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1. INTRODUCTION

Ž .Let W, S be a finite Coxeter system; that is, W is a finite group with a
presentation of the form

² 2 :s g S ¬ s s 1, sts ??? s tst ??? for s, t g S, s / t ,^`_ ^̀ _
m factors m factorss s t

Ž .where m for s, t g S are positive integers with m s 1 and m ) 1 ifst s s st
s / t.
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Every element w g W can be written in the form w s s ??? s with1 l
l G 0 and s , . . . , s g S. Here, the empty product is considered to be equal1 l
to the identity element in W. If l is minimal with this property we let
Ž .l w [ l be the length of w and call the above expression ‘‘reduced.’’ Let

ŽF denote the Bruhat]Chevalley order on W. We have ¨ F w for ¨ , w g
.W if and only if there exists a reduced expression w s s ??? s as above1 l

and a subsequence 1 F i - ??? - i F l such that ¨ s s ??? s . In partic-1 k i i1 k
Ž .ular, we write ¨ - w if ¨ F w and ¨ / w. We refer to 2.2 below, where

w xwe recall basic properties about this order and to 2 for various other
characterizations.

w xLascoux and Schutzenberger 7 have initiated the program of describing¨
a so-called ‘‘base’’ for the Bruhat]Chevalley order. This is the unique

Ž .subset B [ Base W ; W which is minimal with respect to set-theoretic
Ž Ž . .inclusion such that if we let PP B , : be the partially ordered set of all

subsets of B, then the map

� 4W ª PP B , w ¬ b g B ¬ b F w ,Ž .

wis an isomorphism of partially ordered sets onto its image; cf. 7, Proposi-
xtion 2.4 . The existence of the subset B allows us to encode each element

Ž . Ž .w g W by the boolean vector d W [ d ¬ b g B , where d s 1 or 0b b
according to whether b F w or not. For ¨ , w g W the condition that

Ž .¨ F w is then equivalent to the purely boolean condition that d ¨ s 1b
Ž .implies d w s 1 for all b g B.b

w x Ž .In 7 , the bases are determined for W, F of type A and B . Theny1 n
w x Ž .construction in 7 essentially amounts to embedding W, F into a lattice

called the ‘‘enveloping lattice’’ of the group. In type A and B thisny1 n
lattice even turns out to be distributive. In this paper, we explicitly
describe bases for all finite Coxeter groups.

w x Ž .The basic result 7, Theoreme 3.6 states that the base B of W, F is´ `
contained in the set of all bi-grassmannians of W. By definition, an
element w g W is a bi-grassmannian if each of the sets

LL w [ s g S ¬ ll sw - ll w , RR w [ s g S ¬ ll ws - ll w� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .

Ž .consists of precisely one element which may be different for the two sets .
In order to achieve this, Lascoux and Schutzenberger use another charac-¨

w xterization of the Bruhat]Chevalley order which appears in 2, Lemma 3.6
Ž w xand which goes back to Ehresmann 4 in the case of the symmetric

. Ž . Ž .groups : we have ¨ F w if and only if p ¨ F p w for each s g S, wheres s
Ž .p w is the unique element of minimal length in the coset W w where Ws J J

� 4is the parabolic subgroup of W generated by J s S _ s . A tableau
description of the Bruhat]Chevalley order for the classical types A ,ny1

w xB , D has been introduced by Proctor in 9 .n n
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In this paper, we take a different approach. Instead of using the above
definition of the base, we work with another characterization established

w xin 7, Proposition 2.4 , which seems to be more suitable for explicit
computations: the base is the set of all elements w g W which cannot be

Žobtained as the supremum of a subset of W not containing w. We recall
Ž ..basic results concerning suprema in partially ordered sets in 2.4 . Our key

tools for dealing with the problem of determining suprema are provided in
Lemma 2.3 and Lemma 2.7. The first of these leads to a new and
somewhat more direct proof of the above result that the base is contained

Ž .in the set of all bi-grassmannians see Theorem 2.5 , while the second one
leads to an efficient and practical criterion for determining which bi-

Ž .grassmannians are base elements see Corollary 2.8 .
In the framework of the theory developed in Section 2, we determine

Ž .the base for W, S of type A , B , and D in Theorems 3.4, 4.6, and 5.7,ny1 n n
respectively. In order to state our results about bi-grassmannians and base
elements in these cases, we use a coding of the elements of W which is
particularly well suited for this purpose. This is given in terms of products
of minimal right coset representatives along a naturally chosen chain of

Ž Ž . Ž . Ž ..parabolic subgroups of W see 3.1 , 4.1 , and 5.1 .
Modulo the general results about partially ordered sets in the appendix
w x w xof 7 , this paper is self-contained and independent of 7 . In particular, we

obtain new proofs for the results on A , B . We also point out that weny1 n
always work with the above definition of the Bruhat]Chevalley order in
terms of subexpressions of reduced expressions for the elements of W.

Our methods yield a straightforward algorithm for the determination of
the base of any given finite Coxeter group. We have implemented this

w x w xalgorithm in the computer algebra systems GAP 10 and CHEVIE 5 , and
we have used these programs to construct bases for the finite Coxeter
groups of exceptional type. In order to give an idea of the complexity of
these computations we just mention that it took about 28 h to calculate the
base for type E on a SUN Sparc station 5 computer. These GAP8
programs and explicit tables with reduced expressions for the base ele-
ments are available on request via e-mail to the authors. Using our
programs we have found that the ‘‘enveloping lattice’’ is no more distribu-
tive in type D . In fact, the smallest example where this distributivity failsn

Ž .is type D see Example 5.8 .4
In all cases it turns out that the size of the base is rather small compared

to the group order. Indeed, if W is of type A , B , or D , then theny1 n n
cardinality of W is n!, 2 nn!, and 2 ny1n!, respectively, while the number of
base elements in each case is given by a polynomial in n of degree 3. See
the end of Sections 3, 4, 5 for precise formulae giving the exact number of
bi-grassmannians and base elements for the classical types, and Table I
Ž .2.10 for the exceptional types.
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TABLE I
Base and Bi-grassmannians for Exceptional Types

Ž . Ž . Ž .W, S aW aBiGr W aBase W ‘clivage’

Ž . Ž . Ž .I m 2m 2 m y 1 2 m y 1 yes2
H 120 43 42 yes3
H 14400 756 469 yes4
G 12 10 10 yes2
F 1152 108 96 no4
E 51840 232 182 no6
E 2903040 945 528 no7
E 696729600 8460 2060 no8

2. BI-GRASSMANNIANS AND BASE ELEMENTS

Ž .Let W, S be any finite Coxeter system and F the Bruhat]Chevalley
Ž . Ž .order on W. We denote by Base W and BiGr W the base and the set of

all bi-grassmannians, respectively. For s, t g S we let sW t be the subset of
Ž . Ž . � 4 Ž . � 4BiGr W consisting of all w g W such that LL w s s and RR w s t .

Thus, we have

BiGr W s sW t .Ž . D
s, tgS

Thus, an element w g W belongs to sW t if and only if each reduced
expression for w starts with s and ends with t.

Ž .Our first aim will be to show that the base of W, F is contained in
Ž .BiGr W , a result originally due to Lascoux and Schutzenberger.¨

We start with the following result which gives the exact conditions for
the sets sW t to be empty or not. It also shows that in order to study
bi-grassmannians we can reduce to the case of irreducible finite Coxeter

Ž .groups see also the remarks at the end of this section .

Ž .Remark 2.1. Let S be the finest partition of S such that eachi ig I
element of S commutes with each elements of S for i / j. For each i g Ii j
let W be the subgroup of W generated by S so that W is the directi i

Ž . Ž .product of the groups W i g I and each W , S is an irreducible Coxeteri i i
system.

Ž . s ta If s g S and t g S with i / j, then W is empty.i j

Ž . s tb If s, t g S , then W is non-empty.i

Ž . Ž .In particular, we have BiGr W s D BiGr W .ig I i
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Ž . s tProof. a Assume, if possible, that there exists some g g W . We can
Ž . Ž .write uniquely g s Ł g , where g g W for all k. Since ll sg - ll gk g I k k k

Ž .and since s g S commutes with all generators in S _ S , we have ll sg -i i i
Ž .ll g and, in particular, g / 1. But then there also exists some t9 g Si i i

Ž . Ž .such that ll g t9 - ll g . Since t9 also commutes with all generators ini i
Ž . Ž .S _ S , we conclude that t9 g RR g . But we also have t g RR g and i / j,i

< Ž . <and hence RR g ) 1, a contradiction.

Ž . s t Ž .b If s s t, then s g W . Now assume that s / t. Since W , S isi i
Ž . wirreducible, the Coxeter graph associated with W , S is a tree, by 1,i i

xChap. V, Section 4, Proposition 8 . This means that there exists a unique
Ž .sequence s , . . . , s of different elements in S such that s s s, s s t,1 q i 1 q

and s does not commute with s for 1 F k F q y 1. Then g [ s ??? sk kq1 1 q
is a Coxeter element in the parabolic subgroup of W generated by the

� 4 Ž . � 4 Ž . � 4subsystem s , . . . , s : S. We have LL g s s and RR g s s , since1 q 1 q
the Dynkin diagram of that subsystem does not have any branch points
and, therefore, the above reduced expression for g is unique. So sW t is
nonempty, and the proof is complete.

We now recall some basic facts about the Bruhat]Chevalley order F .

w x2.2. The following construction is taken from 3, Remark 5.2 . Let
MM be the monoid whose elements are the subsets of W and where the

� 4 Ž .product is given by A ? B [ ab ¬ a g A, b g B for A, B : W . It is
� 4readily checked that the map f : S ª MM, s ¬ 1, s , satisfies the assump-

w xtions of Matsumoto’s theorem 1, Chap. IV, Section 1, Proposition 5 . So
Ž . Ž . Ž .there exists a unique map F : W ª MM such that F w s f s ??? f s1 l

Ž .whenever w g W and w s s ??? s s g S is a reduced expression.1 l i
Ž .For each w g W, the set F w consists of all elements of W which are

obtained by taking subexpressions of a given reduced expression of w, and
this does not depend on the choice of a reduced expression. Thus, for any

Ž . Ž .¨ , w g W, we have ¨ F w if and only if F ¨ : F w . In particular, this
characterization now immediately shows that, indeed, F is a partial order.

We will now collect some properties which will be useful for inductive
arguments. Let w g W and r g S. Then

r g LL w m ll rw s ll w y 1 m rw - w ,Ž . Ž . Ž .
r f LL w m ll rw s ll w q 1 m rw ) w.Ž . Ž . Ž .

There is a similar result for right multiplication with r, which immediately
follows from the observation that ¨ F w if and only if ¨y1 F wy1 for any
¨ , w g W.
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Now let ¨ , w g W and r g S. Assume that ¨ - w and rw - w. Then we
have:

Ž .a If r¨ - ¨ , then r¨ F rw.
Ž .b if r¨ ) ¨ , then r¨ F w and ¨ F rw.

w x w xA proof can be found in 2 or 6, Lemma 7.4 .
Of course, we also have symmetrical statements where we consider right

multiplication by r throughout.
The following result is fundamental for characterizing the base of W.

Ž . � 4LEMMA 2.3. Let x g W and assume that RR x = s, t with s, t g S,
s / t. Then we ha¨e the following implication for e¨ery y g W:

if xs F y and xt F y , then x F y.

