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In this paper we study Schubert varieties in the flag manifold of Sl(n, C). Two main 
results are obtained: 

1. A combinatorial method is derived whereby one can determine the singular 
locus of a Schubert variety. In particular, this allows one to determine whether a 
given Schubert variety is singular or non-singular. These results are given in 
Theorems I and II, which are stated in Sect. II. 

2. Using the method derived in Sect. II, a detailed geometric description of the 
non-singular Schubert varieties as repeated fibrations of Grassmannians is 
obtained. This result is given in Theorems III and IV of Sect. IV. 

The sections of this paper are arranged as follows: 
Section I presents the definitions and notations that will be used throughout 

the remainder of the paper. Section II develops and presents the combinatorial 
algorithm for determining the singular locus of a Schubert variety. Section III 
develops the combinatorics which are the basis for the main structure theorem 
about non-singular Schubert varieties. Section IV presents the structure theorem 
for non-singular Schubert varieties. 

This paper is a reworking of the author's doctoral thesis IR]. The com- 
binatorial algorithm for locating the singular locus of a Schubert variety was also 
discovered independently and more or less concurrently by Lakshmibai and 
Seshadri [LS]. (See also a closely related paper of Deodhar [D].) The result of 
[LS] is stated in a slightly different form here, in order to facilitate the calculations 
required in Sects. III and IV. 

I. Def'mitions and Notation 

I. Flags and Schubert Varieties 

Let Sl(n, IE) denote the set of all n • n complex matrices with determinant = 1, and 
let B be the Borel subgroup of Sl(n, (E) consisting of all the upper triangular 
matrices. We write Fl(n) for the flag manifold Sl(n, ff~)/B associated to Sl(n, C). The 
B-orbits in Fl{n) are called Bruhat cells and their closures are called Schubert 
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varieties. For the purposes of  this paper we find it convenient to regard Fl(n) and 
its Schubert varieties in the following more geometric manner. 

Definition. A (complete) f lag in IE" is a sequence of subspaces of IE" 

0(VxCV2C...CV~_~CIE", with dim(V.O=i. 

We write {(Vj)} for such a sequence. 
Fl(n) is then thq collection ofaU complete flags in tE ~, endowed with the obvious 

topology. Fl(n) is a smooth complex algebraic variety of complex dimension 
n(n-1) /2 .  We similarly make the following 

Definition. A partial f lag of type (i~, i2 . . . .  , is) in IE" is a sequence of subspaces 
0 C ~, C V~ C... C V~ C ~", with dim(V~) = i i and i~ < i2 < . . .  < ik. 

We write FI(i~, i2 . . . . .  is; tE") to denote the collection of all partial flags of type 
(il , . . . ,  is) in IE". FI(iD i2 . . . . .  ik; IE") is a smooth compact complex algebraic variety 
of complex dimension 

i~(n - i~) + (iz - iO ( n -  i2) + . . .  + (ik-- ik- ~) (n-- is). 

We write F1 (*; IE') to denote a partial flag manifold when the exact type of the flags 
of which it is composed is unimportant. 

2. The Correspondence Between Schubert Varieties and Permutations 

Let el, e2 . . . . .  e n denote the standard basis for ~"  and let C k denote the span of the 
first k of these basis vectors. 

Let s = (s(1), s(2) . . . . .  s(n)) be any permutation of(l ,  2 .....  n). Let E(s) be the flag 
given by Vk=span(estl), es(2) . . . . .  es(k) ) for k =  1 . . . . .  n. [In the case where s is the 
identity permutation (1, 2 . . . . .  n) wewf i te  E for the flag E(s).] Observe that each 
Bruhat c~llin Fl(n) is the B-orbit of  exactly one E(s); we write Bs for the Bruhat cell 
which contains E(s) and write Xs for the Schubert variety which is the closure orbs. 
B~ consists precisely of all those flags F = {(Vi)} which satisfy 

dim(Vf~C s) = 4t= ({s(1) . . . . .  s(j))n{1 . . . .  , k}) for all j, k. 

Given a Bruhat cell Bs we may compute the numbers d j s ( s )=d im(Vf~) ,  
j = l ,  . . . , n - l ;  k = l , . . . , n  for any flag F in Bs. We call each such equation a 
Schubert condition which Bs satisfies. B s is uniquely determined by the set of all 
Schubert conditions which it satisfies. 

Note  too that the Bruhat cr Bs satisfies 

codim B~ = Z # {s(/): i < k and s(i) < s(k)} 
k 

= n(n -- 1)/2 -- length(s), 

where length is the standard length function on the permutation group S,. 
Similarly, given a Schubert variety X = X~ we see that X is uniquely determined 

by all of the inequalities dim(Vf~C s) > d~s, j = 1 . . . . .  n -  1 ; k = 1 . . . . .  n which are 
satisfied by every flag in X. We again call these the Schubert conditions for X. In 
the case dj~ = rain(j, k) we write the corresponding Schubert condition as Vj C ~k (or 
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IEkC Vj). We write < to denote the Bruhat order on the set of all permutations; that 
is t < s iff X~ C X~. Observe that t < s iff dik(t ) > d~k(s) for all j, k. 

Finally, we remark that the notions of Bruhat cell, Schubert variety, and 
Schubert condition all extend mutatis mutandis to the case of a partial flag 
manifold FI(il, ..., ik; 112"). 

II. Locating Singularities in Schubert Varieties 

In this section we provide a method whereby one can determine the singular locus 
of a Schubert variety in Fl(n), and in particular one can determine if a Schubert 
variety is non-singular. The results are contained in the following two theorems. 

Theorem I. Let X = X ~  be the Schubert variety in Fl(n) corresponding to the 
permutation s. Let A=A(s )  be the set of  all pairs (i,j) which satisfy 

(i) 1 <j < i <= n and 
(ii) either {s(l) . . . .  , s(j)} C {1,2 . . . . .  i -  1} or {1 . . . . .  j} C {s(1) . . . . .  s ( i -  1)}. 
Then X is non-singular r  (in Fl(n)). 

Theorem I is restated in Sect. III after certain combinatorial diagrams are 
introduced; it is referred to there as Theorem Ia. 

