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1. INTRODUCTION

Let (W, S) be a finite Coxeter system; that is, W is a finite group with a
presentation of the form

(seS|s?2=1, sts == = st fors,t€S,s #1t),
S

N
m, factors my, factors

where m,, (for s,t € ) are positive integers with m, = 1 and m, > 1 if
s # 1.
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Every element w € W can be written in the form w = s, --- s, with
/>0ands,,...,s, €S. Here, the empty product is considered to be equal
to the identity element in W. If [ is minimal with this property we let
{(w) == [ be the length of w and call the above expression “reduced.” Let
< denote the Bruhat—Chevalley order on . We have v < w (for v,WE
W) if and only if there exists a reduced expression w = s, - s, as above
and a subsequence 1 < i, < -+ <i, <lsuchthatv =35, ---s,.In partic-
ular, we write v <w if v <w and v # w. We refer to (2 2) below where
we recall basic properties about this order and to [2] for various other
characterizations.

Lascoux and Schiitzenberger [7] have initiated the program of describing
a so-called “base” for the Bruhat—Chevalley order. This is the unique
subset B := Base(W) c W which is minimal with respect to set-theoretic
inclusion such that if we let ( P(B), <) be the partially ordered set of all
subsets of B, then the map

W — P(B), w— {beB|b<w},

is an isomorphism of partially ordered sets onto its image; cf. [7, Proposi-
tion 2.4]. The existence of the subset B allows us to encode each element
w € W by the boolean vector 6(W) := (5, |b € B), where §, =1 or 0
according to whether b <w or not. For v,w € W the condition that
v < w is then equivalent to the purely boolean condition that 6(v), = 1
implies 8(w), = 1 for all b € B.

In [7], the bases are determined for (W, <) of type A4,_, and B,. The
construction in [7] essentially amounts to embedding (W, <) into a lattice
called the “enveloping lattice” of the group. In type A4,_, and B, this
lattice even turns out to be distributive. In this paper, we explicitly
describe bases for all finite Coxeter groups.

The basic result [7, Théoréme 3.6] states that the base B of (W, <) is
contained in the set of all bi-grassmannians of W. By definition, an
element w € W is a bi-grassmannian if each of the sets

L(w) = {seS|l(sw) <l(w)}, R(w) = {s eS|l (ws) <l(w)}

consists of precisely one element (which may be different for the two sets).
In order to achieve this, Lascoux and Schuitzenberger use another charac-
terization of the Bruhat—Chevalley order which appears in [2, Lemma 3.6]
(and which goes back to Ehresmann [4] in the case of the symmetric
groups): we have v < w if and only if p(v) < p(w) for each s € S, where
p,(w) is the unique element of minimal length in the coset W,w where W,
is the parabolic subgroup of W generated by J =S\ {s}. A tableau
description of the Bruhat—Chevalley order for the classical types A4, _,,
B,, D, has been introduced by Proctor in [9].
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In this paper, we take a different approach. Instead of using the above
definition of the base, we work with another characterization established
in [7, Proposition 2.4], which seems to be more suitable for explicit
computations: the base is the set of all elements w € W which cannot be
obtained as the supremum of a subset of W not containing w. (We recall
basic results concerning suprema in partially ordered sets in (2.4)). Our key
tools for dealing with the problem of determining suprema are provided in
Lemma 2.3 and Lemma 2.7. The first of these leads to a new and
somewhat more direct proof of the above result that the base is contained
in the set of all bi-grassmannians (see Theorem 2.5), while the second one
leads to an efficient and practical criterion for determining which bi-
grassmannians are base elements (see Corollary 2.8).

In the framework of the theory developed in Section 2, we determine
the base for (W, S) of type A, _,, B,, and D, in Theorems 3.4, 4.6, and 5.7,
respectively. In order to state our results about bi-grassmannians and base
elements in these cases, we use a coding of the elements of W which is
particularly well suited for this purpose. This is given in terms of products
of minimal right coset representatives along a naturally chosen chain of
parabolic subgroups of W (see (3.1), (4.1), and (5.1)).

Modulo the general results about partially ordered sets in the appendix
of [7], this paper is self-contained and independent of [7]. In particular, we
obtain new proofs for the results on A4,_,, B,. We also point out that we
always work with the above definition of the Bruhat—Chevalley order in
terms of subexpressions of reduced expressions for the elements of .

Our methods yield a straightforward algorithm for the determination of
the base of any given finite Coxeter group. We have implemented this
algorithm in the computer algebra systems GAP [10] and CHEVIE [5], and
we have used these programs to construct bases for the finite Coxeter
groups of exceptional type. In order to give an idea of the complexity of
these computations we just mention that it took about 28 h to calculate the
base for type E, on a SUN Sparc station 5 computer. These GAP
programs and explicit tables with reduced expressions for the base ele-
ments are available on request via e-mail to the authors. Using our
programs we have found that the “‘enveloping lattice” is ho more distribu-
tive in type D,,. In fact, the smallest example where this distributivity fails
is type D, (see Example 5.8).

In all cases it turns out that the size of the base is rather small compared
to the group order. Indeed, if W is of type 4,_,, B,, or D,, then the
cardinality of W is n!, 2"n!, and 2"~ 'n!, respectively, while the number of
base elements in each case is given by a polynomial in n of degree 3. See
the end of Sections 3, 4, 5 for precise formulae giving the exact number of
bi-grassmannians and base elements for the classical types, and Table |
(2.10) for the exceptional types.
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TABLE |
Base and Bi-grassmannians for Exceptional Types

w,S) #W #BiGr(W) #Base(W) ‘clivage’

L(m) 2m 2(m — 1) 2(m — 1) yes
H, 120 43 42 yes
H, 14400 756 469 yes
G, 12 10 10 yes
F, 1152 108 96 no
Eg 51840 232 182 no
E; 2903040 945 528 no
Eg 696729600 8460 2060 no

2. BI-GRASSMANNIANS AND BASE ELEMENTS

Let (W, S) be any finite Coxeter system and < the Bruhat—Chevalley
order on W. We denote by Base(W) and BiGr(J¥) the base and the set of
all bi-grassmannians, respectively. For s, € § we let ‘W’ be the subset of
BiGr(W) consisting of all w € W such that L(w) = {s} and R(w) = {z}.
Thus, we have

BiGr(W) = U ‘W'

s, tes

Thus, an element w € W belongs to ‘W' if and only if each reduced
expression for w starts with s and ends with .

Our first aim will be to show that the base of (W, <) is contained in
BiGr(W), a result originally due to Lascoux and Schiitzenberger.

We start with the following result which gives the exact conditions for
the sets ‘W' to be empty or not. It also shows that in order to study
bi-grassmannians we can reduce to the case of irreducible finite Coxeter
groups (see also the remarks at the end of this section).

Remark 2.1. Let (S,),.,; be the finest partition of S such that each
element of §; commutes with each elements of §; for i # j. Foreach i € 1
let W, be the subgroup of W generated by S; so that W is the direct
product of the groups W,(i € I) and each (W}, S,) is an irreducible Coxeter
system.

(@ If s S, andr €S, with i # j, then "W is empty.
(b) If s, €S, then "W’ is non-empty.

In particular, we have BiGr(W) = U, ., BiGr(W).
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Proof.  (a) Assume, if possible, that there exists some g €'W'. We can
write uniquely g = I, ., g., where g, € W, for all k. Since |(sg) < 1(g)
and since s € S; commutes with all generators in S\ S,, we have |(sg;) <
I (g,) and, in particular, g, # 1. But then there also exists some ¢’ € S,
such that 1(g;t") <1(g,). Since ¢’ also commutes with all generators in
S\ S;, we conclude that ' € R(g). But we also have t € R(g) and i # j,
and hence | R(g)| > 1, a contradiction.

(b) If s =1¢, then s €' W' Now assume that s # . Since (W, S,) is
irreducible, the Coxeter graph associated with (W, S,) is a tree, by [1,
Chap. V, Section 4, Proposition 8]. This means that there exists a unique
sequence (sy,...,s,) of different elements in S, such that s; =s, s, = ¢,
and s, does not commute with s, , forl <k <q — 1. Then g:==s; - 5,
is a Coxeter element in the parabolic subgroup of W generated by the
subsystem {s;,...,s,} €. We have L(g) = {s;} and R(g) = {s,}, since
the Dynkin diagram of that subsystem does not have any branch points
and, therefore, the above reduced expression for g is unique. So ‘W' is
nonempty, and the proof is complete. |

We now recall some basic facts about the Bruhat—Chevalley order < .

2.2. The following construction is taken from [3, Remark 5.2]. Let
M be the monoid whose elements are the subsets of W and where the
product is given by A-B:={ab|la € A,b B} (for A,BCW). It is
readily checked that the map f:S — M, s — {1, s}, satisfies the assump-
tions of Matsumoto’s theorem [1, Chap. IV, Section 1, Proposition 5]. So
there exists a unique map F:W — M such that F(w) = f(s;) -+ f(s)
whenever w € Wand w = s; -+ 5, (s; € §) is a reduced expression.

For each w € W, the set F(w) consists of all elements of W which are
obtained by taking subexpressions of a given reduced expression of w, and
this does not depend on the choice of a reduced expression. Thus, for any
v,w € W, we have v <w if and only if F(v) € F(w). In particular, this
characterization now immediately shows that, indeed, < is a partial order.

We will now collect some properties which will be useful for inductive
arguments. Let w € W and r € S. Then

reL(w) < I =Ilw) -1 o mw<w,
reLl(w) o lmw)=lw)+1 < m>w

There is a similar result for right multiplication with r, which immediately
follows from the observation that v < w if and only if ™! <w™?! for any
v,weWw.
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Now let v,w € W and r € S. Assume that v < w and mw < w. Then we
have:

(@ If v <v,then rv < mw.
() if ro >0, then rv <w and v < mw.

