
Vol. 65, No. 3 DUKE MATHEMATICAL JOURNAL (C) March 1991

FLAGS, SCHUBERT POLYNOMIALS, DEGENERACY
LOCI, AND DETERMINANTAL FORMULAS

WILLIAM FULTON

1. Introduction 381
2. Schubert polynomials 386
3. Rank conditions and permutations 389
4. Degeneracy loci 395
5. Flag bundles 396
6. Schubert varieties 397
7. A Giambelli formula for flag bundles 400
8. The degeneracy locus formula 404
9. Vexillary permutations and multi-Schur polynomials 407
10. Determinantal formulas and applications 415

1. Introduction. The principal goal of this paper is a formula for degeneracy
loci of a map of flagged vector bundles. If h" E F is a map of vector bundles on
a variety X,

(1.1)

are flags of subbundles and quotient bundles, and integers r(q, p) are specified for
each 1 < p < s and 1 < q < t, then there is a degeneracy locus

(1.2) f,(h) {x e X" rank(E(x) Fq(x)) < r(q, p) Vp, q}.

Under appropriate conditions on the rank function r, which guarantee that, for
generic h, f,(h) is irreducible, we prove a formula for the class [f,(h)] of this locus
in the Chow or cohomology ring of X, as a polynomial in the Chern classes of the
vector bundles. When expressed in terms of Chern roots, these polynomials are
the "double Schubert polynomials" introduced and studied by Lascoux and
Schfitzenberger.
The simplest such rank conditions are when s (but with repeats allowed in

the chains of sub and quotient bundles), and one restricts the ranks of maps
Ep Fs/l-p for 1 < p < s. In this case the polynomials have simple determinantal
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expressions, as "multi-Schur functions". When all Fi coincide, special choices of
these rank functions recover the Kempf-Laksov determinantal formula and the
Giambelli-Thom-Porteous formula.

Before describing our results in more detail, it may help to give a brief sketch of
previous work in this area. In the nineteenth century many geometers and alge-
braists considered an m x e matrix (ai,j(x)) with ai,j a general homogeneous polyno-
mial of positive degree s + t for some nonnegative integers s and t. (In modern
language this is the situation where all bundles are direct sums of line bundles on
projective space.) The problem is to determine the degree of the locus where various
upper left q x p submatrices had ranks bounded by some numbers r(q, p). One
motivation was from enumerative geometry, where formulas for such loci were used
to describe possible singularities of curves and surfaces in space. Another was
algebraic, carrying on the program of elimination theory which went back to
B6zout: to describe the set of solutions of a system of equations. Indeed, the case of
a matrix with one row is precisely B6zout’s theorem; the case of larger matrices was
challenging because the loci are often described by many more equations than their
codimensions.

S. Roberts in 1867 found a formula for the degree of the locus where the matrix
fails to have maximal rank, in terms of what we would now recognize as a Schur
polynomial, and many other algebraists and geometers (e.g., Cremona, Schubert,
C. Segre, Stuyvaert, Vahlen, and Veronese) worked on other cases. This culminated
in the results ofGiambelli in the early twentieth century. (See [G1-1 and [G3], which
also contain references to the preceding work.) Giambelli simplified previous formu-
las and generalized them to allow several ranks to be specified for submatrices which
had either the full number rn of rows or the full number d of columns, although in
this generality he had to assume the forms a, all have the same degree. Our formula
gives a general solution to this classical problem, giving the degree of this locus, in
every case where it is irreducible, and for all possible degrees, as a value of a certain
double Schubert polynomial. (See Corollary 8.3.)

In the modern era, Thom and Porteous began the generalization to maps of
arbitrary vector bundles, giving the formula for the locus where the rank is bounded
by some integer. More general determinantal formulas were given by Kempf and
Laksov [KL], I-F-I, and Pragacz I-P], where one can find a modern treatment of
such formulas. These too are very special cases of our determinantal formula. As
the matrices get larger, the percentage of cases which are determinantal, (and so, in
particular, the number covered by previously known formulas) goes exponentially
to zero. At the end of this paper we describe the relation with previous classical and
modern results in more detail.
Two questions arise immediately when looking at such loci: to determine which

rank conditions determine irreducible varieties (locally, for generic matrices), and
when they do, how to specify them efficiently, prescribing only a smaller set of rank
conditions from which the others follow. The answer to the first question is easy:
the possible rank conditions are precisely those for which there is a matrix with
exactly these ranks, and these correspond to permutations, with a permutation
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matrix being a typical member of its locus. (For example, there is no 2 x 2 matrix
with upper left entry zero, and the ranks of the first row, first column, and the whole
matrix being 1, and the corresponding locus of 2 x 2 matrices has two irreducible
components; in general, without conditions on the ranks, there can be many
components of many dimensions.)
The second question is more interesting since, in most examples that arise in

practise, only a few of the m. e possible rank conditions are prescribed, and the
others are consequences of these. To study this we introduce the "essential set" of
a permutation, which is in fact the set of southeast corners of the diagram (intro-
duced by Rothe in 1800) of a permutation. In the special case of the Grassmannian,
where the diagram is very simple, it has been known for a long time that the corners
control the situation, and they play a key role for example in Zelevinsky’s resolution
of singularities of Schubert varieties in Grassmannians; see [BFL]. The Grassman-
nian case is exactly the case where the essential set lies entirely in one row. We show
that in general a rank function is determined by its restriction to the essential set.
It remains a challenge in general to describe which such sets with rank functions
arise, but the rank conditions which are easiest to describe--and which correspond
to the previous formulas in the literature--are those such that the essential set of
points (q, p) for which the ranks of the upper q x p submatrix are prescribed is
spread out in a string from southwest to northeast; i.e., there are no two ranks
specified for (q, p) and (q’, p’) with q < q’ and p < p’. We prove that these correspond
exactly to the permutations that Lascoux and Schfitzenberger call "vexillary"
permutationsma fact which we hope may shed some light on that notion. More-
over, these are exactly the permutations for which they prove a simple, Schur-type
determinantal expression for the Schubert polynomials. Thus, our general degenera-
cy formula becomes a determinantal formula in the "vexillary" case, and in particu-
lar the known formulas are recovered.
We now describe our result in more details. The crucial case is that of complete

flags, when s n and E and Fi have rank i; so we discuss that for simplicity. In
this case the degeneracy loci are parametrized by permutations w in the symmetric
group Sn. Let e(w) be the length of w, i.e., the number of inversions, and let r,(q, p)
be the cardinality of the set {i < q: w(i) < p}. Let

(1.3) xi cl(Ker(F--* F_I)) and y c(Ei/Ei_), < < n.

Let fw fr,(h) be the locus where the rank of Ep F is at most rw(q, p) for all p
and q. The expected (and maximum, if nonempty) codimension off, is e(w). When
X is smooth and f, has the expected codimension, our formula is

(1.4) Efl,] w(X, y)

where ,(x, y) ,(x, x,, y, y,) is the double Schubert polynomial for
w, a homogeneous polynomial in the 2n variables of degree g’(w). It is defined as
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follows. When w wo is the permutation of longest length N n(n- 1)/2, i.e.,
Wo(i) n + 1 for 1 < < n, this double Schubert polynomial is

(1.5) o(X, y) H (x,- y).
i+j<n

The general Schubert polynomial is determined by the property that, if w is a
permutation with w(i)> w(i + 1) and w’ is the permutation of length one less
obtained from w by interchanging the values of w(i) and w(i + 1), i.e., w’= w.s,
where st is the simple transposition interchanging and + 1, then

(1.6) ,(x, y)= (o)(x, y)

where, for any polynomial P in variables xl x, and any 1 < < n 1,

(1.7) OP P(xl, x,,) P(xl, x-l, x+l, x, Xi+2, Xn)
XiXi+

This operator t3 is applied with ,(x, y), regarded as a polynomial in the x variables
alone. In other words, if w is obtained from wo by the sequence of simple transposi-
tions using the sequence of integers il, it, with r N e(w), then

(x, y) o, o...o o,,(o)(X, y).

The ordinary Schubert polynomial w(x) is obtained from the double Schubert
polynomial by setting all y 0.
For a simple example, take w 2 4 3 1; i.e., w(1)= 2, w(2)= 4, w(3)= 3 and

w(4) 1. Then f2431 is the locus where

rank(E1 F3) 0 and rank(E3 F2) < 1

(the other conditions in (1.2) follow from these) whose expected codimension is
Y(w) 2. Since w is obtained from Wo 4321 by the sequence 4321 -- 4231 2431,
first interchanging the second and third, then the first and second, we have

z#3(x, y) O o ((x y:)(x y)(x y)(x y)(x y)(x y))

Ol((Xl Yl)(Xl Y2)(xl Y3)(x2 Yl)(x3 Yl))

(x y)(x y)(x y)(x + x y y).

This is equal to Cl(F3 El)" cl(F2 E3 + El). Similarly, for the first nonvexillary
permutation 2143, the locus where E1 F1 vanishes and Ea F3 has rank at most
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2 is described by the formula

2143(X, y) (Xl yl)(X1 + X2 + X,3 yl Y2 Y3)

c(F E)’c(F3 E3).

In this example, as in many examples for small n, it is an easy exercise to verify the
formula directly, using standard ad hoc geometric constructions. The formula for
a general degeneracy locus fr(h) is easily deduced from the case of complete flags,
the expected codimension d(r) being the length e(w) of the corresponding permuta-
tion, and the polynomial Pr in the Chern classes which describes the locus is equal
to the corresponding Schubert polynomial in the Chern roots of the bundles
involved.
Without the genericity or smoothness assumptions, we construct classes fl of

codimension d(r), supported on the locus f,, whose image in the Chow group ofX is

P [X-I, with standard functorial properties. When the locus has the expected
dimension, fl, is a positive cycle whose support is fr. If in addition X is Cohen-
Macaulay, then, using the natural subscheme structure on t2,, we have f, [f,].
In the complex case the classes can be constructed in the relative (local) cohomology
group H2a(’)(X, X r).
When specialized to the flag manifold of flags in an n-dimensional vector space

with the E a fixed flag of subspaces, formula (1.4) implies that of Bernstein-Gel’fand-
Gel’fand [BGG] and Demazure [D] relating classes of the Schubert varieties to
polynomials in Chern classes of the universal line bundles. Our formula generalizes
theirs in much the same way that the determinantal formula generalizes Giambelli’s
formula for Schubert varieties in the Grassmannians. Doing the general case with
arbitrary flags, however, not only gives new formulas, but, as will be no surprise to
group theorists, makes the proofeasier. Unlike most previous proofs ofspecial cases,
for example, we require no Gysin formulas or construction of resolutions of singu-
larities of the loci involved.