Theorem II. Let X = X~ as above and let Y=  Y~ be contained in X.  For every pair 
(k, m), 1 < k, m < n let B(k, m) = the empty set if 

({t(1) . . . . .  t(k)} c~ { 1 . . . .  , m}) 4: 4~ ({s(1) . . . . .  s(k)} n { 1 . . . . .  m}) 

while if  
~({t(1) . . . . .  t(k)}n{1 . . . . .  m}) = ~({s(1) . . . . .  s(k)}n{1 . . . . .  m}) 

let B(k, m)= the set of  all pairs (i,j) which satisfy 
(i) i>m and ir . . . .  , t(k)}c~{m+ 1, ..., n}) and 

(ii) j < k and t(j) < m. 
Let B be the union of all such B(k, m), 1 < k, m < n. 
Then X is non-sinoular alon9 Yr :~ B = codimX. 

The remainder of this section is devoted to the proof of these theorems. As 
stated in the introduction, similar results are obtained in [LS] and [D]. 

The results of this section rely on the well-known Jacobian criterion for non- 
singularity of an algebraic variety. 

I. Coordinates on Fl(n) 

We begin by defining a convenient set of coordinates on an open, dense affine 
subset of Fl(n). 

Let U denote the collection ofaU n x n complex matrices M = (x~j) which satisfy 
x, = 1 (i = 1 . . . . .  n) and x o = 0 for j  > i. U is naturally identified with the affme space 
~ where N = n ( n -  1)/2. We also regard U as a subset of Fl(n) by regarding each 
matrix M in U as representing the flag F = {(V0} where V~ is the span of the first i 
columns of M. The matrix entries x o which are not required to be 0 or 1 provide the 
desired coordinates. 
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Observe that the origin of this coordinate system corresponds to the fixed flag 
E. Observe too that ifX is singular, then it is necessarily singular at the point E and 
so we need only check at the origin of this coordinate system to determine if X is 
singular. 

2. Equations f o r  Schubert  Varieties 

Let X denote any Schubert variety in Fl(n). We know that X is determined by the 
Schubert conditions dim(VknffY~)>dkm which it satisfies. Each such Schubert 
condition may be expressed as polynomial equations in the coordinates x~j as 
follows: 

Let ei denote the/th column of the coordinate matrix M defined above, and let 
(el, e2 ..... e~) be the standard basis for ~". (We regard the ei as column vectors, each 
having exactly one non-zero entry.) Write d for dm. We then have 

dim(Vkc~Cm)___d iff d i n a ( V k + C m ) < k + m - d  

if f  

iff 
dim span(el ..... ek, el ..... e,,) < k + m -  d 

rank 1 ... e,,, c I ... < k + m - d  

1 I 

iff every ( k + m - d +  1) x ( k + m - d +  1) minor 

-1 0 
0 1 

0 0 
0 0 

0 

has determinant 0 

... 0 1 

0 x21 

1 x,,,, 1 

0 xm+l ,  1 

0 ... 0 x , ,1  

of 

0 ... 0 
1 0 

Xm, 2 Xra, k 

Xra+ 1,2 Xra+l ,k  

X'n, 2 "" �9 Xn, k 

iff every ( k - d +  1) x ( k - d +  1) minor of 

[_ x~.l  xn,2 ... xn.k J 

has determinant 0. 
Equating all of the ( k -  d + 1)x ( k - d  + 1) minors in this block to 0 gives the 

required polynomials. 
Given any Schubert variety X, we may list all of the Schubert conditions which 

X satisfies (and which define X) and following the above description, we obtain 
polynomial equations fk = 0 in the coordinates xi.~ corresponding to the vanishing 
of the minor determinants as above. These polynomiaJs define X set-theoretically. 
These polynomials also form a basis for the ideal of X in the ring of polynomials i~ 
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{Xzj}, 1 < j  < i < n. (This is precisely Lemma 1 of [LS]. See also EMS, Theorem 5.5, 
Corollary 5.6, Theorem 6.1].) 

3. Calculation of Rank 

From ILl above we have U ~ C  N, where N=n(n-1) /2 ,  and we have given II: N 
coordinates {xo}. Let {eis } be the basis of ~N which corresponds to the 
coordinates {xij}. We wish to calculate the rank of the Jacobian matrix (~fk/~Xis) 
evaluated at the origin. [We denote this matrix by Jx, and its evaluation at the 
origin by Jx(0).] We regard rank Jx(O) as being the dimension of the row space of 
Jx(0). Let C(k, m, d) denote the Schubert condition dim(Vkc~r When no 
confusion will arise, we simply write C to denote a Schubert condition. 

In general, a Schubert variety X will be defined by Schubert conditions Ca, 
C2, ...,C~. Each Schubert condition C~ in turn corresponds to a series of 
determinantal conditions fi. i .... , f/.tr Finally, each f yields one row of the matrix 
Jx(O). Let us write R(Ci) for the row space of (Of~jcgxij)Io where the f ' s  range over 
those determinantal equations corresponding to the condition C~, and let us write 
R(X) for the row space of Jx(0). Note that if X is defined by Schubert conditions 
C1,..., C~ then 

R(X)  = R ( C 0 +  ... + R(C~). 

We wish to compute dim R(X). We begin by computing R(C) for a single Schubert 
condition C =C(k, m, d). We divide Schubert conditions into 3 types: 

I. k< m  and d=k. 
II. k> m  and d=m. 

III. d <nfin(k,m). 
Note that Type I corresponds to the Schubert condition VkCIF', Type II 

corresponds to the condition Vk3C', and Type III corresponds to a Schubert 
condition which cannot be expressed via a containment relation between a Vk and 
~r4. 

Let C denote any Schubert condition and let f denote any one of the minor 
determinants which must be set =0  according to C. Let M s denote the minor 
matrix with de tMs=f=O.  

Lemma 1. I f  xij ~ My then O f / dx 0 = O. I f  xi s ~ M s then t3 f / ~x 0 = ( -  1 i + s) det (Ko) 
where K o is the matrix obtained from M s by deletin# the row and column of xq. 

Proof. The first assertion is obvious. The second assertion is easily seen by 
expanding detM s along the row (or column) of xq. 

Corollary. (a f /Oxo)]o= ( -  1)i+ J detKis(O). 

Remark. In case f is the equation x~s=0 (i.e., M I is I x 1) then Of/dxo= 1. (In this 
case we define de tKo= 1.) 