Ž .In other words, if RR x contains two different generators s, t, then the set
� 4xs, xt admits a supremum which is x. Symmetrically, a similar result also

Ž .holds with LL x .

Ž . Ž .Proof. Let y g W with xs F y and xt F y. Then we have ll x F ll y
Ž . Ž . Ž Ž . Ž ..since s / t . We will proceed by induction on ll y q ll y y ll x . If
this is zero, there is nothing to prove. Now let y / 1 and choose any r g S
such that ry - y.

Ž . Ž . ŽCase 1. rx ) x. Since xs - x this implies that ll rxs s ll x . Indeed,
Ž . Ž . Ž . Ž . Ž . Ž .ll rx ) ll x and so ll rxs G ll rx y 1 s ll x ; on the other hand, ll xs

Ž . Ž . Ž . Ž . .- ll x and so ll rxs F ll xs q 1 s ll x . We can deduce from this that
Ž .r xs ) xs. Setting ¨ [ xs and w [ y we see that all assumptions of
Ž .Ž .2.2 b are satisfied; hence rxs s r¨ F w s y. By a completely similar

Ž . Ž . Ž .argument we also find that rxt F y. The equalities ll rxs s ll rxt s ll x
also imply that rxs - rx and rxt - rx. Hence all conditions of the assertion

Ž . Ž .that we are trying to prove are satisfied for the pair rx, y . Since ll y y
Ž . Ž . Ž .ll rx - ll y y ll x we can apply the induction and obtain that x - rx F y.

Hence we are done in this case.
Ž . Ž . Ž .Case 2. rx - x. In this case, we find that ll rxs s ll xs y 1 or ll rxs s

Ž . Ž . Ž .ll x , by a similar argument as above. Suppose we have ll rxs s ll x .
Ž . Ž . Ž . wSince ll xs s ll x y 1 s ll rx this can only happen if x s rxs, by 6,

x Ž .Ž .Lemma 7.2 . Thus since x s rxs ) xs we can apply 2.2 b with ¨ [ xs and
w [ y and obtain that x s rxs s r¨ F w s y, as desired. Similarly for t, in

Ž . Ž .case ll rxt s ll x , we get x F y as desired.
So it remains to consider the case where rxs - xs and rxt - xt. Applying

Ž .Ž . Ž .2.2 a with w [ y and ¨ [ xs or ¨ [ xt, respectively now yields that
rxs F ry and rxt F ry. Thus, all the assumptions of the result we are trying

Ž . Ž . Ž .to prove are satisfied for the pair rx, ry . Since ll ry - ll y we can apply
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Ž .induction and obtain that rx F ry. Since ry - y and x s r rx ) rx we get
Ž .Ž .r F y again from 2.2 b with ¨ [ rx and w [ y. So we are done, and the

proof is complete.

2.4. We now recall some basic facts about the base of partially
Ž . Žordered sets. Let X, F be any partially ordered set with X finite and

.nonempty . Given any nonempty subset Y : X and an element x g X
such that y F x for all y g Y, we say that x is the supremum of Y, writing

Ž .x s sup Y , if the following condition is satisfied:

if x9 g X and y F x9 for all y g Y , then x F x9.

Ž .If the subset Y does not have a supremum we write sup Y s B. When we
replace F by G in the above condition we obtain the definition of the

Ž .infimum of a subset Y, denoted inf Y .
w x � 4In order to simplify notation, we shall write F x [ y g X ¬ y F x for

w xx g X. By 7, Lemme 2.3 , the following two sets of elements of X are
equal:

Ž . Ž .a the subset of all elements x g X _ inf X which cannot be
obtained as the supremum of a subset Y : X with x f Y;

Ž . Ž .b the subset of all elements x g X _ inf X for which there exists
an element z g X such that x is a minimal element in the complement of
w xF z .

Ž .This subset of X is called the base of X, being denoted by B s Base X .
Ž .This coincides with the definition given in the introduction for W, F .

w xNamely, by 7, Proposition 2.4 , the base B has the following property: if
Ž Ž . .we let PP B , : be the partially ordered set of all subsets of B, then the

Ž . w xmap X ª PP B , x ¬ F x l B, is an isomorphism of partially ordered
sets onto its image, and moreover, any other subset of X with this
property contains B. This characterization shows that

Ž . Žw x .c x s sup F x l B for each x g X.

Thus, in order to check that the relation x F y holds for any two elements
Ž .x, y g X it is sufficient to check if b F y for all b g Base W such that

Žb F x see the similar remark in the Introduction about coding elements in
.W by boolean vectors .

Ž .For practical purpose, the characterization of B in b seems to be the
Ž .most efficient one; this will be used in our algorithmic description in 2.9

Ž .below. A simple application of the characterization in b will be given in
Remark 2.6 below.

The following theorem is now a direct consequence of Lemma 2.3.
wOriginally, it was proved by Lascoux and Schutzenberger in 7, Theoreme¨ ´ `

x3.6 by a different method.
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Ž .THEOREM 2.5. The base of W, F is contained in the set of bi-grassman-
s t Ž .nians. Moreo¨er, a bi-grassmannian g g W for s, t g S which is not in the

base can be obtained as the supremum of a subset Y :sW t not containing g.

Proof. Let x g W and assume that x is not a bi-grassmannian. Then
Ž . Ž .LL x or RR x contains at least two generators s, t g S, s / t, and Lemma

Ž� 4. Ž� 4.2.3 implies that x s sup sx, tx or x s sup xs, xt , respectively. This
Ž .Ž .yields that x is not in the base, by the characterization in 2.4 a . This

Ž . Ž .argument shows that Base W : BiGr W , as desired.
In order to prove the second assertion, we take any g gsW t which is not

Ž .Ž . Ž . Ž .in the base. By 2.4 a , there exists a subset Y : Base W : BiGr W
Ž .with g f Y such that g s sup Y . Suppose we have an element y g Y

which is not in sW t. We will now describe a procedure which replaces y by
a set Y of base elements of strictly smaller length. Then, after a finite1
number of repetitions of this procedure we arrive at a subset Y 9 :sW t

Ž .such that g f Y 9 and g s sup Y 9 .
Ž . � 4So suppose, for example, that we have an element y g Y with RR y s r

w x Ž . Ž . Ž .Ž .and r / t. Let Y [ F yr l Base W ; then yr s sup Y by 2.4 c .i 1
Moreover, every element in Y has length strictly smaller than y. We1
claim that Y is the desired set, that is,1

� 4g s sup Y _ y j Y .Ž .Ž .1

� 4To prove this, let z g W such that y9 F z for all y9 g Y _ y , and y F z1
for all y g Y . The latter conditions imply that yr F z.1 1

Ž .Ž .If zr ) z, then yr - zr and we can apply 2.2 b with ¨ [ yr and
w [ zr to conclude that y F zr. Now we have y9 F zr for all y9 g Y and

Ž .Ž .hence g F zr. Since gr ) g we can apply once more 2.2 b with ¨ [ g
and w [ zr to conclude that g F z.

Ž .Ž .If zr - z, then 2.2 b with ¨ [ yr and w [ z yields that y F z. Again,
we now have y9 F z for all y9 g Y and hence g F z. Thus, the above claim
is established.

Ž . � 4In the case when we have an element y g Y with LL y s r and r / s
we can argue symmetrically. The proof is complete.

The following results provide very powerful criteria to decide whether a
bi-grassmannian is in the base or not. We will frequently make use of them
in the following sections.

Remark 2.6. Let J ; S and W ; W be the corresponding parabolicJ
Ž .subgroup of W. Then W , J itself is a finite Coxeter system, and theJ

Ž .Bruhat]Chevalley order of W , J is obtained by restricting the orderingJ
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Ž w x. Ž . Ž .on W to W see 6, Corollary 5.10 . We have BiGr W ; BiGr W , byJ J
just noting that sw9 ) w9 and w9s ) w9 for all w9 g W and s g S _ J.J
Furthermore, we have

Base W ; Base W .Ž . Ž .J

Ž . Ž .Ž .Indeed, suppose that b g Base W . Applying 2.4 b with respect toJ
Ž .W , J we see that there exists some z g W such that b is a minimalJ J

w xelement in W _ F z . If b9 g W is such that b9 F b, then b9 can beJ
obtained as a subexpression of b and, hence, b9 g W . From this, we seeJ

w x Ž .Ž .that b is also minimal in W _ F z . Hence applying 2.4 b with respect to
Ž . Ž .W, S , we get b g Base W .

LEMMA 2.7. Let s, t g S and g gsW t, Y :sW t such that y F g for all
y g Y. Assume that the following condition holds:

if g 9 gsW t and y F g 9 for all y g Y , then g F g 9.

Ž .Then g s sup Y .

Proof. Suppose the conclusion is false. Then there exists some z g W
such that y F z for all y g Y but g g z. Choose z of minimal possible
length with this property.

Step 1. We claim that z is a bi-grassmannian. Assume that this is not
Ž . Ž .the case. Then LL z or RR z contains at least two different generators

Ž .r, r 9 g S, r / r 9. Suppose first that r, r 9 g RR z . We consider the parabolic
subgroup H : W generated by r, r 9 and write z s xh, where h g H and
x g W is a minimal left coset representative with respect to H; then
Ž . Ž . Ž . Ž w x. Ž .ll z s ll x q ll h see 6, Section 1.10 . Since r, r 9 g RR z it follows

Žthat also hr - h and hr 9 - h. Indeed, if hr or hr 9 were reduced, then xhr
.or xhr9 would also be reduced, a contradiction. But H is a Coxeter group

on the two generators r, r 9; hence h is the unique longest element in H
Ž w x.see 6, Section 1.8 . So we can write h s rr 9r ??? s r 9rr 9 ??? , where the
number of factors in both products is m [ order of rr 9 g W. Thus, a
reduced expression for z is given by choosing any reduced expression for x
and one of the two possible reduced expressions for h.

Let y g Y. Since y F z, we can get a reduced expression for y by taking
a suitable subexpression of the above reduced expression of z s xh. If we
had t / r, r 9, then this would already imply that y F x. Since this holds for
all y g Y and since x - z, the minimality of z would imply that g F x F z,
a contradiction. Hence we have t s r or t s r 9. We arrange notation so
that t s r and we choose the reduced expression for h which ends with r 9.
Let z [ xhr9 - xh s z. A reduced expression for z is obtained by just1 1
deleting the last factor r 9 from the reduced expression for z. Since any
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Ž . � 4y g Y is a subexpression of z and since RR y s r , we conclude that y
must already be a subexpression of z . Again, the minimality of z leads to1
a contradiction.

< Ž . < Ž .Thus, our assumption was wrong and hence RR z s 1. If LL z con-
tains at least two different generators, then using the symmetry of replac-
ing an element by its inverse we again reach a contradiction using the
previous argument. Hence the claim is proved.

Step 2. We know by Step 1 that z is a bi-grassmannian. Now we
Ž . � 4 Ž . � 4 Ž .claim that LL z s s and RR z s t . Suppose, for example, that RR z s

� 4r with r / t. Choose any reduced expression for z9 [ zr - z. If we add r
to z9, we obtain a reduced expression for z. Since any y g Y is given by a

Ž .subexpression of this reduced expression for z, and since r f RR y , we
conclude that we must have y F z9. Again, the minimality of z leads to a

Ž . � 4contradiction. If LL z s r with r / s, then we use once more the
symmetry given by inversion of elements to reach a contradiction by the
previous argument.

This completes the proof.