Since the cohomology ofthe flag manifold is the quotient of a ring of polynomials
by an ideal generated by symmetric polynomials, a formula for Schubert varieties,
as in [BGG] or [D-l, is only determined up to this ideal. Lascoux and Schiitzenberger
introduced Schubert polynomials as a set of representatives for these classes with
particularly nice algebraic properties. The present work can be seen as a complete
geometric vindication of their insight: the Schubert polynomials are the only poly-
nomials that satisfy the general degeneracy formula. In fact, this characteriza-
tion can be used to prove some known and new identities involving Schubert
polynomials.
The proof of the formula (1.4) is straightforward when w wo is the permutation

of longest length. The problem in general is how to start with this formula for this
smallest degeneracy locus and relate it to larger loci. One needs an operation on
cycles in a flag bundle which increases their dimension. In general, while maps from
a variety to itself will not do this, correspondences will. Here, we construct the
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operators c3 from correspondences which are P 1-bundles. The reduction to
bundles is to be expected since most results about Schubert varieties and flag
manifolds since that of Bott and Samelson [BS] (e.g., [BGG], I-D], [K], [R], i-S])
come down to verifications for P 1-bundles.
The paper is organized as follows. The next section reviews basic facts about

Schubert and double Schubert polynomials. The third section describes the relation
between rank conditions and permutations, and the corresponding loci in the space
of matrices. This is globalized to bundles in the next two sections. In 6 we recall
basic facts about Schubert varieties in flag manifolds and prove the local version of
the basic P1-bundle correspondence. (With the possible exception of the "essential
set" in 3, most of the results of these sections are minor variations of known facts
about homogeneous varieties.) The "Giambelli formula" for degeneracy loci in flag
bundles, which is the universal case ofthe theorem, is proved in 7, and the deduction
ofthe general theorem is carried out in 8. Here, we use standard intersection theory
techniques to discuss cases where the degeneracy loci are bigger than expected. In
9 we show that simple rank conditions correspond to vexillary permutations. This
yields the general determinantal formula in 10, where we give some known and
new applications.

Acknowledgements. The simplicity of the proof comes from the realization of the
operators of [BGG] and I-D] as correspondences, a fact which has been noticed by
others, but which R. MacPherson showed us several years ago. This appears clearly
in Springer’s Bourbaki talk [S-I. (It is also possible to prove (1.4) by globalizing the
constructions of Demazure [D-I, constructing suitable resolutions of singularities
of these degeneracy loci, but the algebra is more complicated than in [D] in the
general case when the subbundles Ei are not trivial.) The pl-correspondence makes
these constructions unnecessary and, in particular, gives simpler proofs of the results
of [BGG] and [D-I. We hope that this treatment will help geometers and algebraists
appreciate these fundamental papers, without overly offending Lie group experts
by the omission of roots, weights, tori, parabolic subgroups, etc.
We also benefitted from discussions with P. Pragacz, who proved a special case of

our formula five years ago and recently told us of the work of Giambelli and its
relation to our formula. (See 10.) Thanks are also due to R. Stanley for providing
the useful notes ofMacdonald [M-I, which make the ideas of Lascoux and Schiitzen-
berger accessible. I am grateful to Pragacz, A. Lascoux, D. Grayson and a referee
for several suggestions and corrections, particularly of a historical nature, in re-
sponse to a preliminary version of this paper.
The geometric aspects of this paper generalize readily to other semisimple groups.

We plan a sequel on the orthogonal and symplectic analogues of the formulas
presented here.

2. Schubert polynomials. We start by recalling the definitions of Schubert poly-
nomials, which were introduced and studied in the series of papers [L1-3-1, [LS1-3-1,
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I-W], and elucidated and developed further in [M]. We will follow [M], summariz-
ing those notions and properties we need. Let A Ix] denote the ring of polynomials
in variables x 1,..., x, with coefficients in a commutative ring A, which may be taken
to be the integers. Formula (1.7) defines "divided difference" operators t3 on A[x],
1 < < n 1. These operators lower the degrees of polynomials by one and satisfy
the equations

(2.1) t3, o c3, 0;

(2.2) cO, o Oj 0j o cO, if i- Jl > 2;

(2.3) cO, o t3 o cO,-- t3 o cO, o c3 if li- Jl 1; and

(2.4) coi(P.Q) P.cO,(Q) if P is symmetric in x, and X,+

In particular, c3,(P) 0 if P is symmetric in x, and
From (2.1)-(2.3) and the fact that the symmetric group S. is generated by the

simple transpositions s, which interchange and + 1, for 1 < < n 1, subject to
relations corresponding to (2.1)-(2.3) (or see l-M, (2.5)]), it follows that one can
define operators Ow on A[x] for any w 6 S, by writing w as a product of e(w) such
transpositions: w s,, ...." sit,,, and setting

Moreover, for any sequence of integers il, i between and n 1,

(2.6) c3’l’"Oit={ otherwise.ifw=s"’""s"haslengthe
Define the Schubert polynomial w(x), homogeneous of degree f(w), in 7/Ix] by

writing

where r N e(w) and wo(i n + 1 i, and setting

(2.7)

Equivalently, w(X)= Ow-X.wo(X-l’x-2"...’Xn-1). Note that, since the module
generated by all x’1’.x’22.....x],, with ij < n j is preserved by the divided difference
operators, the variable x, does not appear in ,(x).
More generally, define the double Schubert polynomial w(X, y), which is homoge-
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neous of degree e(w) in two sets of variables xx, x,, and Yx, Y, by defining

(2.8) w(x, Y) O, Ol (+j<.I-I (x yj))

with the same choices of ix,..., ir as before. Here, the y’s are regarded as constants;
i.e., the operators are defined on the ring A Ix-i, where A is the ring 7/[y]. Note that

0)=
The double Schubert polynomials can be expressed in terms of ordinary Schubert

polynomials [M, (6.3)] as follows.

LEMMA 2.9. For any permutation w in S,,

w(x, y)= (--

the sum over those pairs (u, v) of permutations in S, such that v-x "u w and
+

COROLLARY 2.10. -I(X, y) (-- 1)et)w(y, X).

COROLLARY 2.11. @(X, y)issymmetricalinxi, xi+x if andonlyif w(i) < w(i + 1).
Also, @w(X, y) is symmetrical in Yi, Yi+x if and only if w-X(i) < w-X(i + 1).

Proof. As in l-M, (4.3)(iii)], (x, y) is symmetrical in xi, xi+x exactly when
c3,(x, y) 0, i.e., f(w. st) f(w) + 1 or w(i) < w(i + 1). The assertion for the y
variables follows from this and the preceding corollary. 121

It follows that, if w(i) < w(i + 1) for > d, then ,(x, y) does not involve the
variables xi for > d; similarly, if w-X(i) < w-X(i + 1) for > e, then ,(x, y) does
not involve the variables y for i> e. In addition, if S, c S,/1 as usual (with
w(n + 1) n + 1), then ,(x, y) is unchanged.

In 9 we will discuss some of the Schubert polynomials which can be expressed
more simply than by the iterated procedure of the definition. For now we note only
that

(2.12) a(x, y)= 1.

(2.13) @(x, y) x +"" + Xk- Y Yk, 1 < k < n.

Another useful formula relating Schubert polynomials [M (4.15")], although one
we will not need for our theorem, is Monk’s formula

(2.14)
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where the sum is over all transpositions o of integers < j such that < k < j
and w(i) < w(j), but w(s) does not lie between w(i) and w(j) for any < s < j;
equivalently, e(w. t) ’(w) + 1.
We will need a slight generalization of these operators. Let cl, c. be any

elements in A, let I be the ideal in A Ix] generated by the elements e(x) c, where
e(x) is the th elementary symmetric polynomial in x l, x.. From (2.4) it follows
that the operators t3 map I to itself; so they define operators, for which we use the
same notation:

(2.15) c,,,: A [x]/I --+ A [x]/I

3. Rank conditions and permutations. We consider m by f matrices, for fixed f
and m, with entries in an arbitrary field. For 1 < p < f and 1 < q < m, let Atq, p
denote the upper left q by p submatrix of an m by f matrix A. Our first aim is to
describe the possible rank functions of upper left corners of matrices, i.e., to charac-
terize those functions r on the set [ 1, m]x [1, f] such that there is a matrix A with

r(q, p) rank(Atq,, for all q and p.

For such r we will then describe the variety V, of matrices A such that rank(At,p) <
r(q, p) for all p and q.
One can describe the possible rank functions r in elementary terms as follows.

The first row r(1, 1), r(1, m) of ranks consists of some O’s followed by some l’s.
Let w be the smallest p such that r(1, p) 1, setting w if there is no such p.
Let w2 be the smallest p such that r(2, p) : r(1, p) and set w2 if the second row
of ranks is the same as the first now. Continuing in this way, let w be the smallest
p such that r(q, p):/: r(q- 1, p), or % if there is no such p. The qth row
of the rank function then agrees with the (q- 1)th row until the %th column,
and from there on it is one larger. This gives a sequence w. (w win) with
w [1, e] w {} and the finite numbers in this sequence all distinct. For an
example, for

0 1 1 1 1 0 1 1 1 1

A=
0 2 2 2 1 0 1 1 1 2

01 3 3 3 2
r=

01 1 1 1 2
1 1 1 1 2 2 2 3

which has the sequence w. (2, 5, , 1).
As we have seen, the sequence w. determines the rank function. More precisely,

r(q, p) is the number of < q such that w < p. Conversely, any such sequence comes
from a unique rank function. In fact, given w., define a matrix A with a 1 as the (q, p)
entry if% p, and a 0 otherwise; r(q, p) is the number of l’s in At,p. Summarizing,
we have the following lemma.
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LEMMA 3.1. Let r: [1, m]x [1, e]
_

N. The following are equivalent.
(i) There is an m by ’ matrix A with rank(At,pj) r(q, p) for all p and q.

(ii) There is an m by e matrix A whose entries are O’s and l’s, with at most one 1
in any row or column, with rank(At,t,j r(q, p) for all q and p.