Let C=C(k,m,d)  as above. Recall that C yields the equations f~ which 
correspond to the vanishing of every ( k -  d + 1) by ( k -  d + 1) minor of the matrix 

[ x,.l  x,,2 . . .  X,,k J 
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By Lemma 1, afk/axljlo=det(Ko(O)) (at least up to sign). Observe that K~j is a 
( k - d )  x ( k - d )  minor of the matrix above (except in case d =k<m,  in which case 
Kij= 1), and that every entry of Ko(0 ) is either 0 or 1; the only non-zero entries of 
Ko(0 ) come from the l's along the diagonal of the original coordinate matrix M. 

Combining this with the above, we conclude: let C = C(k, m, d) be as above and 
let f be any of the equations arising from C. Then (~f/axo)Io = 0 unless the block 
above contains a ( k -  d) x ( k - d )  identity matrix when evaluated at 0 and x~ has 
this I(~ _ a) as cofactor in f ,  in which case af/axiilo = 1 (or - 1). Now, fix k and m. We 
wish to determine those d for which the block above contains a ( k - d )  x (k-d) 
identity matrix. It is easy to check that the only condition under which an Itk- a) can 
occur in this block is when d = m < k, and then there is only one such I(k- d)" Under 
these conditions, the x o whieh have this I(k-a~ as cofactor are as shown in the block 
in the lower left hand comer of the following matrix: 

- X m + l , 1  X m +  1 , 2  . - ,  X r a + l , m  

Xk ,  1 Xk ,  2 . �9 "" Xk ,  m 

X k +  1 , 1  X k +  1 . 2  . . .  X k + l , r a  
�9 . . 

Xn,  I X n , 2  . . .  X n , m  

X m + l , r a + l  . . .  X m + l ,  k- 

�9 Ik - d " 

Xk ,  m+ 1 . . .  Xk ,  k 

X k +  1 , m + l  . . .  X k + l ,  k 

Xn,  m+ l . . .  Xn,  k 

The row in Jx(O) corresponding to xij is the lower left block above with cofactor 
Ik-d is thus e o (or - % )  (i = k + 1 . . . .  , n; j = 1 . . . . .  m). Note that we may dispense 
with the minus signs above since we may choose - f instead o f f  as a generator for 
the ideal of X. The only other circumstance which yields Of/Ox~jlo ~ 0 is the case 
mentioned above, when f is the condition x u = 0, in which case the row of f in 
Jx{0) is %. Combining all of this yields4he fqllowing: 

Proposition 1. Suppose C = C(k, m, d) is a single Schubert condition. Then R(C)= 0 
unless one of the foUowin 0 is satisfied: 

O) k=d  and m>=k or 
(iJ) m=d and k>m. 
In other words, R(C)= 0 unless C is of  Tj~pe I or Type II. Furthermore, if C is 

the 7)Ipe I condition Vk C (E m or the Type II  condition IE k C I'm then R( C) is spanned by 
the basis vectors in the following block: 

k e . , l  ... en,k _] 

Thus R(X)=~.R(CI), where the Ci may now be taken to be only those Schubert 
conditions for X which express complete containments ~ C C ~' or Vk 3 C m. [Note 
that since R(C.,) is spanned by the basis vectors in the rectangular block shown 
above, R(X) is spanned by the basis vectors in a Young diagram.] 

Finally, observe that complete containment relations are easy to detect by 
inspection of the permutation of X. If s=(s(1), ...,s(n)) is the permutation 
corresponding to X then 

(i) X satisfies V~CC m iff {sO) . . . . .  s(k)}c{1 . . . . .  m}. 
(ii) X satisfies V~3C" if/' {s(1) . . . .  ,s(k)}3{1 . . . . .  m}. 
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Comparing this with the statement of Theorem I we see that the proof of 
Theorem I is complete. 

4. The Singular Locus of a Schubert Variety 

In this section we sketch the proof of Theorem II. 
Let X = X~ be any Schubert variety in Fl(n) and let t < s in the Bruhat order. Let 

~(X) denote the singular locus of X. We wish to determine if X, is contained in 
~(X). Since X is extui-singular at every point of B t it suffices to determine whether 
the flag E(t) is a singular point of X. We proceede by analogy with the previous 
section. 

First, we choose coordinates {xo} for an open dense affine subset U of X such 
that E(t) is at the origin of this coordinate system. We do this bychoosing as U the 
set of all flags F =  {(V~)} which can be represented by a matrix 

M =  t c2 ..- n 

I 

whose columns c~ satisfy Vi = span(el ..... e~) and whose entries (xij) satisfy 

x,o,~=l for all i and xto),j=O whenever j> i .  

We take as affine coordinates on U the matrix entries xij which are not required to 
be 0 or 1. (Note that this coordinate matrix is the same coordinate matrix as above 
except that the rows have been permuted by t, and the entries correspondingly 
renumbered.) 

We now express X c~ U as an algebraic subset of U = C ~. As above, we list all of 
the Schubert conditions C1 ..... Cr which X satisfies; each C~ in turn yields 
polynomials corresponding to the vanishing of the same minor determinants of the 
coordinate matrix as above. In this way we obtain polynomials fk such that X is the 
vanishing set of these polynomials. As above, these polynomials generate the ideal 
of X (see [MS]). 

Hence we may apply the Jacobian criterion to determine ifX is singular at E(t) 
(and hence along all of Bt). To do this we need only compare the codimension of X 
in Fl(n) with rank Jx.,(0) where Jx,t is the Jacobian matrix of X in the new 
coordinate system. As before, we consider rank Jx., to be the dimension of the row 
space of Jx.t. 

Consider any one fixed row of Jx,t(O) corresponding to some fixed f = detMf. 
As above, df/Ox,jIo =detKo(0) where K,j is the cofactor of x o in My. Clearly, 
det K~i(0 ) = 0, 1, or - 1 since K~0)  is a submatrix of the permutation matrix MIo. 
It is easy to check that for any fixed f, at most one Ko(0 ) has non-zero determinant. 
Thus, each row of Jx.,(0 ) is either 0 or else e~j where e o denotes one of the standard 
basis vectors of C N. Therefore, to calculate the rank of Jx.,(O) we need only 
determine which e 0 occur as rows of Jx, t(O). 

