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GENERALIZED NIL-COXETER ALGEBRAS

OVER DISCRETE COMPLEX REFLECTION GROUPS

APOORVA KHARE

Abstract. We define and study generalized nil-Coxeter algebras associated
to Coxeter groups. Motivated by a question of Coxeter (1957), we con-
struct the first examples of such finite-dimensional algebras that are not the
“usual” nil-Coxeter algebras: a novel 2-parameter type A family that we call
NCA(n, d). We explore several combinatorial properties of NCA(n, d), in-

cluding its Coxeter word basis, length function, and Hilbert–Poincaré series,
and show that the corresponding generalized Coxeter group is not a flat de-
formation of NCA(n, d). These algebras yield symmetric semigroup module
categories that are necessarily not monoidal; we write down their Tannaka–
Krein duality.

Further motivated by the Broué–Malle–Rouquier (BMR) freeness conjec-
ture [J. Reine Angew. Math. 1998], we define generalized nil-Coxeter algebras
NCW over all discrete real or complex reflection groups W , finite or infinite.
We provide a complete classification of all such algebras that are finite dimen-
sional. Remarkably, these turn out to be either the usual nil-Coxeter algebras
or the algebras NCA(n, d). This proves as a special case—and strengthens—
the lack of equidimensional nil-Coxeter analogues for finite complex reflection
groups. In particular, generic Hecke algebras are not flat deformations of NCW

for W complex.
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1. Introduction and main results

Throughout this paper, k will denote a fixed unital commutative ground ring.
In this paper we define and study generalized nil-Coxeter algebras associated

to Coxeter groups and more generally to all discrete complex reflection groups,
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2972 APOORVA KHARE

finite or infinite. These are algebras that map onto the associated graded algebras
of (generic) Hecke algebras over complex reflection groups and of Iwahori–Hecke
algebras over Coxeter groups. As we discuss, working with these algebras allows
for a broader class than the corresponding reflection groups.

We begin with real groups. Coxeter groups and their associated Hecke algebras
play an important role in representation theory, combinatorics, and mathematical
physics. Each such group is defined by a Coxeter matrix, i.e., a symmetric “integer”
matrix M := (mij)i,j∈I with I finite and mii = 2 � mij � ∞ ∀i �= j. The Artin

monoid B�0
M associated to M is generated by {Ti : i ∈ I} modulo the braid relations

TiTjTi · · · = TjTiTj · · · for all i �= j with mij < ∞, with precisely mij factors on
either side. The Artin group (or generalized braid group) BM is the group generated
by these relations; typically we use {si : i ∈ I} to denote its generators. There are
three well-studied algebras associated to the matrix M : the group algebra kW (M)
of the Coxeter group, the 0-Hecke algebra [Ca, No], and the nil-Coxeter algebra
NC(M) [FS] (also called the nilCoxeter algebra, nil Coxeter algebra, and nil Hecke
ring in the literature). These are all free k-modules, with a “Coxeter word basis”
{Tw : w ∈ W (M)} and length function �(Tw) := �(w) in W (M); in each of them
the Ti satisfy a quadratic relation.

In a sense, the usual nil-Coxeter algebras NC(M) are better behaved than all
other generic Hecke algebras (in which T 2

i = aiTi + bi for scalars ai, bi; see [Hum,
Chapter 7]): the words Tw have unique lengths and form a monoid together with
0. Said differently, the algebras NC(M) are the only generic Hecke algebras that
are graded with Ti homogeneous of positive degree. Indeed, if deg Ti = 1 ∀i, then
NC(M) has Hilbert–Poincaré polynomial

∏
i∈I [di]q, where [d]q := qd−1

q−1 and di are

the exponents of W (M).
We now introduce the main objects of interest in the present work: generalized

Coxeter matrices and their associated nil-Coxeter algebras (which are always Z�0-
graded).

Definition 1.1. Define a generalized Coxeter matrix to be a symmetric “integer”
matrix M := (mij)i,j∈I with I finite, 2 � mij � ∞ ∀i �= j, and mii < ∞ ∀i. Now
fix such a matrix M .

(1) Given an integer vector d = (di)i∈I with di � 2 ∀i, define M(d) to be the
matrix replacing the diagonal in M by d.

(2) The generalized Coxeter group W (M) is the quotient of the braid group
BM2

by the order relations smii
i = 1 ∀i, where M2 is the Coxeter matrix

M((2, . . . , 2)). We remark that we used the familiar Artin group BM2
asso-

ciated to the Coxeter groupW (M2). We could just as well have written BM ,
since the diagonals of the matrices M2 and M play no role in BM2

= BM .
(3) The braid diagram or Coxeter graph ofM (or ofW (M)) has vertices indexed

by I, and for each pair i �= j of vertices, mij − 2 edges between them.
(4) Define the corresponding generalized nil-Coxeter algebra as follows (with

M2 as above):
(1.2)

NC(M) :=
k〈Ti, i ∈ I〉

(TiTjTi · · ·︸ ︷︷ ︸
mij times

= TjTiTj · · ·︸ ︷︷ ︸
mij times

, Tmii

i = 0 ∀i �= j ∈ I)
=

kB�0
M2

(Tmii

i = 0 ∀i) ,

where we omit the braid relation TiTjTi · · · = TjTiTj · · · if mij = ∞.
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GENERALIZED NIL-COXETER ALGEBRAS 2973

(5) Given d = (di)i∈I as above, define WM (d) := W (M(d)) and NCM (d) :=
NC(M(d)).

