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Abstract. Let G be a connected semisimple algebraic groBpa Borel
subgroup,I” a maximal torus inB with Weyl groupW, and@ a subgroup
containingB. Forw € W, let X, denote the Schubert variefyw@/Q.
Fory € W such thatX,o C X,q, one knows thaiByQ/Q admits a
T-stable transversal i, which we denote by, ... We prove that,
under certain hypothese&/, ., is isomorphic to the orbit closure of a
highest weight vector in a certain Weyl module. We also obtain a generali-
sation of this result under slightly weaker hypotheses. Further, we prove that
our hypotheses are satisfied whgis a maximal parabolic subgroup corre-
sponding to a minuscule or cominuscule fundamental weight}gds an
irreducible component of the boundary &f,¢ (that is, the complement of
the open orbit of the stabiliser @& of X,,p). As a consequence, we describe
the singularity ofX,,o alongBy(Q/Q and obtain that the boundary &f,,¢
equals its singular locus.

Introduction

Let G be a connected semisimple algebraic group @yem algebraically
closed field of arbitrary characteristic. Choose a Borel subgigpmaxi-

mal torusT of B with Weyl groupW, and a subgrou@ O B. Forw € W,

let X, denote the SchubertvarieBuw(@/Q in G/Q, and leBd (X, ) de-
note its boundary, that is, the complement of the open orBitaifc (X ,q)-
Fory,w € W such thatX,o C X,,q, itis well-known that the Bruhat cell
Cyo = ByQ/Q admits a natural-stable transversal iX,,q, which we
denote byN,g ..q (see 1.2). In this paper we study, in certain cases, the
singularity of X, along Cyo, that is, the singularity oV, .., at the
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pointyQ/Q. The most interesting case occurs whep, is an irreducible
component of the singular locus &f,,. Then the singularity ofVy, ..q
atyQ/Q is isolated; it is the generic singularity of the title.

After some preliminaries in Sect. 1, we prove in Sect. 2 the main result of
this paper (Theorem 2.6). It asserts that, under certain specific conditions on
y andw, theT-variety N, .., is isomorphic to the orbit closure of a highest
weight vector in a certain Weyl module for a certain reductive subgroup con-
tainingT'. As a consequence, we compute the Kazhdan-Lusztig polynomial
P, ., (assumingy, w maximal in theirlWy-cosets) and the multiplicity of
Xwg alongCyq (Corollary 2.7). In Sect. 3, we consider the case wiigre
is a maximal parabolic subgroup corresponding to a minuscule weight. We
assume thaf7 is simply-laced, which entails no loss of generality. Using
a result of Lakshmibai-Weyman, which asserts that the Bruhat-Chevalley
order inW /Wy, is generated by the simple reflections, we first show that for
every irreducible component, g of Bd(X,q), the conditions of Sect. 2
are satisfied. Then, using Theorem 2.6, we deduce3ifh@k’,, ) is exactly
the singular locus oKX, and obtain a geometric description of the generic
singularities ofX,,.

Our description of the singular locus, and the value of generic mul-
tiplicities and Kazhdan-Lusztig polynomials, could be deduced from the
case-by-case analysis given in [12], for classical groups, and from the com-
putation of Kazhdan-Lusztig polynomials given in [1], for typég F~. In
fact, these values are known, more generally, for all pairs of Schubert vari-
etiesX,o C Xy in a minuscule /@ [13], [1], [12]. But our description
of generic singularities gives a more precise geometric information.

In Sect. 4, we begin by a generalisation of Theorem 2.6: for ceytaird
w, theT-varietyNyq ., is isomorphic to a certain multicone in a direct sum
of Weyl modules (Theorem 4.1). We then study the generic singularities of
Schubert varieties in the variety of Lagrangian subspaces of a symplectic
spacek?". Again we find that the singular locus of each Schubert variety is
its boundary, and, using Theorem 4.1, we give an explicit description of the
transversals. As a consequence, formulae for the corresponding Kazhdan-
Lusztig polynomials and multiplicities are obtained (the explicit formulae
for the latter are perhaps new). Finally, we work out the case of Schubert
varieties in a smooth quadric, or in the variety of flags of typer) in k" *1,
by elementary geometric arguments.

Acknowledgements\We thank the referee for several useful comments about the presentation
of results concerning orbit closures of highest weight vectors.
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1 Preliminaries
1.1

Throughoutthe paper, the base figlid algebraically closed and of arbitrary
characteristic. Lety be a semisimple, connected and simply-connected,
algebraic group ovek. LetT be a maximal torus insidB, a Borel subgroup.
Let U~ be the unipotent radical @8, the Borel subgroup such thBt N

B =T. Also, if Q) is a parabolic subgroup containitgy let Ly denote the
Levi subgroup of) containing?’, let )~ be the unique parabolic subgroup
suchthat)" N @ = Lg, and IetUC; be the unipotent radical @p—.

Let R be the root system ofG,T'). Fora € R, let U, be the corre-
sponding root subgroup, and [éf* = U, \ {1}. Let R* be the set of roots
of T'in Lie(B), let R~ = —R™, and letA be the set of simple roots iR™.
For a subsef of A, let P; be the parabolic subgroup generatedi»and
theU_,, fora € I,and letR; = RNZI, Rf = Ry NR*.1f Q = Py, then
Lq, Ry, R? are also denoted b¥;, R, R5, respectively.

1.2

Let W = Ng(T)/T be the Weyl group and lef(-) (resp.<) denote the
length function (resp. the Bruhat-Chevalley order)Idhwith respect to
the set of simple reflectionss,, a € A}. ForI C A, let W denote the
subgroup of¥V generated bys,, o € I}, letw; denote the unique element
of W; such thatu;(R}) = R, and letW! = {w e W | w(R]) C R™},
the set of maximal representativesiof V.

Forw € W, lete,, g denote the poinb B/ B of G/ B, letC\,p = Beyp

be theB-orbit of e,,5, and letX,,z5 = C,, g be its Zariski closure. Recall
thatdim X,,p = /(w) and thatX,p C X,,p <= y < w. More generally,
let @ be a parabolic subgroup containifg Forw € W, lete,, denote the
pointw@®/Q of G/Q, let C,o = Beyg, and letX,,o = Cyq. Note that
these depend only on the coseiVg, whereWWg = {w € W | w@Q = Q}.
If @ = Py, thenWg = W, and we shall also writéV’? for W!. Let g
denote the projectio’/B — G/Q and recall thatV? = {w € W |
7o' (Xuwq) = Xup}-

Further, fory < win W, let Nyquwq = (y(Ug) N U7 )eyg N Xug-
This is a closed[-stable, subvariety ojUéeQ N Xy and, similarly to [7,
Lemma A4.(b)], one obtains’A-equivariant isomorphism

yUqeq N Xu@ = Cyo X Nyguq-

Thus, we may callV, .,q a transversal t6’,q in X,q.
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13

Let X = X(T') be the character group @, let {a", « € R} be the set of
coroots, and le&™ = {A € X | (\,a¥) >0, Va € A}. For\ € X, let
L(A) denote the correspondirigrequivariant line bundle o&'/ B, and, for
A€ Xt letV(\) = H'(G/B, L(—)))* be the Weyl module with highest
weight\. Itis generated by &-stable line of weighi, and itsT-character

is given by Weyl's character formula (see, for example, [6, 11.2.13, 11.5.11]).
Similarly, if I is a subset ofy, let Xt = {A € X | (\,a") >0, Va € I}
and, for\ € x;7,letV;(\) = H°(P;/B, L(—)))*. This is the Weyl module
for L; with highest weight\.