However, etj is a row of Jx.t(O)ox o has a permutation matrix as cofactor in 
Me(0) for some f coming from a Schubert condition which X satisfies, or x o is the 
only entry in the matrix M I (i.e., f is the equation x o = 0). Therefore, we need only 
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count which x v satisfy one of these criteria. One should note that in this case, all 
Schubert conditions which define X must be considered, not just the ones which 
represent complete containments as was the case in the preceding section. 

The following proposition makes precise which % occur as rows of the matrix 
Jx.,(0).  

Proposition 2. Let X = Xs be oiven and let t < s. Let C = C(k, m, d) be any Schubert 
condition satisfied by X .  The row space of  Jxa(O) is spanned by a subset of  the %, 
some contributed by each C(k, m, d) which X satisfies. C(k, m, cO contributes 0 except 
in the case 

d= ~:({t(1) ..... t(k)}c~{1 ..... m}) 

= . . . . .  s(k)}c {1 . . . . .  m}) .  

In this case, suppose that i~ ... . .  ~_~ are >__m+ l. Then C(k,m, cO contributes all 
those e u which satisfy: 

O) i>m, 
(iJ) j<=k, 

(iii) i . t ( iv )  for any q = l ,  ..., k - d  (i.e., ie({t(1) ..... t(k)}r~{1 ..... m}), and 
(iv) j 4: i~ for any q = 1,.. . ,  k -  d (i. e., t(j) <= m). 

The verification of this proposition is trivial. 
Theorem II follows immediately from this proposition. 

l lI.  Combinatorics 

The remainder of this paper is devoted to studying the structure of the non- 
singular Schubert varieties in Fl(n). We begin by introducing some diagrams 
which will facilitate the combinatorics required for our investigation. Using these 
diagrams, we restate Theorem I more compactly as Theorem Ia. The remainder of 
this section is given over to investigating combinatorial properties satisfied by the 
non-singular Schubert varieties. 

1. Combinatorial Diafframs for Schubert Varieties 

Let s be any permutation of (1,2 ..... n). On an n x n grid [with the squares 
numbered so that (1, 1} is in the lower left comer] we begin by placing a dot in each 
of the squares (i, s(i)), i= 1 . . . . .  n. We call this the basic dia#ram of s. On this 
diagram, we now mark off two regions, called RI and R2, be declaring 

(i) (i,j) ~ R1 iff ] > s(k) for all k__< i. 
(ii) (i,j) ~ R2 iff s(k) >j  for all k_~ i. 
For s=  (3, 2, 5, 1, 4), R~ and R2 are shown in Fig. 1. 

We call this the R-diagram associated to s (and X~). 

Fig. 1 

R I 

3 

211 ,,'" - -R2  
I 2 3 4 5 
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Fig. 2 

A l l  �9 
3 �9 

2 �9 
1 �9 

1 2 3 l, 5 

Remark. Rt is the largest Young diagram which can be drawn in the upper left 
corner of the basic diagram ofs without containing any of the squares (i, s(0). R2 is 
similarly the largest Young diagram which can be drawn in the lower right corner. 

Observe that (i,j)eR~ ~.  all of s(1), ...,s(0 are < j  

~V~ C~E J-  ~ is satisfied for every flag F ~ X(s). 

Similarly, (i,j) ~ R2c~tE~c V~_ 1 is satisfied for every flag F e X(s). Thus, R~ and R2 
completely describe all Type I and Type II Schubert conditions which X satisfies. 

We now define a new region (on the same diagram) denoted by 'Rz and defined 
by tR 2 = {(i, j) :( j , /)  ~ R2}. We draw a new diagram (Fig. 2) which shows R1 and 
'R2 (but not R2 itself). Here, Rt  consists of those squares which are marked by a 
vertical line; tR 2 consists of those squares which are marked by a horizontal 
line. 

We refer to this last diagram as the R*-diagram associated to s (and to X~). 
Observe that (i,j) E R 1 u tR2.r either V~ C ~E j -  t or tEJ C V/_ t. Comparing this with 
the results of Sect. II we have the following: 

Proposition 3. The rank of the matrix J x( O ) is equal to 4~ ( R1u tR2). Consequently, 
X is non-singular iff ~=(Rtu ~q2) =codimX.  

Beginning again with the basic diagram for s we now define two more regions: 

Q~ = {(i, j): j > s(i) and j = s(k) for some k > i} 

Q2 = {(i, j): j < s(i) and j = s(k) for some k < i}. 

These are shown in Fig. 3 

Fig. 3 

,o / 

3 �9 ~ C ~  1 C~2-,-,~3 'O 

1 2 3 4 5 1 2 3 ~ 5 

Observe that R1CQI, R2CQ2, and c o d i m X =  # Q I =  #Q2. Note too that 
there is a natural pairing of Q 1 with Q2, namely if(i,j) is in Q ~ then (i,j) = (i, s(k)) for 
SOme k > i. This is paired with (k, s(i)) ~ Qz. We shall refer to such a pair as a q-pair. 
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Fig. 4 

l t l  
I 1 [  

I11. 
I'W2i/f,/A 

�9 

Definition. Let X = X s  be any Schubert variety in Fl(n). Suppose that for every 
q-pair (i, s(k))~-ffk, s(/)), i < k, we have either (i, s(k)) ~ R1 or (k, s(i)) ~ R2 (or both). 
We then say that X is defined by containment conditions and write X is dec. 

Proposition 4. Suppose X is dcc. Suppose that X has associated to it the reoions 
R I ( X  ) and R2(X). Let Z * X be another Schubert variety which has associated to it 
the exact same regions Rl  and R v Then codim(Z)>codim(X). 

Proof. Since Q i ( Z) D R I ( Z) = R i ( X)  and Q 2( Z) 3 R 2( Z) = R 2( X ), one can easily 
see that every q-pair for X is also a q-pair for Z. Thus, QI(Z)DQI(X),  whence 
codimZ > codimX; (Note that codim X cannot equal codimZ, otherwise X and Z 
would have the same Q~ and Q2 and consequently would be the same Schubert 
variety.) QED 

As a result of Proposition 4, ifX is dcc then X has minimal codimension among 
all Schubert varieties which satisfy precisely the same containment conditions 
as X. 