The following result is a key to the explicit computation of the base of
W: it shows that it is sufficient to work only in the smaller sets sW t, for
s, t g S, instead of the whole of W.

COROLLARY 2.8. Let s, t g S. By restricting F to sW t we obtain a
Žs t . Žs t. Ž .partially ordered set W , F . Let inf W be its infimum if it exists and

Žs t.Base W its base. Then

Base W lsW t s inf sW t j Base sW t .Ž . Ž . Ž .

Ž . Ž .Proof. First recall that inf W s 1 f BiGr W and that an element
1 / x g W lies in the base if and only if it cannot be obtained as the
supremum of a subset Y : W with x f Y.

Žs t. Ž .Next observe that g [ inf W , if it exists, always lies in Base W .
Indeed, if this were not the case, then g would have to be supremum of a

s t Ž . Žs t.subset Y : W with g f Y see Theorem 2.5 . But since g s inf W , this
is impossible.

To have a separate notation for a supremum taken with respect to
Žs t .W , F we denote such a supremum by sup .st

s t Ž . Ž .Now let g g W and assume that g f Base W . Then g s sup Y for a
s t Ž .subset Y : W with g f Y see Theorem 2.5 . But then the defining

Žs t.condition for a supremum is also satisfied with respect to W , and so
Ž . Žs t. Ž . s tg s sup Y . Thus, we have the inclusion Base W : Base W l W .st
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Ž . s t Žs t.Conversely, let b g Base W l W and assume that b / inf W , if the
Ž . s tinfimum exists. Suppose we have b s sup Y for some subset Y : Wst

Ž .with b f Y. Then Lemma 2.7 implies that b s sup Y . But this would
mean that b / 1 is not in the base of W, a contradiction.

2.9. We shall now describe an algorithm to compute the sets
Ž . Ž .Base W and BiGr W , based on the above results. Let us fix s, t g S and

s t Ž .consider the subset W : BiGr W .

Ž . s t ta In order to compute W we proceed as follows. Let W be the
set of distinguished right coset representatives with respect to the maximal

� 4parabolic subgroup of W generated by S _ t . This set can be constructed
recursively as follows. For each i G 0 let W t be the subset of W t ofi

t � 4elements of length i. We start with W s 1 . Let now i ) 0 and assume0
that W t has already been constructed. Then W t is the set of all xriy1 i

t Ž . Ž . � 4where x g W and r g S such that ll r 9xr ) ll xr for all r 9 g S _ t .iy1
Having computed W t in this recursive way, we obtain sW t as the set of

t Ž . � 4all d g W such that LL d s s .
Ž . Ž . s tb Now we want to determine Base W l W . For this purpose we

Žs t . .Ž .consider the partially ordered set W , F . Using 2.4 b we determine its
s t s t w xbase by computing, for any g g W , the minimal elements in W _ F g .

Ž . s tBy Lemma 2.7, Base W l W consists precisely of these minimal ele-
Žs t.ments and inf W , if it exists.

Ž .In practice, this works even in large examples due to the fact that in a
we can proceed by induction on the length of elements and that, in
general, the cardinalities of the sets sW t are rather small as compared to
< <W . Thus, the algorithm works as long as we can afford to compute

Žexplicitly all minimal right coset representatives with respect to a maximal
.parabolic subgroup of a given length.

Ž .2.10. Let W, S be a Coxeter system of exceptional type. In Table
I, we give for each of these types the number of bi-grassmannians and the
number of elements in the base. These results were obtained by using an

Ž . w x w ximplementation of the algorithm 2.9 in GAP 10 and CHEVIE 5 .
Explicit tables with reduced expressions for the elements in the base are
available on request to the authors.

w xThe column ‘‘clivage’’ refers to a notion introduced in 7, Definition 2.7 :´
Ž .the answer is ‘‘yes’’ if for every element b g Base W there exists an

w x w xelement b g W such that W is the disjoint union of G b and F b .
Moreover, this condition holds if and only if the ‘‘enveloping lattice’’ of
Ž . w xW, F is distributive, according to 7, Theoreme 2.8 .´ `

Since the Dynkin diagrams of type E , E , and E contain D as a6 7 8 4
subdiagram, the answer is ‘‘no’’ in these cases since the answer is already

s s s s1 2 3 4
v v v vŽ .‘‘no’’ for D see Example 5.8 . For type F with diagram4 4
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there are 16 base elements which do not admit a ‘‘clivage’’; reduced
expressions for them are given as follows: 2132132, 2132432, 2321432,
3213243, 3214323, 3234323, 23214323, 32132432, 213213243, 213234323,
321432132, 323432132, 2132132432, 2321432132, 3213234323, 3234321323
Ž .where we write 21 ??? instead of s s ??? to abbreviate the notation .2 1

Ž . Ž .2.11. Let W , S be the irreducible components of W, S . Byi i ig I
Ž . Ž .Remark 2.1 we have BiGr W s D BiGr W . We claim that we alsoig I i

have

Base W s Base W .Ž . Ž .D i
igI

To prove this, first note that the right-hand side is contained in the
Ž . Ž .Ž .left-hand side by Remark 2.6. Conversely, let b g Base W . By 2.4 b

w xthere exists some z g W such that b is minimal in W _ F z . We can
write uniquely z s Ł z with z g W for all k. Theorem 2.5 andk g I k k k
Remark 2.1 imply 2.1 imply that b g W for some j g I. But then b is alsoj

w x Ž .minimal in W _ F z and, hence, b g Base W , as required.j j j
Thus, we are reduced to the case of irreducible finite Coxeter groups,

and we can proceed according to the known classification of these groups
Ž w x.see 1, Chap. VI, Section 4, Theoreme 1 . The exceptional and noncrystal-´ `

Ž .lographic types have been considered in 2.10 above. In the following
three sections we consider the classical types.

3. TYPE Any1

Let n G 2 and S be the symmetric group of degree n. For 1 F i Fn
Ž . Žn y 1 denote by s the basic transposition i, i q 1 . Then S ,i n

� 4.s , . . . , s is a Coxeter system of type A with the following Dynkin1 ny1 ny1
diagram.

s s s1 2 ny t

v v vA , ? ? ? , n G 2.ny1

3.1. We will now describe a coding of the elements of S in termsn
Ž w x.of certain sequences of nonnegative integers of length n y 1 cf. 7 .

We have a chain of parabolic subgroups G ; G ; ??? ; G , corre-2 3 n
� 4 � 4 � 4sponding to the subsets of generators s ; s , s ; ??? ; s , . . . , s .1 1 2 1 ny1

For 1 F k F n y 1 we let

A � 4R [ 1, s , s s , . . . , s s ??? s .k k k ky1 k ky1 1



GECK AND KIM290

Ž A . ANote that RR contains k q 1 elements. Then we can see that RR sk 1
� 4 AG s 1, s , and RR is the set of minimal right coset representatives of2 1 k

G in G , for 2 F k F n y 1.k kq1
Every element w g G can therefore be written uniquely in the formn

A Ž . Ž .w s r , . . . , r , where r g RR for all k, and we have ll w s ll r1 ny1 k k 1
Ž .q ??? qll r . We call this the canonical form of w, and the r / 1 theny1 k

canonical factors of w. Since every element in RR A is uniquely determinedk
w xby its length, we can therefore represent w by the sequence c , . . . , c ,1 ny1

Ž .where c s ll r for all k. We will frequently identify an element w withk k
w xits code c , . . . , c .1 ny1

w xFor example, the six elements in S are coded as follows: 1 s 0, 0 ,3
w x w x w x w x w xs s 1, 0 , s s 0, 1 , s s s 1, 1 , s s s 0, 2 , s s s s 1, 2 .1 2 1 2 2 1 1 2 1

It will turn out that this coding is well adapted to characterizing which
elements in S are bi-grassmannians. We have the following basic rela-n

Žtions. For 1 F c - k F n let r [ s s ??? s the unique ele-ky1, c ky1 ky2 kyc
A.ment of length c in RR . The generator s commutes with r fork i ky1, c

i ) k; the remaining products r s and s r are given byky1, c i i ky1, c

s r if k y c - i F k y 1iy1 ky1, c

r if i s k y cky1, cy1

r if i s k y c y 1ky1, cq1

s r if i - k y c y 1i ky1, c

and

r if i s kk , cq1

r if i s k y 1ky2, cy1

r s if k y c F i - k y 1ky1, c iq1

r s if i - k y c y 1,ky1, c i

respectively. Note that this covers all possibilities except for the two
products r s and s r which are already in canonical form.ky1, c kq1 kycy1 ky1, c

PROPOSITION 3.2. An element w g S is a bi-grassmannian if and only ifn
there exist integers l, m G 0 and c ) 0 such that the code of w has the form

b l , m; c [ 0, . . . , 0 , c, . . . , c , 0, . . . , 0 , where l ) 0.Ž . ^ ` _^` _ ^ ` _
m l n y 1 y m y l

Proof. The fact that elements of the above form are bi-grassmannians
Ž .is readily checked using the multiplication rules in 3.1 . Conversely, let

w g S be a bi-grassmannian. We want to show that w must have then
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� 4above form. We do this by induction on n. If n s 2, then S s 1, s and2 1
there is nothing to prove. So let n ) 2 and assume that the assertion is
already proved for S . We write w s r ??? r with r g RR A for all k.ny1 1 ny1 k k

If r s 1, then w g S and we are done by induction. So assumeny1 ny1
Ž .that 1 / r s r with c G 1; note that this means that RR w sny1 ny1, c

� 4s . Let w9 [ r ??? r g S . If w9 s 1, then w s r has thenyc 1 ny2 ny1 ny1
required form. So assume that w9 / 1.

Ž . Ž . Ž . Ž .We certainly have LL w9 : LL w , and hence LL w9 s LL w because
Ž . ŽLL w is a singleton set. This also implies that r / 1. If we hadny2

Ž .r s 1, then w9 would lie in S and hence s g LL w , which isny2 ny2 ny1
Ž . Ž . .impossible since LL w s LL w9 : S . We claim that w9 is in fact any1

bi-grassmannian in S .ny1
Ž . Ž .Since LL w9 s LL w is a singleton set, we only need to consider the set

Ž . Ž .RR w9 . Let s g RR w9 or, equivalently, w9s - w9, for some k - n y 1. Ifi i
Ž . � 4k - n y c y 1, then s r s r s . Hence s g RR w s s , which isi ny1 ny1 i i nyc

impossible. So we must have i G n y c y 1. Assume that i G n y c. Then
the above multiplication rules show that s r s r s , and hence, wei ny1 ny1 iq1

Ž .would have s g RR w . But i q 1 / n y c for i G n y c, so again, this isiq1
Ž . � 4impossible. We conclude that RR w9 s s , and our claim is estab-nycy1

lished.
By induction, w9 has a code of the desired form, where all nontrivial

Ž . � 4canonical factors have the same length. Since RR w9 s s , thisnycy1
length is c, and the proof is complete.

Remark 3.3. The above proof shows that if w s r ??? r is a bi-gras-1 ny1
smannian in S and w9 [ r ??? r / 1, then w9 is a bi-grassmannian inn 1 ny2
S .ny1

w xThe following result can also be found in 7, Theoreme 4.4 , but note´ `
that the approach taken by Lascoux and Schutzenberger is quite different¨

Ž .from ours: they show that every b g BiGr S admits a ‘‘clivage’’; that is,n
Ž . w xthere exists a unique b g S such that S is the disjoint union of G bn n

w x Ž . Ž .and F b . This implies both the equality Base S s BiGr S and then n
Ž . Žfact that the ‘‘enveloping lattice’’ for S , F is distributive cf. also then

Ž ..remarks in 2.10 .