A proof can be found in [2] or [6, Lemma 7.4].

Of course, we also have symmetrical statements where we consider right
multiplication by r throughout.

The following result is fundamental for characterizing the base of W.

LEMMA 2.3. Let x € W and assume that R(x) D {s,t} with s,t € S,
s # t. Then we have the following implication for every y € W

ifxs <yandxt <y, thenx <y.

In other words, if R(x) contains two different generators s, t, then the set
{xs, xt} admits a supremum which is x. Symmetrically, a similar result also
holds with L(x).

Proof. Let y € W with xs <y and xt <y. Then we have |(x) <I(y)
(since s # t). We will proceed by induction on |(y) + (1(y) — 1 (x)). If
this is zero, there is nothing to prove. Now let y # 1 and choose any r € §
such that ry <y.

Case 1. rx > x. Since xs < x this implies that | (mxs) = | (x). (Indeed,
1) > 1(x) and so | (ixs) > 1 (:x) — 1 = | (x); on the other hand, | (xs)
<l(x)and so |(mxs) < l(xs) + 1 = 1(x).) We can deduce from this that
r(xs) > xs. Setting v :=xs and w:=y we see that all assumptions of
(2.2)(b) are satisfied; hence rxs =rw <w =y. By a completely similar
argument we also find that rxt < y. The equalities | (rxs) = | (xt) = 1 (x)
also imply that rxs < rx and rxt < rx. Hence all conditions of the assertion
that we are trying to prove are satisfied for the pair (rx, y). Since 1(y) —
I ) < 1(y) — I (x) we can apply the induction and obtain that x < rx < y.
Hence we are done in this case.

Case 2. rx < x. In this case, we find that | (rxs) = 1 (xs) — Lor | (xs) =
I (x), by a similar argument as above. Suppose we have | (rxs) = 1(x).
Since I(xs) =1(x) — 1 = 1(x) this can only happen if x = rxs, by [6,
Lemma 7.2]. Thus since x = rxs > xs we can apply (2.2)(b) with v := xs and
w =y and obtain that x = rxs = rv < w =y, as desired. Similarly for ¢, in
case |(mt) = 1(x), we get x <y as desired.

So it remains to consider the case where rxs < xs and rxt < xt. Applying
(2.2)(a) with w ==y and v == xs (or v := xt, respectively) now yields that
rxs < ry and rxt < ry. Thus, all the assumptions of the result we are trying
to prove are satisfied for the pair (rx, ry). Since |(ry) < 1(y) we can apply
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induction and obtain that rx < ry. Since ry <y and x = r(rx) > rx we get
r <y again from (2.2)(b) with v := rx and w = y. So we are done, and the
proof is complete. 1

2.4. We now recall some basic facts about the base of partially
ordered sets. Let (X, <) be any partially ordered set with X finite (and
nonempty). Given any nonempty subset Y € X and an element x € X
such that y < x for all y € Y, we say that x is the supremum of Y, writing
x = sup(Y), if the following condition is satisfied:

if x’ €eXandy <x'forall y eY,then x <x'.
If the subset Y does not have a supremum we write sup(Y) = &. When we
replace < by > in the above condition we obtain the definition of the
infimum of a subset Y, denoted inf(Y).

In order to simplify notation, we shall write [< x] == {y € X |y < x} for
x € X. By [7, Lemme 2.3], the following two sets of elements of X are
equal:

(a) the subset of all elements x € X\ inf(X) which cannot be
obtained as the supremum of a subset Y € X with x € Y;

(b) the subset of all elements x € X\ inf(X) for which there exists
an element z € X such that x is a minimal element in the complement of
[<z]

This subset of X is called the base of X, being denoted by B = Base(X).

This coincides with the definition given in the introduction for (W, <).
Namely, by [7, Proposition 2.4], the base B has the following property: if
we let (P(B), €) be the partially ordered set of all subsets of B, then the
map X — P(B), x —» [<x] N B, is an isomorphism of partially ordered
sets onto its image, and moreover, any other subset of X with this
property contains B. This characterization shows that

(© x=sup(<x]nB) for each x € X.

Thus, in order to check that the relation x <y holds for any two elements
X,y € X it is sufficient to check if b <y for all b € Base(WW) such that
b < x (see the similar remark in the Introduction about coding elements in
W by boolean vectors).

For practical purpose, the characterization of B in (b) seems to be the
most efficient one; this will be used in our algorithmic description in (2.9)
below. A simple application of the characterization in (b) will be given in
Remark 2.6 below.

The following theorem is now a direct consequence of Lemma 2.3.
Originally, it was proved by Lascoux and Schuitzenberger in [7, Théoréme
3.6] by a different method.
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THEOREM 2.5. The base of (W, <) is contained in the set of bi-grassman-
nians. Moreover, a bi-grassmanniang €'W' (fors,t € S) which is not in the
base can be obtained as the supremum of a subset Y C'W' not containing g.

Proof. Let x € W and assume that x is not a bi-grassmannian. Then
L(x) or R(x) contains at least two generators s, € S, s # ¢, and Lemma
2.3 implies that x = sup({sx, &}) or x = sup({xs, xt}), respectively. This
yields that x is not in the base, by the characterization in (2.4)(@). This
argument shows that Base(W) c BiGr(I), as desired.

In order to prove the second assertion, we take any g €'W* which is not
in the base. By (2.4)(a), there exists a subset Y c Base(W) c BiGr(W)
with g & Y such that g = sup(Y). Suppose we have an element y € Y
which is not in *W’. We will now describe a procedure which replaces y by
a set Y, of base elements of strictly smaller length. Then, after a finite
number of repetitions of this procedure we arrive at a subset Y’ W'
such that g ¢ Y’ and g = sup(Y").

So suppose, for example, that we have an element y € Y with R(y) = {r}
and r #¢t Let Y;:==[<yr] N Base(W); then yr=sup(Y;) by (2.4)c).
Moreover, every element in Y, has length strictly smaller than y. We
claim that Y; is the desired set, that is,

g =sup((Y\ {y}) u1).

To prove this, let z € W such that y’ <z forall y’ € Y\ {y},and y, <z
for all y, € Y,. The latter conditions imply that yr < z.

If zr >z, then yr <zr and we can apply (2.2)(b) with v :=yr and
w = zr to conclude that y < zr. Now we have y’ < zr for all y’ € Y and
hence g < zr. Since gr > g we can apply once more (2.2)(b) with v =g
and w = zr to conclude that g < z.

If zr < z, then (2.2)(b) with v == yr and w = z yields that y < z. Again,
we now have y’ < z for all y’ € Y and hence g < z. Thus, the above claim
is established.

In the case when we have an element y € Y with L(y) ={r}and r # s
we can argue symmetrically. The proof is complete. |

The following results provide very powerful criteria to decide whether a
bi-grassmannian is in the base or not. We will frequently make use of them
in the following sections.

Remark 2.6. Let JC S and W, C W be the corresponding parabolic
subgroup of W. Then (W,,J) itself is a finite Coxeter system, and the
Bruhat—-Chevalley order of (W, J) is obtained by restricting the ordering
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on W to W, (see [6, Corollary 5.10]). We have BiGr(W,) c BiGr(W), by
just noting that sw’ > w’ and w's > w’ for all w’ € W, and s € S\ J.
Furthermore, we have

Base(W,) c Base(W).

Indeed, suppose that b € Base(W,). Applying (2.4)(b) with respect to
(W,,J) we see that there exists some z € W, such that b is a minimal
element in W,\[<z]. If b’ € W is such that b’ < b, then b’ can be
obtained as a subexpression of b and, hence, b’ € W,. From this, we see
that b is also minimal in W\ [ < z]. Hence applying (2.4)(b) with respect to
(W, S), we get b € Base(W).

LEMMA 2.7. Let s,t €S and g €'W', Y W' such that y < g for all
y € Y. Assume that the following condition holds:

ifg' €'W'andy < g’ forally € Y, theng <g'.

Then g = sup(Y).

Proof.  Suppose the conclusion is false. Then there exists some z € W
such that y <z for all y € Y but g « z. Choose z of minimal possible
length with this property.

Step 1. We claim that z is a bi-grassmannian. Assume that this is not
the case. Then L(z) or R(z) contains at least two different generators
r,r' €8, r#r'. Suppose first that r, 7’ € R(z). We consider the parabolic
subgroup H C W generated by r,r' and write z = xh, where h € H and
x € W is a minimal left coset representative with respect to H; then
1(z) = 1(x) + | (h) (see [6, Section 1.10]). Since r,r’ € R(z) it follows
that also 4r < h and hr’ < h. (Indeed, if Ar or hr’ were reduced, then xhr
or xhr’ would also be reduced, a contradiction.) But H is a Coxeter group
on the two generators r, r’; hence h is the unique longest element in H
(see [6, Section 1.8]). So we can write & = 'r -+ =r'rr' -+, where the
number of factors in both products is m := order of ' € W. Thus, a
reduced expression for z is given by choosing any reduced expression for x
and one of the two possible reduced expressions for A.

Let y € Y. Since y < z, we can get a reduced expression for y by taking
a suitable subexpression of the above reduced expression of z = xh. If we
had ¢ # r, r’, then this would already imply that y < x. Since this holds for
all y € Y and since x < z, the minimality of z would imply that g <x < z,
a contradiction. Hence we have ¢t = r or ¢t = r’. We arrange notation so
that r = r and we choose the reduced expression for 4 which ends with r'.
Let z, == xhr’ <xh = z. A reduced expression for z, is obtained by just
deleting the last factor »’ from the reduced expression for z. Since any
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y € Y is a subexpression of z and since R(y) = {r}, we conclude that y
must already be a subexpression of z,. Again, the minimality of z leads to
a contradiction.

