence graph as much as possible is similar to applying the necessary
jeu de taquin slides which bring together all of the connected components
in a skew tableaux by removing empty rows and columns. Note, both flat-
tening and cloning/squashing can change the spin statistic even when they
commute with affine dual equivalence on a component. Thus a complete
analog of jeu de taquin generalizing these moves would need to keep track
of powers of t separately from the algorithm.

7.3. Local Schur positivity

Our next goal is to show that there are only a small number of isomorphism
classes of connected components of rank 4 affine dual equivalence graphs.
Recall that a starred strong tableau S∗ on an interval [μ, ν] has ribbons
labeled 1, 2, . . . , �(ν)− �(μ). We say S∗ has rank r provided r = �(ν)− �(μ).
The component [S∗] of the affine dual equivalence graph on ν/μ has edges
labeled 2, 3, . . . , r − 1 and each vertex has a signature of length r − 1.

Lemma 7.13. Let S∗ ∈ SST∗(ν/μ, n) be a starred strong tableau of rank
k = 4. Then [S∗] has a Schur positive generating function. In fact, each
such [S∗] is either an isolated vertex, or a path with either 2 or 4 edges with
alternating color labels. See Figure 14.

This lemma can be proved in two ways. One approach is to do a computer
verification by identifying a set of dual equivalence classes which contain
all possible isomorphism types after flattening and squashing as much as
possible. The lisp code used for this approach can be found in

http://www.math.washington.edu/~billey/kschur/verifier.faster.lisp.

The second approach is based on the reading words of the starred strong
tableaux, see [3].

Remark 7.14. An extensive computer exploration for all possible isomor-
phism types for affine dual equivalence graphs of rank 5 was undertaken.
As of November of 2011, we have observed 326 distinct isomorphism types

http://www.math.washington.edu/~billey/kschur/verifier.faster.lisp
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Figure 14: All 7 possible isomorphism types of connected components of
affine dual equivalence graphs of rank 4.

which can be viewed in

http://www.math.washington.edu/~billey/kschur/d-graphs-11-2011.pdf.

Note for comparison, there are only 25 isomorphism types for rank 5 graphs
for LLT polynomials as defined in Section 8.

Theorem 7.15. For any pair of n-core partitions μ ⊂ ν, the affine dual

equivalence graph G(n)
ν/μ is a D graph which is locally Schur positive for 2-

colored edges and for which spin is constant on connected components.

Proof. By Proposition 6.14, the involutions ϕi preserve the spin statistic,

hence spin is constant on connected components of G(n)
ν/μ.

To prove G(n)
ν/μ is a D graph, we must verify the axioms in Definition 4.5.

Axiom 1 follows from Theorem 6.12 where ϕi is shown to be an involution
which switches the sign appropriately. Axioms 2 and 5 follow from the fact
that ϕi affects only i−1, i and i+1-ribbons. Axiom 3 and the LSP2 property

both follow from Lemma 7.13 since every connected component of G(n)
ν/μ

restricted to Ei−1 ∪Ei is isomorphic to a component of a rank 4 affine dual
equivalence graph replacing the edge labels 2, 3 by i− 1, i respectively.

http://www.math.washington.edu/~billey/kschur/d-graphs-11-2011.pdf
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Note that affine dual equivalence graphs need not satisfy Axiom 4 of
Definition 4.2. It is not known if affine dual equivalence graphs satisfy Ax-
iom 6.

8. Connections with LLT, Macdonald polynomials and
Beyond

The primary interest in k-Schur functions originally was the conjecture of
Lapointe, Lascoux and Morse that these functions straddle the gap between
Macdonald polynomials and Schur functions. That is, when μ is a k-bounded
partition, they conjecture

(8.1) Hμ(X; q, t) =
∑
ν≤μ

K(k)
ν,μ(q, t) s

(k)
ν (X; t),

where K
(k)
ν,μ(q, t) ∈ N[q, t], and

(8.2) s(k)ν (X; t) =
∑
λ≤ν

C
(k)
λ,ν(t) sλ(X),

where C
(k)
λ,ν(t) ∈ N[t].

The Macdonald polynomials, the LLT polynomials, and the k-Schur
functions using the definition given in this paper, expand positively in the
basis of fundamental quasisymmetric functions with indexing sets based on
generalized tableaux. See [10] for details on the Macdonald and LLT ex-
pansions. We now have a signed colored graph structure on the generalized
tableaux in each case by the construction in [2] and Theorem 7.15. It is an
open problem to describe how these graphs relate to each other. Toward
finding such a connection, we have identified a D graph isomorphism θ be-
tween the graph of starred strong tableaux on the 2-core (m,m − 1, . . . , 1)
and the graph of standard filling of the m-tuple ((1), . . . , (1)) each embedded
at content 0. Furthermore,

(
m
2

)
− spin(S∗) = inv(θ(S∗)).

In fact, for any family of functions expressible in terms of fundamental
quasisymmetric functions which are conjectured to be Schur positive, one
can look for a signed-colored graph structure or analog of dual equivalence
on the indexing set which refines the Schur positivity question to connected
components. Another example of this phenomena arises in the work of Loehr
and Warrington [25]. They showed that the plethysm of two Schur functions
has a nice expansion in terms of fundamental quasisymmetric functions in-
dexed by a family of objects in analogy with standard tableaux. Is there a
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Figure 15: The poset of 3-cores lying below (5, 3, 1), with edge weights giving
the spin contributions of possible starrings.

nice signed-colored graph structure for these objects? Also, the Stanley sym-
metric functions are indexed by reduced expressions for permutations and
expand positively in terms of both fundamental quasisymmetric functions
and Schur functions. Is there a family of standard objects and an analog of
a dual equivalence graph that goes with the Stanley symmetric functions?

Appendix A. Examples

In this appendix we give the quasisymmetric and Schur expansion for the

k-Schur function s
(2)
(2,2,1). We compute this using the interval [∅, (5, 3, 1)] of

the 3-core poset (Figure 15) and the corresponding D graph on all starred
strong tableaux of shape (5, 3, 1) regarded as a 3-core (Figure 16).

Thus, we obtain from Figure 16 that

s
(2)
(2,2,1) = Q−+−− + Q−−+− + t Q++−− + (1 + t) Q+−−+

+ (2t+ t2) Q−++− + (1 + 2t+ t2) Q+−+−

+ (1 + 2t+ t2) Q−+−+ + t Q−−++ + (t2 + t3) Q+++−

+ (t+ 2t2 + t3) Q++−+ + (t+ 2t2 + t3) Q+−++

+ (t2 + t3) Q−+++ + t4Q++++

= s(2,2,1) + ts(3,1,1) + (t+ t2)s(3,2) + (t2 + t3)s(4,1) + t4s(5).
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Figure 16: The D graph on starred strong tableaux of shape (5, 3, 1) regarded
as a 3-core.
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