(iii) There is a sequence w. (wl, w,), with each wi in [1, e] w { } and the
finite numbers in this sequence all distinct, with

r(q, p) Card{/< q: wi < p}.

We call r a rank function if the conditions of the lemma hold. The rank function
r, the matrix A in (ii), and the sequence w. in (iii) uniquely determine each other. One
may also note that, if M,, is the set of all m by e matrices, B, is the group of
invertible lower triangular m by m matrices, and B the group of invertible upper
triangular by e matrices, then for A and A’ in

rank(A,,l rank(Atq,,l Vp, q A’ P. A.Q for some P B,, Q e B.

For any r let

(3.2) V {A Mm, e: rank(At,, < r(q, p) for < p < e, < q < m}.

This is a closed subscheme of M,,,e Ae’ defined by the vanishing of all r(q, p) + 1
minors of Xt,p] for all p, q, where X (x,g) is the generic m by matrix. Let V, be
the open subset of V, consisting of those matrices with rank(Ate, p]) r(q, p) for all
p and q.

PROPOSITION 3.3. If r is a rank function, then
(a) is the Zariski closure of o;
(b) V, is an irreducible variety;
(c) codim(F, M,e) d(w.), where w. is the sequence corresponding to r, and

d(w.) Card { (q, p) e [ 1, m] x [1, ’]: p < w and p v wi for < q}

(d) V is reduced and Cohen-Macaulay.

The proposition will be proved by reducing the assertions to corresponding
general results about Schubert varieties in a flag manifold. To do this we next relate
the above rank conditions to permutations; this relation will be used throughout
the paper.

Given e and m, then n e + m. To prove the proposition, the idea is to consider
the projection from the general linear group n: GLn Mm, which takes A to
and prove the analogous results for n-l(V,). Given a rank function r as above, let
w. be the sequence defined in Lemma 3.1 and define a permutation w in Sn by
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induction on i, setting

(3.4) w(i)=

wi if < m and wi < e

min{[e + 1, n] {w(1), w(i- 1)}}

min{[1, n] {w(1), w(i- 1)}}

ifi<mandw=

ifi> m.

Then w is a permutation with

(3.5) w(i)<w(i+ 1) if/>m and w-X(j) < w-X(j + 1) if j > ve.

Conversely, any w e S. satisfying (3.5) comes from a unique sequence w. and hence
from a unique rank function r. For example, if m 5, e 6, and w. is the sequence
(3, , 1, 6, ), then w is the permutation 3 7 1 6 8 2 4 5 9 10 11. Note also
that with d(w.) as in (c) of the proposition, then

(3.6) d(w.) e(w)= Card{/< j: w(i) > w(j)}.

We next consider the general case of rank functions determined by permutations
w S.. For any permutation w in S. and any 1 < p, q < n, let

(3.7) r,(q, p) Card{/< q: w(i) < p}.

We call rw the rank function of w. As above, it can be used to put conditions on an
n by n matrix A by requiring that for all q and p the rank of its upper left q by p
submatrix is at most rw(q, p). For example, if Aw is the permutation matrix with a
1 in the ith row and w(i)th column, the rank of its upper left q by p submatrix is
exactly rw(q, p). The rank functions determined by permutations are exactly those
which are the ranks of nonsinoular n by n matrices.
A permutation is clearly determined by its rank function. We need to know that

it is determined by its restriction to an appropriate smaller set. Define the essential
set o(w) to be the subset of [1, n 1] x [1, n 1]

(3.8) goo(w) {(q, p): w(q) > p, w(q + 1) < p, w-X(p) > q, and w-:(p + 1) < q}.

Plotting pairs in [ 1, n] x [ 1, n] as in matrices, a point (q, p) is in o(w) when there
is no point on the graph { (i, w(i)) } of w which is due west or due north of or at (q, p),
and there is no point on the graph which is due east of or due south of or at
(q + 1, p + 1). This can be expressed in terms of the diagram of the permutation.
(See [M, (1.20)].) The diaoram of w is the subset

D(w) {(i, j) [1, n] x [1, n]: w(i) > j and w-X(j) > i},
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which is a set of cardinality (w). Then goo(w) is the set of southeast corners of D(w);
i.e.,

,o(w) {(q, p) D(w)" (q + 1, p), (q, p + 1), and (q + 1, p + 1) O(w)}.

For an example, take w 4 8 6 2 7 3 1 5; Figure 3.9 outlines the boxes labelling
essential points with the corresponding values of the ranks inside; the dots indicate
the points on the graph of w, the shaded squares are due south or east of a point
on the graph, and the unshaded squares make up the diagram.

FIGURE 3.9

The rank number rw(q, p) for a square in the essential set is the number of shaded
squares directly north of the square, which is the same as the number directly west
of the square. For some other examples of special types, see the end of 9.
LEMMA 3.10. (a) For any w in S, and any n by n matrix A, the ideal 9enerated by

all minors of size r,(q, p) + taken from the upper left q by p corner of A, for all
1 < p, q < n, is 9enerated by these same minors usin9 only those (q, p) which are in
(w).

(b) A permutation w in S. is determined by the restriction of its rank function r to
g(w).

(c) If w(m) 4: m, then there is some (q, p) goo(w) with p + q > m.

Proof. (a) We start with the ideal generated by the indicated minors for (q, p) in
gao(w) and show that the minors for other (q, p) are in this ideal by successively
eliminating one of the conditions defining goo(w).

Case 1: w(q) > p, w-1 (p) > q, and w(q + 1) < p. If w-1 (p + 1) > q, take the
largest k such that w-X(p + i)> q for 1 <i< k. Since w(q)> p, we must have
p + k < n. Then (q, p + k) is in ooo(w), and rw(q, p) rw(q, p + k); so we have all
rw(q, p) + 1 minors of A[q,p+k], and hence of A[q,p], in the ideal.

Case 2: w(q) > p and w-X(p) > q. If w(q + 1) > p, take the largest k such
that w(q + i) > p for < < k. Then Case applies to the pair (q / k, p), and
r,(q, p) r,(q + k, p); so we have all rw(q, p) / 1 minors of At+k,, and so ofAt,,
in the ideal.
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Case 3: w(q) > p. If w-l(p) < q, take the largest k such that w-l(p i) < q
for 0 < < k. This time, rw(q, p) r,(q, p k) / k. If k p, there are no minors of
size r(q, p) / 1. If k < p, Case 2 applies to (q, p k), and to conclude this case it
suffices to note that increasing a side of a rectangle by one and adding one to the
size of the minors gives no new generators for the ideal.

Case 4: no conditions. If w(q) < p, take the largest k such that w(q i) < p
for 0 < < k. Then r,(q, p) rw(q k, p) / k, and, as in the preceding case, there
are no minors if k q, and if k < q adding k rows and increasing the size of the
minors by k gives no new generators for the ideal.

(b) Apply (a) to the permutation matrix A of w. Knowing all r(q, p) means that
one knows the number of l’s in all upper left q by p rectangles, which determines w.

(c) Interchanging w and w-1 if necessary, we may assume that w(m) p < m. At
least one of the p distinct numbers w(q), as q varies from m p to m 1, must be
greater than p. For this q and p, we have w(q) > p and w-(p) > q. By the proof of
Cases I and 2 of (a), there is a (q’, p’) ooo(w) with q’ > q and p’ > p. And p’ / q’ >
p+q>m.

LEMMA 3.11. Let w e Sn and let

Vw {A GLn: rank(Atq,,1) < r(q, p) for all 1 < p, q < n}.

Then V is the closure of the set where all inequalities are replaced by equalities, and
V is an irreducible, reduced, Cohen-Macaulay subvariety of GLn of codimension
(w).

We will deduce this from the corresponding result on Schubert varieties in the
flag manifold F’(n) in 6. Now we use it to prove Proposition 3.3. Let n + m
and consider the projection n" GL --. M,,,e taking A to At,o. If w is the permuta-
tion constructed from the rank function r in (3.4), it follows from the preceding
lemma that t-(V) V, as sets and as subschemes. The morphism n is smooth,
with fibres open subsets of/-e.,. And n is surjective; in fact, it has a section which
takes a matrix B (b,) to the matrix A (a,) with

b, ifi<mandj<d

a, 1 if + j n + 1

0 otherwise.

The assertions about V M,, then follow from the corresponding assertions
about Vw GL. El

We will need a generalization of these ideas. Suppose d and m are given together
with two sequences

1 <a <a2 <’"<ashy and 1 <b <b2 <’"<bt<m.
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Suppose we are given a collection r (r,), 1 < j < t, 1 < < s, of integers. We say
that r is a permissible collection of rank numbers if there is a permutation w in some
S. with n > max(as, bt), so that

(3.12) eo(w) (bx, bt} x (ax, a}

and r,=r(b,at) for alll<i<s,l<j<t.

By Lemma 3.1 such w, if it exists, is unique up to the inclusions of S, in S./1; and
one may always take n < as + bt. Let d(r) e(w). From Proposition 3.3 and Lemma
3.10 we have the following corollary.

COROLLARY 3.13. If r is permissible, then the locus ofm by e matrices A such that
rank(Atbj, a,l) < r,i for all and j forms an irreducible, reduced, Cohen-Macaulay
variety of codimension d(r).

These loci for permissible r are exactly the irreducible loci that can be defined by
rank conditions using only upper corners chosen from the prescribed rows and
columns.
We conclude this section with a simple lemma whichjustifies our name ofessential

sets: none of the rank conditions can be omitted.

LEMMA 3.14. Let w S. and (qo, Po) goo(w). Then for any ve and m such that
oa(w) [1, m] x [1, e], there is an m by ’ matrix A such that

rank(Atq,l) < rw(q, p) for all (q, p) e ga(w) {(qo, Po)};

rank(Atqo,,oj) rw(qo, Po) + 1.

Proof. Define A (ai,) by the rule

if < qo, J < Po, and w(i) j

ifi qo and j Po

otherwise.