Ž .THEOREM 3.4. An element w g S is contained in the base of S , Fn n
if and only if w is a bi-grassmannian.

� 4Proof. We proceed by induction on n. If n s 2, then S s 1, s and2 1
there is nothing to prove. Now let n ) 2 and g g S be a bi-grassman-n

Ž .nian. By Theorem 2.5, there exists a subset Y : Base S such thatn
Ž . Ž . Ž . Ž . Ž .g s sup Y and such that LL y s LL g , RR y s RR g for all y g Y.

We write g s r ??? r in canonical form with 1 F m F n y 1 andm ny1
r / 1. If r s 1, then g is a bi-grassmannian in G and we are donem ny1 ny1
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by induction and Remark 2.6. Now suppose r / 1. If Y above wereny1
Žcontained in S , then every y g Y would be smaller with respect tony1

. Ž .F than the longest element of S , thus so is sup Y , and hence,ny1
Ž .g s sup Y g S . This is impossible since g contains the generatorny1

s . So there should be some y g Y which has a canonical form y s rX
ny1 1

X X Ž . Ž . X
??? r with r / 1. Since RR y s RR g the last factor r must haveny1 ny1 ny1
the same length as the last factor of y, and so rX s r . By Propositionny1 ny1
3.2, every nontrivial factor in the decomposition of y has the same length.

Ž . Ž .On the other hand, since LL y s LL g , any reduced expression for y must
start with the same generator as any reduced expression for g. This forces
that rX s ??? s rX s 1 and rX s r / 1. So we conclude that g s y g1 my1 m m

Ž .Base S , and the proof is complete.n

Let b denote the cardinality of the set of bi-grassmannians, which is then
Ž 2 .same as the set of base elements. We have b s n n y 1 r6, with then

generating function given by
1

ny2 2 3 4 5b z s s 1 q 4 z q 10 z q 20 z q 35z q 56 z q ??? .Ý n 41 y zŽ .nG2

4. TYPE Bn

Ž .Let n G 1 and W ; GL R be the subgroup of all matrices which haven n
exactly one nonzero entry in each row and each column and where this
nonzero entry is "1. Let t g W be the diagonal matrix with diagonaln

Ž .entries y1, 1, . . . , 1 . And, for 1 F i F n y 1, let s g W the matrixi n
Ž .obtained from the identity matrix by interchanging the ith and the i q 1 th

Ž � 4.row. Then W , t, s , . . . , s is a Coxeter system of type B with then 1 ny1 n
following Dynkin diagram.

t s s s s s0 1 2 ny1

v v v vB , ? ? ? , n G 1n

The group W is isomorphic to the wreath product of the cyclic group ofn
order 2 with the symmetric group S . We letn

t [ t , t [ s t s for 1 F i F n y 1.0 i i iy1 i

Thus t is obtained from t by shifting the diagonal entry y1 from the firsti
Ž . nto the i q 1 th position. A normal subgroup in W of order 2 isn

� 4generated by t , . . . , t , and a complementary subgroup isomorphic to0 ny1
� 4S is generated by s , . . . , s .n 1 ny1

4.1. There is again a coding of the elements of W , in a similar wayn
as for type A . We have a chain of parabolic subgroups W ; W ; ???ny1 1 2

� 4 � 4; W corresponding to the subsets of generators t ; t, s ; ??? ;n 1
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� 4 B � 4t, s , . . . , s . Let RR [ W s 1, t and, for 1 F k F n y 1,1 ny1 0 1

RRB [ RR A j TT ,k k k

where

� 4TT [ t , s t , s s t , . . . , s s ??? s t .k k k ky1 k ky1 ky2 k ky1 1 0

Ž B Ž . . BNote that RR contains 2 k q 1 elements. Then RR is the set ofk k
minimal right coset representatives of W in W , for 1 F k F n y 1.k kq1

Every element w g W can be written uniquely in the form w s r ???n 0
B Ž . Ž . Ž .r , where r g RR for all k, and we have ll w s ll r q ??? qll r .ny1 k k 0 ny1

Since every element in RRB is uniquely determined by its length, we cank
w x Ž .therefore represent w by the sequence c , . . . , c , where c [ ll r0 ny1 k k

for all k. On the level of codings, the embeddings S : W is given by then n
w x w xmap c , . . . , c ¬ 0, c , . . . , c .1 ny1 1 ny1

Ž .For example, the elements in W the dihedral group of order 8 are2
w x w x w x w x w xcoded as follows: 1 s 0, 0 , t s 1, 0 , s s 0, 1 , ts s 1, 1 , s t s 0, 2 ,1 1 1

w x w x w xts t s 1, 2 , s ts s 0, 3 , ts ts s 1, 3 .1 1 1 1 1
Every element of W can be regarded as a ‘‘signed’’ permutation of then

standard basis vectors of R n. The factors in RR A correspond to permuta-k
tion matrices in W , where all nonzero entries are equal to 1. Therefore,n
we will call them positï e factors. The factors in TT are obtained fromk
those in RR A by multiplying with a suitable factor t . This multiplicationk kyc
does not affect the induced permutation of the basis vectors but it does
change the sign at exactly one basis vector. Therefore, we call these factors
negatï e factors. Note also that a factor r g RRB is positive or negativek k

Ž Ž ..according to whether c F k or c ) k, respectively where c s ll r .k k k k
Now let w g W and write w s r ??? r with r g RRB for all k. Thenn 0 ny1 k k

we can define the signed code of w as the sequence obtained from the
w xcode c , . . . , c of w by keeping all c with c F k and replacing all c0 ny1 k k k

with c ) k by 2k q 1 y c . In order to distinguish between positive andk k
negative factors, we attach a prime 9 to the latter ones. Thus, for c - n,
the factors s ??? s and s ??? s t have coding numbers cny1 nyc ny1 nyc nycy1

w Ž. Ž. xand c9, respectively. We shall write c , . . . , c if we do not want to0 ny1
specify which factors are positive or negative.

For example, the signed codes of the above elements of W are:2
w x w x w x w x w x w x1 s 0, 0 , t s 09, 0 , s s 0, 1 , ts s 09, 1 , s t s 0, 19 , ts t s 09, 19 ,1 1 1 1

w x w xs ts s 0, 09 , ts ts s 09, 09 .1 1 1 1
We will see below that this modified coding is well-adapted to character-

izing bi-grassmannians and base elements in W . Note also that then
Ž .multiplication rules in 3.1 remain valid when we replace the element

r s s s ??? s by rX s s s ??? s t .my 1, c my1 my2 myc my1, c my1 my2 myc mycy1
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PROPOSITION 4.2. An element w g W is a bi-grassmannian if and only ifn
there exist integers m, l, l G 0 and c ) 0 such that the signed code of w has1
the form

b l , l , m; cŽ .1

[ 0, . . . , 0 , c y l 9, . . . , c y 1 9 , c, . . . , c . 0, . . . , 0Ž . Ž .^ ` _ ^` _ ^ ` _^ ` _
m l n y m y l y l1 1l

where l q l ) 0 and l F c F l q m.1

Proof. The proof is similar to that of Proposition 3.2. First, it can be
readily checked that every element with a signed code of the above form is
a bi-grassmannian. Conversely, let w g W be a bi-grassmannian. Wen
show by induction on n that its signed code has the above form. If n s 1,

� 4then W s 1, t and there is nothing to prove. Now let n ) 1 and write1
w s r ??? r with r g RRB. If r s 1, then w g W and we are1 ny1 k k ny1 ny1
done by induction.

So let r / 1 and w9 [ r ??? r g W . If w9 s 1, then w s rny1 1 ny2 ny1 ny1
has the required form. So assume that w9 / 1. As in the proof of
Proposition 3.2 we see that r / 1. We claim that w9 is in fact any2
bi-grassmannian in W and that the coding numbers of the two right-mostn

Ž . Ž .factors r , r of w are arranged as claimed. We have LL w9 s LL wny2 ny1
Ž . Ž . Ž .and RR w s RR r . For RR w9 , we consider the following three cases:ny1

Ž .Case 1. r s s ??? s with coding number c G 1 and RR rny1 ny1 nyc ny1
� 4s s . If w9s - w9 for 1 F i F n y 2, then a similar reasoning as in thenyc i

proof of Proposition 3.2 shows that i s n y c y 1; in particular, this
implies c - n y 1. If w9t - w9, then c s n y 1 for otherwise t would

Ž .commute with r and then t g RR w .ny1
Ž . � 4 Ž . Ž .Hence, we have either RR w9 s s with c - n y 1 or RR w9 snycy1

� 4 Ž . � 4t , and so w9 is a bi-grassmannian. If RR w9 s s , then r is thenycy1 ny2
Ž . � 4positive factor s ??? s of length c, while if RR w9 s t , then rny2 nycy1 ny2

Ž .is the negative factor s ??? s t with coding number c y 1 9. Inny2 nyc nycy1
both cases, the coding numbers of r and r are arranged as claimed.ny2 ny1

Ž .Case 2. r s s ??? s t with coding number n y 1 9 andny1 ny1 1
Ž . � 4RR r s t . Assume, if possible, that w9s - w9 for 1 F i F n y 2. Sinceny1 i

Ž .then s r s r s , we would have s g RR w , a contradiction. Soi ny1 ny1 iq1 iq1
Ž . � 4RR w9 s t , r s s ??? s t, and w9 is a bi-grassmannian whose right-ny2 ny2 1

most canonical factor is negative and has a coding number as claimed.
Case 3. r s s ??? s t with coding number c9, c - n yny1 ny1 nyc nycy1

Ž . � 41, and RR r s s . In particular, this implies that t commutesny1 nycy1
Ž .with r and so t f RR w9 . Hence w9s - w9 for some 1 F i F n y 2. Theny1 i

Ž .analogues for negative factors of the multiplication rules in 3.1 show that



BASES FOR THE BRUHAT]CHEVALLEY ORDER 295

Ž .we must have i s n y c y 1. Thus, w9 is a bi-grassmannian with RR w9 s
� 4 Ž .s s RR w . Now we have two possibilities for r , namely eithernycy1 ny2
the positive factor s ??? s of length c, or the negative factorny2 nycy1

Ž .s ??? s t which has coding number c y 1 9. We claim that theny2 nyc nycy1
first possibility cannot occur. To see this we show that if we had r sny2

Ž .s ??? s , then we would also have s g LL w , which is impossi-ny2 nycy1 ny1
ble. We compute:

s r r s s s ??? s s ??? s tŽ . Ž .ny1 ny2 ny1 ny1 ny2 nycy1 ny1 nyc nycy1

s s s s s ??? s s ??? s tŽ . Ž . Ž .ny1 ny2 ny1 ny3 nycy1 ny2 nyc nycy1

s s s s s ??? s s ??? s tŽ . Ž . Ž .ny2 ny1 ny2 ny3 nycy1 ny2 nyc nycy1

s ???

s s s s s ??? s s s tŽ . Ž . Ž .ny2 ny1 ny3 ny2 nyc nycy1 nyc nycy1

s s s s s ??? s s s tŽ . Ž . Ž .ny2 ny1 ny3 ny2 nycy1 nyc nycy1 nycy1

which is not reduced since s t is not reduced. Hence, s gnycy1 nycy1 ny1
Ž .LL w , and we are done.
Thus, in each case w9 is a bi-grassmannian in W X . By induction, w9 hasny1

a signed code as claimed. Moreover, we have found conditions on the
coding numbers of the two right-most factors in w. These conditions show
that the signed code of w is also as claimed. The proof is complete.