Thus, our assumption was wrong and hence | R(z)| = 1. If L(z) con-
tains at least two different generators, then using the symmetry of replac-
ing an element by its inverse we again reach a contradiction using the
previous argument. Hence the claim is proved.

Step 2. We know by Step 1 that z is a bi-grassmannian. Now we
claim that L(z) = {s} and R(z) = {¢}. Suppose, for example, that R(z) =
{r} with r # ¢. Choose any reduced expression for z’ :== zr < z. If we add r
to z', we obtain a reduced expression for z. Since any y € Y is given by a
subexpression of this reduced expression for z, and since r & R(y), we
conclude that we must have y < z'. Again, the minimality of z leads to a
contradiction. If L(z) ={r} with r #s, then we use once more the
symmetry given by inversion of elements to reach a contradiction by the
previous argument.

This completes the proof. |

The following result is a key to the explicit computation of the base of
W: it shows that it is sufficient to work only in the smaller sets ‘W', for
s, t € S, instead of the whole of .

COROLLARY 2.8. Let s,t €S. By restricting < to ‘W' we obtain a
partially ordered set CW', <). Let infCW") be its infimum (if it exists) and
BaseCW") its base. Then

Base(W) N'W' = inf(W") U Base("W").

Proof.  First recall that inf(W) = 1 & BiGr(J¥) and that an element
1 +#x € W lies in the base if and only if it cannot be obtained as the
supremum of a subset Y C W with x ¢ Y.

Next observe that g := infCW?"), if it exists, always lies in Base(W).
Indeed, if this were not the case, then g would have to be supremum of a
subset Y C*'W' with g & Y (see Theorem 2.5). But since g = infCW"), this
is impossible.

To have a separate notation for a supremum taken with respect to
Cw', <) we denote such a supremum by sup,,.

Now let g €W’ and assume that g & Base(W). Then g = sup(Y) for a
subset Y C'W' with g & Y (see Theorem 2.5). But then the defining
condition for a supremum is also satisfied with respect to CW*), and so
g = sup,,(Y). Thus, we have the inclusion Base(W") c Base(W) N*W".
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Conversely, let b € Base(W) N*W* and assume that b # infCW"), if the
infimum exists. Suppose we have b = sup, (Y) for some subset Y c*W*
with b & Y. Then Lemma 2.7 implies that b = sup(Y). But this would
mean that b # 1 is not in the base of W, a contradiction. |

2.9. We shall now describe an algorithm to compute the sets
Base(W) and BiGr(W), based on the above results. Let us fix s, € S and
consider the subset *W*' c BiGr(W).

(@) In order to compute ‘W' we proceed as follows. Let W' be the
set of distinguished right coset representatives with respect to the maximal
parabolic subgroup of W generated by S \ {¢}. This set can be constructed
recursively as follows. For each i > 0 let W/ be the subset of W' of
elements of length i. We start with W = {1}. Let now i > 0 and assume
that W', has already been constructed. Then W, is the set of all xr
where x € W' | and r € S such that | (r'xr) > | (xr) for all ' € S\ {t}.

Having computed W' in this recursive way, we obtain ‘W' as the set of
all d € W' such that L(d) = {s}.

(b) Now we want to determine Base(W) N*W'. For this purpose we
consider the partially ordered set CW’, <). Using 2.4)(b) we determine its
base by computing, for any g €'W’, the minimal elements in ‘W'\ [< g].
By Lemma 2.7, Base(W) N*W' consists precisely of these minimal ele-
ments and infCW?), if it exists.

In practice, this works even in large examples due to the fact that in (a)
we can proceed by induction on the length of elements and that, in
general, the cardinalities of the sets *W* are rather small as compared to
[W|. Thus, the algorithm works as long as we can afford to compute
explicitly all minimal right coset representatives (with respect to a maximal
parabolic subgroup) of a given length.

2.10. Let (W, S) be a Coxeter system of exceptional type. In Table
I, we give for each of these types the number of bi-grassmannians and the
number of elements in the base. These results were obtained by using an
implementation of the algorithm (2.9) in GAP [10] and CHEVIE [5].
Explicit tables with reduced expressions for the elements in the base are
available on request to the authors.

The column “clivage” refers to a notion introduced in [7, Définition 2.7]:
the answer is “yes” if for every element b € Base(WW) there exists an
element b € W such that W is the disjoint union of [> b] and [< b].
Moreover, this condition holds if and only if the “enveloping lattice” of
(W, <) is distributive, according to [7, Théoréme 2.8].

Since the Dynkin diagrams of type E,, E,, and Eg contain D, as a
subdiagram the answer is “‘no” in these cases since the answer is already

s3 Sy

" for D, (see Example 5. 8) For type F, with diagram ¢ —é—¢—3
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there are 16 base elements which do not admit a ‘“clivage”; reduced
expressions for them are given as follows: 2132132, 2132432, 2321432,
3213243, 3214323, 3234323, 23214323, 32132432, 213213243, 213234323,
321432132, 323432132, 2132132432, 2321432132, 3213234323, 3234321323
(where we write 21 --- instead of s,s, -+ to abbreviate the notation).

2.11. Let (W, S)),c; be the irreducible components of (W, S). By
Remark 2.1 we have BiGr(W) = U, BiGr(JW,). We claim that we also
have

Base(W) = |J Base(W)).

iel

To prove this, first note that the right-hand side is contained in the
left-hand side by Remark 2.6. Conversely, let b € Base(W). By (2.4)(b)
there exists some z € W such that » is minimal in W\ [< z]. We can
write uniquely z =11, .,z, with z, € W, for all k. Theorem 2.5 and
Remark 2.1 imply 2.1 imply that b € W, for some j € I. But then b is also
minimal in W;\ [ < z;] and, hence, b € Base()), as required.

Thus, we are reduced to the case of irreducible finite Coxeter groups,
and we can proceed according to the known classification of these groups
(see [1, Chap. VI, Section 4, Theéoréme 1]). The exceptional and noncrystal-
lographic types have been considered in (2.10) above. In the following
three sections we consider the classical types.

3. TYPE 4, ,

Let n > 2 and ©, be the symmetric group of degree n. For 1 <i <
n —1 denote by s, the basic transposition (i,i + 1). Then (&,,
{sy,...,s,_4}) is a Coxeter system of type A4,_, with the following Dynkin
diagram.

3.1. We will now describe a coding of the elements of &, in terms
of certain sequences of nonnegative integers of length n — 1 (cf. [7].
We have a chain of parabolic subgroups &, c &, c --- € &,, corre-
sponding to the subsets of generators {s;} C {s;, s,} € -+ C{s;,...,s,_.).
Forl<k<n—1welet

A .
NE = {L eSS kS 7 81}
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(Note that R{ contains k + 1 elements.) Then we can see that R;' =
&, ={1,s,}, and R is the set of minimal right coset representatives of
G, in®,,, for2<k<n-1

Every element w € (8, can therefore be written uniquely in the form
w=ry,....,r,_;, Where r, € Ry for all k, and we have |(w)=1(r)
+ -+ +1(r,_,). We call this the canonical form of w, and the r, # 1 the
canonical factors of w. Since every element in R;! is uniquely determined
by its length, we can therefore represent w by the sequence [c,,...,¢,_,],
where ¢, = | (r,) for all k. We will frequently identify an element w with
its code [¢y, ..., c,_4].

For example, the six elements in &, are coded as follows: 1 = [0, 0],
s, =1[1,0], s, =[0,1], s;5, = [1,1], 5,5, = [0,2], 545,85, = [1,2].

It will turn out that this coding is well adapted to characterizing which
elements in &, are bi-grassmannians. We have the following basic rela-
tions. For 1 <c<k<mnlet r,_, =515 _, " s_. (the unique ele-
ment of length ¢ in R{'). The generator s; commutes with r,_, ., for
i > k; the remaining products r,_, .s; and s;r,_, . are given by

Si—1Tk-1,c¢ ifk—c<i<k-1

Thiot1,e-1 ifi=k—c

rk*l,chl ifi=k—c—-1

Silk_1,¢ ifi<k—-c—-1
and

rk,c+l |fl=k

The2,c-1 ifi=k—1

T—1,¢8i+1 ifk—c<i<k-1

Ti—1,¢5i ifi<k—c—-1,

respectively. Note that this covers all possibilities except for the two
products r, _; .s,,, and s,_. ,r, ;. which are already in canonical form.

PROPOSITION 3.2.  An elementw € &, is a bi-grassmannian if and only if
there exist integers I, m > 0 and ¢ > 0 such that the code of w has the form

b(l,m;c) = [0,...,O,c,...,c, 0,...,0 ], where l > 0.
m [ n—-1-m-—1

Proof.  The fact that elements of the above form are bi-grassmannians
is readily checked using the multiplication rules in (3.1). Conversely, let
w € &, be a bi-grassmannian. We want to show that w must have the
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above form. We do this by induction on n. If n = 2, then &, = {1, s,} and
there is nothing to prove. So let n > 2 and assume that the assertion is
already proved for ©,_,. We write w = r, --- r,_, with r, € R{ for all k.

If r,_, =1, thenw € &,_, and we are done by induction. So assume
that 1 #r, ;, =r, ;. with ¢ > 1; note that this means that R(w) =
{s,_ ). Let w :=r -1, ,€S,_ . If w =1 then w=r,_, has the
required form. So assume that w' # 1.

We certainly have L(w’) € L(w), and hence L(w') = L(w) because
L(w) is a singleton set. This also implies that r,_, # 1. (If we had
r,_, =1, then w’ would lie in &, _, and hence s,_, € L(w), which is
impossible since L(w) = L(w') € &, _,). We claim that w’ is in fact a
bi-grassmannian in & ,,_ .