Note that A has at most one 1 in each row and column since w(qo)> Po and
w-(Po) > qo. Hence, the rank of Atq,,j is the number of l’s in the upper left q
by p corner. It is then evident from the definition of A that rank(Atq,p) < rw(q, p)
whenever q < qo or p < Po. On the other hand, if q > qo and p > Po, then
rank(At,p) rw(qo, Po) + 1. This proves the assertions for, if (q, p) and (qo, Po) are
any two pairs in the essential set of a permutation w, with qo < q and Po < P, then

(3.15) rw(qo, Po) < r,(q, p). rq
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Remark 3.16. It is not necessarily the case, however, that one can find a permuta-
tion w’ whose essential set is oo(w)\{(qo, Po)} and whose rank function is the
restriction of rw to this set. For example, ifw 4 8 6 2 7 3 1 5 is the permutation
from Figure 3.9, one can verify that there is no such w’ for (qo, Po) (3, 5).

4. Degeneracy loci.
filtered vector bundles

Given, on an arbitrary variety or scheme X, a morphism of

with rank(Ei) rank(Fi) i, and a permutation w Sn, we have the degeneracy
subscheme fw fw(h) f(h, E., F.) defined by the conditions

(4.1) rank(Ep F) < r(q, p) for all 1 < p, q < n

with r(q, p) as in (3.7). This locus has a natural scheme structure given by the
vanishing of the induced maps from Arwtq’t’)+l(Ep) tO

There is a subset of these n2 conditions which defines the same locus and scheme
more efficiently, given by the essential set of w, as follows.

PROPOSITION 4.2. The scheme f is defined by the conditions

rank(E --, F) < r,(q, p)

for all p and q in { 1,..., n} such that (q, p) oo(w), i.e.,

w(q) > p, w-X(p) > q, w(q / 1) < p, and w-X(p / 1) < q.

Proof. The assertion is a local on X; so one is reduced to the case where the
bundles are trivial, which amounts to the situation considered in Lemma 3.10. E!

It follows that any set of (q, p)’s containing the essential set can be used. For
example, using all those with w- (p) > q amounts to the following description. (See
Remark 6.2.)

COROLLARY 4.3. For w S, define the nest of sets

{1 n} = 6 = 2 =’"

where 6a (1, n} {w(i): 1 < < q}. Arran#e the inte#ers in 6a in order:

S {s(1) < s(2) < < s(n q)}.

Then fw is the locus where

dim(Ker(Eqto - Fq)) > for all l < q < n l, 1 < < n q.
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For example, for w 2 4 3 1, Proposition 4.2 gives fw as the locus where
Et--* F3 is zero and E3 F2 has rank at most 1. The sequence of subsets is
{ 1, 3, 4} = { 1, 3} = { 1 }, which leads, somewhat less efficiently, to the same conditions.
From the first description (4.1) or that of Proposition 4.2, with w-t the inverse

permutation to w, we have

(4.4) f-, (E., F., h) w(E.", F.", h")

where the dual flags and map are those of the sequence

More generally, suppose we are given a map h" E --. F of vector bundles of ranks
and m on a variety X with partial flags

(4.5)

of ranks 1 < at < a2 <"" < as < e and m > b, > bt-t >"" > bl > 1. Let r (rj, i)
be a permissible collection of rank numbers for these numbers, as in (3.12). One has
a degeneracy locus

(4.6) (,(h) {x e X" rank(Ai(x)-, Bj(x)) < rj, Vi, j}.

By the preceding section the permissible ranks are those for which these loci are, at
least locally and for h generic, irreducible.

5. Flag bundles. If E is a vector bundle of rank n on a variety or scheme X, the
flag bundle F’(E) comes equipped with a morphism p" Fe(E) X and a universal
flag U. of subbundles of p’E:

U c7. U2 ’’’ Un_ p*E

with Us of rank i. It has the universal property that, if f: Y X is any morphism
and V. is a (complete) flag of subbundles of f’E, there is a unique morphism
f: Y F’(E) such that f*U V as subbundles of f*E for all i. The flag bun-
dle may be constructed as a sequence of projective bundles of ranks n- 1,
n 2, 1, starting with pl: P(E) X with universal line subbundle Mx, then
forming P2" (p’E/Lt) P(E) with universal line subbundle M2/p’M, then
P3" P(PP’E/M2)"-* P(P’E/Lt), and so on. In particular, this shows that Fe(E) is
smooth of rank N n(n 1)/2 over X.
The flag bundle Fve(E) also has a universal sequence of quotient bundles

where Q p*E/U,,_ is a vector bundle of rank i.
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Suppose we are given a complete flag E. of subbundles of the bundle E. We then
have on F(E) the situation

For w in the symmetric group S,, we therefore have a degeneracy locus fw in F(E),
which we denote by f,(E.). By the local description in the next section it follows
that, ifX is irreducible, f,(E.) is an irreducible subvariety of F’(E) of codimension
’(w).
Assume now that X is nonsingular and let A A’X be the Chow ring ofX. There

is a canonical homomorphism

(5.2) q: A[x,..., x.] --, A’(Fve(E)),

x cl(Ker(Q Qi_x) cx(U,+x_flU,_)

(with Qo Uo 0 and U Q E). We need the following well-known lemma
[C2, Exp. 4], I-F, 14]).

LEMMA 5.3. The homomorphism is surjective, with kernel the ideal I 9enerated
by the polynomials ei(xx,..., x,) ci(E), 1 < < n, where ei is the ith elementary
symmetric function in n variables.

Proof From the construction of Fe(E) as a succession of projective bundles, it
follows that the images of the n. monomials x’-x... ..x.i-, with i < n j, form
a basis for A’(Fg’(E)) over A. Since these monomials generate A[x]/I, the map is
an isomorphism. 121

6. Schubert varieties. When X is a point, the flag bundle becomes the classical
flag manifold. We make the connection with a classical description of (generalized)
Schubert varieties in the flag manifold. In particular, we make the translation
between our notation, which emphasizes the quotient bundles, with the simpler
geometric description emphasizing subspaces. (The necessity for this translation is
the same as for projective space: the first Chern class of the quotient line bundle is
represented by a hyperplane, while the line subbundle has negative Chern class.)

Let Fg(V) Fe(n) be the flag manifold of (complete) flags W. in a vector space
V of dimension n. Fix a flag V. of vector spaces in V. For each permutation w in S,
define X X(V.) to be

{W. F’(V): dim(l/V Vp) r,(q, p) for 1 < p, q < n}

where rw(q, p) Card{j < q: w(j) < i}. Let X, X,(V.) be the closed subscheme
of F((V) defined by the corresponding inequalities dim(W c V) > r,(q, p).
The flag manifold has a universal flag V---* Q,_I ---* --* Q of quotient bundles

of the trivial bundle V VFetv) on Ft’(V). The flag of subspaces V. of V determines
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a flag of subbundles of the trivial bundle (denoted by the same letters); so by the
preceding section we have degeneracy loci w(V.). The following lemma records the
identification of these loci and some basic facts about them.

LEMMA 6.1. (a) For any w S, )w(V.) X.o, where Wo is the permutation which
takes to n + 1-i.

(b) EachX is a locally closed irreducible subvariety of F(V), isomorphic to affine
space of dimension (w).

(c) Each X, is an irreducible variety ofdimension ’(w), andX is the closure ofX.
(d) Each Xw is a reduced, Cohen-Macaulay variety.
(e) The classes [X] of the Schubert varieties form an additive basis for the Chow

rin# A’X.

Proof. For (a), f(V.) is defined by the conditions that the rank of Vp Qq is at
most r(q, p), which is the same as saying that the dimension of the kernel Vp W._q
is at least p r,(q, p), i.e., that for all p and q

dim(W c V,) > p rw(n q, p)

Card{i < p: w-X(/) > n q}

Card{/< p: WoW-(i) < q}

r,.o(q, P),

which is the condition to be in X,.o.
The claims in (b) and (c) are part ofthe general Bruhat decomposition; see Remark

6.2. We write out (b) for use in the following lemma. Take a basis el, e. for V
so that V, is spanned by el, e. Every flag W. in X can be uniquely described
by specifying that V is the subspace spanned by the first q rows of an n by n matrix
A which has a 1 in the ith row and w(i)th column, for each between 1 and n, and
has zero entries to the right of and below each of these l’s. That is, A (ai,j) with
ai, w(i) 1 and ai, 0 if j > w(i) or > w-x (j). Note that the number of free entries
in such a matrix is

Card{(/, j): j < w(i) and < w-X(j)},

which is the number e(w) of inversions. This gives an isomorphism ofX with A().
For (c), since X is the disjoint union of all X with v w.u and e(v) ’(w) e(u),
it suffices to verify that X is contained in X in case u st, which is a simple
verification using the preceding description.

Part (e) follows formally from (b) and (c) and the cellular decomposition of each
X; see i-F, 14]. Part (d) was proved by Musili and Seshadri [MS], and Rama-
nathan JR]. El
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We can use this to complete the proof of Lemma 3.11, and hence Proposition 3.3.
Fix a basis el, e, for a vector space V and let p" GL, F(n) be the map which
takes A GL, to the flag

(A’el) c (A.el, A.e2) c (A.ea,...,A.e,,_x).

Let V (e,+l-, e,). We claim that V, p-(Xv) with v Wo" w-a. In fact, A
is in p-1 (Xo) when, for all p and q,

dim((A’ex, A.eq) n (ep+, e,)) > Card{/< q: v(i) < n p},

which is equivalent to

rank(Atq, p) < q Card{/< q" v(i) < n p}

Card{i < q’wo’v(i) < p} rwo.v(q, P),

which is the condition to be in Vw. Since p is smooth and surjective, the results of
the preceding lemma for X, c Fe(n) imply the corresponding results for V GL,,
noting that e(w) N e(v).

Remark 6.2. If we identify the permutation w with the permutation matrix with
a 1 in the (i, w(i)) place and zeros elsewhere, and set B to be the subgroup of all upper
triangular matrices in the general linear group G, then the choice of reference flag
V. identifies Fe(V) with G/B, with a coset 9" B mapping to the flag W. 9" V.. Then
the locus X is identified with the Bruhat cell BwB/B. For details in this language,
see [C1, Exp. 13].

There are many other notations that have been used for the generalized Schubert
varieties in flag manifolds. Ehresmann [El and Monk [Mo] use a notation like that
in Corollary 4.3, labelling Schubert varieties by nests of subsets, but making the
transformation w- W’Wo as above. In addition, since they consider the associated
flags in projective spaces, they correspondingly subtract 1 from all the numbers.