Let us now make some observations about the R-diagram of X. First, observe 
that those squares of the grid which are not confained in either R1 or R2 but which 
are bounded on 2 sides by one of the R~ must contain dots. We refer to these dots as 
sitting in the recessed corners formed by the R~. See Fig. 4. 

Note that these (i, s(0) completely determine Rt and R2, and conversely that if R1 
and R2 are given then these squares must contain dots. For X dcc, the rest of the 
dots in the squares (i, s(0) are then determined by the property that they define the 
cell of largest possible dimension. 

We remark in passing that not all pairs of Young diagrams can actually arise as 
R-regions of some Schubert variety in Fl(n); we do, however, have the following 

Proposition 5. Suppose that X = X s has associated to it the regions R~ and R2. Then 
there is a unique permutation t such that Y = Yt is dec and Y has associated to it the 
same regions R 1 and R 2. 

Proof The uniqueness of such a t follows from Proposition 4. Thus, we need only 
establish the existence of a permutation t with Yt dec and with RI(Y)=Rt(X) 
and R2(Y)= R2(X ). 

We construct t by modifying the original permutation s. Ifs itself is dec then we 
are done. If not, then there is some q-pair for s, say (i, s(k))~-ffk, s(i)), i < k, which 
has neither member in an R-region. Form the permutation s~ from s by 
interchanging s(0 and s(k). Observe that this has the effect of eliminating the 
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original q-pair. (It may eliminate some other q-pairs as well.) If sl is not dcc we may 
repeat the above procedure to obtain s2, etc. This procedure must terminate since 
codimension cannot be lowered indefinitely. Thus, we eventually reach a 
permutation which is dcc. Since the procedure above does not change the original 
R-regions at any stage, the proposition is proven. QED 

Proposition 6. I f  X is non-singular then X is dcc. 

Proof. For X non-singular we have codim X = rank Jx(0), while in general one has 
codimX > rank Jx(0). Thus equality can only hold if codimX is minimal for the 
given Rt and R2. But such X must be dcc. QED 

Let us now define a partial order on the squares of Rz by declaring that (i,j) 
< (k, I) if k < i and j > I. We similarly partially order RI by declaring (i,j) < (k, I) if 
i < k and j > l. Let C1 denote the set of all maximal elements of R1 and C2 the set of 
all maximal elements of R2. (In other words, the Ci are the squares which are at the 
protruding corners of the Ri.) These are indicated in Fig. 5. 

Note that each Ci completely determines the corresponding R~ and conse- 
quently, for X dcc, the both Ci taken together determine X (since X is dcc, hence the 
largest Schubert variety having the given RI and R2). Furthermore, the elements of 
C1 completely describe the Type I Schubert conditions which X satisfies, since (i,j) 
is in C 1 iffevery flag in X satisfies V~ C IEJ- ~. We shall henceforth say that R 1 implies 
the Schubert condition V~CC J- 1; we denote this condition by simply writing 
(i,j- 1) 1 . 

Fig. 5 
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Similarly, the elements of C2 completely describe the Type II Schubert 
conditions which X satisfies, since (i,j) is in C2 iffevery flag in X satisfies IEJ E V~_ 1. 
We say that R2 implies the Schubert condition C J E V~_ ~; we denote this condition 
by {j, i -  1)2. 

Definition. We say that X* is obtained from X by removing the condition (i,j) if 
Ct(X*) and C2(X*) satisfy the property that they may be obtained from CI(X) 
and C2(X) by deleting exactly the one element (i,j) from either Ct(X) or C2(X). 
Figure 6 shows the result on R1 of removing the condition (i,j) from X. 

Proposition 7. Suppose that X has associated to it the regions R 1 and R e. Let R* be 
obtained f iom R 1 by removing all those squares (i,j) e R 1 which are < exactly one 
f ixed (io,Jo) e C1, and let R* = R2. Then there is a unique dcc Schubert variety X* 
such that the R-regions associated to X*  are precisely R* and R*. Furthermore, 
codim X* < codimX. 

Proof. By virtue of Proposition 5, we need only verify that the resulting R- 
diagram, composed of R* and R* is the R-diagram of some Schubert variety. But 
this is obvious: we need only take the permutation obtained as indicated in 
Fig. 7 to obtain the desired R-diagram. The assertion that codimX* < codimX 
is dear. QED 

Proposition 8. Let X be given, with regions R 1 and R2 associated to it. Let C 1 and C2 
be as above. Suppose that for some (io,Jo) e C 1 we have (Jo, io) e R 2. (That  is, suppose 
that on forming R i u  tR2 one of  the protruding corners (io,Jo) of  R 1 disappears.) 
Then X is singular. 

Proof. Let Y be the Schubert variety formed by removing the condition (io,Jo) 
from X. By hypothesis, R I ( Y ) u t R 2 ( Y ) = R ~ ( X ) u t R 2 ( X ) ,  whence rankJx 
=rank  Jr. But then r a n k J x = r a n k J r ~ _ c o d i m Y < c o d i m X .  Therefore, X is 
singular, as claimed. QED 

A similar statement applies if the roles of R1 and R2 are reversed. 
As a result of this proposition, we see that, for X non-singular, 
(i) all Type I and Type II Schubert conditions which X satisfies are implied by 

the protruding comers in the Young diagram R1u tR 2. 
(ii) By virtue of (i) we may totally order the containment conditions which X 

satisfies. This is done by taking them in the order in which they naturally occur 
along the edge of R i u  tR2. 

F~.7 

[ 

(k,j} 
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Fig. 8 
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We now construct yet another diagram which is associated to a Schubert 
variety X, which we shall call the S-diagram of X. Beginning with the R-diagram 
for X, permute the columns of this diagram so that all of the dots lie along the 
diagonal d of the diagram. Let $1 be the image of R1 and let Sz be the image of Rz. 
These are shown in Fig. 8. 

Note that (i,j) is in R~ (resp. R2) iff(s(O,j) is in S1 (resp. $2). Note too that if we 
think of each R-region as being composed of vertical rods of various lengths 
rl ..... rk then in the S-diagram, one rod of each length in each region must about 
the diagonal. This follows immediately from the fact that each recessed corner of 
Rt and R2 must contain a dot. 