Remark 4.3. The above proof shows that if w s r ??? r is a bi-gras-0 ny1
smannian in W and w9 [ r ??? r / 1, then w9 is a bi-grassmannian inn 0 ny2
W ; compare this with the analogous Remark 3.3 for S .ny1 n

Ž .4.4. Let us fix an element g g BiGr W . We wish to describe an
canonical procedure by which we can associate with g two elements

Ž . Ž� 4.b , b g Base W such that g s sup b , b . First we need to preparey q n y q
Ž . � 4 Ž . � 4 Žsome notation. Let LL g s s , RR g s s , where 0 F i, j F n y 1 withi j

.s s t . We consider the sets0

i j � 4 � 4W [ y g BiGr W LL y s s , RR y s s ,Ž . Ž . Ž .½ 5n n i j

w x i jY [ F g l W l Base W .Ž .g n n

Ž i j s i s jNote that W is just a short notation for the set W defined in Section
. Ž .2. By Theorem 2.5, we have g s sup Y . We will find the desiredg

elements b , b in Y .y q g
Ž .Let t g G 0 be the number of generators t in any reduced expression
Žof g. Note that this does not depend on the choice of a reduced

. � Ž . 4expression. Let p [ max t y ¬ y g Y . All elements in Y can be ob-g g
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tained as subexpressions of a given reduced expression of g. Thus, p F
Ž . Ž . i jt g . Assume, if possible, that p - t g . We can write any y g W in then

form y s r ??? r with r g RRB for all k. Now note that r F t , if r isi ny1 k k k k k
negative, and r F s s ??? s , if r is positive. Thus, we would havek k ky1 1 k

Ž . Ž .y F t ??? t s ??? s ??? s ??? s \ y for all y g Y . But theni iqpy1 iqp 1 ny1 1 0 g
also g F y and so g would contain at most p generators t, a contradic-0
tion. Hence

Ž . Ž . Ž .a there exists some b g Y such that t b s t g .y g y

Ž .Let n g G 1 be the biggest k G 1 such that the generator s occurs in aky1
Žreduced expression for g. Note again that this does not depend on the

. � Ž . 4choice of a reduced expression. Let q [ max n y ¬ y g Y . We certainlyg
Ž . Ž .have q F n g . If q - n g , then all the elements in Y , and hence also g,g

Žwould lie in the subgroup of W generated by s , s , . . . , s . Moren 0 1 qy1
precisely, g would be smaller than or equal to the longest element in that

.subgroup. This is a contradiction, and so we conclude that

Ž . Ž . Ž .b there exists some b g Y such that n b s n g .q g q

At some point we will have to show explicitly that certain bi-grassmannians
are not in the base. The crucial result for this purpose is the following.

PROPOSITION 4.5. Let g giW j and consider any g , g giW j such thatn y q n
Ž . Ž . Ž . Ž .g F g, g F g and t g s t g , n g s n g . Then we ha¨e g sy q y q

Ž� 4.sup g , g .y q

Ž . � 4 Ž . � 4 Ž .Proof. Let LL g s s and RR g s s as in 4.4 . Assume that g hasi j
Ž .signed code b l, l , m; c , where l q l ) 0, l F c F l q m as in Proposi-1 1

Ž . � 4tion 4.2. The condition LL g s s is equivalent to m s i, and thei
Ž . � 4 Ž .condition RR g s s is equivalent to m q l q l y c s j. We have t gj 1

Ž .s l and n g s m q l q l .1
Ž� 4.In order to prove that g s sup g , g we use the criterion in Lemmay q

2.7. Let g 9 giW j such that g F g 9 and g F g 9. We must show thatn y q
Ž X .g F g 9. Let g 9 have signed code b l9, l , m9; c9 . The conditions that1

Ž . � 4 Ž . � 4LL g 9 s s and RR g 9 s s imply thati j

m9 s i s m , l9 q lX y c9 s j y i s l q l y c. 1Ž .1 1

Since g and g can be obtained by taking subexpressions of g 9 we musty q
Ž . Ž . Ž . Ž . Ž .have l s t g s t g F t g 9 s l9 and m q l q l s n g s n g Fy 1 q

Ž . X Ž .n g 9 s m9 q l9 q l . Combining this with the conditions in 1 we find1
that

l F l9, c F c9, l q l F l9 q lX . 2Ž .1 1



BASES FOR THE BRUHAT]CHEVALLEY ORDER 297

In particular, g 9 contains at least as many negative factors as g, and each
positive factor in g 9 is at least as long as each positive factor in g.

Let us write g s r ??? r and g 9 s rX
??? rX with r , rX g RRB

m n Ž g .y1 m n Ž g 9.y1 k k k
for all k. The first l or l9 factors, respectively, are negative, while all other
factors are positive.

Assume first that c y l F c9 y l9. We claim that then r F rX for allk k
X Žk G m. Indeed, if k F m q l y 1, then r and r are negative note thatk k

. Xl F l9 and we certainly have r F r , since c y l F c9 y l9. If k G m q l,k k
then r is positive and rX can be positive or negative; but since c F c9 wek k
have again r F rX . Thus, in particular, we can conclude that g F g 9, ask k
desired.

Now assume that c9 y l9 - c y l. In this case we cannot argue factor by
factor to conclude that g F g 9. Instead, we rewrite the canonical form of g
as a product of terms where all terms involving t are equal to the

Ž . Ž .corresponding terms in g 9. Let d [ l y c y l9 y c9 G 1. The condi-
Ž . Xtions in 1 then also imply that l s l q d. A straightforward computa-1 1

tion shows that

r ??? r s rX
??? rX y ??? y ,m mqly1 m mqly1 1 d

where

y [ s X ??? s X for 1 F k F d.k jyl qkqly1 jyl qk1 1

So we have a new expression g s rX
??? rX y ??? y r ??? rm mqly1 1 d mql n Ž g .y1

which is also reduced. This new expression has been arranged so that the
first l factors are exactly the same as those in g 9. The product y ???1

Ž .y r ??? r consists of precisely d q n g y m y l s d q l nontriv-d mql n Ž g .y1 1
ial factors which is exactly the number lX of positive factors in g 9. We will1
now prove that we can compare these last lX positive factors term by term1
to conclude that g F g 9.

Ž . Ž . � 4 XSince RR g s RR g 9 s s , the last l s l y d positive factors in g andj 1 1
Ž .Xin g 9 end with s , . . . , s where s is the last . Since c F c9, we canjy l qdq1 j j1

conclude that each of these factors in g is smaller than or equal to the
corresponding factor in g 9. On the other hand, both the preceding d
factors y , . . . , y and the preceding d factors in g 9 end with1 d
s X , . . . , s X . Again, each of the factors in the first product is smallerjy l q1 jyl qd1 1

than or equal to the corresponding factor in the second product. This
completes the proof.

The following result is now a direct consequence of Proposition 4.5. It
w xcan also be found in 7, Theoreme 7.4 but, again, Lascoux and Schutzen-´ ` ¨

berger’s approach is quite different from ours: they use an order-preserv-
ing embedding W : S and thus reduce to the case of the symmetricn 2 n
groups already solved before. Again, their method also yields the stronger
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Ž .result that the ‘‘enveloping lattice’’ of W , F is distributive, by showingn
Žthat every base element admits a ‘‘clivage’’ cf. the analogous remark

.preceding Theorem 3.4 for type A .ny1

THEOREM 4.6. Let g g W be a bi-grassmannian as in Proposition 4.2,n
with signed code

0, . . . , 0 , c y l 9, . . . , c y 1 9 , c, . . . , c , 0, . . . , 0Ž . Ž .^ ` _ ^` _ ^ ` _^ ` _
m l n y m y l y l1 1l

l q l ) 0, l F c F l q m .Ž .1

Ž .Then g is in the base if and only if l s 0 all factors are positï e , or l s 01
Ž . Ž .all factors are negatï e , or l s c the first negatï e factor is 09 , or c s m q l
Ž .all negatï e factors ending in t .

Ž . � 4 Ž . � 4 Ž .Proof. Let LL g s s , RR g s s , and let b l, l , m; c be the signedi j 1
Ž .code of g g BiGr W . Let g , g be any bi-grassmannians as in Proposi-n y q

Ž� 4.tion 4.5, so that g s sup g , g .y q

Case 1. First assume that l s 0, that is, all canonical factors in g are
� 4positive. Then g lies in the subgroup of W generated by s , . . . , s ,n 1 ny1

and so g is a bi-grassmannian in S . By Theorem 3.4, we have g gn
Ž . Ž .Base S . So, using Remark 2.6, we conclude that g g Base W .n n

Case 2. Now assume that l s 0 or that l s c. We claim that this1
forces g s g . Indeed, the coding numbers of the negative factors in g arey
Ž . Ž .c y l 9, . . . , c y 1 9. The reduced expression of the product of these
factors ends with s , and the following l nontrivial positive factorsmq lyc 1

Žend with s , . . . , s note that the last index is just j andmq lycq1 mqlycql1
Ž . � 4. Ž . Ž .recall that RR g s s . Now consider g . We have t g s t g s l andj y y

so there exists some k G l such that the negative factors in g havey
Ž . Ž .coding numbers k y l 9, . . . , k y 1 9. Again, the right-most of these fac-

tors ends with s , and the following positive factors end withmq lyk
Ž . Ž .s , s , . . . . Since t g s t g and g F g we have at mostmq lykq1 mqlykq2 y y

l nontrivial positive factors in g . Hence the right-most of these factors1 y
Ž .ends with s or in a generator with a lower index. Since RR g smq lql yk y1

Ž .RR g we can now deduce that k F c.
If l s c, then this also implies that k s l and, hence, the negative

Ž . Ž .factors in g and g are the same. The condition that RR g s RR g theny y
also forces the positive factors to be the same and, hence, g s g asy
desired.

If l s 0, then g cannot have any nontrivial positive canonical factors1 y
Ž . Ž . Ž .for otherwise we would have n g ) n g . So RR g contains the gener-y y

ator at which the right-most negative factor ends. But this generator is
Ž . Ž .s . Since RR g s RR g , we conclude that k s c and hence thatmq lyk y

g s g as desired.y
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Ž .Ž .We can now take g as b in 4.4 a , and deduce that g s b gy y y
Ž .Base W .n

Case 3. Finally assume that l, l ) 0 and l - c s l q m, that is,1
there exist nontrivial positive and negative factors but all negative factors

Ž . Ž .end with t. Since n g s n g , the total number of nontrivial factors inq
Ž . Ž .g is the same as the corresponding number for g. Since t g F t gq q

and since l ) 0 we conclude that the last nontrivial factor in g is1 q
Ž . Ž .positive. Hence, since also RR g s RR g , the last nontrivial canonicalq

factors in g and g must be equal. Suppose that g contains exactlyq q
Ž .p G 0 negative factors. Since g F g we certainly must have p s t g Fy q

Ž . Ž .t g s l. We claim that we have in fact equality. Indeed, since n g sq
Ž .n g the number of nontrivial positive factors in g is l q l y p. Then weq 1

Ž . Ž .can compute that ll g G 1 q 2 q ??? qp q c l q l y p where we usedq 1
the fact that the k th negative factor has at least length k. On the other

Ž . Ž . Ž .hand, we have ll g s 1 q 2 q ??? ql q cl . Since ll g F ll g , the as-1 q
serted equality p s l now follows by just comparing these two formulae for
the length. Thus, g and g have the same number of positive and negativeq
factors, respectively, and since the positive factors have the same length,

Ž .Ž .this forces that g s g . We can take g as b in 4.4 b and deduce thatq q q
Ž .g s b g Base W .q n

Thus, every bi-grassmannian which is covered by one of the above three
cases is in the base of W . Now assume that l, l ) 0 and l - c - l q m.n 1

Ž .We want to prove that g f Base W . For this purpose we just have to findn
a particular choice for g , g such that g - g, g - g. This can be doney q y q
as follows.

i j ŽLet g be the bi-grassmannian in W with signed code b l, l y 1, m;y n 1
.c y 1 . Note that the conditions on the parameters in Proposition 4.2 are

Ž . Ž .satisfied since l ) 0 and c ) l ) 0; moreover, we have t g s t g . Let1 y
i j Ž .g be the bi-grassmannian in W with signed code b l y 1, l q 1, m; c .q n 1

Note again that the conditions on the parameters are satisfied since l ) 0
and c - m q l. It is readily checked that g - g and g - g. Hence wey q

Ž� 4.have found the desired elements. Since g s sup g , g , the proof isy q
complete.