1.4

For future reference, let us record the following lemma.

Lemma. LetQ be a parabolic subgroup containing. Lety < w in W<.
Thenrg induces an isomorphisiy 5 .5 = NyQ,wo-

Proof. Sincey € W<, thenkR* ny(R*) = R*Ny(R"\ R}). Thisimplies
thaty(U-)NU~ = y(Ué) N U~. Let H denote this group. By the Bruhat
decomposition, one h&staby(eyp) = {1} = Stabg(eyg) and hence
mg induces &' H-equivariant isomorphism frofl e, g onto He,q. Then,
sincewc‘zl(Xw ) = Xwp, one deduces thaty induces al’-equivariant
isomorphism fromVy g .,p = HeypNX,\yp ONtOH ey N Xwg = Nyg,w@-
The lemma is proved.

15

Let ¢ be a prime number different fronhar(k). For an algebraic variety,
letZC*(X) denote the middle intersection cohomology complexowith
coefficients inQ, and, fori € Z, let ZH'(X) denote the-th cohomology
sheaf ofZC*(X) [3, Sect. 6], see also [8, Sect. 3]. We follow the normali-
sation ofZC*(X) given in [8, 3.1(a)], that is, the restriction 8€°(X) to
the smooth part of is the constant shed&J, in degree zero. (This differs
from the normalisation in [3, Definition 6.1(a)] by a shift in degree). For
r € X, let ZHL(X) denote the stalk of #‘(X) at z. Then, following
[7, Appendix], coupled with [8, Sects. 3—4], let us say thais rationally
smooth ifZH.(X) = 0, for everyz € X andi > 0. Note that if X is
smooth then it is rationally smooth.

Let ¢ be an indeterminate. We shall need the following notation. For
a polynomial? = 3, a; ¢" and a positive rational number let PsT =

Zigr a; ql'
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Fory < win W, let P, ,(q) be the corresponding Kazhdan-Lusztig
polynomial[7]. By [8, Theorem 4.3] (wherhar (k) > 0)and [15, Corollaire
2.10], one has,,,(¢) = 3°; dimTHZ!  (Xup)q'. Suppose thay < w
and thatP, ,, = 1, fory < z < w. Let us then recall the following de-
scription of P, ,, given in [7, Appendix]. Suppose theltar(k) = p > 0.
Everything in sight is defined over the prime fiflgland one deduces from
[7] the following result.

Lemma. Lety < win W and letd = ¢(w) — £(y).

(a) There exists a polynomid{, ,,, of degreed, such that, for every > 1,
the number oF - -rational points ofN, 5 ., \ {ey} equalsKy ., (p").

(b) I Nys.wi \ {e,5} is rationally smooth, them, ,, = (— K, ,,)=@~1/2,

Proof. The first assertion is a consequence of [7, 2.5, A4] and, sice
has degree at mo&f — 1) /2, the second assertion follows from the equation
preceding Equation (5) in [7, Appendix].

2 Closures of orbits of highest weight vectors as transversals
2.1

For future use, let us record here the following lemma. We relax, in this
subsection, the notation of Sect. 1.

Lemma. LetG be a connected reductive group overchoose a maximal
unipotent subgroup/ C G and a maximal torug normalisingU. Let H be
a subgroup of7 containingU, and denote by the normaliser of{ in G.
ThenP containsI'U, and H contains the derived subgroup Bf Moreover,
H is generated by/ (7' N H) and by thelU_,, (v € A) which it contains.

Proof. The first statement is due to F. Knop ([11, Satz 2.1]); we recall
his proof for the convenience of the reader. By a theorem of Chevalley,
there exists &-moduleV and a vectow € V such thatH is the isotropy
subgroup of the ling&wv. Decomposing in VY, we can writev = 3" v
where thev; are eigenvectors aB with pairwise distinct weights;. Let

@ denote the intersection of the stabilisers of the likes(it is a parabolic
subgroup of). Theny; extends uniquely to a character@f and one has

H =, ; Ker(x; 'xi). Therefore,one hag’ C H C Q, whereQ’ denotes
the derived subgroup @j. SinceQ = Q'T, itfollows thatH = Q' (TN H).
This implies the second assertion. Moreovgrnormalisesd and hence

Q@ C Ng(H) = P. On the other hand? normalisesR,,(H ), the unipotent
radical of H. But one hask,(H) = R,(Q) and, sinceV¢(R,(Q)) = Q,

one deduces thd? C ). Thus,P = () and the first assertion follows.
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2.2

Let the notation of Sect. 1 be in force again. In this paragraph, we recall
some facts about orbit closures of a highest weight vector in a Weyl module.
Let A € X(T)* and letP be the associated parabolic subgroujg-dfi.e.,
P is generated by and theU_,, for thosea € A such that A, a") = 0).
Then\ extends to a character 8f, and the associated line bundle (—\)
on G/ P is very ample. The dual space B°(G /P, Lp(—))) is the Weyl
moduleV'(\), and the affine cone over/P embedded irPV()) is the
orbit closure of a highest weight vector. Denoted\) this affine cone;
thenC(\) is normal by [14, Theorem 3].

Consider nowy x’ k, the total space of the line bundfe> (). Identify
ky with the A-weight space i/ (\). Then we have a map

¢:GxFPky—=CN)

induced by(g, v) — gv. We claim thatp is proper and induces an isomor-
phismG xF (kx\ {0}) — C(\)\ {0} (in particular,g is birational). Indeed,
consider the total spad@py () (—1) of the tautological line bundle over
PV (A). The canonical map

D : Opv()\)(—l) — V()\)

is the blow-up of the origin i/ (). In particular,® is proper and its re-
striction to the complement of the zero section is an isomorphism on the
complement of the origin. Moreover, fo¥/P embedded intd®V (), the
spaceDq, p(—1) is the total space of p()), that is,G x” k, and¢ is the
restriction of®. This proves our claim.

SinceC(\) is normal, it follows from Zariski’s main theorem that

E[C(N)] = kG x" kx] = @DV (nA)*. 1)

n>0

Forlater usein Sect. 4, let us record here the following generalisation. Let
A, N € X(T)T, let Py, ..., P, be the associated parabolic subgroups,
andletQ) = PiN---NP..LetV = @;_, V(\;), let E be theQ-submodule
spanned by the highest weight vectors, and(et, . .., \,) = GE (which
is closed sincé&r/() is complete). Thenthép, (—\;) define a closed immer-
sion of G/Q intoPV (A1) x - - - x PV (), and the corresponding multicone
identifies withC(\1, . .., A). Also, G x® E is the total space of the vector
bundle®;_, Lo(\;). Further, along the same lines as above, one can show
that the natural map : G x¢ E — V, induced by(g, v) — gv, is proper

and induces an isomorphis@ x? E* =, GE*, whereE* denotes the
Q-stable, open subvariety &f consisting of those vectors whose projection
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onto V'()\;) is non-zero, for every = 1,...,r. (See also the proof of [9,
Theorem 1] for a more general statement).