Remark. Suppose that (i, s(j))~--~(j, s(0) is a q-pair for X. After permuting the 
columns of the R-diagram as described these are sent to (s(/), s(j)) and (s(j), s(0), 
resp. 

Now define '82 = {(i,j) :(j, 0 ~ S2}. 

Proposition 9. For X dcc we have codimX= # (St wtS2). 

Proof. We know that codimX = the number of q-pairs which X has. We need only 
observe that each such q-pair is counted exactly once in $1 w tS 2 owing to the 
remark above. QED 

We now have: 

Theorem Ia. X is non-singularc~X is dec and 

(R1 u 'R2) = # (S1 u 'S2 )  . 

We denote these two sets by R and S, resp. 

2. Combinatorial Properties of Non-Singular Schubert Varieties 

We now examine under what conditions we have 4~ R = ~ S. 
By construction, RI and R 2 are both Young diagrams, whence so is 

R-- (R1 w rR2). Furthermore, R ~ n +R2 is a sub-Young diagram ofR ~ w ~2. Since we 
Permute columns of R1 and R2 to obtain the respective S regions we shall think of 
R~ and R 2 as being composed of vertical rods, whence tR z is composed of 
horizontal rods (which are the transposes of the vertical rods). Likewise, S~ and )S2 
are thought of as being composed of vertical and horizontal rods, respectively. 
F.urthermore, each individual rod in S1 corresponds exactly to a rod in R1 and 
strnilarly for *S2. Rlc~ ~R2 (resp., SIcVS2) consists of those squares (i,j) which lie in 
both a horizontal and a vertical rod in the respective diagram. 
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Now, for any Schubert variety X which is dec we have 

4~ (S1u tS2) = codim X ~ rank Jx(0) = # (R1 u tR2) 

whence 

4# ($1 n '$2) -< ~ (R1 c~ ~z) .  

We now wish to define an inclusion 

j : S l n t S 2 ~ R t n t R 2  . 

Recall that both R1 ~ ~R2 and $1 w zS z are thought of as the union of a collection of 
horizontal rods and a collection of vertical rods. The rods themselves are the same 
in each case; the only difference is that in R they are arranged in order of length to 
form a Young diagram, while in S they are not so arranged. Consider the respective 
intersections as being made up of vertical columns. The columns in the R-in- 
tersection are also arranged by length to form a Young diagram. The columns of 
the S-intersection may be rearranged by order of length (preserving the existing 
left-to-right order in case of two columns of the same length). It is not difficult to 
verify that after rearranging the columns of $1 c~ tS 2 by order of length, the i th 
column is not longer than the/th column of R l n  ~2. 

We now define the inclusion j :  Slc~tS2c, R~c~tR2 by sending the ith longest 
column of $1 c~ ~$2 to the i th longest column ofR~ c~ ~R2 with the squares within each 
column remaining in order. (In case two columns have the same length, their left- 
to-fight order is preserved byj.) Observe that X is non-singular if and only ifj is a 
surjection. 

Let X be a non-singular Schubert variety in F1 (n). Consider the R*-diagram for 
X. Since none of the corners in C1 or C2 are hidden in R~ u ~R 2, it follows that all 
squares (i,j) on the boundary of the Young diagram R~ u tR 2 are not contained in 
R1 ca ~R 2 and consequently can all be unambiguously labeled I or II. Furthermore, 
each protruding corner of Rtca ~R2 has as its 2 exterior edges one square labeled I 
and one square labeled II. 

Proceeding from lower-left to upper-fight along the boundary of R~ ~ tR2, let 
(x, y) be any protruding corner of R~ ca ~R2 at which the boundary squares change 
from I to II [that is (x, y) should have a I below it and a II to its right]. Observe that 
this square is the right-most and lowest square in any column of length ( n - y  + I) 
in R~n 'R2. Also, this square occurs as the intersection of the right-most vertical 
rod of length > ( n - y  + 1) (say it has length n -  y + 1 + b) with the lowest horizontal 
rod of length > x (say it has length x + a). Since X is non-singular, (x, y) must be !n 
the image of the inclusionj. By the construction of j , j -  ~(x, y) is the lowest square in 
the right-most column of length (n - y + 1) in S~ c~tS2. It is easy to verify that both 
the row and the column which contain j -~(x ,y)  must abut the diagonal 

= {(i, 0} .  
Consequently, the square j -  a(x, y) must be in the intersection of a vertical rod 

of length n - y + 1 + b, which is located at distance y -  b from the left edge, and a 
horizontal rod of length x + a which is located at height x + a + 1. In order for these 
two rods to intersect, we must have y - b  ~_ x + a. 

Observe now that in order for (x, y) to be a protruding corner of the sort 
assumed, we must have that ( x , y - b + l ) e C 1  and (x+a,y)e tC2 . Therefore, 
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(x, y - b) 1 and (x + a, y - 1) 2 are implied Schubert conditions which x must satisfy. 
Since y - b  < x + a we see that at a point along the boundary of R t c~ ~2  at which 
the labeling of the boundary squares changes from I to II we have that the implied 
conditions (x, y - b) l and (x + a, y - 1)2 satisfy y - b =< x + a. 

We continue to suppose that X = X,  is a non-singular Schubert variety in Fl(n). 
Let R1 and R2 be the R-regions for X, with corners Cl={(at ,  b i+ l )}  and 
Cz = {(ct + 1, dr)}. Then, the implied Schubert conditions which X satisfies are 
(a~, bi)l (i. e. V~, C ~b,) and (d~, ci)2 (i.e. ~d, C V~,). Observe that for each implied Type I 
condition (at, b~)l we have at < bt and for each implied Type II condition (c~, dt)2 we 
have d~ < c~. 

We can arrange the elements of C1u tC2 into a totally ordered list by taking the 
squares in the natural order in which they occur along the boundary of R1 u tR 2 
(say from lower-left to upper-right). Since all squares of C~utC2 occur along the 
boundary of R ~ u ~2 this gives a total ordering. Observe that this is equivalent to 
ordering the implied Schubert conditions (as, b~)l and (dr, c~)2 according to their 
first (and smaller) element. Since this ordering will be preserved if we instead look 
at tR 1UR2, we see that this is the same as ordering the (at, bt) and (dr, ci) according 
to their second element. 