EXAMPLE 4.7. Using Theorem 4.6 we easily see that every bi-grassman-
nian is in the base for types B , B , and B . If n s 4 there are 451 2 3

w xbi-grassmannians and 44 base elements; the missing element is 0, 0, 19, 2
s s s ts s s . We have, in fact,2 1 1 3 2

w x w x w x0, 0, 19, 2 s sup 0, 0, 2, 2 , 0, 0, 09, 0 .Ž .

Let us consider the example B : there are 90 bi-grassmannians and 85 base5
elements. The five missing elements, together with expressions as suprema
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of base elements, are given as

w x w x w x0, 0, 19, 2, 0 s sup 0, 0, 09, 0, 0 , 0, 0, 2, 2, 0 ,Ž .
w x w x w x0, 0, 19, 29, 3 s sup 0, 0, 09, 19, 0 , 0, 0, 29, 3, 3 ,Ž .
w x w x w x0, 0, 19, 2, 2 s sup 0, 0, 09, 1, 0 , 0, 0, 2, 2, 2 ,Ž .
w x w x w x0, 0, 0, 29, 3 s sup 0, 0, 0, 19, 0 , 0, 0, 0, 3, 3 ,Ž .
w x w x w x0, 0, 0, 19, 2 s sup 0, 0, 0, 09, 0 , 0, 0, 0, 2, 2 .Ž .

Note that the first element in this list is the missing element we had for B4
before.

Let g denote the cardinality of the set of bi-grassmannians. Then wen
Ž 4 3 2 .have g s n q 10n q 11n q 2n r24, with generating functionn

1 y z q z 2
ny1 2 3 4 5g z s s 1 q 6 z q 19 z q 45z q 90 z q 161 z q ??? .Ý n 5z y 1Ž .nG1

Let b be the cardinality of the set of base elements. Then we haven
Ž 3 .b s 2n q n r3 and its generation function is given byn

2z q 1Ž .
ny1 2 3 4 5b z s s 1 q 6 z q 19 z q 44 z q 85z q 146 z q ??? .Ý n 41 y zŽ .nG1

5. TYPE Dn

Ž .Let W ; GL R as in the previous section. For n G 2 consider then n
˜ Ž .subgroup W ; W consisting of all elements w g W such that t w isn n n

Ž Ž . Ž .even where, as in 4.4 , t w is the number of generators t in a reduced
˜.expression for w . In particular, W has index 2 in W . If we set u [ ts t,n n 1

˜Ž � 4.then W , u, s , s , . . . , s is a Coxeter system of type D with then 1 2 ny1 n
following Dynkin diagram:

s1

v s ss 3 ny12

v v vD ? ? ? , n G 2.n
v u s ts t1

We still have a semidirect product decomposition with an elementary
abelian normal subgroup of order 2 ny1 generated by u , . . . , u , where1 ny1

u [ us , u [ s u s for 2 F i F n y 1.1 1 i i iy1 i
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� 4 � 4Note that, now both s , s , . . . , s and u, s , . . . , s generate com-1 2 ny1 2 ny1
plementary subgroups isomorphic to S .n

The above Dynkin diagram admits a symmetry of order 2. This gives rise
˜ ˜ sto a group automorphism s : W ª W , w ¬ w , interchanging u and sn n 1

and fixing all s with i G 2. This automorphism is in fact given byi
conjugation with t inside W .n

˜ ˜5.1. Again, we have a chain of parabolic subgroups W ; W ; ???2 3
˜ � 4 � 4; W corresponding to the subsets of generators u, s ; u, s , s ; ???n 1 1 2

D ˜� 4 � 4; u, s , . . . , s . Let RR [ W s 1, s , u, us and, for 2 F k F n y 1,1 ny1 1 2 1 1

RRD [ RR A j UU ,k k k

where
� 4 � 4UU [ u , s u , . . . , s s ??? s u j s s ??? s u .k k k ky1 k ky1 2 1 k ky1 2

Ž D Ž . . DNote that RR contains 2 k q 1 elements. Then RR is the set ofk k
˜ ˜minimal right coset representatives of W in W , for 2 F k F n y 1.k kq1

˜Every element w g W can be written uniquely in the form w s r ???n 1
D Ž . Ž . Ž .r , where r g RR for all k and we have ll w s ll r q ??? qll r .ny1 k k 1 ny1

But now the elements in RRD are not determined by their length. So, ink
w xorder to obtain a unique coding, we represent w by c , . . . , c , where1 ny1

Ž . Ž .c s ll r q 1 if r g UU , and c s ll r otherwise. As we did before, wek k k k k k
˜will often identify an element w g W with its code.n

For example, we consider the elements of length 2 in type D ; their4
w x w x w xcodes are given as follows: s s s 1, 0, 1 , s u s 0, 3, 0 , s s s 0, 0, 2 ,1 3 2 3 2

w x w x w x w xs s s 1, 1, 0 , s s s 0, 2, 0 , s s s 0, 1, 1 , us s 2, 0, 1 , s u s us s1 2 2 1 2 3 3 1 1
w x w x3, 0, 0 , us s 2, 1, 0 .2

Again, we call a factor r g RR A positive, and a factor r g UU negative.k k k k
In a similar way as for type B we can also define a signed code forn

˜ w xw g W : this is obtained from the above code c , . . . , c of w byn 1 ny1
keeping each c F k and replacing each c ) k by 2k q 1 y c . In orderk k k
to distinguish between positive and negative factors we attach a prime 9 to
the latter ones. Thus, the factors s ??? s and s ??? s uny1 nyc ny1 nyc nycy1
have coding numbers c and c9, respectively. Note that this only works for

Ž . Ž .c - n y 1. The two factors with coding numbers n y 1 and n y 1 9 are
s ??? s s and s ??? s u, respectively. In particular, the coding num-ny1 2 1 ny1 2
bers for s , u, us are 1, 19, 09, respectively. Again, we shall write1 1
w 0 0 xc , . . . , c if we do not want to specify which factors are positive or0 ny1
negative.

˜For example, the signed codes for the above elements in W are given4
w x w x w x w x w x w x w x w xby: 1, 0, 1 , 0, 29, 0 , 0, 0, 2 , 1, 1, 0 , 0, 2, 0 , 0, 1, 1 , 19, 0, 1 , 09, 0, 0 ,

w x19, 1, 0 , respectively.

˜5.2. Our aim is to find a description of all bi-grassmannians in Wn
similar to that for type B as in Proposition 4.2. Recall that the proof ofn
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the latter result was achieved by an inductive argument, based on the
Ž .observation that if w s w9r g BiGr W , where 1 / w9 g W andny1 n ny1

Ž .r g RR , then we also have w9 g BiGr W .ny1 ny1 ny1
˜This need no longer be true for bi-grassmannian in W . Indeed, forn

n G 3 we have a counterexample given by w [ s ??? s us s ??? s gny2 2 1 ny1 2
˜ ˜Ž . Ž . Ž .BiGr W for which w9 [ s ??? s us f BiGr W , since RR w9 sn ny2 2 1 ny1

� 4u, s is not a singleton set.1
It will turn out, however, that we still can obtain a uniform description if

˜ Ž . Ž .we consider all the elements w g W such that each of LL w and RR wn
� 4either consists of just one generator or else equals u, s . We call these1

elements pseudo bi-grassmannians.

˜PROPOSITION 5.3. An element w g W is a pseudo bi-grassmannian ifn
and only if there exist integers m, l, l G 0 and c ) 0 such that one of the1
following conditions is satisfied. Either ws s w and the signed code of w has
the form

b m , l , l ; cŽ .I 1

[ 0, . . . , 0 , c y l 9, . . . , c y 1 9 , c, . . . , c , 0, . . . , 0 ,Ž . Ž .^ ` _ ^` _ ^ ` _^ ` _
m l n y 1 y m y l y l1 1l IŽ .

Žwhere l q l ) 0 and l F c F l q m cf. the similar conditions in Proposition1
. s s4.2 for type B ; or w / w and the signed code of one of w, w has the formn

b m , l , l ; cŽ .II 1

0
[ 0, . . . , 0 , c y l , . . . , c y 3 9, c y 2, c y 1 9 , c, . . . , c ,Ž . Ž . Ž .^ ` _ ^` _^ ` _

m l1l
0, . . . , 0 , IIŽ .^ ` _

n y 1 y m y l y l1where l ) 0 and c s l q m q 1.
The only pseudo bi-grassmannians which are not bi-grassmannians are

Ž . Ž .those of form I with c s l, m s 0 the first negatï e factor is us or with1
Ž .c s l q m, l s 0 all factors are negatï e, and they are ending in us .1 1

˜Proof. It is easily checked that all elements w g W such that then
s Ž . Ž .signed code of one of w, w has the form I or II are pseudo bi-grass-

mannians. To prove the converse, we can again proceed by induction on n.
If n s 2, then all nonidentity elements are pseudo bi-grassmannians and

˜there is nothing to prove. So, now let n ) 2 and w s r ??? r g W be a1 ny1 n
pseudo bi-grassmannian with r g RRD for all k. If r s 1 we are donek k ny1
by induction. So, first we can assume that r / 1. If w9 s 1, thenny1
w s r has the required form and we are done. Hence, we can alsony1
assume that w9 [ r ??? r / 1. By a similar argument as in the proof of1 ny2
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Proposition 3.2 we must have r / 1. We now check that w9 is a pseudony2
˜bi-grassmannian in W , by considering the following three cases.ny1

Case 1. r s s ??? s with 1 F c F n y 1. Then r has codingny1 ny1 nyc ny1
Ž . � 4number c, and we have RR w s s . Note that if c s n y 1, thennyc

r u g RRD is reduced, and so we cannot have wu - w. As in the proofny1 ny1
of Proposition 4.2 we see that if w9s - w9, then i s n y c y 1 ) 0. Oni

Žthe other hand, if w9u - w9, then c G n y 2 note that u commutes with
.s , . . . , s , s . Combining these two conditions we see that w9 is any1 3 1

pseudo bi-grassmannian, with

Ž . Ž . � 4a either c F n y 2 and RR w9 s s ,nycy1

Ž . Ž . � 4b or c s n y 2 and RR w9 s u, s ,1

Ž . Ž . � 4c or c G n y 2 and RR w9 s u .