Since L(w’) = L(w) is a singleton set, we only need to consider the set
R(w’). Let s; € R(w’) or, equivalently, w's, < w’, for some k <n — 1. If
k<n—c—1, then s;r,_; =r,_;s;. Hence 5; € Rw) = {s,__}, which is
impossible. So we must have i > n — ¢ — 1. Assume that i > n — ¢. Then
the above multiplication rules show that s,r,_, = r,_;s,,,, and hence, we
would have s;,, € R(w).Buti + 1 #n — ¢ for i > n — ¢, so again, this is
impossible. We conclude that R(w’) = {s,_._,}, and our claim is estab-
lished.

By induction, w' has a code of the desired form, where all nontrivial
canonical factors have the same length. Since R(w’) = {s,_._,}, this

length is ¢, and the proof is complete. |

Remark 3.3. The above proof shows that if w = r, --- r,_, is a bi-gras-

smannianin &, and w' == r; --- r,_, # 1, then w' is a bi-grassmannian in

©,_1

The following result can also be found in [7, Théoréme 4.4], but note
that the approach taken by Lascoux and Schutzenberger is quite different
from ours: they show that every b € BiGr(&,) admits a “clivage”; that is,
there exists a (unique) b € &, such that &, is the disjoint union of [> 5]
and [ < b]. This implies both the equality Base(&,) = BiGr(&,) and the
fact that the “enveloping lattice” for (&, <) is distributive (cf. also the
remarks in (2.10)).

THEOREM 3.4. An elementw € ©
if and only if w is a bi-grassmannian.

. Is contained in the base of (&,, <)

Proof. We proceed by induction on n. If n = 2, then &, = {1, s,} and
there is nothing to prove. Now let n > 2 and g € &, be a bi-grassman-
nian. By Theorem 2.5, there exists a subset Y c Base(&,) such that
g =sup(Y) and such that L(y) = L(g), R(y) = R(g) forall y €Y.

We write g =r,, --- r,_, in canonical form with 1 <m <n — 1 and

n

r, # 1. 1f r,_, = 1, then g is a bi-grassmannian in &,_, and we are done
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by induction and Remark 2.6. Now suppose r,_, # 1. If Y above were
contained in &, _,, then every y € Y would be smaller (with respect to
<) than the longest element of &,_,, thus so is sup(Y), and hence,
g=sup(Y) e &,_,. This is impossible since g contains the generator
s,_1. So there should be some y € Y which has a canonical form y = r|
-~ r/_, with ¥/ _, # 1. Since R(y) = R(g) the last factor r/ _, must have
the same length as the last factor of y, and so r,_, = r,_,. By Proposition
3.2, every nontrivial factor in the decomposition of y has the same length.
On the other hand, since L(y) = L(g), any reduced expression for y must
start with the same generator as any reduced expression for g. This forces
that ;= - =r,_,=1and r, =r, # 1. So we conclude that g =y €

Base(&,), and the proof is complete. |
Let b, denote the cardinality of the set of bi-grassmannians, which is the

same as the set of base elements. We have b, = n(n* — 1)/6, with the
generating function given by

1
Y bzt = ——— =1+4z+10z* + 20z° + 352" + 562° + ---.
n=2 (1_2)

4. TYPE B,

Let n > 1 and W, c GL ,(R) be the subgroup of all matrices which have
exactly one nonzero entry in each row and each column and where this
nonzero entry is +1. Let + € W, be the diagonal matrix with diagonal
entries (—=1,1,...,1). And, for 1 <i<n —1, let s; € W, the matrix
obtained from the identity matrix by interchanging the ith and the (i + 1)th
row. Then (W, {t,s,,...,s,_,}) is a Coxeter system of type B, with the
following Dynkin diagram.

t=sg K Sy s

Bn, e—eo—0— —e n>1

The group W, is isomorphic to the wreath product of the cyclic group of
order 2 with the symmetric group ©,. We let

ty = t, t = 8t;_1S; forl<i<n-—1.

Thus ¢; is obtained from ¢ by shifting the diagonal entry —1 from the first
to the (i + Dth position. A normal subgroup in W, of order 2" is

generated by {¢,,...,¢,_,}, and a complementary subgroup isomorphic to
S, is generated by {s;,...,s,_}.

4.1. There is again a coding of the elements of W,, in a similar way
as for type A4,_,. We have a chain of parabolic subgroups W, c W, c ---
C W, corresponding to the subsets of generators {t} c {t,s,} € -+ C
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{t,s5,...,s, ). Let RE=Ww,={l,t}and, for1l <k <n —1,

RE=R{UT,

where

T o= {tis Scti— 1 SkSk_ali—z0 -0 SiSi—q * Salo}-

(Note that R contains 2(k + 1) elements.) Then Rf is the set of
minimal right coset representatives of W, in W, ,, forl <k <n — 1.

Every element w € W, can be written uniquely in the form w =r, -
r,_,, where r, € RE for all k, and we have |(w) =1(ry) + -+ +1(r,_ ).
Since every element in RZ is uniquely determined by its length, we can
therefore represent w by the sequence [cg,...,c,_,], where ¢, = | (r,)
for all k. On the level of codings, the embeddings &, < W, is given by the
map [¢y,...,¢,_11 = [0,¢qy ..y c, 1]

For example, the elements in W, (the dihedral group of order 8) are
coded as follows: 1 =[0,0], # =[1,0], s, =[0,1], s, = [1,1], s,z = [0, 2],
tsit = [1,2], s;t5, = [0, 3], 5,25, = [1,3].

Every element of W, can be regarded as a ‘“‘signed” permutation of the
standard basis vectors of R". The factors in R{' correspond to permuta-
tion matrices in W,, where all nonzero entries are equal to 1. Therefore,
we will call them positive factors. The factors in T, are obtained from
those in R{ by multiplying with a suitable factor ¢, __. This multiplication
does not affect the induced permutation of the basis vectors but it does
change the sign at exactly one basis vector. Therefore, we call these factors
negative factors. Note also that a factor r, € R is positive or negative
according to whether ¢, < k or ¢, > k, respectively (where ¢, = | (r,)).

Now let w € W, and write w = ry --- r,_, with r, € R for all k. Then
we can define the signed code of w as the sequence obtained from the
code [cq, ..., c,_,] of w by keeping all ¢, with ¢, < k and replacing all c,
with ¢, > k by 2k + 1 — ¢,. In order to distinguish between positive and
negative factors, we attach a prime ' to the latter ones. Thus, for ¢ < n,
the factors s,_;, - s,_. and s,_4 =+ s,_.t,_._, have coding numbers c
and c’, respectively. We shall write [c{,...,cV_,] if we do not want to
specify which factors are positive or negative.

For example, the signed codes of the above elements of W, are:
1=1[0,0], t=1[0',0], s, =[0,1], ts, =[0",1], s,¢ =1[0,1"], #s,¢2 =[0",1'],
syts; = [0,0], tsyts, = [07,0'].

We will see below that this modified coding is well-adapted to character-
izing bi-grassmannians and base elements in W,. Note also that the
multiplication rules in (3.1) remain valid when we replace the element

rm—l,

p— eee ! — cee
¢ = Sm—-15m-2 R —— by rm—l,c_sm—lsm—Z Sm—ctm—c—l'
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PROPOSITION 4.2.  An element w € W, is a bi-grassmannian if and only if
there exist integers m, 1,1, > 0 and ¢ > 0 such that the signed code of w has
the form

b(l, 1, m;c)

=10,....,0,(¢c =0 ....(¢c—=1),¢,....,c. 0,...,0
m ! I n—m-—1-1

wherel +1, > 0andl <c <l + m.

Proof. The proof is similar to that of Proposition 3.2. First, it can be
readily checked that every element with a signed code of the above form is
a bi-grassmannian. Conversely, let w € W, be a bi-grassmannian. We
show by induction on #n that its signed code has the above form. If n = 1,
then W, = {1, ¢} and there is nothing to prove. Now let » > 1 and write
w=r, - r,_, with , e RE. If r,_, =1, then w e W,_, and we are
done by induction.

Soletr,_,#landw' =r ~-r,_, €W _,. Ifw =1thenw=r _,
has the required form. So assume that w’ # 1. As in the proof of
Proposition 3.2 we see that r,_, # 1. We claim that w' is in fact a
bi-grassmannian in W, and that the coding numbers of the two right-most
factors r,_,,r,_, of w are arranged as claimed. We have L(w') = L(w)

and R(w) = R(r,_,). For R(w"), we consider the following three cases:

Casel. r,_,=s,_4 - §,_. with coding number ¢ > 1 and R(r,_,)
={s,_J. If w's; <w’forl <i <n — 2, then a similar reasoning as in the
proof of Proposition 3.2 shows that i =n — ¢ — 1; in particular, this
implies ¢ <n — 1. If w't <w’, then ¢ =n — 1 for otherwise ¢ would
commute with r,_, and then ¢ € R(w).

Hence, we have either R(w’) = {s,_._,} (with ¢ <n — 1) or R(w') =
{z}, and so w' is a bi-grassmannian. If R(w’) = {s,_._,}, then r, _, is the
positive factor s, _, -+ s, _._, of length ¢, while if R(w’) = {¢}, then r, _,
is the negative factor s,_, -+ s,_.t,_._, with coding number (¢ — 1)’. In
both cases, the coding numbers of r,_, and r,_, are arranged as claimed.

Case 2. r,_;=s,_, == s;t with coding number (n — 1) and
R(r,_,) = {#}. Assume, if possible, that w's, < w’ for 1 <i < n — 2. Since
then s,r,_, =r,_;s;.,, we would have s,,,; € R(w), a contradiction. So

Rw") ={t}, r,_, =s,_, -+ s;f, and w’' is a bi-grassmannian whose right-
most canonical factor is negative and has a coding number as claimed.