We are interested in the family of (generalized) nil-Coxeter algebras for multiple
reasons: category theory, real reflection groups, complex reflection groups, and
deformation theory. We elaborate on these motivations in this section and the
next.

1.1. Tannaka–Krein duality for semigroup categories. In [Kho], the repre-
sentation categories RepNC(An) were used to categorify the Weyl algebra. For
now we highlight two properties of generalized nil-Coxeter algebras NC(M) which
also have categorical content: (i) for no choice of coproduct on NC(M) can it
be a bialgebra (shown below); and (ii) every algebra NC(M) is equipped with a
cocommutative coproduct Δ : Ti �→ Ti ⊗ Ti for all i ∈ I.

Viewed through the prism of representation categories, the coproduct in (ii)
equips RepNC(M) with the structure of a symmetric semigroup category [ES,
§13,14]. Note by (i) that the simple module k does not serve as a unit object, whence
RepNC(M) is necessarily not monoidal. It is natural to apply the Tannakian
formalism to such categories with “tensor” structure. We record the answer which,
while not surprising once formulated, we were unable to find in the literature.

Definition 1.3. A semigroup-tensor category is a semigroup category (C,⊗) which
is also additive and such that ⊗ is bi-additive.

Theorem A. Let A be an associative unital algebra over a field k, let C := RepA,
and let F : C → Veck be the forgetful functor. Then:

(1) Any semigroup-tensor structure on C together with a tensor structure on F
equips A with a coproduct Δ : A → A⊗A that is an algebra map.

(2) If the semigroup-tensor structure on C is braided (respectively, symmetric),
then (A,Δ) is a quasi-triangular (respectively, triangular) algebra with co-
product. This simply means there exists an invertible element R ∈ A ⊗ A
satisfying the “hexagon relations”

(1⊗Δ)R = R13R12, (Δ⊗ 1)R = R13R23

and such that Δop = RΔR−1. Triangularity means further that RR21 =
1⊗ 1.

Notice that generalized nil-Coxeter algebras are indeed examples of such trian-
gular algebras with a (cocommutative) coproduct but no counit. Such algebras are
interesting in the theory of PBW deformations of smash product algebras; see Sec-
tion 2. We also show below how to obtain an “honest” symmetric tensor category
from each algebra NC(M) via a central extension.

As noted above, Theorem A is in a sense “expected” and serves to act more as
motivation. That the algebras NC(M) provide concrete examples of symmetric,
nonmonoidal semigroup-tensor categories is novel. The main results below now
focus on the algebras NC(M) themselves.

1.2. Real reflection groups and a novel family of finite-dimensional nil-
Coxeter algebras. Our next result constructs a novel family of generalized nil-
Coxeter algebras of type A which are finite dimensional. Classifying the finite-
dimensional objects in Coxeter-type settings in algebra and combinatorics has been
a subject of tremendous classical and modern interest, including Weyl, Coxeter, and
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2974 APOORVA KHARE

complex reflection groups, their nil-Coxeter and associated Hecke algebras, as well
as finite type quivers, Kleinian singularities, the McKay–Slodowy correspondence,
simple Lie algebras, etc. A very recent setting involves the classification of finite-
dimensional Nichols algebras. Some of the prominent ingredients in the study of
these algebras are common to the present work. See [GHV,HV1,HV2] for more
details. Another famous recent classification is that of finite-dimensional pointed
Hopf algebras [AnSc], which turn out to arise from generalized small quantum
groups. With these motivations, our goal is to similarly classify all generalized nil-
Coxeter algebras; our next result presents the first novel family of such examples.

We remark that in equation (1.2), in generalizing the “order relations” from
T 2
i = 0 to Tmii

i = 0, we were also motivated by another such setting: the classical
work of Coxeter [Cox2], which investigated generalized Coxeter matrices M for
which the group W (M) is finite. Specifically, Coxeter considered the (type A) Artin
braid group BAn−1

, and instead of quotienting by the relations s2i = 1 to obtain
the symmetric group Sn, he worked with spi = 1 ∀i ∈ I. Coxeter was interested in
computing for which (n, p) the quotient group WAn−1

((p, . . . , p)) is a finite group
and in determining its order. He showed (see also [As]) that WAn−1

((p, . . . , p)) is

finite if and only if 1
n + 1

p > 1
2 , in which case the size of the quotient group is(

1
n + 1

p − 1
2

)1−n

· n!/nn−1. Coxeter’s result was extended by Koster in his thesis

[Ko] to completely classify the “generalized Coxeter groups” W (M) that are finite.
These turn out to be precisely the finite Coxeter groups and the Shephard groups.