Ž .If a holds, then r could either be the positive factor s ??? sny2 ny2 nycy1
with coding number c or the negative factor s ??? s u withny2 nyc nycy1

Ž . Ž .coding number c y 1 9. If b holds, then r is the negative factorny2
Ž . Ž . Ž .s ??? s us with coding number n y 3 9 s c y 1 9. Finally, if c holds,ny2 2 1

Ž .then r is the negative factor s ??? s u with coding number n y 2 9.ny2 ny2 2
Ž . Ž .Case 2. r s s ??? s u with coding number n y 1 9 and RR w sny1 ny1 2

� 4 Ž .u . A similar argument as in Case 1 shows that we cannot have ws - w.1
Since s r s r s for i G 2, we cannot have w9s - w9 in this case.i ny1 ny1 iq1 i
Nor can we have w9u - w9, since ur s s ??? s us u s s ???ny1 ny1 3 2 ny1

Ž . � 4s s us . Thus we should have RR w9 s s , and hence, r is the positive2 2 2 1 ny2
factor s ??? s s with coding number n y 2.ny2 2 1

Case 3. r s s ??? s u with 1 F c F n y 2. Then r hasny1 ny1 nyc nycy1 ny1
Ž . � 4 Ž .coding number c9 and we have RR w s s for c F n y 3 ornycy1

Ž . � 4 Ž .RR w s s , u for c s n y 2 . As before, we can check that if w9s - w9,1 i
then we must have i s n y c y 1. Furthermore, if c F n y 3 we cannot
have w9u - w9, since ur s r s . Thus, there are only the followingny1 ny1 1
possibilities:

Ž .a either r s s ??? s with coding number c,ny2 ny2 nycy1

Ž .b or c ) 1 and r s s ??? s u with coding numberny2 ny2 nyc nycy1
Ž .c y 1 9,

Ž .c or c s n y 2 and r s s ??? s u with coding number c9.ny2 ny2 2

By a similar computation as in Case 3 of the proof of Proposition 4.2, we
Ž . Ž . Ž .can check that we would have s g LL w if a or c holds. For example,ny1

Ž .in case c we would find that

s r r s s s ??? s s ??? s us usŽ . Ž .ny1 ny2 ny1 ny1 ny2 2 ny1 3 2 1
...

s s s s s ??? s s s us usŽ . Ž . Ž .ny2 ny1 ny3 ny2 3 2 3 2 1

s s s s s ??? s s s s us sŽ . Ž . Ž .ny2 ny1 ny3 ny2 3 2 3 2 2 1
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which is not reduced since s s s s is not reduced. Hence, these two cases3 2 3 2
can in fact not occur.

Summarizing, we see that in each case above w9 is a pseudo bi-grass-
w 0 0 xmannian. Hence, by induction, w9 has the desired form. Let c , . . . , c1 ny1

be the signed code of w. From the above cases we also have found that
one of the following five conditions must hold for the two right-most
coding numbers r , r :ny2 ny1

both r and r are positive and c s c ;ny2 ny1 ny2 ny1I or IIŽ . Ž . ½ r is negative, r is positive, and c s c y 1;ny2 ny1 ny2 ny1

both r and r are negative and c s c y 1;only IŽ . � ny2 ny1 ny2 ny1

r is positive, r is negative, n y 2 s c s c y 1;ny2 ny1 ny2 ny1only IIŽ . ½ r is negative, r is positive, and n y 2 s c s c .ny2 ny1 ny2 ny1

If the first, second, or third of the above conditions is satisfied, we
can apply induction and conclude that our element has a signed code of

Ž .form I .
If the fourth condition is satisfied, we apply induction again and con-

Ž .clude that our element has a signed code of form II .
If the fifth condition is satisfied, we first apply s and then we see that,

Ž .by induction, our element has a signed code of form II .
This completes the proof of the assertions about the signed code of

pseudo bi-grassmannians.
The assertions about bi-grassmannians now easily follow: we just need to

Ž . Ž . � 4exclude the cases when LL w or RR w equals u, s . From the above1
Ž . � 4discussion, we see that the only case where we have RR w s s , u is1

Ž .when r has coding number n y 2 9. But then r should have codingny1 ny2
Ž . Ž .number n y 3 9 by Case 3 b . Thus, by induction, the signed code of w

w Ž . Ž . xhas the form 0, . . . , 0, n y l y 1 9, . . . , n y 2 9 . Similarly, we can have
Ž . � 4LL w s s , u only if the first negative factor is us , that is, only if the1 1

w Ž . xsigned code has the form 09, 19, . . . , l y 1 9, l, . . . , l . This completes the
proof.

˜ ˜5.4. Consider the embedding W ¨ W . Given any w g W , we cann n n
˜rewrite a reduced expression for w in the generators of W as a reducedn

Ž .expression in the generators of W , by using the rules s ¬ s for all i andn i i
u ¬ ts t.1

˜ Ž .Now let g g W be a bi-grassmannian with signed code b m, l, l ; c orn I 1
Ž .b m, l, l ; c as in Proposition 5.3, and consider its image in W . We claimII 1 n

that this image satisfies one of the following conditions:

Ž .a If l is even, then g is also a bi-grassmannian in W , with signedn
Ž .code b m q 1, l, l ; c ;1
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Ž .b If l is odd, then tg is a bi-grassmannian in W , with signed coden
Ž .b m q 1, l, l ; c .1

Ž .To prove this, assume first that g is of the form I . We write g s r ??? r1 ny1
with r g RRD for all k. If r is a positive factor, then the reducedk k k

˜expressions for r in W and in W are identical. If r s s ??? s uk n n k k kycq1 kyc
Ž . Ž .for c - k or r s s ??? s u, then, using the rule u s tt s t t for all ik k 2 i i i
and the fact that t commutes with all s , i G 2, we obtain r s ts ???i k k
s t or r s ts ??? s s t, respectively. Thus, each of the l negativekycq1 kyc k k 2 1
factors produces a negative factor in W and an extra factor t. Since tn
commutes with all s for i G 2, these extra factors cancel out in pairs.i
Hence we obtain a sequence of l negative factors in W , and an extran

Ž .factor t at the beginning if l is odd. If g has form II , then the l
alternating positive and negative factors produce a sequence of l negative
factors in W ending with t, and again an extra factor t at the beginning ifn
l is odd. In both cases we see that the resulting element in W has then
form as claimed.

˜ s sHowever, if g g W is a bi-grassmannian such that g / g and g has an
Ž .signed code of form II , then neither g nor tg is a bi-grassmannian in W .n

˜Ž Ž .Take, for example, the element g s us g BiGr W with signed code2 3
w x .19, 1 . The signed code of g is then given by

Ž . s Ž .c b m, l, l ; cII 1

0
[ 0, . . . , 0 , c y l , . . . , c y 2 9, c y 1 , c9, c, . . . , c ,Ž . Ž .^ ` _ ^ ` _^ ` _

m l1l
0, . . . , 0 ,^ ` _

n y 1 y m y l y l1
where c s m q l q 1 as before.

˜5.5. In order to find the base for W , our strategy will be mainly then
Ž .same as the one for type B see the steps in the proof of Theorem 4.6 .n

˜First note that the Bruhat]Chevalley order on W is not the restrictionn
Žof the Bruhat]Chevalley order on W . Take, for example, the elementsn

˜ .s ,u s ts t which are comparable in W but not in W . For this reason, in1 1 n n
˜order to distinguish the ordering on W from the one on W , we willn n

˜denote it from now on by U . Since W is a subgroup of W generated byn n
Žthe reflections u s ts t, s , . . . , s of W , we have the implications see1 1 ny1 n

w x.8, Lemma 1.9 :

˜a if x , y g W with x U y , then x F y and tx F ty.Ž . n

Ž .Furthermore, we will need an analogue of the function t in 4.4 . For any
˜ Ž .w g W we define t w G 0 as follows. Write w s r ??? r in canonical˜n 1 ny1
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D Ž .form with r g RR for all k. If all r are positive let t w [ 0. Otherwise,˜k k k
Ž .there exists at least one negative factor in particular, w / 1 and we let

� 4 � 4t w [ max k G 1 ¬ r g UU y min m G 1 ¬ r / 1 q 1.Ž .˜ k k m

Ž .Thus, t w is the length of that part of the canonical form of w which˜
starts with the left-most nontrivial factor and ends with the right-most
negative factor.

˜ sŽ .Now consider g g BiGr W . Then one of g, g has a signed code of then
Ž . Ž .form I or II as in Proposition 5.3. We embed g into W and comparen

Ž . Ž . Ž .the values t g , t g . Using the embedding rules in 5.4 we find that˜

tg ) g and t g s t g if t g is even,Ž . Ž . Ž .˜ ˜
bŽ . ½ tg - g and t g s t g q 1 if t g is odd.Ž . Ž . Ž .˜ ˜

With these notations we can now state:

˜LEMMA 5.6. Let g g W be a bi-grassmannian.n

˜Ž . Ž . Ž .a There exists some b g Base W with b U g such that LL b sy n y y
Ž . Ž . Ž . Ž . Ž .LL g , RR b s RR g , and t b s t g .˜ ˜y y

Ž . Ž .b If the signed code of g has the form b m, l, l ; c with l s c orI 1
˜Ž .l s 0, then g s b g Base W .1 y n

˜Ž . Ž .Proof. Let Y : Base W be similarly defined as in 4.4 , so thatg n
Ž . � Ž . 4 Ž .g s sup Y . Let e [ max t y ¬ y g Y . We want to show that e s t g .˜ ˜g g

Ž .Take any z g Y with t z s e.˜g
Ž .Assume, if possible, that e ) t g . Since z U g we also have z F g by˜

Ž .Ž . Ž . Ž .the first inequality in 5.5 a , and so t z F t g . On the other hand, by
Ž .Ž . Ž . Ž . Ž .5.5 b , we have e s t z F t z and so e F t g . Our assumption e )˜
Ž . Ž . Ž . Ž .Ž .t g now yields t g G e ) t g . Using again 5.5 b we conclude that e˜ ˜

Ž . Ž .must be even and t g s t g y 1 s e y 1 is odd. But in this case we also˜
Ž . Ž . Ž .have tg - g and tz ) z. This implies that t tg - t g s t g q 1 s e˜

Ž . Ž .Ž .and t tz ) e. The second inequality in 5.5 a yields that tz F tg and so
Ž . Ž .e - t tz F t tg - e, a contradiction. Hence the assumption was wrong

Ž .and we must have e F t g .˜
Ž .Assume now, if possible, that e - t g . By a similar argument as in˜

Ž .Ž .4.4 a this implies that g U u ??? u y , where y is a certainm mqey1 0 0
Ž .Ž .product of generators s . Using the first inequality in 5.5 a we obtainj

e Ž . Ž . Ž . Žg F t t ??? t y and so t g F e for e even or t g F e q 1 for em mqey1 0
. Ž . Ž . Ž .odd . Since t g F t g we conclude, using our assumption e - t g , that˜ ˜

Ž . Ž .e must be odd and t g s t g s e q 1 is even. The second inequality in˜
Ž .Ž . Ž . Ž .5.5 a yields that tg F t ??? t y , and so t tg F e. Since t g is˜m mqey1 0