Case 3. r,_,=S5,_1 " S,_.t,_._1 With coding number ¢’, ¢ <n —
1, and R(r,_,) ={s,_._,}. In particular, this implies that ¢ commutes
with r,_, and so ¢t & R(w’). Hence w's, < w’ forsome 1 <i <n — 2. The

analogues for negative factors of the multiplication rules in (3.1) show that
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we must have i = n — ¢ — 1. Thus, w' is a bi-grassmannian with R(w’) =
{s,_._,} = R(w). Now we have two possibilities for r,_,, namely either
the positive factor s,_, -+ s,_._, of length ¢, or the negative factor
Sy_p " S,_.t,_._, Which has coding number (¢ — 1)’. We claim that the
first possibility cannot occur. To see this we show that if we had r,_, =
S,_p *** S,_._1, then we would also have s,_, € L(w), which is impossi-
ble. We compute:

Sn—1Tn—2"n-1= Sn—l(sn—Z sn—c—l)(sn—l sn—ctn—c—l)
= (Snflsn72snfl)(sn73 snfcfl)(sn72 snfctnfcfl)

= (Sn72sn71)sn72(sn73 snfcfl)(snfz Snfctnfcfl)

= (Sn72sn71)(sn73sn72) (Snfcsnfcfl)snfctnfcfl
= (Sn72sn71)(sn73sn72) (Snfcflsnfc)snfcfltnfcfl

which is not reduced since s,_._,t,_._, is not reduced. Hence, s,_, €
L (w), and we are done.

Thus, in each case w' is a bi-grassmannian in W, _,. By induction, w’ has
a signed code as claimed. Moreover, we have found conditions on the
coding numbers of the two right-most factors in w. These conditions show
that the signed code of w is also as claimed. The proof is complete. |

Remark 4.3. The above proof shows that if w =r, -+ r,_, is a bi-gras-
smannian in W, and w' :==r, --- r,_, # 1, then w' is a bi-grassmannian in

W, _,; compare this with the analogous Remark 3.3 for ©,,.

n

4.4. Let us fix an element g € BiGr(WW,). We wish to describe a
canonical procedure by which we can associate with g two elements
b_,b, e Base(W,) such that g = sup({b_, b, }). First we need to prepare
some notation. Let L(g) = {s}, R(g) = {s;}, where 0 <i,j <n — 1 (with
§o = t). We consider the sets

Wi = {y e BiGr(W,)| L(y) = (s}, R(») = {s}}},

Y, = [<g] n'W] n Base(W,).

(Note that ‘W7 is just a short notation for the set * W defined in Section
2) By Theorem 2.5, we have g = sup(Y,). We will find the desired
elements b_, b, inY,.

Let 7(g) = 0 be the number of generators ¢ in any reduced expression
of g. (Note that this does not depend on the choice of a reduced
expression.) Let p = max{r(y) |y € Y,}. All elements in Y, can be ob-
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tained as subexpressions of a given reduced expression of g. Thus, p <
7(g). Assume, if possible, that p < 7(g). We can write any y €'W/ in the
form y =r, === r,_, with r, € R? for all k. Now note that r, < ¢, if r, is
negative and r, <8, " 8y, if rk is positive. Thus, we would have
Yyt b, (s, e sp) (s, _q oo sy) =y, for all y €Y,. But then
also g <y, and so g would contain at most p generators ¢, a contradic-
tion. Hence

(a) there exists some b_€ Y, such that 7(b_) = 7(g).

Let »(g) > 1 be the biggest k > 1 such that the generator s,_, occurs in a
reduced expression for g. (Note again that this does not depend on the
choice of a reduced expression.) Let g == max{v(y) |y € Y,}. We certainly
have g < v(g). If ¢ < »(g), then all the elements in Y,, and hence also g,
would lie in the subgroup of W, generated by sg,sy,...,s,_;. (More
precisely, g would be smaller than or equal to the longest element in that
subgroup.) This is a contradiction, and so we conclude that

(b) there exists some b, € Y, such that v(b,) = v(g).

At some point we will have to show explicitly that certain bi-grassmannians
are not in the base. The crucial result for this purpose is the following.

PROPOSITION 4.5. Let g €'W/ and consider any g_, g, €'W/ such that
g.<g,g.<g and 7(g_)=1(g), v(g,) = v(g). Then we have g =
Sup({g—l g+})

Proof. Let L(g) ={s;} and R(g) = {s;} as in (4.4). Assume that g has
signed code b(l,1,, m;c), where [ +1, > 0,l <c <l + m as in Proposi-
tion 4.2. The condition L(g) = {s;} is equivalent to m =i, and the
condition R(g) = {s;} is equivalent to m + [ + [, — ¢ = j. We have 7(g)
=land v(g)=m +1+1,.

In order to prove that g = sup({g_, g, }) we use the criterion in Lemma
2.7. Let g’ €'W/ such that g_<g’ and g,<g’. We must show that
g <g'. Let g’ have signed code b(I’,l;,m';c’). The conditions that
L(g") ={s;} and R(g’) = {s;} imply that

m' =i=m, '+l —c' =j—i=I1l+1 —c. (1)
Since g_ and g, can be obtained by taking subexpressions of g’ we must
have I=7(g)=7(g ) <7(gN=10"and m+1+1 =v(g)=wv(g,) <
v(g') =m’ +1' + 1. Combining this with the conditions in (1) we find
that

I<r, c<c, I+ <" +1. (2)
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In particular, g’ contains at least as many negative factors as g, and each
positive factor in g’ is at least as long as each positive factor in g.

Let us write g =r,, =+ 11 and g’ =1, = 1,4 With 1, 1} € R
for all k. The first [ or I’ factors, respectively, are negative, while all other
factors are positive.

Assume first that ¢ — [ < ¢’ —I'. We claim that then r, < r;, for all
k > m. Indeed, if k <m + 1 — 1, then r, and r, are negative (note that
[ <I') and we certainly have r, <r,since c =l <c' =1l If k >m + 1,
then r, is positive and r; can be positive or negative; but since ¢ < ¢’ we
have again r, < r,. Thus, in particular, we can conclude that g < g’, as
desired.

Now assume that ¢’ — I’ < ¢ — L. In this case we cannot argue factor by
factor to conclude that g < g’. Instead, we rewrite the canonical form of g
as a product of terms where all terms involving ¢ are equal to the
corresponding terms in g'. Let d == (I —¢) — (I' — ¢') = 1. The condi-
tions in (1) then also imply that /; = [, + d. A straightforward computa-
tion shows that

— / coe ! o
T " Tii—1 = Ty Tm+i-1)1 Yar
where

Ve = Si_pakai-1 " Sj—ntk forl <k <d.

So we have a new expression g =r, " Ini-1V1 " Yalmsr * Tuger-1
which is also reduced. This new expression has been arranged so that the
first [ factors are exactly the same as those in g’. The product y, -
Yalm+1 = Toeg)—1 CONSists of precisely d + v(g) —m — I =d + I, nontriv-
ial factors which is exactly the number [} of positive factors in g’. We will
now prove that we can compare these last /; positive factors term by term
to conclude that g < g'.

Since R(g) = R(g’) = {s;}, the last [, = I} — d positive factors in g and
in g’ end with s;_;, . 4,4,...,5; (Where s; is the last). Since ¢ < c¢', we can
conclude that each of these factors in g is smaller than or equal to the
corresponding factor in g’. On the other hand, both the preceding d
factors y,,...,y, and the preceding d factors in g’ end with
Si—p+1r- -+ Sj—i+4- AGAIN, each of the factors in the first product is smaller
than or equal to the corresponding factor in the second product. This
completes the proof. |

The following result is now a direct consequence of Proposition 4.5. It
can also be found in [7, Théoréme 7.4] but, again, Lascoux and Schiitzen-
berger’s approach is quite different from ours: they use an order-preserv-
ing embedding W, € ©,, and thus reduce to the case of the symmetric
groups already solved before. Again, their method also yields the stronger
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result that the “enveloping lattice” of (W, <) is distributive, by showing
that every base element admits a “clivage” (cf. the analogous remark
preceding Theorem 3.4 for type A, _ ).

THEOREM 4.6. Let g € W, be a bi-grassmannian as in Proposition 4.2,
with signed code

0,....0, (¢ ....(c =1, ¢c,....c, 0,...,0

—_————

m i I n—m-—1-1
(I+1,>0,l<c<l+m).

Then g is in the base if and only if | = 0 (all factors are positive), or 1, = 0
(all factors are negative), or | = c¢ (the first negative factoris 0'), orc = m + 1
(all negative factors ending in t).

Proof. Let L(g) ={s;}, R(g) = {s;}, and let b([, [}, m; ¢) be the signed
code of g € BiGr(W,). Let g_, g, be any bi-grassmannians as in Proposi-
tion 4.5, so that g = sup({g_, g, ).

Case 1. First assume that / = 0, that is, all canonical factors in g are
positive. Then g lies in the subgroup of W, generated by {s;,...,s,_.},
and so g is a bi-grassmannian in &,. By Theorem 3.4, we have g €
Base(©,). So, using Remark 2.6, we conclude that g € Base(W)).

Case 2. Now assume that [, = 0 or that / = ¢. We claim that this
forces g = g_. Indeed, the coding numbers of the negative factors in g are
(¢c—=1',...,(c —1). The reduced expression of the product of these
factors ends with s, ;_., and the following [/, nontrivial positive factors
end with s, ;_c 1, 8,1/_.4;, (NOte that the last index is just j and
recall that R(g) = {s;}). Now consider g_. We have 7(g_) = 7(g) =/ and
so there exists some k >/ such that the negative factors in g_ have
coding numbers (k —1)’,...,(k — 1)’. Again, the right-most of these fac-
tors ends with s,,, ., and the following positive factors end with
St l—k+1r Smai—ks2r--- - Since 7(g_) = 7(g) and g_< g we have at most
I, nontrivial positive factors in g_. Hence the right-most of these factors
ends with s, ,., _, or in a generator with a lower index. Since R(g_) =
R(g) we can now deduce that k < c.