Now, let us regard the elements of this list as being grouped in blocks, a block 
being all those implied Schubert conditions of the same type which occur 
consecutively in this list. Given any such block B, say B is composed of the pairs 
(x~,yi) . . . . .  (x~, y~) all of the same type, let us define the extent of B to be 

extent(B) = {xt . . . .  , y j}. 

Suppose that B1 and B2 are two consecutive blocks in the above list. Suppose that 

extent (B 1) = {x, ..., y~} 
and 

extent(B2) = (Wk . . . . .  Z,~} . 

Claim. w k is greater than or equal to yj. 

Proof. We consider two cases: 
(i) B1 is composed of elements of Type I and B2 is composed of elements of 

Type II. 
(it) B~ is composed of elements of Type II and B2 is composed of elements of 

Type I. 
In case (i), the last implied condition listed in B ~ is (x j, y j) 1 while the first implied 

condition listed in B2 is (w~, Zk)2. Thus this corresponds exactly to the type of 
change in the boundary of R l w  tR2 considered in Sect. 2 above, so we know that 
Y~ ~ w~, as claimed. 

To prove case (it), we consider the permutation s* whose basic diagram is 
obtained by transposing the basic diagram of s about  the diagonal A. [Note: s* is 
the inverse permutation to s, that is s*(i)=jc~s(j)=i.]  Clearly, codimX~ 

codimX*. It is also clear that Rl(s*)='R2(s)  and 'R2(s*)= R~(s), whence X* is 
non-singular precisely when X~ is. 

Finally, observe that the implied Schubert conditions for s* are gotten from 
those ors precisely by changing the type of every one. Therefore, in order to prove 
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the desired case (ii) result for the permutation s, it is sufficient to prove the 
corresponding case (i) result for s*. Since we already know case (i) for all non- 
singular Schubert varieties, the claim is proven. 

IV. The Structure of Non-Singular Schubert Varieties 

In this section we provide a geometric description of the non-singular Schubert 
varieties in Fl(n). In IV.1 a ~ertain class of non-singular Schubert varieties is 
constructed; in IV.2 we show that every non-singular Schubert variety belongs ~o 
this class. 

1. Obviously Non-Singular Schubert Varieties 

Theorem m .  Suppose we are given pairs of numbers (ki, mf), i = 1,...,  2 and (q j, h j), 
j = 1 . . . . .  t which satisfy 

O<ht<ht- i  < .-. < h i  < k l  < . . . .<k ,<n ,  

O<qt<  qt- 1 < . . .  < q l  < n ,  

O<m t < m 2 < . . .  <ms<n,  

qi < hy for all j and k i < mi for all i. 

Let M={al l  (partial) flags in Fl(h t . . . .  ,hi,  kl, ...,ks; ~En) : VkIC{E m' for all i and 
(EqJC Vhj for all j}. Then M is a non-sinaular Schubert variety in Fl(ht . . . . .  k,; Cn). 

Proof. Since M is defmed strictly in terms of Schubert conditions, M is a union of 
Bruhat cells. Since M is closed, it is a union of Schubert varieties. In order to show 
that M is in fact a smooth Schubert variety, it suffices to show that M is non- 
singular (and consequently irreducible). 

We proceed by induction on s and t. Suppose first that s = t = 1. 
Case 1: kl = hr. (We omit subscripts in this case.) Then M is given by 

M = (Vk : Cq C Vk ccm} C G~(C"), 

whence M is precisely the orbit in Gk(IE") of C k under the action of the group of all 
n • n matrices of the fo rm.  

0/01 A 0 , 
'0 I,_m 

where .4 is a ( m - q ) x  (m--q) matrix of determinant 1. Therefore, M is non- 
singular. Note  that in fact M ~  Gk_~(IEm-~). 
ease  2: h < k (we still omit subscdpts for simplicity). In this case 

M = {flags in Fl (h, k; IE"): f13 q C Vh C Vk ( c m } .  

Let 

N =  {flags in FI(h,k;Cm):IEqC VhC Vk} 
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and let 

Note that Z is smooth by case I. We have the diagram 

Fl(h, k; r 

z 

where rc is the natural projection [which is a fibration with fibre -~ G , _ h ( C ' - h ) ]  
and i is the natural inclusion. 

We form the pull-back of the fibration above by this inclusion. This yields a 
fibre bundle with base Z and fibre ~ Gk_h(C=-h).  The total space of this bundle is 
therefore smooth. Furthermore, this total space consists precisely of those flags in 
Fl(h, k; C") which satisfy CqC VhC Vk, that is the total space of this bundle is N, 
whence N is non-singular. Finally, M is precisely the image of N under the smooth 
inclusion 

Fl(h, k; IE m) q, Fl(h, k; r  

Therefore, M is a smooth Schubert variety in Fl(h, k; IE"). 
Now suppose that we have shown the result for some s and t. That is suppose 

that given (ki, mi), i = 1 , . . . ,  s and (q i, hi), J = 1, ..., t satisfying the hypotheses of the 
theorem, we know that the corresponding Schubert variety is non-singular. We 
now show that we may increase either s or t by 1. 

First, we show that s may be increased by 1. 
Let (ki, mi), i =  1 . . . . .  s + 1 and (q j, hi), j = 1 . . . .  , t be given satisfying the 

hypotheses of the theorem. Consider the natural projection 

Fl(hl, ..., hi, kt . . . .  , ks, ks+ 1 ; C='§ ') 

Fl(ht . . . . .  hD kl, ks; IE m'§ �9 

This maps is a fibration with fibre _-Gk,§ m'§ 
Let Z =  {all flags in Fl(ht . . . .  , hi, kl . . . . .  ks; ~*'§ 0: C~f i  Vh~ and Vk, fill2 m' for all 

i and j}. By the inductive hypothesis, Z is a non-singular Schubert variety. The 
inclusion of Z into the partial flag manifold is a smooth map. Let Z* denote the 
pull-back of the fibration above via this inclusion. Then Z* is a fibre bundle with 
base space Z and fibre Gk, +t-k,( r247 k,). 