Finally, we need an elementary lemma which will be used for the local description
of the basic correspondences in the next section. For an integer m between 1 and
n 1, define a subvariety Z(m) of Fve(V) x Fe(V) by

Z(m) {(W., Wo’): W W’ for all/4: m}.

Let p and P2 be the two projections from Z(m) to Fe(V). In terms of the universal
subbundles, each of these projections identifies Z(m) with the projective bundle
P(U,,+I/U,,_) over Fe(V).

LEMMA 6.3. Let w S, and let 1 < m < n.
(a) If w(m) < w(m + 1), then p maps p](Xw) birationally onto X,, where w’

W Sm
(b) If w(m) > w(m + 1), then px maps p]l(Xw) into Xw.
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Proof. In the situation of (a), we show in fact that Pl maps p]I(X)\A isomor-
phically onto X,, where A is the diagonal in Fd(V) x Fd(V). In fact, if W. is a flag
in X described by a matrix A as in the preceding proof, then the flags (W.’, W.) in
p]I(W.)\{W.} are those where W: is given by matrices of the form A’, where, if vi
and v’ are the ith rows of A and A’, then v’ v for # m, m + 1, vm/ v,, and
v, t.v, + V,+l for some scalar t. (Note that the fibres ofP2 are all projective lines.)
One verifies easily that, when w(m) < w(m + 1), these W.’ are precisely the flags in
X,, and each such flag has such a description for a unique t. On the other hand, if
w(m) > w(m + 1), all such flags are in X, which implies (b). El

7. A Giambeili formula for flag bundles. Let Fd(E) be the bundle of complete
flags in a vector bundle E of rank n on a nonsingular variety X, with projection p
from F(E) to X, with its universal flag U1 c Un- c p*E of subbundles, and
with universal sequence p*E - Qn-1 -*"" Q of quotient bundles, as in 5. For
each integer k between 1 and n 1, let Zk Fd(E) x x Fd(E) be the subvariety of
pairs (W., W.’) for which W W’ for all i:# n- k. Let Pl and Pl be the two
projections from Zk to Fd(E):

(7.1) Fd(E) Fd(E)

X.

Via either projection, Zk can be identified, with the P1-bundle

Zk P(Ker(Q+I Q,_))= P(U-k+I/U.-k-i).

LEMMA 7.2. With the identification of A’(Fd(E)) with A[xi, x]/I of Lemma
5.3, the endomorphism pt, o p of A’(Fd(E)) is the operator t9k described in 2.

Proof. We consider first the situation when n 2, k 1, in which case Fd(E) is
the P-bundle P(E), with universal quotient line bundle Q1, andZ (E) xx (E)
is just the fibre product. In this case A’(Fd(E)) is spanned over A by 1 and
x c(Q1), and it suffices to verify that p. o p(1) 0 and that Pl. o p(x) 1.
The first of these assertions is obvious, and for dimension reasons we must have
pi. o p(xl)= d A(I(E)) for some integer d. To verify that d 1, we may re-
strict to a fibre; i.e., we may assume X is a point. In this case x: is represented by
a closed point P (E) 01; so Pl maps p]l(p) isomorphically onto (E), which
proves the assertion.
The general case can be deduced from this special case as follows. Let m n k
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and let Y be the bundle of incomplete flags in E of ranks 1, 2 m 1, m + 1,
n 1, with universal subbundles W of rank i. Then Fe(E) can be identified with the
bundle P(F) over Y, where F Wm+l/W,n-1, and we have identifications

Fe(E) Zk Fve(E)
P P2

(F) P(F) xrlP(F IP(F).
Pl P2

The universal quotient line bundle on (F) is identified with the bundle Um+I/U.
Ker(Qk Qk-); so its first Chern class is Xk. By the case just considered,
p. o p(00 0 and p. o P(’Xk)= t for all A’Y. Since, as in the proof of
Lemma 5.3, any class in A’X is a sum of two such classes, and 0k has the same values
on such classes (noting that any in A’Y is symmetric in Xk and Xk+l), the lemma
follows.

Now suppose we are given a complete flag E. of subbundles of the bundle E. We
have seen that Dw(E.) is an irreducible subvariety of Fv(E) of codimension e(w); so
it determines a class [fw(E.)] in A(W)(F’(E)).

LEMMA 7.3. (a) If w(k) > w(k + 1), then the endomorphism pl. o p’ of A’(Fve(E))
takes [fw(E.)] to [fw,(E.)], where w’ w. Sk.

(b) If w(k) < w(k + 1), then p. o p([f(E.)]) 0.

Proof. Note that, with w’ W’Sk, e(W’) re(W) 1 when w(k) > w(k + 1), and
v(w’) e(w) + 1 otherwise. To prove (a) it suffices to verify that p maps p]l(fw(E.))
birationally onto fw,(E.) when w(k) < w(k + 1). To prove (b), it suffices to show
that p maps p]l(f(E.)) into f(E.) if w(k)> w(k + 1), for then p maps
p]l(tw(E.)) to a smaller dimensional variety. It suffices to verify these assertions in
each fibre of p; i.e., we may assume X is a point. In this case, the assertions translate
to those of Lemma 6.3 in the preceding section. Indeed, the present Zk becomes the
Z(m) of that lemma, with m n k, and, by Lemma 6.1(a), f(E.) becomes Xv,
where v w. Wo. It suffices to note that w(k) > w(k + 1) precisely when v(m) <
v(m + 1), and that, if w’ W’Sk, then w"wo v’, where v’ v.s.. []

From these two lemmas we have the essential relation between degeneracy loci,
as follows.

LEMMA 7.4. Let w S,, 1 < k < n. Set w’ w.sk. Then

Ok([ffw(E.)])= {fw,(E.)] if w(k) > w(k-t-1)
if w(k) < w(k + 1).

We can now prove the following formula for the degeneracy locus fw(E.) in the
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flag bundle Fd(E). It is a special case of the theorem stated in the introduction and
will be used for the general proof.

PROPOSITION 7.5. For any complete flag E. ofsubbundles in a vector bundle E of
rank n on a nonsingular variety X and any w S., the class offw(E.) in AetW)(Fd(E))
is given by the formula

[f,(E.)] @,(xl, x,, Yl,.-., Y,)

where is the double Schubert polynomial corresponding to w, xi is the first Chern
class of Ker(Qi - Qi-), and y is the first Chern class of E/E_.

Proof. Suppose first that w wo is the permutation which takes to n + 1 i;
so wo(E.) is the subvariety of F(E) given by the vanishing of the maps from p*En
to Q-n for 1 < p < n. Thus, fwo(E.) is the image of the section from X to F(E)
given by the flag E.; in particular, it is smooth of codimension N e(wo)=
n(n 1)/2. In fact, fwo(E.) is the zero of a section of the vector bundle K, where

(7.6) K Ker
p=l p=l

and g takes E %, with %: En Q,-n, to E fin, where fin: En --} Q.-n-, is defined to
be %,+ o n -J.-n o %, with n the given inclusion of En in En+: and J.-n the
projection from Q._p to Qn-p-x. This map # is easily checked to be surjective; so K
is a bundle of rank N n(n 1)/2. A map h determines a section of K (by setting

% the map from Ep to F,_ induced by h), whose zero locus is exactly 1,o" Hence.

(7.7) In.o] c(K) H (x, y) $.o(X, y),
i+j<n

and the formula is proved in this case.
For the general case, write w wo" Skt Skr where r N- d(w). Applying

Lemma 7.4 r times, together with the case just proved, we have

[n,(.)] o...o ,([n,o(.)]. o...o ,(o(X, y))

w(X, y),

the last by the definition of the double Schubert polynomials. 121

For the flag manifold Fe(V), when V. is a fixed flag of subspaces of a vector space
V, all the yi vanish, and the proposition is a "Giambelli formula", by which we mean
a formula which writes the class of a Schubert variety as a polynomial in the
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standard line bundles. Here, the class of fw fw(V.) is written as the Schubert
polynomial in the Chern classes x of the quotient line bundles Ker(Q --. Q-x). In
the notation of Lemma 6.1,

(7.8) [x.o] [n] (x, x,).

Note that x +... + xk is the Schubert polynomial of the permutation Sk, which
represents the locus where the map from Vk to Qk is not an isomorphism, i.e., the
locus of those flags W. for which W.-k meets Vk nontrivially. Thus, (7.8) writes an
arbitrary Schubert class in terms of these basic Schubert classes. Formula (7.8),
together with (2.14), gives a corresponding "Pieri formula", due to Monk [Mo]:

(7.9)

where the sum is over all transpositions tj of integers such that < k < j and
w(i) < w(j), but w(s) does not lie between w(i) and w(j) for any < s < j. Translating
via (6.1) and letting X,, be the locus of W. such that Wm meets V._,, nontrivially, this
can be written

(7.10) [x.]. [x,] (x, +... + x._,). [x,] Y [x,.,],

the sum over transpositions o with < m < j, v(i) > v(j), but v(s) does not lie
between v(i) and v(j) for < s < j. More general "Pieri" formulas have been proved
by Giambelli [G2], Chevalley (see [D, 4]), and Lascoux and Schiitzenberger [LS 1].
Both papers [D] and [BGG] give formulas that are in a sense dual to formula

(7.8). These compute the expansion of an arbitrary polynomial in the variables x
in terms of the basis of A’(Fe(V)) given by the Schubert varieties. (For some groups
G, some Schubert varieties cannot be written as polynomials in Chern classes of the
corresponding line bundles.) This takes the following form.

COROLLARY 7.11.
;[x, x,],

For any homogeneous polynomial P of degree d in

P(x,, x.) E (OP)[tw].

Proof. Note that each O,P is an integer when ’(w) d. By the proposition, the
corollary is equivalent to the assertion that any P in 7/[x] is congruent to (OP).
(x) modulo the ideal I. Either by direct calculation ([M, (5.6)]) or by the
proposition and Lemma 6.1(e), the Schubert polynomials form a basis for 7/[x]/I;
so it suffices to prove the corollary when P v(x) for some permutation v oflength
d. So we are reduced to proving that v(x) 6, when w and v have length d.
This is a simple consequence of the definition of Schubert polynomials; see I-M,
(4.2)]. 121
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There is also a dual formula. Verifying that the classes [X,] [w.wo] form a
basis which is dual to the l-fw-I (see [Mo-I) this can be written

(7.12) fx P(Xl, x,,). [X] O,,P.