If [ =c, then this also implies that k =/ and, hence, the negative
factors in g_ and g are the same. The condition that R(g_) = R(g) then
also forces the positive factors to be the same and, hence, g_=g as
desired.

If [, =0, then g_ cannot have any nontrivial positive canonical factors
for otherwise we would have v(g_) > v(g). So R(g_) contains the gener-
ator at which the right-most negative factor ends. But this generator is
Smei—r- Since R(g_) = R(g), we conclude that k = ¢ and hence that
g_= g as desired.
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We can now take g_ as b_ in (4.4)@), and deduce that g =b_&
Base(W,).

Case 3. Finally assume that /,/;, >0 and [ <c =1+ m, that is,
there exist nontrivial positive and negative factors but all negative factors
end with ¢. Since v(g,) = v(g), the total number of nontrivial factors in
g, is the same as the corresponding number for g. Since 7(g.) < 7(g)
and since /; > 0 we conclude that the last nontrivial factor in g, is
positive. Hence, since also R(g,) = R(g), the last nontrivial canonical
factors in g, and g must be equal. Suppose that g, contains exactly
p = 0 negative factors. Since g_< g we certainly must have p = 7(g,) <
7(g) = 1. We claim that we have in fact equality. Indeed, since »(g,) =
v(g) the number of nontrivial positive factors in g, is / + I, — p. Then we
can compute that 1(g,) > 1+ 2+ - +p + c¢(l + [, — p) where we used
the fact that the kth negative factor has at least length k. On the other
hand, we have 1(g) =1+ 2+ - +[ + cl,. Since 1(g,) < 1(g), the as-
serted equality p = / now follows by just comparing these two formulae for
the length. Thus, g, and g have the same number of positive and negative
factors, respectively, and since the positive factors have the same length,
this forces that g = g,. We can take g, as b, in (4.4)(b) and deduce that
g = b, s Base(W).

Thus, every bi-grassmannian which is covered by one of the above three
cases is in the base of W,. Now assume that /,/; > 0and [ <c <[+ m.
We want to prove that g & Base(W,). For this purpose we just have to find
a particular choice for g_, g, such that g_< g, g, <g. This can be done
as follows. '

Let g_ be the bi-grassmannian in ‘W’ with signed code b(l,[, — 1, m;
¢ — 1). Note that the conditions on the parameters in Proposition 4.2 are
satisfied since /, > 0 and ¢ > [ > 0; moreover, we have 7(g_) = 7(g). Let
g. be the bi-grassmannian in ‘W/ with signed code b(I — 1,1, + 1, m; ¢).
Note again that the conditions on the parameters are satisfied since [ > 0
and ¢ <m +I. It is readily checked that g_<g and g, <g. Hence we
have found the desired elements. Since g = sup({g_, g}, the proof is
complete. |

ExampLE 4.7. Using Theorem 4.6 we easily see that every bi-grassman-
nian is in the base for types B;, B,, and B;. If n =4 there are 45
bi-grassmannians and 44 base elements; the missing element is [0,0,1’, 2]
= 5,5,15,5,5,. We have, in fact,

[0,0,1",2] = sup([0,0,2,2],[0,0,0",0]).

Let us consider the example Bs: there are 90 bi-grassmannians and 85 base
elements. The five missing elements, together with expressions as suprema
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of base elements, are given as

[0,0,1',2,0] = sup([0,0,0,0,0],0,0,2,2,0]),
[0,0,1',2,3] = sup([0,0,0",1",0],[0,0,2',3,3]),
[0,0,1',2,2] = sup([0,0,0",1,0],[0,0,2,2,2]),
[0,0,0,2",3] = sup([0,0,0,1’,0],[0,0,0,3,3]),
[0,0,0,1',2] = sup([0,0,0,0',0],0,0,0,2,2]).

Note that the first element in this list is the missing element we had for B,
before.

Let g, denote the cardinality of the set of bi-grassmannians. Then we
have g, = (n* + 10n® + 11n® + 2n) /24, with generating function

1—z+4 22
Yg s —%
ol (z-1)°

Let b, be the cardinality of the set of base elements. Then we have
b, = (2n® + n)/3 and its generation function is given by

=1+ 6z 4+ 1922 4+ 452% 4+ 90z* + 161z° + ---.

5 ot (z +1)°

———— =1+6z+192° + 442° + 85z* + 1462° + ---.
n>1 (1 _Z)

5. TYPE D,

Let W, c GL ,(R) as in the previous section. For n > 2 consider the
subgroup W, c W, consisting of all elements w € W, such that 7(w) is
even (where, as in (4.4), 7(w) is the number of generators ¢ in a reduced
expression for w). In particular, W, has index 2 in W,. If we set u = ts,t,
then (W, {u,s,,s,,...,s,_,}) is a Coxeter system of type D, with the
following Dynkin diagram:

S1

52 S3 Sp-1
D cee —e n>2.

n 1

u = tsyt

We still have a semidirect product decomposition with an elementary
abelian normal subgroup of order 2"~ generated by u,,...,u where

s -1

Uy = us,, U, = S;U; ;S for2 <i<n-1.
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Note that, now both {s,,s,,...,s,_,} and {u,s,,...,s,_,} generate com-
plementary subgroups isomorphic to &,,.

The above Dynkin diagram admits a symmetry of order 2. This gives rise
to a group automorphism o: W, —» W,, w = w?, interchanging u and s,
and fixing all s; with i > 2. This automorphism is in fact given by
conjugation with ¢ inside W,.

_ 5.1 Again, we have a chain of parabolic subgroups W, ¢ W, c ---
C W, corresponding to the subsets of generators {u, s,}  {u, s, s,} € -+

c{u,sq,...,5, 4. Let RP = Wz ={1,s,u,us;} and, for2 <k <n —1,
RP = RA U U,,
where
Up o= (g, gty gy oSSy o Saq} U {sgs,_y o syul.

(Note that RY contains 2(k + 1) elements.) Then R/ is the set of
minimal right coset representatives of W, in W, ,,for2 <k <n — 1.

Every element w € W, can be written uniquely in the formw =r; -
r,_1, Where r, € RP for all k and we have 1(w) =1(r) + - +1(r,_)).
But now the elements in R? are not determined by their length. So, in
order to obtain a unique coding, we represent w by [c,,...,¢,_,], where
¢ = 1)+ 1if r, € Uy, and ¢, = | (r,) otherwise. As we did before, we
will often identify an element w € W, with its code.

For example, we consider the elements of length 2 in type D,; their
codes are given as follows: s;s, = [1,0,1], s,u =[0,3,0], 535, =[0,0,2],
5.8, =[1,1,0], 5,5, =1[0,2,0], 5,8, =10,1,1], us; =[2,0,1], s,u = us, =
[3,0,0], us, = [2,1,0].

Again, we call a factor r, € R positive, and a factor r, € U, negative.
In a similar way as for type B, we can also define a signed code for
w € W,: this is obtained from the above code [c,,...,c,_;] of w by
keeping each ¢, < k and replacing each ¢, > k by 2k + 1 — ¢,. In order
to distinguish between positive and negative factors we attach a prime ' to
the latter ones. Thus, the factors s,_, «-+s,_. and s,_; == s,_ U, ._4
have coding numbers ¢ and ¢’, respectively. Note that this only works for
¢ < n — 1. The two factors with coding numbers (n — 1) and (n — 1)’ are
S,_1 " 8,8, and s,_; - s,u, respectively. In particular, the coding num-
bers for s,,u,us, are 1, 1’, 0', respectively. Again, we shall write
[cd,...,c2_,]if we do not want to specify which factors are positive or
negative. _

For example, the signed codes for the above elements in W, are given
by: [1,0,1], [0,2,0], [0,0,2], [1,1,0], [0,2,0], [0,1,1], [1',0,1], [0',0,0],
[1’,1,0], respectively.

5.2. Our aim is to find a description of all bi-grassmannians in VI~/,,
similar to that for type B, as in Proposition 4.2. Recall that the proof of
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the latter result was achieved by an inductive argument, based on the
observation that if w=w'r,_, € BiGr(W,), where 1 #w' € W,_, and
r,_1 € R,_;, then we also have w' € BiGr(W,_ ).

This need no longer be true for bi-grassmannian in W Indeed, for
n > 3 we have a counterexample glven by wi=s,_, - susys, | = 5, €
BiGr(W,) for which w' ==s, , - s,us, & BlGr(Wn_l), since Rw') =
{u, s,} is not a singleton set.

It will turn out, however, that we still can obtain a uniform description if
we consider all the elements w € W, such that each of L(w) and R(w)
either consists of just one generator or else equals {u, s;}. We call these
elements pseudo bi-grassmannians.

PrRoPOSITION 5.3.  An element w € I/IA/‘H is a pseudo bi-grassmannian if
and only if there exist integers m, 1,1, > 0 and ¢ > 0 such that one of the
following conditions is satisfied. Either w’ = w and the signed code of w has
the form

by(m,l,1;c¢)
=]o0,...,0,(c=01) ....(c=1),¢c,....c, 0,...,0 ]
m 1 I n—1-m-1-1; (|)

wherel + 1, > 0 and ] < ¢ <1+ m (cf. the similar conditions in Proposition
4.2 for type B,); or w’ # w and the signed code of one of w,w’ has the form

by (m,l,1;;c)

= 0,...,0,(c—l)o,...,(c—3)’,c—2,(c—1)’,c,...,c,
m ! L
0,...,0 } (1

wherel > 0 andc =1+ m + 1. n—1-m-—1l-1

The only pseudo bi-grassmannians which are not bi-grassmannians are
those of form (I) with ¢ =1, m = 0 (the first negative factor is us,) or with
¢ =1+ m, 1, =0 (all factors are negative, and they are ending in us,).