Moreover, by [9, Theorem 21,(\1, . . ., A ) isnormal. Thus, by Zariski’s
main theorem, it follows that

KCOM,.. M) 2 kG XCE = € V(nmdh+--+nA)" (1)

N1,eenr >0

2.3

We can now prove the following

Proposition. Let/ ¢ A andletP = P;, L = L;. Letg € A\ I. Then
UpepN Pes,p, Which is anL-stable open neighbourhood @f in Pe;, p,

is L-isomorphic toC;(—/3), the orbit closure of a highest weight vector in
the Weyl modul&;(—p3).

Proof. LetY = UpepNPes,p. Observe that” is normal: indeed, itis open
in the Schubert varietye;, p, and the latter is normal by [14, Theorem 3].
Let P, be the parabolic subgroup éfassociated with the dominant weight
— 3. We will construct a proper birational morphispn L x k_5 — Y.
By Zariski’'s main theorem, it follows that[Y] = k[L x%® k_g]. But the
latter is isomorphic t&[C;(—/)] by () applied toL. Because botl” and
Cr(—p) are affine, we conclude that = C;(—f).

Chooseu € UﬂX and setr = ues, p. Note first thatl'z = Ug CssP =
U4 ep. Henceey, p andep belong toTz (the closure of 'z in G/Q). Let

Ugy denote the unipotent radical of the minimal parabolic subgrByp
Note also that;, p is fixed byU 3 and hence, sinc® = L U U(g), One
hasPe,,p = LUge,,p = Lz U Le,, p. It follows thatPe,,p = Lx. Thus,
Y =LxnN U;ep.

Let L, (resp.T,) denote the stabiliser of in L (resp.T). For any
o € R}r, one has, U, u C U and hencd/, stabilisesr. Therefore,
L, containsU N L and, by Lemma 2.1, it follows thdt, is generated by
(LNU)T, together with thé/_, (v € I) which it contains. But fory € I,
one hadl/_ z = U_yues,p = ul_yes,p = usgU_s nep. Sincep ¢ 1
thensgy € R and hence one deduces that

U.,CLy < U_yyy CP < —spgye —R] < (v,87)=0.

Letk_ s denote the one-dimensional representatiofyaissociated with
the characte+g. It follows from the above discussion that is the kernel
of this representation. This implies, in particular, that = Tx = U_Xﬁep.

SinceU_g ep is a closed subset &f , ep, one deduces thahyz NUpep =
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U_gep =TxzU{ep} and, since /P is complete, it follows thal” equals
L(PyxNUpep) = Lz U {ep}.

Choose an isomorphism of algebraic grodps : k = U_g, such that
z = 0_p(1). Consider theL-equivariant morphism : L x™0 k_5 — Y,
(9,2) — gb_pg(z)ep. Then, clearly,¢ is well-defined and, sincé /P,
is complete,¢ is proper. Finally, let us prove that is birational. First,
it is easily seen that the morphisi — L x!° k_g, induced byg
(g,1), induces an isomorphism : L/L, =5 L xP (k_s \ {0}), and
that ¢ o 7 is the natural mag. — Lzx. Further, the latter is separable,
becauseé:(Lz) = k(Pz) = k(Pes,p) and, by the Bruhat decomposition,
the extensioik(Pe;,p) C k(P) is separable; but(P) containsk(L). This
proves that is birational.

2.4

Keep notation as in 2.3 and lét = dim Pes,p, and Iy = {a € 1|
(a, 8Y) = 0}. By Proposition 2.3, one has = 1 + dimL/Py = 1 +
#(R} \ Rj). Note that ifd = 1 then Pe,,p = P'. So, suppose that
d > 1. For any subsetl of W, let H(A,q) = 3, 4 ¢“™). As usual, set
p=(1/2) > cr+ @ Then, one obtains the following corollary.

Corollary. (a)The tangent spacg.,, (Pes,p) is L-isomorphic tol/;(—23).

. v
(b) The multiplicity ofPe,,p atep equals(d — 1)!  [] m

WGR}L\R;FO
(¢) Pes,p is smooth if and only if3 is adjacent to a unique connected
component/ of I, J is of typeA, 1 or Cy, (if d is even), and J LI {3}
has no branch point and hasas a short extremity.

H(Wp,q) \ =172
(d) One haSPw,,w,wlosf,wI = ((1 — Q)m .

Proof. Let V. = V;(—f) and letv be a highest weight vector iiW. By

Proposition 2.37.,(Pes,p) is isomorphic, as ad.-module, toTy(Lv).

But Tp(Lv) is an L-stable subspace df containingv, and moreovew

generate¥” as anL-module. It follows thafly (Lv) = V;(—23). This proves
assertion (a).

LetY = Upep N Pe,,p and letm denote the maximal ideal @flY]
corresponding tep. Thenk[Y| = @, ., Vi(—np)*, by Proposition 2.3,
together with 2.2}) applied toL, and under this isomorphism one has=
®D,,~1 Vi(—npB)*. Further, by [14, Theorem L1.ii)], the multiplication map

Vi(=8)" @ Vi(-=np)* = Vi(=(n+1)B)
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is surjective, forn > 0, and this implies that™ /m"™+! = V;(—ng3)*, for
everyn > 1. Thus, by Weyl's dimension formula, one obtains that

dimm 1) = ] 220000

\Y
— - ﬂ?fyv —
an 1 H (; ,Y\/)) —i—O(nd 2)7
WER}F\R;FO ’

and assertion (b) follows.

Let us prove assertion (c). FirsBes,p is smooth if and only if it is
smooth atep and, by Proposition 2.3, this is the case if and onlyifis
smooth ab. But we just saw thalp(Lv) = V and, sincelv = Lv U {0},
it follows that Lv is smooth ab if and only if Lv = V' \ {0}.

Let J denote the union of the connected components taf which 3
is adjacent and let denote the representation 6fon V. Then, clearly,
7 maps the derived subgroup, onto the derived subgroup af(L), and
the restriction ofr to L’; has a finite kernel. Note that, Jf is a connected
component of/ then.J’LI{3} is connected and hence, in particul&ris not
oftypeGs. Thus, itfollows from (the proof of) [10, Satz 1] thav = V'\ {0}
if and only if J is connected and of typd, ; or Cy/, (if d is even), and
the restriction of-5 to T'N H is a fundamental weight corresponding to a
short extremity of/. This proves assertion (c).

Now, to assertion (d). Using the Bruhat decomposition, one first obtains
thatw,'(ep) = P/B = Xy, p andrp' (X,,p) = BsgP/B = X, ,u,B-
Letw = wrwy,sgw;. We claim thatﬂ'l_;l(PSgP/P) = X, B. Since the
former equaIsPXsﬁw,B, and sincew;wy, € Wiy, it suffices to prove that
X, g is P-stable. Thus, it suffices to prove that'a € R™, for every
«a € I. This is easily checked, and the claim follows.

Thus, by Lemma 1.4V, B.wB = Npwp, and, by Proposition 2.3, the
latter is smooth outsidep. Thus, we may apply the argument of 1.5 to
computeP,, ,,. So, suppose thahar(k) = p > 0. By Proposition 2.3,
Np.wp \ {ep} is ak*-fibration over the flag variet,/ P, and hence, using

the Bruhat decomposition df/ Py, one deduces that, for every> 1,
. . H( W I)pr)
-1 F,--rational points ofL/ Py} = (p" — 1) ——~—"—~.