Remark 7.13. If C=tw.,o(p(S.),p(Q.)) is the degeneracy locus in
Fve(E) xx FY(E) using the map from the subbundles in the first factor to the quotient
bundles in the second, and the permutation w’wo, one can show using Lemma 7.4
and the Bott-Samelson construction as in IS, 2], that the correspondence C
determines the operator O,, i.e.,

o() c*()= p,,(c.

for all in A’(Fve(E)). Equivalently, C,*.C* C,*.v or 0 according as (u) + ’(v)
vt(u.v) or not. We do not need this generalization.

8. The degeneracy locus formula. We next generalize the preceding formula to
the case ofpartial flags and then apply this to prove the general degeneracy formula.

If E is a bundle of rank n on X and 0 < bx < < bt < n is a sequence of integers,
there is a partial flag bundle, which we denote by FY(E; b.) of quotient sequences
of E of ranks given by the b. On Fve(E; b.) there is a universal quotient sequence

where Fi has rank hi. Suppose Ax c A2 c... A E is a partial flag of sub-
bundles of E of ranks 0 < a <... < as < n. For any collection r (r,i) of non-
negative integers, 1 <i< s, 1 < j < t, we have the degeneracy locus f,(A.)=
Fe(E; b.) defined by the conditions

rank(Ai F) < r,i for all and j.

We suppose that r is permissible in the sense of (3.12) and let w S, be the
corresponding permutation. Let d(r) =/’(w). By Corollary 2.11, (x, y) is symmet-
ric in the variables in each of the groups

X1, Xbl; Xbt+l, Xb2" ...’ Xbt_+l, Xbt;

Yx Yal; Ya,+l, Y,,2; ""; Y,,s-,+a

If each of these groups of variables is regarded as the Chern roots of the bundles
Fa, Ker(F2 F1), Ker(Ft F_I), and A x, A2/AI,..., As/As-x respectively, it
follows that we may write the double Schubert polynomial ,(x, y) as a polynomial
in the Chern classes of these vector bundles, where we have set x 0 for j > b and
y 0 for > as. We denote this polynomial by P,(b., a.).
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PROPOSITION 8.1. The codimension of f,(A.) in Fd(E, b.) is d(r), and

[f,(A.)] P,(b., a.) in Aa’)(X).

Proof. There is a composite X’ --, X of projective bundle maps, such that on X’
the sequence A. fills in to a complete flag E. of subbundles of E with A/= Ea, for
each i. Since the degeneracy locus is preserved by such a pullback and the pullback
on the Chow ring is injective, it suffices to prove the result when A. is part of a
complete flag E.. Similarly, the bundle Fve(E) of complete flags maps to FY(E, b.),
and the above sequence of quotients pulls back to corresponding elements of the
universal quotient sequence: F/= Qb,; again, it suffices to prove the formula after
pulling back to F(E). But now on Fe(E), by Proposition 4.2, the locus f,(A.) is
equal to fw(E.); so the assertions of the proposition become those of Proposition
7.5. El

Now we can state the general result. For simplicity we consider only schemes of
finite type over a field, remarking that, following [F, 20], only notational changes
are necessary to extend to schemes of finite type over any regular base. Consider

A A2 A h--, Bt-* Bt_ --’"--- B

where the A and Bs are bundles of ranks a and bs on a scheme X. Let r (rs.) be
a permissible collection of rank numbers; so we have the degeneracy locus f,(h)
defined by the conditions

rank(A/--+ Bj) rj, for all and j.

Let w be the permutation giving rise to r. As above, w(X, y) is symmetric in the
variables in each of the groups displayed above; so can be written at a polynomial
P,(b., a.) in the Chern classes of the bundles B1, Ker(B2 --+ B1), Ker(Bt --+ Bt-1),
and A 1, A2/A1,’", A/A_I.
We claim that, if X is smooth and h is suitably generic, then f(h) is a subvariety

of codimension d(r) in X, and [f(h)] P(b., a.) in Adt)(X). The following theorem
is a version of this assertion to allow singular varieties and arbitrary maps h, with
no assumption of genericity.

THEOREM 8.2. If X is a purely d-dimensional scheme, there is a class (h) in

A_n,)(f,(h)), satisfying the following.
(a) The image of ,(h) in An_a,)(X is P(b., a.) [X].
(b) Each component of f,(h) has codimension at most d(r) in X. If

codim(f,(h), X) d(r), then ,(h) is a positive cycle whose support is f,(h).
(c) The formation of ,(h) commutes with pullback by fiat or local complete

intersection morphisms, and with push-forward by proper morphisms.
(d) If codim(f,(h), X)= d(r) and X is Cohen-macaulay (for example smooth),

then f,(h) is Cohen-Macaulay and

n,(h)
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In addition, the classes are uniquely determined by properties (c) and (d). For
complex varieties, one can construct fr(h) in the relative cohomology group
H2dtr)(X, X- t(h)), and similarly for 6tale cohomology for arbitrary varieties.
In fact, for arbitrary X there is a class f,(h) in the bivariant Chow group
Adt)(f(h)-o X), whose image in the Chow cohomology group Aatr)X is P(b., a.)
and which gives the class in the theorem by operating on the fundamental class IX].
This strengthens the assertions of (a) and (c). Since the arguments are essentially the
same as those in I-F, 14 and 17-1, we will concentrate on those aspects that are
special to the present situation.

Construction and proof. Let E As 09 Bt. The graph of h gives an embedding of
As in E, and there is a canonical projection of E onto the second factor Bt. The
sequence E --* B --* --* B1 determines a section Sh: X -o Ff(E; b.) such that this
sequence is the pullback by Sh of the universal quotient sequence. It follows that
f,(h) is the inverse image by sh of the subscheme f,(A.) of Ff(E; b.). We define f,(h)
to be the refined pullback of the cycle [fr(A.)] by the section Sh:

f,(h) s([f(A.)]).

In this formula s" A.(fl(A.))-o A.(fr(h)) is the refined Gysin homomorphism
defined by the regular embedding Sh I-F, 6.2]. The proof of property (c) in the
theorem is then standard intersection theory, as in [F, 14].
To prove (a) one can argue as follows. First, since the formula pulls back, it suffices

to prove the corresponding formula for [f(A.)-I. In the case when X is nonsingular,
this is Proposition 8.1. To deduce it for quasiprojective X of pure dimension, one
can realize the bundles and maps as pullbacks from some nonsingular variety (a
Hom bundle over products of flag manifolds and projective spaces); again, the
formula pulls back. Finally, for arbitrary X one can use Chow’s lemma to find a
birational, proper morphism X’-o X with X’ quasiprojective; since by (c) the
formula is compatible with proper pushforward, the fact that it holds on X’ implies
it on X.
The assertions in (b) also follow from the fact that we know them for the locus

fr(A.) and the fact that Sh is a regular embedding. Part (d) also follows from this,
together with the fact that, if X is Cohen-Macaulay, Lemma 6.1(d) implies that
fr(A.) is also Cohen-Macaulay. It follows from this that the pullback by a regular
section, when the codimension is preserved, commutes with taking the cycle of a
subscheme; the point is that a regular sequence locally defining Sh(X) in Fe(E; b.)
must remain a regular sequence on the Cohen-Macaulay variety ,(A.) if the
codimension is preserved. 121

We will conclude this section with the application to the case most studied in the
classical literature. Suppose (ai,j(x)) is an rn x e matrix of homogeneous polynomi-
als in variables Xo,..., xd (for simplicity over an algebraically closed field) with

deg(ai,j(x)) st + t > 0
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where sx, Sm and tx, te are given nonnegative integers. Let r (r,,) be a
rank function; i.e., there is a permutation w in S, for some n < m + ’ so that
r,p rw(q, p). The locus of interest is the locus of points in projective space pa such
that the rank of the upper left q x p minor of this matrix is at most r, p for all q and
p. Set

f,((ao) { [x] pa: rank((at,(x))t,,l < r,, for all q and p}.

We will show that for all ranks for which this locus is irreducible (for generic
matrices), the degree is given by the corresponding double Schubert polynomial.
Let d(r)= e(w) and assume that d(r)< d. Bertini’s theorem and Proposition 3.3
imply that, for generic forms, the locus is reduced, and irreducible if d(r) < d. The
matrix (at,(x)) gives a map of vector bundles from the direct sum of the line bundles
(9(- st) on pa to the direct sum of the line bundles (9(t). Applying Theorem 8.2 with

q p

Aq ( (9(-st) and Bp ( (9(tt), we deduce the following corollary.
i=1 i=1

COROLLARY 8.3. For a 9eneric forms at, of degree st + t, the locus fr((at)) is a
reduced subvariety (irreducible if d(r) < d) of pure dimension d d(r) and degree

deg D.,((at)) ,(tx, tt, O, -sx --Sm, O, ).

We will discuss some special cases of this formula at the end of 10.

9. Vexillary permutations and multi-Schur polynomials.
one has sets

For any permutation w,

It(w { j > i: w(j) < w(i)},

Jr(w) { j < i: w(j) > w(i)}.

The code of the permutation w is the sequence (Cl, C2," of cardinalities of the sets
Ix(w), 12(w), ...; c is the number of points in the ith row of the diagram of w. A
permutation is determined by its code, by the recipe: w(1) ca + 1, and w(i) is the
(ct + 1)st element in the complement of {w(1), w(i 1)} in { 1, n}. The cardi-
nalities of the sets It(w), when arranged in decreasing order, form a partition
2 2(w), called the shape of w. The cardinalities of the sets Jr(w) similarly rearrange
to a partition/(w). The permutation w is called vexillary, or sinole-shaped, if 2(w)
and #(w) are conjugate partitions. There are several conditions which are equivalent
to this, one being that there be no a < b < c < d with w(b) < w(a) < w(d) < w(c).
Thus, for example, all permutations of S, for n < 4 are vexillary except for w
2 1 4 3. For larger n, however, only a small proportion of permutations are vexil-
lary. In fact, the probability ofa permutation being vexillary decreases exponentially
to zero as n goes to infinity; see [M, 1].
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There are useful determinantal formulas for the Schubert polynomials ofvexillary
permutations. We will see that vexillary permutations are also those corresponding
to a simple class of rank conditions on a matrix. For this we will need the following
variation on the results of [LS], [W-I, and I-M]. To this end we introduce some
notation, which is a little different from that in l-M]. Let xx, x2,..., yx, Y2, be
commuting variables. For nonnegative integers u and v and any integer e, let

(9.1) he(u, v)= coefficient oft e in ,=(-I (1-y,t)/__ (1-x,t);

(9.2) ee(u, v)= coefficient of t’ in ,=fi (1 + x,t)/(-I,__ (1 + yit).