Parallel to the above classical works, we wish to understand for which matrices
M is the algebra NC(M) finitely generated as a k-module. If W (M) is a Coxeter
group, then dimNC(M) = |W (M)|. Few other answers are known. For instance,
Marin [Mar] has shown that the algebra NCA2

((m,n)) is not finitely generated
when m,n � 3. However, apart from the usual nil-Coxeter algebras, to our knowl-
edge no other finitely generated algebras NC(M) were known to date.

In the following result, following Coxeter’s construction in type A above, we
exhibit the first such finite-dimensional family of algebras NC(M).

Theorem B. Given integers n � 1 and d � 2, define the k-algebra

(1.4) NCA(n, d) := NCAn
((2, . . . , 2, d)).

In other words, NCA(n, d) is generated by T1, . . . , Tn with relations

TiTi+1Ti = Ti+1TiTi+1 ∀ 0 < i < n;(1.5)

TiTj = TjTi ∀ |i− j| > 1;(1.6)

T 2
1 = · · · = T 2

n−1= T d
n = 0.(1.7)

Then NCA(n, d) is a free k-module with k-basis of n!(1 + n(d− 1)) generators

{Tw : w ∈ Sn} � {TwT
k
nTn−1Tn−2 · · ·Tm+1Tm : w ∈ Sn, k ∈ [1, d−1], m ∈ [1, n]}.

In particular, for all l ∈ [1, n − 1], the subalgebra Rl generated by T1, . . . , Tl is
isomorphic to the usual nil-Coxeter algebra NCAl

((2, . . . , 2)).

Remark 1.8. We adopt the following notation in the sequel without further refer-
ence: let
(1.9)

w◦ ∈ Sn+1, w′
◦ ∈ Sn, w′′

◦ ∈ Sn−1 denote the respective longest elements,
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GENERALIZED NIL-COXETER ALGEBRAS 2975

where the symmetric group Sl+1 corresponds to the k-basis of the algebra Rl for
l = n− 2, n− 1, n.

The algebras NCA(n, d) have not been studied previously for d > 2, and we begin
to explore their properties. When d = 2, NCA(n, d) specializes to the usual nil-
Coxeter algebra of type An. In this vein, we present three properties of NCA(n, d)
akin to the usual nil-Coxeter algebras.

Theorem C. Fix integers n � 1 and d � 2.

(1) The algebra NCA(n, d) has a length function that restricts to the usual
length function �An−1

on Rn−1 � NCAn−1
((2, . . . , 2)) (from Theorem B),

and

(1.10) �(TwT
k
nTn−1 · · ·Tm) = �An−1

(w) + k + n−m

for all w ∈ Sn, k ∈ [1, d− 1], and m ∈ [1, n].
(2) There is a unique longest word Tw′

◦T
d−1
n Tn−1 · · ·T1 of length

ln,d := �An−1
(w′

◦) + d+ n− 2.

(3) If k is a field, then NCA(n, d) is local, with unique maximal ideal m gener-
ated by T1, . . . , Tn. For all k, the ideal m is nilpotent with m1+ln,d = 0.

We also study the algebra NCA(n, d) in connection to Khovanov’s categorifica-
tion of the Weyl algebra. See Proposition 5.6 below.

1.3. Complex reflection groups and BMR freeness conjecture. Determin-
ing the finite-dimensionality of the algebras NC(M) is strongly motivated by the
study of complex reflection groups and their Hecke algebras. Recall that such groups
were enumerated by Shephard–Todd [ST]; see also [Coh,LT]. Subsequently, Popov
[Pop1] classified the infinite discrete groups generated by affine unitary reflections;
in the following we will term these infinite complex reflection groups. For more on
these groups, see, e.g., [BS,Hug1,Hug2,Mal,ORS,ReS] and the references therein.

For complex reflection groups, an important program is the study of generic
Hecke algebras over them, as well as the associated BMR freeness conjecture of
Broué, Malle, and Rouquier [BMR1,BMR2] (see also the recent publications [Et,
Lo,Mar,MP] and the thesis [Ch]). This conjecture connects the dimension of a
generic Hecke algebra to the order of the underlying reflection group. Here we will
study this connection for the corresponding nil-Coxeter algebras, which we define
as follows given [Be,BMR2].

Definition 1.11. Suppose W is a discrete (finite or infinite) complex reflection
group, together with a finite generating set of complex reflections {si : i ∈ I}, the
order relations smii

i = 1 ∀i, a set of braid relations {Rj : j ∈ J} (each involving
words with at least two distinct reflections si), and for the infinite non-Coxeter
complex reflection groups W listed in [Mal, Tables I, II], one more order relation
Rm0

0 = 1. Now define I0 := I�{0} for these infinite non-Coxeter complex reflection
groups W , and I0 := I otherwise. Given an integer vector d ∈ NI0 with di � 2 ∀i,
define the corresponding generalized nil-Coxeter algebra to be

NCW (d) :=
k〈Ti, i ∈ I〉

({R′
j , j ∈ J}, T di

i = 0 ∀i ∈ I, (R′
0)

d0 = 0)
,(1.12)
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2976 APOORVA KHARE

where the braid relations Rj are replaced by the corresponding relations R′
j in the

alphabet {Ti : i ∈ I}, and similarly for R′
0 if R

m0
0 = 1 in W . There is also the notion

of the corresponding braid diagram as in [BMR2, Tables 1–4] and [Mal, Tables I,
II]; this is no longer always a Coxeter graph.