By Lemma 1.5(b), this implies assertion (d).

Remark The most effective way to COMPUIR,,, v, 55w, EXPliCitly is as
follows. Letn = |I| (resp.ng = |Ip|) and letay, ..., a, (resp.by, ..., bn,)
be the exponents ofi’; (resp.Wy,). It is well-known thatH (W;,q) =
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(1—¢)~™ [~ (1 —t%) (see, for example, [5, Theorem 3.15]) and one has
an analogous formula fdd (Wy,, ¢). Thus, one obtains

R IS s

PwthwIOS[gw] = <(1 - t) Hngl(l _ tbz)

2.5

Before we prove the main result of this section, we need the following
lemma. Let@ be a parabolic subgroup ¢t containingB and lety < w

in WC. Let Cy, .0 denote the union of th8-orbits C.q, for z € [y, w].
This is aB-stable open subset of,, containingCyq as unique closed
B-orbit.

Lemma. y(Ug )eyq N Xuwq is the uniquel-stable, open affine subset of
Xuwq containinge,q.

Proof. Let 2 = y(Ug )eyq N Xuwq and lets2’ be a second™-stable, open
affine subset o\, containinge,q. ThenZ := 2\ (2’ is a closed[-
stable, subset of? which does not contain,g. Sincee, is the unique
closedT-orbit iny(Ug, )eyq, it follows thatZ = () and hence? C £2'.

Therefore, the algebra df-invariant regular functiong[2']” injects
into k[¢2]7. But the latter equals, because,, is the unique close@-orbit
in 2. Sok[2']T = k and hence?’ contains a unique closéd-orbit, which
must be the fixed poirt,. Now the same argument as above gif2s_ (2.
This proves the lemma.

2.6

Let @) be a parabolic subgroup ¢f containingB. First, we observe that,
for anyz € W, the stabiliser inG of C.¢ (resp. ofX.q) is the parabolic
subgroup generated by and thes,,, for « € AN y(Rg) (resp. byB and
thes,, fora € Any(Rg U R™)). This fact, which follows easily from the
Bruhat decomposition, will be used repeatedly in the sequel.

Now, lety < win W<, LetI be a subset of\ Ny(Rg) and letP = Py,
L = L;. ThenP is contained in the stabiliser ¢f,, andL is contained in
P Ny(Q) := Pyq, the stabiliser inP of the pointe, . Also, one deduces
from the Bruhat decomposition th&y/ P, = Cyq.

Further, let us suppose that :

Xuwq = PX,yyq, forsomed e Any(R™\ Rf).

Let C;(—/3) denote the orbit closure of a highest weight vectovi(—73).
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Theorem. (a) The morphismp : PsgP/P,g — G/Q, gPyo — gey
induces aP-equivariant isomorphism frorfts s P/ P, ontoCl, ., and
hence one has a locally trivial fibration : Cj,q . — Pes, P/ P, with
fiber P/PyQ = CyQ.

(b) One hasL-equivariantisomorphismsy(Ué)emeXwQ > Cr(—p) x
Cyq and, more precisely,g.wq = Cr(—0).

Proof. Clearly, ¢ is a P-equivariant morphism; let us describe its image
Im ¢. SincePsgP = P U PsgP, one hadm ¢ = Peyg U PsgPeyq =
CyoUPsgCyq. Moreover, sincagy > y, one has, by the Bruhat decompo-
sition, Bsg Cyq = Cs4yq- Itfollows thatlm ¢ = Cyq U PCs . Observe
thatCs,,q is contained irCy, g ., and that the latter i&-stable (because
Xuwg andC,q areP-stable). Therefore, one haa p C Cjyq - Observe
also thatp~!(u) is a single point for alk € Cy.

Let us prove thap is proper. Define morphisms
PssP|Pyq = (PsgP/P) x Clyo.uq) ~— Clowql

by p1(9Pyq) = (9P, geyq) andps((9P, geyq)) = geyq- Thenp = prop
and hence, sincBsz P/ P is completey is proper. Furthetp; is injective.
For, if (P, geyq) = (9'P,g'eyq) theng=ty’ € P,q. Finally, one has
Imgpy = {(gP,u) | v € gCyq} and, sinceCq is closed inClyg () it
follows thatIm ¢ is closed. Thus, being injective with closed imageis
proper and the same is true for

Let Z be the set of those € PsgP/ P, such that the fibre—!(p(z))
contains an infinite irreducible component passing throughis P-stable,
sincey is P-equivariant. Further, by [4, Ex. 11.3.22% is a closed subset
of PsgP/P,q and hencep being propery(Z) is a closed P-stable, sub-
set of C1y0,w0)- Note thatp(Z) = {u € Cygug | ¢ ' (u) isinfinite}.
On the other hand, we observed previously that (u) is a single point
for all u € Cyq. SinceCyq is the unique closed-orbit in Im ¢, one de-
duces thatp(Z) = (). Thus,y is quasi-finite. It follows, in particular, that
dim PsgP/Pyq = dim Cjyq .,q) = dim C,,q and hence th&-stable open
subsety~!(C,,) is the disjoint union ofB-orbits of dimensionlim Ci.
SincePsgP/ P, is irreducible, it follows thay~! (C,0) is in fact a single
B-orbit, namely theB-orbit of the pointz := wrsgPyq/Pyq-

Thus,p induces a quasi-finite3-equivariant, morphism from the open
orbit Bx onto its imageBe,,q. This implies thatB,, the stabiliser in3 of
z, is a subgroup of finite index iR, the stabiliser i3 of e,,. But B,
is connected, because it contaifisand it follows thatB, = B,,q. Since,
moreover, the orbitmap — C,, is separable, one deduces thahduces
an isomorphisnBz = Cy,q. Thusy is birational.
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Finally, by [14, Theorem S]C[waQ] is a normal variety and hence,
 being proper, birational, and quasi-finite, it follows from Zariski’'s main
theorem thap is an isomorphism. This proves the first part of assertion (a),
and the second part follows easily.

Let us prove assertion (b). Le? = y(Ué)eyQ N Xyg, let 2 =
7 ({Upep N Peg,p), and letd = {u € Uy | uep € Peg,p}. Thenld
identifies, via the map — uep, With Uy ep N Pes, p and hence, by Propo-
sition 2.3, one ha& = C;(—(3). Further, sincerp trivialises over the open
affine subsel/, ep of G/ P, one deduces that the map «) — ux induces
an L-equivariant isomorphismp : U x Cyo = 2. Therefore 2’ is anL-
stable, open affine subset®f,, ., containinge,, and hence, by Lemma
2.5,one has?’ = (2. Therefore, one has anisomorphigmi/ x Cy,q — 2,
(u,z) — uzx, Withtd = Cr(—[3). This proves the first isomorphism.