Let 2 (p,l, p,2, p,k) be a partition with mi > 1 and p > P2 > > Pk > O.
Set m m + + mk. Define, for 1 < < m,

(9.3) p(i) min{s: < m +’" + ms}.

For any nonnegative integers ux Uk and vx Vk, define multi-Schur polynomials
by the formulas

(9.4) s((u, /)l)ml, (Uk, 1)k)mk) det(h,_i+(up,), v,i))),

)m,, (Uk, Vk)m) det(ex_+(up,), vpo))(9.5) s’((ux, va

where the determinants on the right are m by m, indexed by and j varying from 1
to m. Note that the function p simply assures that the first rn rows use the variables
(u, v), the next mz rows the variables (u2, v2), etc.

PROPOSITION 9.6. (a) Let ai, b and r be nonneoative inteoers, for 1 <i < k,
satisfyin9 the conditions

a < a2 <... < ak bx > b2 > > bk,

O < ax rx <a2--r2 < < ak rk, b r > b2 rz > > bk rk > O.

For any n > ak -k bx there is a unique permutation w in S. with

and

goo(w) {(bx, a), (b2, a2), (bk,

r(bi, ai) ri for 1 < < k.

(b) The permutation w of (a) is vexillary, and every vexillary permutation arises

from a unique collection of such integers.
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(C) The shape 2(w) of w is (pl, p2, p,k), where

Pt ak rk, P2 ak-1 rk-1, Pk at rt

mx bk rk, m2 (bk-t rk-t) (bk rk) mk (bt rt) (b2 r2).

(d) The Schubert polynomial of w is a multi-Schur polynomial:

$w(x, y) S((ak, bk)"’, (at, bt)"k).

(e) The conjugate partition #(w) 2(w)’ is (q’ q,) with

q bt rt, q2 b2 r2 qk bk rk;

nl at rt n (az rz) (at rx), n (a r) (a-t r-t).

(f) The Schubert polynomial of w is also 9iven by the formula

w(X, y) s*u((al, bl)n’, (ak, bk)n).

Proof. The uniqueness of w is implied by Lemma 3.10. For the existence, define
the integers p, m, and the partition 2 as in (c). Let f bk/- for 1 < < k. We
claim that

(9.7) f/ >/ m -1- -1- m for 1 < < k;

(9.8) 0 < f f-t < mi + P-t Pi for 2 < < k.

In fact,

m + + mi bk+l_ rk+l_ fi rk+l-i,

and (9.7) follows since each rk+l_ is nonnegative. For (9.8),

m, + P,-x P, (bk+t-i rk+t-,) (bk+z-i rk+2-i) + (ak+2-,- rk+2-i)

(ak+a-- rk+t-)

--(bk+l_ bk+2_i) + (ak+2-i- ak+l_i)

Now for any permutation w with code (c x, c2, ...), define, for each nonzero c, a
number e by the formula

ei max { j > i: cj >/ci}.
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The numbers el, arranged in increasing order, form the flag of w. In [M, (1.38)] it
is proved that for (p’, p") and fl <"" < fk satisfying (9.7) and (9.8), there
is a unique vexillary permutation w whose shape is and whose flag is (fy fkmk).
The code of w is determined as follows: first, ml pl’s are put in the rightmost spaces
in the interval [1, f]; then, mE PE’S are put in the rightmost spaces still available
in [1, f2], and so on until the last m p’s are put in the rightmost spaces left in
[ 1, f]. The remaining spaces are filled with zeros.

It is also shown in [M, 1] that every vexillary permutation arises in this way
(the trivial permutation w id corresponding to the trivial case when k 0). We
next verify that, for this permutation w, r(b, a) r for all i. Equivalently, we show
that rw(b+_, a+l_) r+l_. Now since b+_ f/,

rw(bk+l-i, ak+l-i) Card {s < f/" w(s) < ak+l-i}.

We first claim that

(9.9) ra+l_ Card{s < f/" c < pi}.

This follows from the fact that rk+l-i f (ml + + mi) and from the prescrip-
tion for constructing the code of w. To conclude the proof it therefore suffices to
verify that, for any s with s < f, the condition cs < p is equivalent to the condition
w(s) < ak+x_i. We show that in fact, for s < f,

(9.10) c p

(9.11) cs= pj, j > =*, ak+l_ < w(s) <
(9.12) c=0 = l<w(s)<al.

We verify this by induction on s. Suppose s 1, so that w(1) Cl + 1. If Cl p,
then, by (9.9), rk+l- 0; SO p ak+l- and w(1) ak+-j + 1, which yields (9.10)
and (9.11). If Cl 0, then w(1) < a, which finishes the proof for s 1. Now let
s > and assume the assertions for smaller s. If c p, by (9.9) and induction,

C pj ak+l_ rk+l_ ak+l_ Card{t < s: c, < p}

ak+l-j- Card{t < s: w(t) < pj}.

By the construction of w from its code, it follows that w(s) > ak+_j, which proves
(9.10) and half of (9.11). If j > i, to show that w(s) < ak+X_ we need to know that

(9.13) c + Card{t < s: w(t) < ak+z_j} < ak+z-i.

The left side of (9.13) is

p + Card{t < s" ct < pj_ } (ak+-- rk+x-) + rk+2-,
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which is strictly less than ak+2_ by hypothesis. Finally, if Cs 0, to show that
w(s) < al it suffices to verify that

(9.14) Card{t < s" w(t) < a1} < al.

By induction, the left side of (9.14) is

Card{t < s" c, O} < Card{t < f" ct O} r, < a

The conjugate to (pnl, p’k) is (ql, qk), where qi ml + + mk+l-i and
Pi nx +"" + nk+l-i, from which (c)follows.
To complete the proof of (a)-(c) and (e), we must verify that the essential set of

this permutation w is the set {(bl, al),..., (bk, ak)}. We show first that (bj, aj) is in
o(w). Since interchanging each a with each b leads to the inverse permutation
w-1, it suffices to show that w(b) > a and w(b + 1) < a. Let k + 1 j, so that
f bj. The above description of w shows that, for s f, cs is p for some j < i; so
by (9.10) and (9.11), w(s) > ak+i-1 a. Similarly, for s f + 1, cs p for j > i; so
w(s) < ak/2- < ak/l-i. TO show that o(w) is contained in the set {(bj, a)}, it
suffices again by symmetry to show that, if s - b for all j, then w(s) < w(s + 1). But
if s f for all i, then cs < Cs+l by construction of the code, and then w(s) < w(s + 1)
by construction of w from its code.

In FM, (6.16)] it is shown, although in different notation, that the double Schubert
polynomial of w is Sx((ak, bk)m,..., (al, b)m), which proves (d). The dual form (f)
follows from the duality theorem for multi-Schur polynomials FM, (3.8")]. E!

The Young (or Ferrars) diagram of the partition 2 of the vexillary permutation
arising from the numbers a, b, and r is determined as in Figure 9.15.

/

11 I1 Ill

a

a r

1’1 }Ill bk r
Iil

FIGURE 9.15

b r
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Remark 9.16. It is sometimes useful (and this occurs in the literature) to allow
rank conditions as in the proposition but to allow inequalities throughout:

0 < at rl <"" < ak rk and bl r >’" > bk rk > 0

(as well as al <"" < ak and bl >"" > bk). With these more general assumptions
there is still a unique (vexillary) permutation w with

ooo(w) c {(bl, al), (bk, ak)} and rw(bi,

The partition of w and its conjugate can be defined by the same formulas (c) and
(e), but now the p (and qz) need not be distinct, and some of the multiplicities m
(and n) can be zero. The point is that the rank condition at a point (b, a) can
be omitted, as it follows from the others, if either a r a-i r-i or b r
b+l r+l. The formulas (d) and (f) for the Schubert polynomials, however, do not
always hold in this greater generality. For an example, let k 2, al 1, a2 2,
bl 3, b2 2, rl 0, and r2 1; using these numbers in the formula gives 2
(11, 12) (13), but sx((2, 2) 1, (1, 3)2) -7/: sx((1, 3)3), the latter being the correct answer
obtained after throwing away the extra condition.

Remark 9.17. It follows from (a) of the proposition that a permutation is vexillary
exactly when its essential set is strung along a southwest to northeast path; i.e., it
has no two pairs (q, p) and (q’, p’) with q < q’ and p < p’. For a vexillary permuta-
tion w, it follows from (a) that the essential set ffoo(w) is minimal in the strongest
possible sense: if any (qo, Po) is omitted, there is another permutation w’, which is
necessarily also vexillary, with essential set goo(w’) equal to the complement of
((qo, Po)} in o(w), and rank function rw, equal to rw on (w’). (See Remark 3.16.)
It would be useful to have criteria as in (a) for permutations which are not vexillary,
characterizing those sets which can be essential sets for a permutation w, and what
rank functions are possible.

Among the vexillary permutations are those called Grassmannian. In addition to
the identity permutation, they are permutations with just one descent; i.e., there is
one b such that w(i) < w(i + 1) unless b. They are characterized by the fact that
their essential sets lie in one row.

PROPOSITION 9.18. Let a, r, 1 < < k, be nonnegative intelers satisfying the
conditions al < a2 <"" < ak and

O< a1- r < a2 rE <"" < a rk, r < r2 <... < rk < b.

Then there is a unique permutation w in S, for any n > ak + b with

Coo(w) ((b, al), (b, a2), (b, ak)}

and

rw(b, a)= r for 1 < < k.



FLAGS, SCHUBERT POLYNOMIALS, DEGENERACY LOCI, DETERMINANTAL FORMULAS 413

The permutation w is Grassmannian, and any Grassmannian permutation arises
uniquely in this way. Its Schubert polynomial is

@,(x, y) sa((ak, b)m* (al, b)mk)

where (pl, pk) with

Pl ak rk, P2 ak-1 rk-1, Pk al rl

m b- rk, m2 rk rk-1, mk r2 rl.