Note by [Pop1, §1.6] that in the above definition one has to work with a specific
presentation for complex reflection groups, as there is no canonical (minimal) set
of generating reflections. See [Ba] for related work.

There is no known finite-dimensional generalized nil-Coxeter algebra associated
to a finite complex reflection group. Indeed, Marin mentions in [Mar] that a key
difference between real and complex reflection groups W is the lack of nil-Coxeter
algebras of dimension precisely |W | for the latter. This was verified in some cases
for complex reflection groups in loc. cit. Our final result shows this assertion—and
in fact a stronger statement—for all discrete finite and infinite, real and complex
reflection groups. Even stronger (a priori): we provide a complete classification
of finite-dimensional generalized nil-Coxeter algebras for all such groups. Notice
by [Pop1, Theorem 1.4] that it suffices to consider only the groups whose braid
diagram is connected.

Theorem D. Suppose W is any irreducible discrete real or complex reflection
group. In other words, W is a real reflection group with connected braid diagram,
or a complex reflection group with connected braid diagram and presentation given
as in [BMR2, Tables 1–4], [Mal, Tables I, II], or [Pop1, Table 2]. Also fix an integer
vector d with di � 2 ∀i (including possibly for the additional order relation as in
[Mal]). Then the following are equivalent:

(1) The generalized nil-Coxeter algebra NCW (d) is finitely generated as a k-
module.

(2) Either W is a finite Coxeter group and di = 2 ∀i, or W is of type An and
d = (2, . . . , 2, d) or (d, 2, . . . , 2) for some d > 2.

(3) The ideal m generated by {Ti : i ∈ I} is nilpotent.

If these assertions hold, there exists a length function and a unique longest element
in NCW (d), say of length l; now m1+l = 0.

In other words, the only finite-dimensional examples (when k is a field) are the
usual nil-Coxeter algebras and the algebras NCA(n, d). Note also that all of the
above results are characteristic-free.

A key tool in proving both Theorems B and D is a diagrammatic calculus, which
is akin to crystal theory from combinatorics and quantum groups.

1.4. Further questions and organization of the paper. To our knowledge, the
algebras NCA(n, d) for d > 2 are a novel construction—and in light of Theorem D,
the only finite-dimensional generalized nil-Coxeter algebras other than the “usual”
ones. In particular, a further exploration of their properties is warranted. We
conclude this section by discussing some further directions.

(1) Nil-Coxeter algebras are related to flag varieties [BGG,KK], categorification
[Kho,KL], and symmetric function theory [BSS]. Also recall that the divided
difference operator representation of the usual type A nil-Coxeter algebra
NCA(n, 2) is used to define Schubert polynomials [FS, LS] and that the
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polynomials the Ti simultaneously annihilate are precisely the symmetric
polynomials. It will be interesting to determine if NCA(n, d), d > 2, has a
similar “natural” representation as operators on a polynomial ring and, if
so, to consider the polynomials one obtains analogously. (See [Mar] for a
related calculation.) We observe here that for d > 2, the algebra NCA(n, d)
does not “come from” a finite reflection group, as it is of larger dimension
than the corresponding generalized Coxeter group, by equation (2.1) below.

(2) Given both the connection to Coxeter groups as well as the crystal methods
used below, it will be interesting to explore if the algebras NCA(n, d) are
connected to crystals over some Lie (super)algebra.

(3) Our proof of Theorem D below involves a case-by-case argument, running
over all discrete complex reflection groups. A type-free proof of this result
would be desirable.

The paper is organized as follows. In Section 2 we elaborate on our motivations
and make additional remarks. In the following four sections we prove, in turn, the
four main theorems above.

2. Background and motivation

In this section we elaborate on some of the aforementioned motivations for study-
ing generalized nil-Coxeter algebras and their finite-dimensionality. First, these al-
gebras are interesting from a categorical perspective, as their module categories are
symmetric semigroup-tensor categories (see Definition 1.3) but are not monoidal.
We will discuss in the next section a Tannaka–Krein duality for such categories, as
well as a central extension to a symmetric tensor category.

The second motivation comes from real reflection groups: we provide a novel
family of finite-dimensional algebras NCA(n, d) of type A (akin to the work of
Coxeter [Cox2] and Koster [Ko]). In this context, it is remarkable (by Theorem D)
that the algebras NCA(n, d) and the usual nil-Coxeter algebras NCW ((2, . . . , 2))
are the only finite-dimensional examples.

As Theorem C shows, the algebras NCA(n, d) for d > 2 are similar to their
“usual” nil-Coxeter analogues for d = 2. Note however that these algebras also
differ in key aspects. See Theorem 5.2 and Proposition 5.3, which show in particular
that for NCA(n, d) with d > 2, there are multiple “maximal” words, i.e., words
killed by left- and right-multiplication by every generator Ti. A more fundamental
difference arises out of considerations of flat deformations, which we make precise
in the remarks around equation (2.1) below.