For the second one, observe thatC U, N Py, wherel’ = I U {g}.
Sincey~'(R;) C Rq andy~'(—3) € R~ \ Ry, theny™' (R, \ Ry ) C
R™\Rgandhenc¢Up, N Pr)eyg C (y(Ug)NU™)eyq. One deduces that
¢ maps isomorphically x {e, ¢} onto a closed subsetaf, ... Since, by
assertion (a), they have the same dimension, it followsgfidt< {e,q }) =
Nyg.wq- This completes the proof of the theorem.

2.7

Keep the notation of 2.6. LéY, ..o = TyoNyQ.we; it is anL-submodule
of T,o(G/Q), isomorphic to the normal space@gq in X,,q ate,q. Let
In={ael]| (o,p) =0}andletd = {(w) — l(y) = dim Xy —
dim X,q = 14+ #(R] \ R}). Letmult,o X, denote the multiplicity of
Xuwo ateyq. Let us then derive the following corollary.

Corollary. (a) Nyg,wq = Vi(—0).
o _ | (_ﬁ7 ,7\/)
b) multyoXuo = (d—1)! ] =+

WER;F\R?O (p7 7\/)
HWs, <(d-1)/2
(©) Pyuwl(q) = <(1 - Q)IJ((VVII?)> '

(d) One hasw = wrwy,sgy.

Proof. Assertions (a) and (b) follow immediately from the theorem, com-
bined with Corollary 2.4. Let us prove assertion (c). Sipce € W<, it
follows from Lemma 1.4, coupled with Theorem 2.6.(b), thatz .5 =
Nyowo = Cr(—B). Thus,Nyg.w5 \ {eyr} is smooth and hence we can
apply Lemma 1.5. So, we may assume thair(k) = p > 0. But then, for
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r > 1, the number off,--rational points ol’;(—3) was computed in the
proof of Corollary 2.4 and hence assertion (c) follows.

Finally, let us prove assertion (d). Let= wrwr,sgy = wrsgwr,y.
Then, sincelL fixes yeg, one haszeg = wrsgyeg = weg and hence
z € wWg. Sincew € W<, by assumption, the equality= w will follow
if we prove thatwa € R™, for all o € Ra Recall that, by hypothesis,

y 1B e R+\R25. Suppose, for a contradiction, thate € R, for somen €
Ra Sinceya € R~ \ {—/}, thensgya € R~ and hence the assumption
wa € RT implies thatsgya € Ry \ Ry . Itfollows that(ya, 3¥) < 0 and,
sinceR; C ng, one obtains that = (ya, 8Y) ! (ya— sgya) belongs to
Q(yRg) N R = yRg. Thisis a contradiction and the proof of the corollary
is complete.

3 Application to the minuscule case
3.1

Throughout this section, we suppose tfds quasi-simple and th&} is the
maximal parabolic subgroup associated witha minuscule fundamental
weight. We shall also assume ti@tis simply-laced, which entails no loss
of generality. For, it7 is of typeB,, or C,, and if P is the maximal parabolic
subgroup corresponding to the unique minuscule fundamental weight, it is
well-known thatX := G/P identifies withG’/P’, whereG’ is of type
D, 1 or Ay, 1, respectively, an@®’ is a maximal parabolic corresponding
to a minuscule fundamental weight. Moreover, I¥tbe a Borel subgroup
in P’ and letB = G N B’. By the Bruhat decompositio®’ and B have the
same number of orbits iX and it follows that the orbits are the same under
B’ or B. Thus, the Schubert varieties are the sam@i® and inG’/ P’.

Under the above assumptions, we shall prove thaty fer w, the hy-
potheses of 2.6 are always satisfieKifq is an irreducible component of
the singular locus oX.,,. Thus, our previous results will give a description
of the singularity ofX,, along.X,q. The starting point of the proof is the
factthat,Q being minuscule, the Bruhat order @ri% is generated by simple
reflections [12, Lemma 1.14].

3.2

Forw € W€, letBd(X,,q) denote the boundary of ), thatis,Bd(X.,0)
= Xuwo \ Pjewq, Where Py denotes the stabiliser of,q. Also, let us
introduce the usual partial order &(7T'), defined by < A <= A—pu €
NRT.
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Lemma. Lety < win W€,

(a) Suppose thak,( is an irreducible component &fd(X,,q). Then there
exists a unique simple rogtsuch that¥,, C X;,,¢ € Xuwq and one has
Xuwq = PXs4yq, WhereP = Stab(X,q) N Stab(Cyq)-

(b) The irreducible components Bid(X,,q) are exactly theX_.q, for vy
a minimal element of the sétv € R | X, o € Bd(Xyu0)}-

Proof. Let J = Anw(R™ U Rg). ThenStab(X,,q) = P;. Let X, be
an irreducible component &d(X,,q). Observe thak ¢ is P;-stable. By
[12, Lemma 1.14], there exist$ € A such thatX,o C Xs,y0 € Xuwe-
Note, in particular, thaf ¢ J. Let] = JNy(Rg) and letz = wrsgy. Note
thate.q € Pres;yq © Xwg- Let us prove thakX', is P-stable. By 1.2, it
suffices to prove thdtw, o) < 0, fora € J. Observe thatgyw = yw—
and, sincev;yw = yw, it follows that(zw, ") = (yw, ") — (w3, a").

Also, sinceX, is P;-stable, thetfyw, a¥) < 0,fora € J.If a € J\T
then(yw, ") = —1. Moreover, sincé& is simply-laced anav; 3 # «, one
has—(w;3,aY) < 1. So one obtains in this cagew,a”) < 0. On the
other hand, if € I then(yw,a") = 0 and—w;a € I and hence, since
$ ¢ J, one also obtaingzw, o) < 0. This proves thaX ., is P;-stable
and it follows thatX g = X .

Thus, one obtains thatw = yw —wrB = sy, gyw, and this implies that
B = wr(yw—ww) is uniquely determined by andy. This proves assertion
(a). Further, setting = w;3, one hagy € R andyw = ww +v = syuww.

Now, letd € RT. Suppose thak,,,o C Bd(X,q). First, this implies
that (ww, 6¥) < 0 and hence, since is minuscule, thatsww = ww + 4.
Then, one deduces from [12, Lemma 1.18] that

Xssw@ € Xsjwqg = syww < ssww <= v < 0.

This completes the proof of the lemma.

3.3

Combining the previous lemma with the results of Sect. 2, we obtain the
following proposition. For a rational number let [] denotes the largest
integer not greater than

Proposition. Lety,w € W® and letJ = ANnw(R~ U Rg).
(a) Bd(X.wq) equals the singular locus of .

(b) Suppose thak,q is an irreducible component &d(X,,q). Let3 be
the unique simple root such that,, C X;,,0 € Xuq and let! be the
union of the connected components/afi y(Rg) to whichg is adjacent.
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Then the normal spac®,q .,¢ is isomorphic to the.;-moduleV;(—/3),
andN,q,¢ identifies with the closure of the;-orbit of a highest weight
vector in this module.

(c) Thus, Ny wq is determined by the paiil, I’), wherel’ = I U {3},
and, therefore, the only possibilities are the following.