Z* consists precisely of those flags in Fl(ht, ..., hi, kt, ..., ks, ks+ 1;C m) which 
satisfy CEq, C Vh, (i = 1 . . . . .  t) and V,~ fi ~E "j (j = 1 .. . . .  s). Since Z* is the pull-back of a 
smooth bundle via a smooth map, Z* is non-singular. Since M is the image of Z* 
under the inclusion of 

Fl(h,, . . . ,  h t ,  k l  . . . . .  k~, ks+ t ; tE m'+t) 

into 

Fl(h, . . . .  , hi, kl . . . . .  k,, ks+ 1; tE"), 

we conclude that M is non-singular. 
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A similar argument shows that t may be increased by 1. This proves 
Theorem III. 

Note that the construction above proceeds inductively by, at each stage, 
creating a new fibre bundle whose fibre is a Grassmannian. We shall refer to the 
non-singular Schubert varieties constructed in this way as repeated fibrations of 
Grassmannians. 

The Schubert variety constructed above, namely 

{flags in Fl(ht .... , ks; Cn): Vk, C~E m' and CqJC Vh~} 

may be conveniently represented by the following diagram: 

~ 
.. ks 

ql 

q2 ". 

0 -  

Here, each dot indicates one of the subspaces in the flag; the vertical line indicates 
the containment conditions which that subspace satisfies. The entire variety is 
constructed by fibering the Grassmannians in the order in which they appear in the 
diagram (from left to right). 

Definition. We shall say that the Schubert variety in the diagram above has 
extreme conditions (q, m~). 

Now let X and Y be two Schubert varieties of the type constructed above, say 

XCFI(kl .... , k , ;~  ~) and YCFI(ml .... ,m,;C~). 

Suppose further that X has extreme conditions (rl, r2), Y has extreme conditions 
(ra, r4) and r2<r3. Observe that given any two flags FI={(Vk)}eX and 
F2 = {(Vm)} e Y we may form a new partial flag in Fl(kl .. . . .  m,; ~ )  by setting 
F = {(Vk .... .  Vk, Vm,..., Vm)}. Note that this really is a flag since the assumption on 
the extreme conditions guarantees the requisite nesting of the V~. The collection of 
all such flags forms a non-singular Schubert variety in Fl(k~ .... , mr; C ~) which we 
denote by X x Y. 
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Finally, consider the projection 

Fl(n) 

FI(*;~E"). 

This map is a fibration whose fibre is a product of partial flag manifolds (and 
consequently a repeated fibration of Grassmannians). Given one of the non- 
singular Schubert varieties constructed above in FI(*;C"), we may take the 
complete pre-image of this variety in Fl(n). Since the above projection respects the 
Schubert cell structures of the respective flag manifolds, we know that this pre- 
image is itself a Schubert variety. Since the map is a fibration with smooth fibre, 
this pre-image is in fact a non-singular Schubert variety. In the next section we 
shall prove that every non-singular Schubert variety in Fl(n) arises in this way. 

2. The Structure of Non-Singular Schubert Varieties 

Theorem IV. Let X=X~ be a non-singular Schubert variety in Fl(n). Then X 
coincides with a Schubert variety of the type constructed in IV.I, and consequently is 
a repeated fibration of Grassmannians. 

Proof. Let R 1 and R 2 be the R-regions for X, with corners C1 and C2. Let {(ai, b~)l} 
and {(d~, c~)2} be the implied conditions for X. As in Sect. III.3 we arrange these 
implied conditions in a single list as they naturally occur along the boundary of 
R1u tR 2 (i.e., according to increasing ai or di). We again regard this list as being 
composed of blocks B~, a block consisting of all those implied conditions of the 
same type which occur consecutively in the list above. Suppose that X has 
associated to it q such blocks. Recall from Sect. III that we have defined the extent 
of such a block B~ and that these extents are disjoint. 

The blocks Bt alternate by type; let us group together every pair of blocks 
which occur as a Type II block followed by a Type I block. (We may assume that 
each group consists of a Type II block followed by a Type I block, provided we 
allow that the Type II block may be empty in the case of the first group and the 
Type I block may be empty in the case of the last group.) 

Consider now any such group of two blocks. Within this group we have a series 
of implied Type II conditions (d i, c~)2 followed by a series of implied Type I 
conditions (at, bi)l. 

Observe that the pairs (ai, b~) and (d~, ci) satisfy the inequalities of Theorem III 
of the preceding section and consequently we may construct the non-singular 
Schubert variety {F: V~,CIE b' and Cd'C VJ. 

This construction may be repeated for each group of two blocks which occurs 
in the list of implied Schubert conditions for X. Now observe that the Schubert 
varieties so constructed all have extreme conditions which do not overlap; this is 
an immediate consequence of the disjointness of the extents of the blocks 
themselves. (Recall Sect. III.) Consequently, we may construct a single Schubert 
.variety which is the product (in the sense of the preceding section) of these 
~ndividual Schubert varieties. Call the resulting Schubert variety Y. Let Y* denote 
the complete pre-image of Y in Fl(n) [under the natural projection of Fl(n) to the 
apPropriate partial flag manifold]. 
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Claim. Y* = Xs. 

Proof Observe that the flag E(s) satisfies all of the implied conditions of X [since 
every flag in X satisfies these conditions and E(s)eXs], and consequently 
E(s) e Y*. Since Y* is a Schubert variety, Y* must contain the entire closure of the 
orbit of E(s), and consequently X C Y*. Since Y* is smooth (hence irreducible) the 
proposition will be proven if we can show that d imX = dim Y*, or equivalently 
cod imX=cod im Y*. The computation is routine; one uses the facts: 

(i) codimX = ~ ( R t u  tR2) since X is non-singular, 
(ii) codim Y* = codim Y (in Fl(*; Cn), 

(iii) codim Y = dim FI(*; ~n) _ dim Y 
This proves the claim and hence Theorem IV. 
Observe finally that the construction above is reversible; that is given any 

diagram of the sort we have been using to represent a non-singular Schubert 
variety, one can recover the permutation corresponding to the pre-image of this 
Schubert variety in Fl(n) as follows: 

(i) One can recover all the implied Schubert conditions for this Schubert 
variety by inspection of the diagram. 

(ii) One can now draw regions Rt and R:  which yield these implied Schubert 
conditions (as corners C1 and C2). 

(iii) One now places dots in al lof the recessed corners of the R-regions and then 
fdls in all remaining dots so as to minimize codimension. The desired permutation 
may now be read from this basic diagram. 
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