Our third motivation comes from complex reflection groups and is of much re-
cent interest: the BMR freeness conjecture, which discusses the equality of dimen-
sions of generic Hecke algebras and (the group algebra of) the underlying finite
complex reflection group. In this paper we study the associated graded algebra,
i.e., where all deformation parameters are set to zero. As shown by Marin [Mar]
in some of the cases, non-Coxeter reflection groups do not come equipped with
finite-dimensional nil-Coxeter analogues. We make this precise in a strong way in
Theorem D above, for all complex reflection groups W . In particular, Theorem
D shows that generic Hecke algebras are not flat deformations of their underly-
ing (associated graded) nil-Coxeter analogues for complex W . This is a property
shared by the algebras NCA(n, d) for d > 2 (but not by Iwahori–Hecke algebras of
Coxeter groups W = W (M), which are flat deformations of NC(M)). Indeed, if
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Mn,d denotes the generalized Coxeter matrix corresponding to NCA(n, d), then we
claim that
(2.1)

dimNCA(n, d) = n!(1 + n(d− 1)) > |W (Mn,d)| =
{
(n+ 1)! if d > 2 is even,

1 if d > 2 is odd.

To see (2.1), if mij is odd for any generalized Coxeter matrix M = M(d), then
si, sj are conjugate in W (M), whence sgi = sgj = 1 in W (M) for g = gcd(di, dj). On

the other hand, NCM (d) surjects onto the nil-Coxeter algebra NCM ((2, . . . , 2)) if
di � 2 ∀i. Now if di, dj � 2 are coprime, say, then si generates the trivial subgroup
of W (M), while Ti does not vanish in NC(M).

The generic Hecke algebras discussed above fit in a broader framework of defor-
mation theory, which provides a fourth motivation behind this paper (in addition
to the question of flatness discussed above). The theory of flat/PBW deforma-
tions of associative algebras is an area of sustained activity, and subsumes Drinfeld
Hecke/orbifold algebras [Dr], graded affine Hecke algebras [Lu], symplectic reflec-
tion algebras and rational Cherednik algebras [EG], infinitesimal and other Hecke
algebras, and other programs in the literature. We also highlight the program of
Shepler and Witherspoon; see [SW1, SW2] and the references therein. In all of
these settings, a bialgebra A (usually a Hopf algebra) acts on a vector space V and
hence on a quotient SV of its tensor algebra, and one characterizes the deforma-
tions of this smash-product algebra A� SV which are flat, also termed the “PBW
deformations”.

In this regard, the significance of the generalized nil-Coxeter algebras NC(M)
is manifold. First, the above bialgebra settings were extended in recent work [Kha]
to the framework of “cocommutative algebras” A, which also include the alge-
bras NCW (d). Moreover, we characterized the PBW deformations of A�Sym(V ),
thereby extending in loc. cit. the PBW theorems in the previously mentioned works.
The significance of our framework incorporating A = NCW (d) along with the pre-
viously studied algebras is that the full Hopf/bialgebra structure of A—specifically,
the antipode or even counit—is not required in order to characterize the flat defor-
mations of A� Sym(V ).

Coming to finite-dimensionality, it was shown in the program of Shepler and
Witherspoon (see, e.g., [SW2]), and then in [Kha], that when the algebra A with
coproduct is finite dimensional over a field k, it is possible to characterize the graded
k[t]-deformations of A � Sym(V ), whose fiber at t = 1 has the PBW property.
For A = NCW (d), this deformation-theoretic consideration directly motivates our
classification result in Theorem D.

We conclude with a third connection to the aforementioned active program on
PBW deformations. We studied in [Kha] the case when (A,m,Δ) is local with
Δ(m) ⊂ m ⊗ m. In this setting, if m is a nilpotent two-sided ideal, then one
obtains a lot of information about the deformations of A � Sym(V ), including
understanding the PBW deformations, as well as their center, abelianization, and
modules, especially the simple modules. Now if A = NCW (d), then m is generated
by the Ti; this explains the interest above in understanding when m is nilpotent.
Theorem D shows that this condition is in fact equivalent to the generalized nil-
Coxeter algebra being finite dimensional.
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3. Proof of Theorem A: Tannakian formalism

for semigroup categories

The remainder of this paper is devoted to proving the four main theorems in the
opening section. We begin by studying the representation category of NC(M) for a
generalized Coxeter matrix M . The first assertion is that this category can never be
a monoidal category in characteristic zero, and it follows from the following result.

Proposition 3.1. Suppose k is a field of characteristic zero and M is a generalized
Coxeter matrix. Then NC(M) is not a bialgebra.

The result fails to hold in positive characteristic. Indeed, for any prime p � 2
the algebra (Z/pZ)[T ]/(T p) is a bialgebra, with coproduct Δ(T ) := 1⊗ T + T ⊗ 1
and counit ε(T ) := 0.