Case 1) is of typeA, x A, andI’ of typeA,4+1. ThenN, g . is
isomorphic to the cone of decomposable tensore’in' ® k9+! and has
dimensiorp + ¢ + 1. One has

Min(p,q)

multyQXwQ = (p;;q) , Pyw= Z th.
=0

Case 2)I is of typeA,, andI’ of typeD,, 1. ThenV,,g ¢ is isomorphic
to the cone of decomposable vectorsiik™ ! and has dimensio2n — 1.
One has

v —1
[772

1 (2n—2 ,
multyo Xug = — < o > , Puw= Y %
=0

Case 3)I is of typeD,, andI’ of typeD,, . 1. ThenV,g ., is isomorphic
to a non-degenerate quadratic conekitit and has dimensio2n — 1. One
has

multygXpo =2,  Pyw=1+t""1

Case 4)I is of typeDs and I’ of type Es. ThenN,¢ ., identifies with
V = k16, ahalf-spin representation of Sgit0), and,,g ..¢ is isomorphic
to the cone of pure half-spinors i and has dimensionl. One has

mult,gXpg =12, Py, =1+t

Case 5)1 is of typeEs and I’ of typeEr. ThenN,q .. identifies with
V = k27, a minuscule representation &, andN,g ¢ is isomorphic to
the orbit closure of a highest weight vectorlinand has dimensioh7. One
has

mult,oXyg =78,  Pyuw=1+t*+15

Proof. Let X, be an irreducible component &d(X,,q). Let 5 be the
unique simple root such that,, C Xs,,o C Xuwq, let I be the union

of the connected components.6f y(Rg) to which 3 is adjacent, and let

I' = T U {p}. Let us prove that, is a singular point ofX,,q. By (the
proof of) Corollary 2.4.(c), it suffices to check that we are not in the situation
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wherel is of type A,, and I’ is of type A,,;1. Suppose, for a contradiction,
that this is the case. Then

wiB=8+Y a ()
acl

Onthe other hand, the hypotheses imply that, 53V) = 1 and(w;ww, 3Y)
= —1. Thus, in particularw;ww # ww and hence there exists € [
such that(ww, ") = —1. Moreover, sincev is minuscule and sincé is
connected, there exists only one sudotherwise, there would existe R}
such thatww,v") > 2) and hencex) implies that{ww, w;3") = 0, which
is a contradiction. This proves assertion (a). Assertion (b) then follows by
combining Lemma 3.2.(a) and Theorem 2.6.

Let us prove assertion (c). First, sin@ds adjacent to every connected
component of, thenI’ is connected. Thus, sincgis assumed to be simply-
connected]’ is of type A, D, or E. Moreover, we claim thatg, considered
as a fundamental weight df, is minuscule. For, sincgw, 3V) = 1 and
(yw,a¥) = 0, for a € I, then(yw,v") = (wp,7"), forally € Ry. The
claim follows, sincew is minuscule. By inspection, one then obtains the
possibilities 1)-5). Moreover, each possibility occurs by taking, for example,

G oftypel’, Q = Prand X, = Pres,q. Finally, all the statements and
computations in cases 1)-5) are immediate consequences of Theorem 2.6
and Corollary 2.7.

4 A generalisation to certain multicones
4.1

The following result generalises, in part, Theorem 2.6. For a subeéfz,
we denote by/ the set of roots orthogonal té.

Theorem. Let Q be a parabolic subgroup aff and lety,w € W€<. Let
I ={a e A| P, Xyg = Xuwg andP,Cyg = Cyq}. Suppose that there
exist linearly independent positive rogts, . . ., 3, satisfying the following
conditions:

1)Foreveryi =1,...,q,«a € I, anda > 0, —3; + a« is not a root,

2) XyQ C Xsﬁin - XwQ, fori = 1, ..., q,

3) XwQ = i't’jU,g1 cee UfﬁquQ and dimeQ = dimeQ +q +
#(R]\ R};), wherelp = I N {B,..., B}

Then:
(@) Nyg,wq is Li-isomorphic taC; (51, . . ., 3,), the L-orbit closure of the
sum of highest weight vectors in tiig-module®,_, , Vi(—p:). As a
consequenceY,q ., identifies with this module.




Schubert varieties 317
(b) Further, it C; (51, ..., 8,) \ {0} is rationally smooth then one has

<(U(w)—t(y)—1)/2

H(Wr,q)
Pyw= |~ Z (q— DV — D2
JC{By - Bq} HWinge,q)
T#0

Remarks(i) The hypotheses of the theorem are satisfied, for instance, when
b1, ... , B, are pairwise orthogonal simple roots such tkf@@ is contained
ineachX,, ,q andthatX,,o = P X, .., yo. We will seein 4.3 thatthey

are also satlsfled for generic smgularltles of Schubert varieties in the variety
of Lagrangian subspaces.

(i) Hypothesis 3) can be weakened®$U_g, ---U_g,eyq C Xuq and
dim X, < dim X, +q+#(R; \ R},), as will be clear from the proof of
the theorem. This formulation will be used in the proof of Proposition 4.4.

Proof. Hypothesis (2) implies that, far= 1, . .., ¢, the root subgroup’_ s,
is contained iV~ N y(Ué). Together with hypothesig/), this implies that
U_p, - U_p,eyq is contained iU~ Ny(Ug))eyg N Xuwg = Nyg,uwe-

Now, letu; € U”, ,fori =1,...,¢, and letz = u; - - - uge . Then
z € Nyg,wg and hence being ;- stable,/\/yQ w@ contains the orbiLrx.

Let us compute the stabiliséf = (L;),. First, fora € I, hypothesis
(1) implies thatl/, commutes with every/_s, and hencé/, C H. Since
Ur .= Ly nU is generated by th&,, a € I, it follows thatU; C H.
Then, by Lemma 2.1, one deduces tlhatis generated by/;, H N T =
Niz1,. o Ker(Bi), and theU_, (o € I) that it contains. We claim that
the latter are exactly th&_, wherea € Iy. Firstly, if « € Iy thenU_,
commutes with allU_g, and fixese,q, whencelU_,, is contained inf.
Secondly, by 2.1, agaid{ is normalised byf", and hence fixes all points of
Tz. Further, since thg; are linearly independent, eacle, := z; belongs
to Tz and hencdd is contained in the isotropy group of each As in the
proof of Proposition 2.3, this isotropy group is generated/byKer(s;),
and theU_,,, for o € I orthogonal tog;. This concludes the proof of the
claim.

Thereforedim(L;x) = ¢ + #(R} \ R}) > dimNyq.wq and Lz is
open iV, q- Further, the closure dfz in Ny .,¢ identifies with &r'-
moduleE with weights—f4, . .. , — 3, of multiplicity 1. SetF, := L;N Py,
and consider the natural morphis;jm L x™ E — Nyo.w0, induced by
the identification = T'z and the action of.; on N, ..q. Then, using
the description of L), given above, one proves, similarly to 2.3, that
is proper and birational. Sino¥,q .., is normal, it follows from Zariski's
main theorem that [N, wq] = k[L; x*° E]. Further, by 2.2i1), applied
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to L; instead ofG, the latter is isomorphic to[C; (51, . . ., B,)]. Therefore,

k[NyQan] = k{cf(ﬁlv o 7ﬁq)]-
Thus, sinceV, g andC; (61, . . ., 3,) are affine, they are isomorphic.

Now, setC = C;(f1,...,0,) and suppose that \ {0} is rationally
smooth. Then so i8/,5,,5 \ {ey5}, by assertion (a), coupled with Lemma
1.4. Thus, we may apply the argument of 1.5 to comgiytg. So, suppose
thatchar(k) = p > 0.