Ž Ž .Ž .. Ž . Ž .even we have tg ) g see 5.5 b . Hence we conclude that t g s t g -˜
Ž . Ž .t tg F e, again a contradiction. Thus, a is proved.
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˜Ž . Ž . Ž .Now consider b . Let g g BiGr W be of form I , with signed coden
Ž . Ž .b m, l, l ; c such that l s c or l s 0. By a we can find an elementI 1 1

Ž . Ž .z g Y with t z s t g .˜ ˜g
Ž . Ž .If z has form I or II , then we embed g, z into W , use the rules inn

Ž .Ž . Ž .5.4 a , b , and see that we are in a completely similar situation as in Case
2 of the proof of Theorem 4.6. In a similar way as in that proof, we can

˜Ž .conclude that g s z g Base W , and we are done.n
It remains to consider the case where our element z is a bi-grassman-

s s Ž .nian such that z / z , where z has form II . Then the signed code of z
Ž .Ž . Ž . Ž .has a form as in 5.4 c . Since t z s t g the right-most negative factor˜ ˜

in z appears at the same position in the canonical form as the right-most
negative factor in g does. Now all negative factors in g have the form
s ??? s u for k ) c. So we can just insert suitable factors u or sk kycq1 kyc 1
into the reduced expression for z so that z becomes a bi-grassmannian of

Ž . Žform I ; call this new element z . Note that now the lengths of the1
right-most negative and of the left-most positive factor in the new element

Ž . .are arranged correctly so as to give a bi-grassmannian of form I .
We still have z U g. Again, we embed these elements into W , use the1 n

Ž .rules in 5.4 , and conclude that z s g in the same way as above. But note1
that every negative factor of z ends with us , and hence the same holds1 1
for g. The assumption that l s c or l s 0 would therefore imply that g1
starts or ends with us , and so g would be a pseudo bi-grassmannian but1

Ž .not a bi-grassmannian see the excluded parameters in Proposition 5.3 .
Ž .This contradiction completes the proof of b .

˜THEOREM 5.7. If g g W is a bi-grassmannian such that the signed coden
s ˜ ˜Ž . Ž .of g or g has form II , then g lies in Base W . A bi-grassmannian g g Wn n

s ˜Ž . Ž . Ž .with g s g and signed code b m, l, l, l ; c of form I lies in Base W ifI 1 n
and only if

l s 0, l s 0, or c s l.1

w 0 0 x w 0 0 xFurthermore, the map c , . . . , c ¬ 0, c , . . . , c defines a bijection1 ny1 1 ny1
˜ ˜Ž . Ž .between BiGr W _ Base W and the corresponding set for W .n n n

˜ sProof. First let g g W be a bi-grassmannian such that g or g hasn
Ž .form II . Since s preserves the Bruhat]Chevalley order we deduce that

˜ s ˜Ž . Ž .g g Base W if and only if g g Base W . So we can assume that g hasn n
Ž . Ž .form II with signed code b m, l, l ; c . By Theorem 2.5, there exists aII 1

˜Ž . Ž . Ž . Ž .subset Y : Base W such that g s sup Y and such that LL y s LL g ,n
Ž . Ž . Ž .Ž .RR y s RR g for all y g Y. By an analogous argument as in 4.4 b there

Ž . Ž . Ž .exists some b g Y such that n b s n g . Here n g is defined as the˜ ˜ ˜q q
biggest k G 2 such that the generator s occurs in a reduced expressionky1

Ž Ž . .for g cf. the similar definition in 4.4 for type B .n
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˜Ž .We claim that we have in fact g s b g Base W . In order to proveq n
Ž . Ž X .this, suppose first that b has form I , with signed code b m9, l9, l ; c9 .q I 1

Ž . Ž .Since LL g s LL b we have m s m9. On the other hand, we haveq
Ž . � 4 Ž . � 4 Ž . Ž . � 4 ŽXRR b s s and RR g s s for l ) 0 or RR g s u forq m9ql9ql yc9q1 l 11 1

. Ž . Ž . Ž .l s 0 . Since RR b s RR g and b has the form I we conclude that1 q q
X Ž . Ž .0 - l s m q l9 q l y c9 q 1. The equality l q l q 1 s n g s n b˜ ˜1 1 1 q

s l9 q lX q 1 implies that c9 s m q l q 1 s c. But c9 F m q l9 and so1
l q 1 F l9. Now we can estimate the length of b and find a contradictionq
by a similar argument as in Case 3 of the proof of Theorem 4.6. Hence bq

s Ž .or b must be of form II . But in this case, the conditions that b U g,q q
Ž . Ž . Ž . Ž . Ž . Ž .LL b s LL g , RR b s RR g , and n b s n g imply that g s b .˜ ˜q q q q

˜Ž .Hence we have g g Base W , and we are done.n
s ˜Ž . Ž .From now on, assume that g s g and g g BiGr W has form I . Letn

us first consider the case where g satisfies one of the conditions l s 0,
Ž .l s 0, or c s l. If l s 0, then g g S and we are done, using 2.6 and1 n

Theorem 3.4. The cases for l s 0 or l s c have already been considered1
Ž .in Lemma 5.6 b . So now it remains to show that a bi-grassmannian

˜ Ž .g g W of form I is not a base element if it does not satisfy any of then
above conditions.

We use a similar strategy as in the proof of Theorem 4.6. We construct
˜ Ž .bi-grassmannians g , g g W of form I as follows: g is obtained fromy q n y

g by keeping the number of negative factors and decreasing the number of
positive factors by 1; g is obtained from g by keeping the total numberq
of nontrivial factors but increasing the number of positive factors by 1.

Ž .Moreover, this can be done in such a way that we still have LL g sy
Ž . Ž . Ž . Ž . Ž .LL g s LL g and RR g s RR g s RR g , and these conditions uniquelyq y q

determine g and g .y q
It can be readily checked that g $ g and g $ g, and now our aim is toq q

Ž� 4.show that g s sup g , g . By Lemma 2.7, it is sufficient to take anyy q
˜ Ž . Ž .bi-grassmannian g 9 g W with g U g 9, g U g 9 and LL g 9 s LL g ,n y q

Ž . Ž .RR g 9 s RR g . Then next, by showing that g U g 9 we complete the proof
by a completely similar argument as in the proof of Proposition 4.5. We
omit further details.

EXAMPLE 5.8. Consider the example type D . There are 30 bi-grass-4
mannians; their signed codes are given as follows:

w x w x w x w x w x w x w x19, 0, 0 , 19, 2, 39 , 19, 2, 0 , 19, 1, 0 , 19, 2, 2 , 19, 1, 1 , 1, 29, 0 ,
w x w x w x w x w x w x w x1, 0, 0 , 1, 29, 3 , 1, 1, 0 , 1, 29, 2 , 1, 1, 1 , 0, 29, 0 , 0, 2, 39 ,
w x w x w x w x w x w x w x0, 2, 0 , 0, 29, 3 , 0, 1, 0 , 0, 09, 0 , 0, 29, 2 , 0, 2, 2 , 0, 19, 2 ,
w x w x w x w x w x w x w x0, 09, 19 , 0, 1, 1 , 0, 09, 1 , 0, 0, 39 , 0, 0, 3 , 0, 0, 2 , 0, 0, 19 ,
w x w x0, 0, 1 , 0, 0, 09 .
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w xThere is one bi-grassmannian which is not in the base: 0, 19, 2 s
Žw xs us s s . This element can in fact be obtained as the sup 0, 09, 0 ,2 1 3 2

w x w x.0, 2, 2 , 0, 29, 2 .
w xThe following three base elements do not admit a ‘‘clivage’’: 0, 09, 0 ,

w x w x w x0, 29, 2 , 0, 2, 2 . Hence, by 7, Theoreme 2.8 , we see that the ‘‘enveloping´ `
Ž .lattice’’ of W, F is not distributive.

Consider now type D . There are 69 bi-grassmannians and 64 base5
elements. The signed codes of the five missing elements and expressions as
suprema of base elements are given as follows:

w x w x w x w x0, 19, 2, 0 s sup 0, 09, 0, 0 , 0, 2, 2, 0 , 0, 29, 2, 0 ,Ž .
w x w x w x w x0, 19, 29, 3 s sup 0, 09, 19, 0 , 0, 29, 3, 3 , 0, 2, 39, 3 ,Ž .
w x w x w x w x0, 19, 2, 2 s sup 0, 09, 1, 0 , 0, 2, 2, 2 , 0, 29, 2, 2 ,Ž .
w x w x w x w x0, 0, 29, 3 s sup 0, 0, 19, 0 , 0, 0, 3, 3 , 0, 0, 39, 3 ,Ž .
w x w x w x0, 0, 19, 2 s sup 0, 0, 09, 0 , 0, 0, 2, 2 .Ž .

Note that, indeed, we have a bijection between the set of these elements
and the corresponding set of five missing elements for type B in Example5

w x w x4.7. Note also that the elements with signed codes 0, 29, 2, 0 , 0, 2, 39, 3 ,
w x w x Ž .0, 29, 2, 2 , and 0, 0, 39, 3 do not have form II , but only their images
under s .

Let g denote the cardinality of the set of bi-grassmannians. Then wen
Ž 4 3 2 .have g s n q 14n y 37n q 46n y 24 r24, with generating functionn

given by

2 y z 3
ny2 2 3 4 5g z s s2q10 zq30 z q69 z q135z q237z q ??? .Ý n 51 y zŽ .nG2

Let b denote the cardinality of the set of base elements. Then we haven
Ž 3 2 .b s 5n y 12n q 13n y 6 r6 and its generating function is given byn

b z ny2Ý n
nG2

2 q 2 z q z 2
2 3 4 5s s 2 q 10 z q 29 z q 64 z q 120 z q 202 z q ??? .41 y zŽ .

These formulae follow from Proposition 5.3 and Theorem 5.7.



GECK AND KIM310

ACKNOWLEDGMENTS

We are indebted to A. Lascoux and M-P. Schutzenberger for introducing to us the ideas in¨
w x7 and much help concerning this work.

REFERENCES

1. N. Bourbaki, ‘‘Groupes et algebres de Lie,’’ Chaps. IV]VI, Hermann, Paris, 1968.`
2. V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and

Ž .determination of the relative Mobius function, In¨ent. Math. 39 1977 , 187]198.¨
3. M. Dyer, ‘‘Hecke Algebras and Reflections in Coxeter Groups,’’ Ph.D. thesis, University

of Sydney, 1987.
Ž .4. C. Ehresmann, Sur la topologie de certains espaces homogenes, Ann. of Math. 35 1934 ,`

396]443.
5. M. Geck, G. Hiss, F. Lubeck, G. Malle, and G. Pfeiffer, CHEVIE-A system for¨

computing and processing generic character tables for finite groups of Lie type, Weyl
Ž .groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 1996 , 175]210.

6. J. E. Humphreys, ‘‘Reflection Groups and Coxeter Groups,’’ Cambridge Stud. Adv.
Math., Vol. 29, Cambridge Univ. Press, Cambridge, 1990.

7. A. Lascoux and M. P. Schutzenberger, Treillis et bases des groupes de Coxeter, Electron.¨
Ž .J. Combin. 3 1995 .

8. G. Lusztig, ‘‘Characters of Reductive Groups over a Finite Field,’’ Ann. Math. Studies,
Vol. 107, Princeton Univ. Press, Princeton, NJ, 1984.

Ž .9. R. A. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 1982 ,
104]126.

10. M. Schonert et al., ‘‘GAP}Groups, Algorithms, and Programming,’’ Lehrstuhl D fur¨ ¨
Mathematik, fourth ed., RWTH Aachen, Germany, 1994.