Proof. Note there is a unique possible counit, ε : Ti �→ 0 ∀i ∈ I. Now suppose
Δ : NC(M) → NC(M)⊗NC(M) is such that

(id⊗ε) ◦Δ = id = (ε⊗ id) ◦Δ
on NC(M). Setting m := ker ε to be the ideal generated by {Ti : i ∈ I}, it follows
that

(3.2) Δ(Ti) ∈ 1⊗ Ti + Ti ⊗ 1 +m⊗m.

Note that m ⊗ m constitutes the terms of higher “total degree” in Δ(Ti), in the
Z

�0-grading on NC(M). Now if Δ is multiplicative, then raising (3.2) to the miith
power yields

0 = Δ(Ti)
mii =

mii−1∑
k=1

(
mii

k

)
T k
i ⊗ Tmii−k

i + higher degree terms.

This is impossible as long as the image of Ti in NC(M) is nonzero. Assuming
this, it follows that Δ cannot be multiplicative, hence not a coproduct on NC(M).
Finally, NC(M) surjects onto the usual nil-Coxeter algebra NC(M2) with M2 =
M((2, . . . , 2)). As NC(M2) has a Coxeter word basis indexed by W (M), it follows
that Ti is indeed nonzero in NC(M). �

As a consequence of Proposition 3.1 and the Tannakian formalism in [ES, Theo-
rem 18.3], for any generalized Coxeter matrix M the module category RepNC(M)
is necessarily not a tensor category. That said, the map Δ : Ti �→ Ti ⊗ Ti is a
coproduct on NC(M), i.e. a coassociative algebra map. The cocommutativity of
Δ implies RepNC(M) is a symmetric semigroup category. We now outline how
to show the first theorem above, which seeks to understand Tannaka–Krein duality
for such categories (possibly without unit objects).

Proof of Theorem A. The proof of part (1) follows that of [ES, Theorem 18.3]; one
now ignores the last statement in that proof. The additional data required in the
two braided versions in part (2) can be deduced from the proof of [ES, Proposition
14.2]. �

We conclude this section by passing from RepNC(M) to an “honest” tensor
category—say with k a field. Alternately, via the Tannakian formalism in [ES,

Theorem 18.3], we produce a bialgebra ÑC(M) that surjects ontoNC(M). Namely,
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ÑC(M) is generated by {Ti : i ∈ I} and an additional generator T∞, subject to
the braid relations on the former set, as well as

Tmii
i = TiT∞ = T∞Ti = T 2

∞ := T∞ ∀i ∈ I.

Note that ÑC(M) is no longer Z�0-graded, but it is a central extension:

0 → kT∞ → ÑC(M) → NC(M) → 0.

Now asking for all Ti and T∞ to be grouplike yields a unique bialgebra structure

on ÑC(M):

Δ̃ : Ti �→ Ti ⊗ Ti, T∞ �→ T∞ ⊗ T∞, ε̃ : Ti, T∞ �→ 1,

and hence a monoidal category structure on Rep ÑC(M), as claimed.

4. Proof of Theorem B: Distinguished basis of words

We now prove our main theorems on the algebras NC(M)—specifically, the
family NCA(n, d)—beginning with Theorem B. Note that if d = 2, then the algebra
NCA(n, d) is the usual nil-Coxeter algebra, while if n = 1, then the algebra is
k[T1]/(T

d
1 ). Theorems B and C are easily verified for these cases, e.g., using [Hum,

Chapter 7]. Thus, we assume throughout their proofs below that n � 2 and d � 3.
We begin by showing that the k-rank of NCA(n, d) is at most n!(1 + n(d− 1)).

Notice that NCA(n, d) is spanned by words in the Ti. We now claim that a word
in the Ti is either zero in NCA(n, d) or equal by the braid relations to a word in
which all occurrences of Tn are successive, in a monomial T k

n for some 1 � k � d−1.
To show the claim, consider a word T := · · ·T a

nTwT
b
n · · · , where a, b > 0 and

Tw = Ti1 · · ·Tik is a word in T1, . . . , Tn−1. Rewrite T using the braid relations if
required, so that w ∈ Sn has minimal length, say k. We may assume k > 0, else we
would be done. Now using the braid relations TiTn = TnTi for i � n − 2, further
assume that i1 = ik = n − 1 (otherwise the factors may be “moved past” the Tn

using the braid relations). Similarly, i2 = ik−1 = n−2, and so on. Thus, if Tw �= 0,
then assume by the minimality of �(w) that

Tw = Tn−1Tn−2 · · ·Tm+1TmTm+1 · · ·Tn−2Tn−1 for some 1 � m � n− 1.

We next claim that the following relation holds in the Artin braid group Bn, and
hence in NCAn

(d) for any d:

(4.1) Tn−1 · · ·Tm · · ·Tn−1 = TmTm+1 · · ·Tn−2Tn−1Tn−2 · · ·Tm+1Tm.