Forl < i < g, letv; be a highest weight vector ii;(—(;). ForJ C
{Brs... Byt letvy =3 5 ;i let O, denote thelj-orbit of v, and let
Vy = k-sparv;, ; € J}. Thenthe stabiliser df; in L;is Ly N Py ;1 and
hence, since the elements .bfare linearly independeng) ; is a fibration
overL;/(L; N Py ,1), with fiber (k*)1. Therefore, the number .-
rational points 00, is (p" — 1)1/l H(W,p") /H(W 1, p"). SinceC\ {0}
is the disjoint union of th& ;, for J # (), assertion (b) then follows from
Lemma 1.5(b).

4.2

Now, and until 4.5, we consider the case wh@re- S P(2n) (the symplectic
group inGL(2n)) and where) is the stabiliser of a lagrangian subspace of
k*". ThenG /Q is not minuscule, but cominuscule (thatsis maximal and
the associated simple root occurs in the highest root with coefficient one).
We will then apply the previous result to describe the generic singularities
of Schubert varieties itv /@, the variety of lagrangian subspaces:of.

The starting point is the following observation, which was pointed to us
by V. Deodhar.

Lemma. For cominusculés /@, the Bruhat order ot/ is generated by
the simple reflections.

Proof. Let« be the simple root associated with By assumptiong occurs
in the highest root with coefficient. Therefore the fundamental weight
wev € P(RY), defined with respect to the bagg", 3 € A} of RY,

is a minuscule weight. Further, under the natural identificatioR) =
W (RY), the stabiliser ofv,v in W equals¥,. Thus, by [12, Lemma 1.14],
applied to(W(RY),w,v), one obtains that the Bruhat order &€ is
generated by the simple reflections.

4.3

Forw € WY, let us first describdd(X,q), the boundary ofX,,o (see
3.2). We follow the notation of [2, Planche IlI] for the root system of type
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Cp. Inparticular,A = {ay, ..., a, }, with o, being the unique long root in
A. Letsy, ..., s, denote the corresponding simple reflections.

Lemma. Lety < win W<. Suppose thaX,( is an irreducible component
of Bd(X,,q). Then there exists a unique simple rgbsuch thatX,o C
Xssy@ C Xuwq and, denoting by the union of the connected components
of Anw(R™ U Rg) Ny(Rg) to whichj is adjacent, exactly one of the
following possibilities holds.
(1) One hasX,,q = PrXs,yq, and either

(1.a)l is of typeA, x A, andI U {5} of typeA, 41, Or

(1.b) I is of typeA, andI U {3} of typeC, 1.
(2) One hass = am, I = {am—r,---yam_1} U{ams1,...,an_1}, for
somer < m < n, andX,,q = P, P1Xs,,yq. In this casef(w) — {(y) =
n—m+r7r+1.

Proof. The proof is similar to that of Lemma 3.2. Let = {a € A |
(ww,a¥) <0}andl’ = {a € J | (yw, ") = 0}. ThenP; = Stabg(X.wq),
andX,q is stable byP;, since itis anirreducible componentléd (X ,,q) =
XwQ \ Pjer.

By Lemma 4.2, there exist$ € A such thatX,o # P3X,q C Xuq.
Then (yw,3Y) > 0 and, in particular3 ¢ J. Let I be the union of the
connected components &f adjacent tg3, and letz = wysgy. Let us see
whetherX . is P;-stable. One hasw = yw — (yw, Y )w;f.

Leta € I'. Then—w;a € I' and hence 3, —w;aY) < 0. There-
fore, (zw, a") < 0. It follows that X is stable byP;,, and hence equals
PrPsX 0.

Next, observe that for an arbitratye R, (w,~") belongs to{0, +2} if
~ is short, and td+1} if v is long. In particulare, ¢ I'.

i) Suppose first that is long, that is3 = «,,. Then(yw, 3¥) = 1. Let
a € J\ I'. Sincea # (3 thena is short and, sincéyw, ") < 0, one
has(yw,a) = —2. Since(—w;B,a") < 2, it follows that (2w, ") < 0.
This proves thaX . is P;-stable. SinceX.q ¢ Bd(X,q), it follows that
Xuwq = X.q = P1X4yq- Further, sinces ¢ J, this implies thatl # ()
and hencd = {ay,—,...,a,—1} for somer > 1. This is case (1.b).

i) Suppose now that is short, says = «,, for somem < n. Then
(yw,BY) = 2 and (B3, —w;a¥) < 1foranya € J (8 # —wja since the
latter is inR ).

If o is a short root inJ \ I’ then (yw, ") = —2 and it follows that
(2w, @) < 0. Next, suppose that, € J\ I’ and thatn < n—1 andI has
no connected component adjacentin Then(w;j3,a,) = (3,,)) = 0,
and it follows that(zw, a¥) < 0 in this case.

Therefore, ifa,, ¢ J or in the case considered just above one obtains
thatX,,q = P;Xs,,q and we are in the situation of Proposition 3.3, Case 1.
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Thus,I = {am—ry- -y m-1} U {@mt1,--.,@m+t} forsomel <r <m
and1l <t < n — m. This is the situation of case (1.a).

iii) Suppose finally thatv,, € J, and thatn = n — 1 or I has a con-
nected component adjacenttq. Then one ha$ = {ay—r, ..., m_1} U
{m+1,-. . an_1}. (If r =0, resp.n = n — 1, then the first, resp. second,
set is empty).

In this case, one has;3 = ap—r + -+ + ap—1 and (zw, o)) = 1.
Thus, X, is not stable byF,, . Yet, one hass,zw,a,) = —1 and
(spzw, o)) = (2w, o)) < 0, for oy € J \ {an—1,0ay}. Further, one
checks thats,,wrs,a) | = ), + -+ + ay/_; + 2a,/, and hence that
(spzw, ) = 0.

This proves thatX; .o is P;-stable and hence equals, . Thus,
Xw@ = P, PrXs,y0-

ThenlIy, the set of roots id orthogonal ta3 = «,, equals{a,,—r, - . .,

am—2} U{am+2,...,an—1}, and one deduces that = (s;,—r - - - Sp—1)
- (8p—1+"+ Sm+1) moduloWi,. It follows thatdim X,g — dim X, < r +
n—m. The equality could be proved by a direct argument, but skge =
PrPgX,o with I of type A, x A, —1_,, andI U {3} of type A, p_p,, it
follows from Proposition 3.3, Case 1), thktn X, —dim X,g = r+n—m.
Thereforedim X, —dim Xyg =r+n—m+ 1.

Moreover, one has > 1. In fact, if r = 0 thenww = s,8,-1 - - - Smyw
and hencéyw, o)) = (ww, 8, -+ - Smayy,) = —(ww, )y + -+ )| +
2a,)) = 0, a contradiction. This shows that we are in case (2).

Finally, observe that in cases (1.a) and (1.b), resp.4d% uniquely
determined by the equalityw, 3¥)3 = wi(yw — ww), resp.(yw, 8V)3 =
wr(yw —spww). This completes the proof of the proposition.