Proof. It is easily checked that all elements w € Wn such that the
signed code of one of w,w? has the form (1) or (I1) are pseudo bi-grass-
mannians. To prove the converse, we can again proceed by induction on n.
If n =2, then all nonidentity elements are pseudo bi-grassmannians and
there is nothing to prove. So,nowlet n > 2andw =r, -=-r,_, € W, bea
pseudo bi-grassmannian with r, € R? for all k. If r,_, = 1 we are done
by induction. So, first we can assume that r,_, # 1. If w’' =1, then
w =r,_, has the required form and we are done. Hence, we can also

assume that w' == r; .- r,_, # 1. By a similar argument as in the proof of

n
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Proposition 3.2 we must have r,_, # 1. We now check that w' is a pseudo
bi-grassmannian in W, _,, by considering the following three cases.

Casel.r,_,=5,_1 " S,_.Withl <c<n—1 Then r,_, has coding
number ¢, and we have R(w) = {s,_.}. Note that if ¢ =n — 1, then
r,_,u € RP_, is reduced, and so we cannot have wu < w. As in the proof
of Proposition 4.2 we see that if w's; <w’', then i=n —-c—-1>0. On
the other hand, if w'u <w’, then ¢ > n — 2 (note that u commutes with
S,_1r--+1 53, 5). Combining these two conditions we see that w' is a
pseudo bi-grassmannian, with

(@) eitherc <n—2and RwW") ={s,_._,},
(b) orc=n—-2and Rw') = {u, s},
(¢) orc=n—2and Rw’) = {u}.

If (a) holds, then r,_, could either be the positive factor s,_, -+ s,_._4
with coding number ¢ or the negative factor s,_, - s,_.u,_._, With
coding number (¢ — 1). If (b) holds, then r,_, is the negative factor
S,_o '+ S,us; with coding number (n — 3)' = (¢ — 1)'. Finally, if (¢) holds,
then r,_, is the negative factor s,_, ‘- s,u with coding number (n — 2)'.

Case 2. r,_, =s,_; -+ s,u with coding number (n — 1)’ and R(w) =
{u}. (A similar argument as in Case 1 shows that we cannot have ws; < w.)
Since s;r,_, =r,_8;,, for i > 2, we cannot have w's; <w' in this case.
Nor can we have w'u <w’', since ur,_, =S,_; *** SqUS,U =S,_, **
§,8,us,. Thus we should have R(w’) = {s,}, and hence, r,_, is the positive
factor s, _, --+ 5,5, with coding number n — 2.

Case 3.7,_1=5,_4 " 8,_ U, ., Withl <c<n—2 Then r,_, has
coding number ¢’ and we have R(w)={s,_._,} (for ¢ <n —3) or
R(w) = {s;,u} (for ¢ = n — 2). As before, we can check that if w's, < w’,
then we must have i = n — ¢ — 1. Furthermore, if ¢ <n — 3 we cannot
have w'u < w’, since ur,_, =r,_,s,. Thus, there are only the following
possibilities:

(@) eitherr,_,=s,_, -+ s,_._, with coding number c,

(b) orec>1and r,_,=s,_, S, .U, ., With coding number
(c =1,

() orc=n-2andr,_,=s,_, - s,u with coding number c'.

By a similar computation as in Case 3 of the proof of Proposition 4.2, we
can check that we would have s,_, € L(w) if (a) or (c) holds. For example,
in case (c) we would find that

SpotTu—alu_1 = S_1(S,_g = 8) (8,1 =+ S3)us,us,

= (8,-28,-1) (8,-38,_2) - (535,) S3us,us;

= (8,-28,-1) (8,-38,-2) =~ (535,) 535, Us, 8,



304 GECK AND KIM

which is not reduced since s;s,s5s, is hot reduced. Hence, these two cases
can in fact not occur.

Summarizing, we see that in each case above w’ is a pseudo bi-grass-
mannian. Hence, by induction, w’ has the desired form. Let [¢},...,c?_,]
be the signed code of w. From the above cases we also have found that
one of the following five conditions must hold for the two right-most
coding numbers r,_,,r,_;:

both r,_, and r,_, are positiveand ¢,,_, = c,_,;
r,_, IS negative, r,_, is positive,and c¢,_, =c¢,_, — 1;

n

(1) or (1) {
only (1) {both r,_,and r,_, are negativeand c,_, =c¢,_, — 1;

r,_, IS positive, r,_, isnegative,n —2=c¢,_,=c¢,_; — 1;
only (1) r,_, IS negative, r,_, is positive,and n — 2 =c¢,_, =c¢,_;.

If the first, second, or third of the above conditions is satisfied, we
can apply induction and conclude that our element has a signed code of
form (D).

If the fourth condition is satisfied, we apply induction again and con-
clude that our element has a signed code of form (I1).

If the fifth condition is satisfied, we first apply o and then we see that,
by induction, our element has a signed code of form (I1).

This completes the proof of the assertions about the signed code of
pseudo bi-grassmannians.

The assertions about bi-grassmannians now easily follow: we just need to
exclude the cases when L(w) or R(w) equals {u,s;}. From the above
discussion, we see that the only case where we have R(w) = {s,, u} is
when r,_; has coding number (n — 2)’. But then r,_, should have coding
number (n — 3)' by Case 3(b). Thus, by induction, the signed code of w
has the form [0,...,0,(n — [ — 1),...,(n — 2)’]. Similarly, we can have
L(w) = {s;,u} only if the first negative factor is us,, that is, only if the
signed code has the form [0',1',...,({ — 1)',[,...,1]. This completes the
proof. 1 _ _

5.4. Consider the embedding W, — W,. Given any w € W,, we can
rewrite a reduced expression for w in the generators of W, as a reduced
expression in the generators of W,, by using the rules s, — s, (for all i) and
u — tsqt. _

Now let g € W, be a bi-grassmannian with signed code b,(m, 1, 1;; ¢) or
b;;(m,1,1;; ¢) as in Proposition 5.3, and consider its image in W,. We claim
that this image satisfies one of the following conditions:

(@) If [ is even, then g is also a bi-grassmannian in W,, with signed
code b(m + 1,1,1;; ¢);
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(b) If [ is odd, then g is a bi-grassmannian in W,, with signed code
b(m + 1,1,1;;¢).

To prove this, assume first that g is of the form (1). We write g =r; --- r,,_,
with r, € RP for all_k. If r, is a positive factor, then the reduced
expressions for r, in W, and in W, are identical. If r, = s, =+ s, _ ., 1U;_.
(for ¢ < k) or r, = s, - s,u, then, using the rule u; = &, = ;¢ (for all i)
and the fact that + commutes with all s;, i > 2, we obtain r, =ts, -
Sk—cr1lp_. OF 1, =ts, ++ s,5,¢, respectively. Thus, each of the [ negative
factors produces a negative factor in W, and an extra factor ¢. Since ¢
commutes with all s, for i > 2, these extra factors cancel out in pairs.
Hence we obtain a sequence of / negative factors in W, and an extra
factor ¢ at the beginning if [ is odd. If g has form (II), then the !
alternating positive and negative factors produce a sequence of / negative
factors in W, ending with ¢, and again an extra factor ¢ at the beginning if
[ is odd. In both cases we see that the resulting element in W, has the
form as claimed.

However, if g € W, is a bi-grassmannian such that g # g“ and g” has a
signed code of form (I1), then neither g nor zg is a bi-grassmannian in .
(Take, for example, the element g = us, € BiGr(WW,) with signed code
[1',1].) The signed code of g is then given by

© bj(m,11;c)

= 0,...,0,(c—l)o,...,(c—2)’,c—1,c’,c,...,c,
m i L
0,...,0 ,

n—1-m-1-1
where ¢ = m + [ + 1 as before.
5.5. In order to find the base for I/I~/,, our strategy will be mainly the
same as the one for type B, (see the steps in the proof of Theorem 4.6).
First note that the Bruhat—Chevalley order on W, is not the restriction
of the Bruhat—Chevalley order on W,. (Take, for example, the elements
sy,u = tsyt which are comparable in W, but not in W,.) For this reason, in
order to distinguish the ordering on W, from the one on W,, we will
denote it from now on by < . Since W, is a subgroup of W, generated by
the reflections u = ts;t,s,...,s,_, of W,, we have the implications (see
[8, Lemma 1.9]):

(a) ifx,yeWnwithxsy,thenxSyandtxsty.

Furthermore, we will need an analogue of the function 7 in (4.4). For any
w € W, we define 7(w) > 0 as follows. Write w = r, --- r,_; in canonical

n
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form with r, € R? for all k. If all r, are positive let 7(w) = 0. Otherwise,
there exists at least one negative factor (in particular, w # 1) and we let

T(w) =max{k > 1|r, € U} —min{m > 1|r,, # 1} + 1.

Thus, 7(w) is the length of that part of the canonical form of w which
starts with the left-most nontrivial factor and ends with the right-most
negative factor. _

Now consider g € BiGr(J,). Then one of g, g has a signed code of the
form () or (1) as in Proposition 5.3. We embed g into W, and compare
the values 7(g), 7(g). Using the embedding rules in (5.4) we find that

b g>gand7(g) =7(g) if 7(g) is even,
(b) ig<gandr(g)=7(g) +1 if 7(g) is odd.

With these notations we can now state:
LEMMA 5.6. Letg € I/I7n be a bi-grassmannian.