This is shown by descending induction on m � n− 1. Hence,

T a
n · (Tn−1 · · ·Tm · · ·Tn−1) · T b

n(4.2)

= T a
n · (Tm · · ·Tn−2Tn−1Tn−2 · · ·Tm) · T b

n

= (Tm · · ·Tn−2)T
a−1
n (TnTn−1Tn)T

b−1
n (Tn−2 · · ·Tm)

= (Tm · · ·Tn−2)T
a−1
n (Tn−1TnTn−1)T

b−1
n (Tn−2 · · ·Tm).

If max(a, b) = 1, then the claim follows; if a > 1, then the last expression contains
the substring (TnTn−1Tn)Tn−1 = Tn−1TnT

2
n−1 = 0; similarly if b > 1. This shows

the claim.
We now prove the upper bound on the k-rank. Notice that T1, . . . , Tn−1 generate

a subalgebra Rn−1 ⊂ NCA(n, d) in which the nil-Coxeter relations for WAn−1
= Sn
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are satisfied. Hence the map : NCAn−1
((2, . . . , 2)) � Rn−1 := 〈T1, . . . , Tn−1〉 is an

algebra map.
Now notice by equation (4.2) that every nonzero word in NCA(n, d) \ Rn−1 is

of the form T = TwT
k
nTw′ , where 1 � k � d − 1, w,w′ ∈ WAn−1

, and hence
Tw, Tw′ ∈ Rn−1. By a similar reasoning as above, assuming w′ of minimal length in
Sn−1, we may rewrite T such that Tw′ = Tn−1 · · ·Tm for some 1 � m � n. Carrying
out this operation yields Tw′′T k

nTn−1 · · ·Tm for some reduced word w′′ ∈ WAn−1

(i.e., such that Tw′′ is nonzero in NCAn−1
((2, . . . , 2))). Thus,

NCA(n, d) = Rn−1 +

d−1∑
k=1

n∑
m=1

Rn−1 · T k
n · (Tn−1 · · ·Tm).

As Rn−1 has at most n! generators, it follows that NCA(n, d) has at most
(1 + n(d− 1)) · n! generators, which shows the desired upper bound on its k-rank.

The hard part of the proof involves showing that the words TwT
k
nTn−1 · · ·Tm

form a k-basis of NCA(n, d). We will require the following technical lemma on the
symmetric group and its nil-Coxeter algebra. A proof is included for completeness.

Lemma 4.3. Suppose W = WAn−1
= Sn is the symmetric group, with simple

reflections s1, . . . , sn−1 labelled as usual. Then every element w of WAn−1
\WAn−2

=
Sn \Sn−1 can be written in reduced form as w = w′sn−1 · · · sm′ , where w′ ∈ Sn−1 =
WAn−2

and m′ ∈ [1, n− 1] are unique. Given such an element w ∈ Sn, we have in
the usual nil-Coxeter algebra NCAn

((2, . . . , 2)):

(4.4) Tn · Tw · Tn · · ·Tm =

{
Tw′Tn−1 · · ·Tm−1 · Tn · · ·Tm′ if m′ < m,

0 otherwise.

Note that equation (4.4) can be thought of as a statement on lengths in the
symmetric group.

Proof. We first claim that w ∈ WAn−1
\WAn−2

has a reduced expression in which
sn−1 occurs exactly once. The proof is by induction on n; clearly the claim is true
for n = 2. Now given the claim for n − 2 � 2, consider any reduced expression
for w that contains a subword sn−1w

′′sn−1, where w ∈ WAn−2
. By the induction

hypothesis, w′′ = w′sn−2 · · · sm for some w′ ∈ WAn−3
and m ∈ [1, n− 1]. Hence if

m � n− 2, then

w = · · · sn−1 (w
′sn−2sn−3 · · · sm) sn−1 = · · ·w′(sn−1sn−2sn−1)(sn−3 · · · sm) · · · ,

and by the braid relations, this equals a reduced expression for w ∈ WAn−1
, with

one less occurrence of sn−1. A similar analysis works if m = n − 1. Repeatedly
carrying out this procedure proves the claim.

We can now prove the uniqueness of w′,m′ as in the lemma. By the previous
paragraph, write w ∈ WAn−1

\WAn−2
as w = w1sn−1w2, with w1, w2 ∈ WAn−2

and
w2 of smallest possible length, say w2 = si1 · · · sik for i1, . . . , ik � n− 2. Using the
braid relations, clearly i1 = n−2; hence i2 = n−3 (by minimality of k). Choose the
smallest l � 3 such that il �= n− 1− l. We now produce a contradiction assuming
that such an integer l exists. If il < n − 1 − l, then we may move sil past the
preceding terms, contradicting the minimality of k. Clearly il �= n− l, else w2 was
not reduced. Thus il > n− 1− l, whence w2 is of the form sn−2 · · · silsil−1sil · · · .
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Now verify in WAn−1
that

w = w1sn−1sn−2 · · · sil+1silsil−1sil · · · = w1sn−1 · · · sil+1sil−1silsil−1 · · ·
= w1sil−1 · sn−1 · sn−2 · · · sil+1silsil−1 · · · ,

which contradicts the minimality of k. Thus such an integer l cannot exist, which
proves that w = w1sn−1 · · · sm′ for some m′ ∈ [1, n− 1].