4.4

Proposition. Letw € W<. ThenBd(X,q) is the singular locus 0X .
Indeed, ifX ¢ is an irreducible component &fd(X,,q), then(notation as
in4.3):

(a)In case(l.a) Ny wq is isomorphic to the cone of decomposable tensors
in k"™ @ k™1, seeProposition 3.3, Case 1

(b) In case(1.b), Nyowo = S?k™ and NV,g .o is isomorphic to the
cone over the2-uple embedding of” in P(S2k"+1). Therefore, one has
multyQXwQ =27 andPyﬂU =1.

(c) In case(2), Nyg,wq is isomorphic taC, the orbit closure of the sum of
highest weight vectors in tHeL(r + 1) x GL(n — m)-module
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kTl @ kvmm @S2k = Nygwg. One has

Min(r,n—m) r
Ppw= Y f and multgX,o= (” m”) .

=0 i=0

7

(c') Furthermore, in cas€2), C identifies with the contraction to a point of
the zero section of the vector bundé—1) @ k"™ & O(—2) overP".

Proof. Let X, be an irreducible component 8d(X,q). In cases (1.a)
and (1.b), the assertions follow at once from Theorem 2.6 and Corollary 2.7.
In these cases,,q is a singular point ofX,,,¢.

Suppose now that we are in case (2). We saw in 4.3 (iii) that
Sa,WISa,, Y. Thereforew = wrsgs,y, whereg = a,, andy = sgwray, =
2 Z?;nlz a; + ay. It is easily seen that and~y satisfy hypothesis (1) of
Theorem 4.1. We know already thalt,; C X,y € Xwg- We claim that

XyQ C XS’YyQ = ngspny c XwQ' (*)

First, sinceX, is P;-stable, it is clear thal,,q 2 X, ,q- Further,
one hasy¥ = o, + --- + «,, and we saw in 4.3 (iii) thatyw, o)) = 2,
(yw, ) = —1 and(yw, ) = 0 for m < i < n. Thus,(yw,7Y) =1
and henceX, C X, ,q. Similarly, one checks that, " = —ay, —
2 meicn @+ SO that(s,yw, 8Y) = 0 and henceX,_ ,o = X ,s,4q- This
proves claim(x).

One then deduces tht - e, q is contained inXs_, g, Which is Ps-stable
(recall that3 is a simple root). It follows that/_sU_. e, C X 4o C
Xug-

Also, we saw in 4.3 (iii) thatlim X, —dim X, = r+n—m+1and
thatlp = {am—r, ..., @m—2} U{amt2,...,an_1}. Since, then# (R} \
R} ) =r+n—1—m,itfollows thatf, y satisfy hypotheses (1),(2}] of
Theorem 4.1. ThereforeV, ¢ is L-isomorphic to the orbit closure of
the sum of highest weight vectors in thg-moduleV; (—3) & V;(—v) =
NyQuQ-

Further, by looking at the highest weights? and—~, one sees thdt;
acts onN,q o asGL(r + 1) xGL(n —m) on k™! @ kn=™ @ S2km+1,
This proves the first part of assertion (c).

Letus prove assertion’fcObserve thaf = {u@vdtu?|u € k" v €

k"™ t € k}. Denote byCA the subset o®” x C consisting of all pairs
(z, u®vdtu?) suchthatthe pointlies on the line:. Thenthe first projection

p1: C — P" make<C the total space of the vector bundk—1) ® k"™ &
O(—2). Moreover, the second projectign : C — C identifiesC with the
contraction to a point of the zero section of this vector bundle.
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Now, let us prove the remaining part of assertion (c). First, using Lemma
1.5 and either of the descriptions®given in (c) or (¢), one easily deduces
thatP, ,, is as asserted. Secondiy’] is isomorphic to the bigraded algebra
®i,j20 Vi(i(wm+1 + wm-1) + 2jwm—1), andm, the maximal ideal corre-
sponding tce,q, identifies with the augmentation ideal. Further, it follows
from [14, Theorem L.ii)] that one has? = @szq Vi(i(wm+1 +wm—1)+
2jwm—1), for everyq > 1. One deduces that

q
mq/mq-‘rl = @ Vl’(imerl + (2q - i)wmfl)
1=0

and, therefore, that

a ;. .
t+n—m-—1 2g -1+
dim mq/mq+1 g < > ( )
P n—m-—1 r

It follows that

(n—m+r)!
multyQXwQ = m Rn—m—1,r,

wherer, denotesf0 (2 — x)dx, for a,b € N. Using mtegratlon by
parts, one obtains that th@,b satisfy the recursion formul@ + 1)k, =
1 + Kq41,—1. From this one deduces that, for allb € N, one has

b
(a+b+1)! at+b+1
T e )

=0

This completes the proof of assertion (c). Finally, in all caggss a singular
point of X,,o. This shows thaBd(X,,q) is the singular locus oX,,q, as
asserted.

4.5

The only other case of a cominuscalé( which is not minuscule is the case
whereG = Spin(2n+ 1) andQ is the maximal parabolic corresponding to
the fundamental weight; (the natural representation). But the results in this
case are well-known and easily proved by direct arguments, as follows. Re-
call thatG;/Q is a smooth quadric hypersurfagec P(k?"*1). Moreover,

each Schubert variety is the intersection@fvith a linear, B-stable sub-
space. Butthé-stable subspacesief*! are: aflag of completely isotropic
spaces/, ..., V,, their orthogonald/, .1, ... , Va,, andVa,;1 = k2"*!
(indexed by their dimensions). It follows that the Schubert varieties in
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G/Q are: the projective spac&V,),... ,P(V,) = QNP(V,41) and the
quadratic cone®@NP(V,42), ..., QNP(Va,41). Denote byXy, ... , X1

the former and byX,,, ... , Xo,_1 the latter (indexed by their dimension).
Clearly,Xg, ..., X,_1 andXs,_1 are smooth, butfon < i < 2n—2, X;

is singular alongXs,,_;_» with a non-degenerate quadratic cone of dimen-
sion2(i — n + 1) as a transversal singularity. It follows that the multiplicity
of X; along X5, _; o is 2, whereas the corresponding Kazhdan-Lusztig
polynomial is trivial.

4.6

As a final example, suppose now th@t= SL(n+1), with n > 3, and
consider the variety”(1,n) of flags of type(1,n) in k"*1. Let {e;, 1 <
i < n+1} be the standard basis &f*!. Fori = 0,...,n+1, let E; =
k-spareq, ¢ < i}. It is easily seen that the Schubert varietiesifl, n)
are exactly the

Xi7j = {(£7H) €P" x (Pn)* IECHa EgE’La Ej—l gH}7

for1 < ¢ # j < n+1. Then, clearly,X; ; is smooth ifi < j, orif j =1
ori = n+1. So, suppose that< j < i < n. ThenX; ; containsX;_1 ;.
and one checks easily that; ; is smooth outsideX;_; ;.1 and that the
transversal along;_1 ;41 is isomorphic to

{(z,y) € Ei/Ej—1 x (Ei/Ej1)" | (z,y) = 0},

which is a non-degenerate quadratic cone?f—7+1). As we saw in Propo-
sition 3.3, Case 3), the Kazhdan-Lusztig polynomial corresponding to this
coneisl + ¢t*7J.

RemarkThe previous results could also be obtained by checking that The-
orem 4.1 applies in that case.
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