(a) There exists some b_< Base(W,) with b_ < g such that L(b_) =
L(g), R(b_) = R(g), and 7(b_) = 7(g).

(b) If the signed code of g has the form b,(m,l,1,;c) with | = c or
1, =0, then g = b_< Base(W)).

Proof Let Y, C Base(J¥,) be similarly defined as in (4.4), so that
g = sup(Y)). Let e == max{7(y) |y € Y,}. We want to show that ¢ = 7(g).
Take any z € Y, with 7(2) =e.

Assume, if possible, that e > 7(g). Since z < g we also have z < g by
the first inequality in (5.5)(a), and so 7(z) < 7(g). On the other hand, by
(5.5)(b), we have e = 7(z) < 7(z) and so e < 7(g). Our assumption ¢ >
7(g) now yields 7(g) > e > 7(g). Using again (5.5)(b) we conclude that e
must be even and 7(g) = 7(g) — 1 = e — 1 is odd. But in this case we also
have tg < g and #z > z. This implies that 7(1g) < 7(g) =7(g) + 1 =e¢
and 7(zz) > e. The second inequality in (5.5)(a) yields that ¢z < tg and so
e < 7(tz) < 7(tg) < e, a contradiction. Hence the assumption was wrong
and we must have e < 7(g).

Assume now, if possible, that e < 7(g). By a similar argument as in
(4.4)a) this implies that g <u,, - u,,, 1y, Where y, is a certain
product of generators s;. Using the first inequality in (5.5)(a) we obtain
g <tt, ~ t,.. 1Y, and so 7(g) < e (for e even) or 7(g) < e + 1 (for e
odd). Since 7(g) < 7(g) we conclude, using our assumption e < 7(g), that
e must be odd and 7(g) = 7(g) = e + 1 is even. The second inequality in
(5.5)(@) yields that #tg <¢,, **- t,, ., 1Yo, and so 7(zg) < e. Since 7(g) is
even we have tg > g (see (5.5)(b)). Hence we conclude that 7(g) = 7(g) <
7(tg) < e, again a contradiction. Thus, (a) is proved.
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Now consider (b). Let g € BiGr(,) be of form (1), with signed code
b;(m,1,1;;¢) such that I = ¢ or I, = 0. By (a) we can find an element
z € Y, with 7(z) = 7(g).

If z has form (1) or (11), then we embed g, z into W,, use the rules in
(5.4)(a), (b), and see that we are in a completely similar situation as in Case
2 of the proof of Theorem 4.6. In a similar way as in that proof, we can
conclude that g = z € Base(W,), and we are done.

It remains to consider the case where our element z is a bi-grassman-
nian such that z # z, where z° has form (I1). Then the signed code of z
has a form as in (5.4)(c). Since 7(z) = 7(g) the right-most negative factor
in z appears at the same position in the canonical form as the right-most
negative factor in g does. Now all negative factors in g have the form
Sg *t Sp_..q1Uy_, for k> c. So we can just insert suitable factors u or s,
into the reduced expression for z so that z becomes a bi-grassmannian of
form (1); call this new element z,. (Note that now the lengths of the
right-most negative and of the left-most positive factor in the new element
are arranged correctly so as to give a bi-grassmannian of form (1).)

We still have z, < g. Again, we embed these elements into W, use the
rules in (5.4), and conclude that z; = g in the same way as above. But note
that every negative factor of z, ends with us,, and hence the same holds
for g. The assumption that / = ¢ or [, = 0 would therefore imply that g
starts or ends with us;, and so g would be a pseudo bi-grassmannian but
not a bi-grassmannian (see the excluded parameters in Proposition 5.3).
This contradiction completes the proof of (b). |

THEOREM 5.7. Ifg € W is a bi-grassmannian such that the signed code
of g or g has form (II), then g lies in Base(W) A bi-grassmannian g € W
with g7 = g and signed code b,(m,1,1,1;; ¢) of form (I) lies in Base(W,) zf
and only if

=0, l, =0, or c=1.

Furthermore, the map [cl, e c N (O cS 11 defines a bijection
between BiGr(W,) \ Base(W,) and the corresponding set for W,.

Proof. First let g € W be a bi-grassmannian such that g or g” has
form (11). Since o preserves the Bruhat—Chevalley order we deduce that
g € Base(W)) if and only if g” € Base(I¥,). So we can assume that g has
form (1) with signed code b;,(m,[,1; ¢). By Theorem 2.5, there exists a
subset Y < Base(W,) such that g = sup(Y) and such that L(y) = L(g),
R(y) = R(g) for all y € Y. By an analogous argument as in (4.4)(b) there
exists some b, € Y such that 7(b_) = 7(g). Here 7(g) is defined as the
biggest £ > 2 such that the generator s,_, occurs in a reduced expression
for g (cf. the similar definition in (4.4) for type B,).
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We claim that we have in fact g = b, € Base(J,). In order to prove
this, suppose first that b, has form (1), with signed code b,(m',1',1}; c").
Since L(g) =L(b,) we have m =m'. On the other hand, we have
R(b,) ={s,  piy_c+1t and R(g) = {s;} (for /; > 0) or R(g) = {u} (for
[, =0). Since R(b,) =R(g) and b, has the form (1) we conclude that
O<l,=m+1'+1l;—c +1 The equality I+, +1="7(g)=7(b,)
="+ +1implies that ¢’ =m +[+1=c. But ¢’ <m + /' and so
[ +1 < I". Now we can estimate the length of 5, and find a contradiction
by a similar argument as in Case 3 of the proof of Theorem 4.6. Hence b,
or b7 must be of form (11). But in this case, the conditions that b, < g,
L(b,) =L(g), R(b,)=R(g), and T(b,) = 7(g) imply that g=b,.
Hence we have g € Base(W,), and we are done. _

From now on, assume that g = g and g € BiGr(W¥,) has form (I). Let
us first consider the case where g satisfies one of the conditions / = 0,
[, =0,0orc=11f I=0,then g€ &, and we are done, using (2.6) and
Theorem 3.4. The cases for I, = 0 or [ = ¢ have already been considered
in Lemma 5.6(b). So now it remains to show that a bi-grassmannian
g € W, of form (1) is not a base element if it does not satisfy any of the
above conditions.

We use a similar strategy as in the proof of Theorem 4.6. We construct
bi-grassmannians g_, g, € W, of form (1) as follows: g_ is obtained from
g by keeping the number of negative factors and decreasing the number of
positive factors by 1; g, is obtained from g by keeping the total number
of nontrivial factors but increasing the number of positive factors by 1.
Moreover, this can be done in such a way that we still have L(g_) =
L(g,) = L(g)and R(g_) = R(g,) = R(g), and these conditions uniquely
determine g_ and g.,.

It can be readily checked that g, < g and g, < g, and now our aim is to
show that g = sup({g_,g.}). By Lemma 2.7, it is sufficient to take any
bi-grassmannian g’ € W, with g_<g',g. <g and L(g") =L(g),
R(g’) = R(g). Then next, by showing that g < g’ we complete the proof
by a completely similar argument as in the proof of Proposition 4.5. We
omit further details. |

ExampLE 5.8. Consider the example type D,. There are 30 bi-grass-
mannians; their signed codes are given as follows:

[1,0,0],[1,2,3'],[1",2,0],[1",1,0],[1",2,2],[1", 1, 1], [1, 2", 0],
[1,0,0],[1,2",3],[1,1,0],[1,2',2],[1,1,1],[0,2’,0],[0,2,3],
[0,2,0],[0,2,3],[0,1,0],[0,0',0],[0,2",2],[0,2,2],[0,1", 2],
[0,0",1],[0,1,1],[0,0,1],[0,0,3'],[0,0,3],[0,0,2],[0,0,1'],
[0,0,1],[0,0,0].
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There is one bi-grassmannian which is not in the base: [0,1',2] =
§,Us,538,. This element can in fact be obtained as the sup([0,0’,0],
[0,2,2],]0,2', 2D.

The following three base elements do not admit a “clivage”: [0,0’, 0],
[0,2',2],10,2,2]. Hence, by [7, Théoréme 2.8], we see that the “enveloping
lattice” of (W, <) is not distributive.

Consider now type D;. There are 69 bi-grassmannians and 64 base
elements. The signed codes of the five missing elements and expressions as
suprema of base elements are given as follows:

[0,17,2,0] = sup([0,0’,0,0],[0,2,2,0],[0,2,2,0]),
[0,1",2",3] = sup([0,0',1',0],0,2',3,3],[0,2,3',3]),
[0,1",2,2] = sup([0,0,1,0],[0,2,2,2],[0,2',2,2]),
[0,0,2',3] = sup([0,0,1’,0],[0,0,3,3],[0,0,3,3]),
[0,0,1',2] = sup([0,0,0',0],[0,0,2,2]).

Note that, indeed, we have a bijection between the set of these elements
and the corresponding set of five missing elements for type B in Example
4.7. Note also that the elements with signed codes [0, 2',2,0], [0,2,3’, 3],
[0,2',2,2], and [0,0,3’,3] do not have form (Il), but only their images
under o.

Let g, denote the cardinality of the set of bi-grassmannians. Then we
have g, = (n* + 14n® — 37n® + 46n — 24) /24, with generating function
given by

2 — 28

"= ——— =2+10z 4+ 30z% + 69z° + 135z* + 2372° + ---.
n>2 (1_2)

Let b, denote the cardinality of the set of base elements. Then we have
b, = (5n® — 12n? + 13n — 6)/6 and its generating function is given by

Z bnzn—z
n>2
2+ 2z+2°
= ﬁ =2+ 10z + 2922 + 64z°% + 120z* + 2022°% + ---.
— Z

These formulae follow from Proposition 5.3 and Theorem 5.7.
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