Dually,

w(x, Y) s((ax, b)n’, (ak, b)")

where # (q’’, q,) with

ql b rl, q2 b r2, qk b rk;

n a r, nz (az rz) (a r), n (a r) (a_ r_).

Proof. Using Proposition 9.6, we need only show that the vexillary permuta-
tions that arise this way are precisely the Grassmannian permutations. This follows
from the fact that w(q) > w(q + 1) if and only if there is some p with (q, p) in
(w). ra

There is another class of vexillary permutations, called dominant: they are the
permutations w such that the cardinalities of the sets 11 (w), I2(w), form a weakly
decreasing sequence. These too have a simple description by the rank conditions:
they are precisely those permutations whose rank functions are identically zero on
their essential sets. In fact we have the following proposition.

PROPOSITION 9.19.
conditions

Let ai, bi, 1 < < k, be nonnegative integers satisfying the

0<a <a2<’"<ak, bl >b2>’">bk>O.

Then there is a unique permutation w in Sn for any n > ak + bl, with

and

goo(w) {(bl, al), (bz, az), (bk, ak)}

rw(b,, ai)= 0 for 1 < < k.

The permutation w is dominant, and any dominant permutation arises in this way. Its
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Schubert polynomial is

w(x, Y) S((ak, bk)m’, (al, bl)"k)

where (a’’, a’) with

ml bk, mE bk- bk,..., mk bi b2.

Dually,

*((a b)nl (ak, bk)n)w(X, Y) s,

where It (b’;’, b,) with

n a n2 a2 al, nk ak ak_

Proof. We use the description of the code discussed in the proof of Proposition
9.6. For the code to be weakly increasing, the insertion of the mi pi’s in the rightmost
available spaces in [1, f] must exactly fill the spaces of [f_ + 1, f]. This means
that mi f f-l, or thatm + + mi f for all i, which happens precisely when
rk+- 0. The rest of the proposition follows from Proposition 9.6. The fact that
any permutation whose rank function vanishes on its essential set must be vexillary,
which was stated before the proposition, follows from (3.15).

We conclude this section with some examples of each of these types of permuta-
tions, with notation as in Figure 3.9.

Vexillary

w=96837410215
Y(w) 31
k=8

at: 2 5 5 5 7 8

b: 8 7 7 5 3 3

r: 002 10 10
2(w) (8, 6, 5, 4, 3, 22, 1)
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Grassmannian

w=24579101368
re(W) 16
k=4
ai: 1368
b: 0134
2(w) (42, 3, 22, 1)

:::::::21

FIGURE 9.21
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10. Determinantal formulas and applications. Combined with the algebra of the
preceding section, the theorem of8 gives a general determinantal formula. Suppose
we are given vector bundles

A A2 c:’"c: Ak and

on a scheme X, of ranks a < a2 < < ak and b > b > > bk, and a morphism
h: Ak B of bundles. (Note that equalities are allowed in these bundles, and we
have changed to number the sequence of quotient bundles from the top down.) Let
rx,..., rk be nonnegative integers satisfying

O< a r < a2 r2 <"" < ak- rk,

bx rx > b2 r2 >’" > bk rk > O.
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Define f, f,(h) to be the subscheme defined by the conditions that the rank
of the map from A to B is at most r for 1 <i< k. Let 2 be the partition
(p,,, p,2, p,k), where

P ak rk, P2 ak-1 rk-1 Pk al r

m bk rk, m2 (bk- rk-) (bk rk), mk= (bl rl) (b2 r2).

Let # 2’ (q’ q,k) be the conjugate partition, i.e.,

q bx rx, q2 b2 r2, qk bk rk;

nl al rl, n2 (a2 r2) (al rl), nk (ak rk) (ak- rk-a).

Let d(r)= 121 miPi I1 niqi be the number partitioned. Let m ml +
+ m, b ra, and, for 1 < < m, let

p(i) max{s [1, k]’i < bs r m + + mk+x-}.

For < < n n +’" -Jr nk a rk, let

p’(i) min{s 6 [1, k]" < a r n + + n}.

THEOREM 10.1. IfX is purely d-dimensional, there is a class , in An-at,)(f,), such
that the image of , in Ad-dt,)(X) is P, IX], where

P, det(c,_+j(Aa]o Bi)))x <i,j<m

det(cu,-i+j(Bp’ti)- Ap’ti)))l

The properties (b)-(d) of Theorem 8.2 are also valid for these classes.

The rest of discussion in 8 about the general classes f, applies to these classes
as well. The proof follows from the general Theorem 8.2, together with Proposition
9.6. In interpreting the formulas from {}9, the variables xi and y become Chern roots
of the bundles; in particular, if u and v are the ranks of the bundles As and Bs, then
h(u, v) c(A B) and e(u, v) c(B As). D

In the special case where r ai for all i, , is the locus where the dimension
of the kernel ofAt ---, B is at least for all i. In this case a formula like that in Theorem
10.1 was announced by Pragacz [P, (8.3)]. Theorem 10.1 gives general conditions
under which it holds:

bx -ax + >b2-a2 + 2>-" >bk--ak +k>0.
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The polynomial giving this locus is then

det(cb,-a,+g(Bi Ai))x <i,g<k"

When all the bundles Bi are equal, our general determinantal formula specializes
as follows. Suppose we are given vector bundles and a map

A c A2 ... AkB,

the bundles of ranks al < a2 "" ak and b, and nonnegative integers rl,..., rk
satisfying

0 < a rl < a2 r2 < < ak rk, rl <r2 <"" <rk <b.

Define f, to be the subscheme defined by the conditions that the rank of the map
from Ai to B is at most r for < < k. Let 2 be the partition (p,l p,k) with

P ak rk, P2 ak-1 rk-1,’’’, Pk al rl

ml =b--rk, m2 rk rk_l,... ,mk r2 r

Let # 2’ (q’, qk) be the conjugate partition, i.e.,

ql b rl, qk b rk;

nl al rl, nk (ak rk) (ak-1

Let d(r) 121 I1, m b rl, n ak rk. Defining p(i) and p’(i) as before, we
have by Proposition 9.18, the following proposition.

PROPOSITION 10.2. If X is purely d-dimensional, there is a class
such that the image of F, in Ad-d,)(X) is P, c IX], where

P, det(cx,_i+j(A,i) By))1

det(cu,_i+j(B Ap,(i)))I <i,j<n"

Properties (b)-(d) of Theorem 8.2 are also valid for these classes.

The determinantal formula of Kempf and Laksov ([KL], IF]) is a special case
of the preceding proposition (and of the formula of Pragacz mentioned above),
applied to the case when ai r for all between 1 and k. In this case # b

at + i, and since p’(i) and n k, the formula reads

f, det(cb-,,+j(B Ai))l <i,j<k C IX].
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When k 1, the theorem specializes to the Giambelli-Thom-Porteous formula
as follows. We are given a map h: A --. B of vector bundles of ranks a and b, and a
nonnegative integer r < min(a, b). Now fr is the locus where the rank of h is at most
r. In this case n a r, #i b r for all i, and the formula is, det(cb_r_i+(B A))i <i,j<a-r (’ IX].

One can also specialize Theorem 10.1 to the case where all the prescribed
ranks r are zero, using Proposition 9.19 for dominant permutations. With/
(bI’, b) and

I,l a n2 a2 al, rlk ak ak_

n ak, and p’(i) min{s [1, k]: < as}, the formula for the locus where each
Ai- B vanishes is

(10.3) o-- det(cu,-i+j(Bp’ti)- Ap’(i)))l <i,j<n"

The special cases ofTheorem 8.3 which were considered by Giambelli ([G1], [G3-1)
also fall under the special "vexillary" class considered in this section. Giambelli
considers rank conditions which one can place on an m x e matrix (ai,(x)) of forms
by putting rank conditions along the bottom row and right column. Since these
occur in a southwest-to-northeast pattern, they always correspond to a collection
of rank conditions to which our general determinantal formula of Proposition 10.2
applies. In [G1] he considers a special case that puts a bound on the rank of the
whole m x e matrix and, in addition, requires that some left m x v and some top
# x e matrix be singular.

In [G3-1 Giambelli consider general rank conditions along the bottom row and
right column. For this a positive integer c < min(m, d) is specified with integers #
and v satisfying

O<pl<"’<ttc<m and OV <’’" <lYc < .
Giambelli considers the condition that the rank of the entire matrix is at most c
that the rank of the upper t x minor is at most 1, and that the rank of the
left m x v minor is at most 1 for all 1 < < c. The codimension of the locus is

t=md-c’(m+d-1)+ !,+ v,.
i=1 i=l

In this more general situation, however, Giambelli had to assume that all the entries

a, in the matrix are forms ofthe same degree p, but in this case he gives the following
formula for the degree of the locus:

deg f,((a.))= pt.det [(m + - 2- #
m- 1-#
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Pragacz points out that this is quite different from our formulas and therefore
gives an interesting formula involving the corresponding Schubert function. Note
that Giambelli’s formula is the determinant of a c c matrix, while ours give
determinants ofa larger m x m or e x e matrix. If w is the permutation correspond-
ing to the rank condition r (see Remark 9.16) and we set the variables x equal to x
and the variables y equal to -y, then the combination of our formula with
Giambelli’s gives

For example, for the ordinary Schubert polynomial this gives the formula

,(1 1)= det[lm+ve-2-#l--{
L\ <i,j<c

Giambelli’s formulas in [G1] also combine with ours to give identities among some
simpler multi-Schur polynomials.
As we mentioned, the general degeneracy formula can be used to prove some of

the known identities among Schubert polynomials. For this one takes again the
bundles to be sums of line bundles, so that their Chern classes are independent
variables through some large degree, and so that there are maps between the bundles
with degeneracy loci irreducible of the expected codimension. For example, the
variety X can be taken to be a product of 2n large projective spaces and the line
bundles to be the pullbacks of the universal sub or quotient line bundles on the
factors. In this context, for example, Corollary 2.10 follows from the fact that
f,-,(h) f,(h v). The duality formulas in [M, (3.8)] can also be proved this way.
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