We next claim that the integer m′ is unique for w ∈ WAn
\WAn−1

. We first make
the subclaim that if w ∈ WAn−1

is reduced, then so is wsnsn−1 · · · sm. To see why,
first recall [Hum, Lemma 1.6, Corollary 1.7], which together imply that if wα > 0
for any finite Coxeter group W , any w ∈ W , and any simple root α > 0, then
�(wsα) = �(w)+1. Now the subclaim follows by applying this result successively to
(wsn · · · sj+1, αj) for j = n, n−1, . . . ,m. Next, define Cm := WAn−1

·snsn−1 · · · sm,
with Cn+1 := WAn−1

. It follows by the subclaim above that |Cm| = |WAn−1
| = n!

for all m. Hence,

(n+ 1)! = |WAn
| �

n+1∑
m=1

|Cm| �
n+1∑
m=1

n! = (n+ 1)!.

This shows that WAn
=

⊔n+1
m=1 Cm, which proves the uniqueness of m in the above

claim. Now write w1 in reduced form to obtain that w′ = wsm′ · · · sn−1 is also
unique.

It remains to show equation (4.4) in NCAn
((2, . . . , 2)). Using the above analysis,

write Tw = Tw′Tn−1 · · ·Tm′ ; since Tn commutes with Tw′ , we may assume w′ = 1.
First suppose m′ � m. Then it suffices to prove that (Tn · · ·Tm′)2 = 0 for all
1 � m′ � n. Without loss of generality we may work in the subalgebra generated
by Tm′ , . . . , Tn, and hence suppose m′ = 1. We now prove by induction that
(Tn · · ·T1)

2 = 0. This is clear if n = 1, 2, and for n > 2,

(Tn · · ·T1)
2 = TnTn−1Tn · Tn−2 · · ·T1 · Tn−1 · · ·T1 = Tn−1Tn · (Tn−1 · · ·T1)

2 = 0.

Next suppose m′ < m; once again we may suppose m′ = 1. We prove the result
by induction on n, the base case of n = 2 (and m = 2) being easy. Thus, for
1 < m � n, we compute

Tn · · ·T1 · Tn · · ·Tm = TnTn−1Tn · Tn−2 · · ·T1 · Tn−1 · · ·Tm

= Tn−1Tn · (Tn−1 · · ·T1) · (Tn−1 · · ·Tm)

= Tn−1Tn · (Tn−2 · · ·Tm−1) · (Tn−1 · · ·T1)

= Tn−1Tn−2 · · ·Tm−1 · TnTn−1 · · ·T1. �

Remark 4.5. Notice that equation (4.4) holds in any algebra containing elements
T1, . . . , Tn that satisfy the braid relations and T 2

1 = 0. In particular, (4.4) holds in
NCA(n, d) for n > 1.

Returning to the proof of Theorem B, we now introduce a diagrammatic calculus
akin to crystal theory. We first write out the n = 2 case in order to provide intuition
for the case of general n. Let M be a free k-module, with basis given by the nodes
in the graph in Figure 1.

In the figure, the node 1221 should be thought of as T1T
2
2 T1 (applied to the unit

1NCA(2,d), i.e., to the generating basis vector corresponding to ∅), and similarly
for the other nodes. The arrows denote the action of T1 and T2; all remaining
generator actions on nodes yield zero. Now one verifies by inspection that the
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Figure 1. Regular representation for NCA(2, d), with d′ = d− 1

defining relations in NCA(2, d) are satisfied by this action on M . Therefore M is
an NCA(2, d)-module of k-rank 4d− 2 = 2!(1+ 2(d− 1)). Since M is generated by
the basis vector corresponding to the node ∅, we have a surjection : NCA(2, d) � M
that sends T1, T

k
2 , T1T

k
2 , T

k
2 T1, T1T

k
2 T1 to the corresponding basis vectors in the free

k-module M . Now the result for n = 2 follows by the upper bound on the k-rank,
proved above.

The strategy is similar for general n, but uses the following more detailed no-
tation. For each w ∈ Sl with l � n, let Tw denote the corresponding (well-
defined) word in the alphabet {T1, . . . , Tl−1} and let Rl−1 denote the subalgebra
of NCA(n, d) generated by these letters. Now define a free k-module M of k-rank
n!(1 + n(d− 1)), with basis elements the set of words

(4.6) B := {B(w, k,m) : w ∈ Sn, k ∈ [1, d− 1], m ∈ [1, n]} � {B(w) : w ∈ Sn}.
We observe here that the basis vectors B(w, k,m), B(w) are to be thought of as
corresponding respectively to the words

(4.7) TwT
k
nTn−1 · · ·Tm, Tw, w ∈ Sn, k ∈ [1, d− 1], m ∈ [1, n].

Definition 4.8. An expression for a word in NCA(n, d) of the form (4.7) will be
said to be in standard form.

We now define an NCA(n, d)-module structure on M , via defining a directed
graph structure on B (or more precisely, on B�{0}) that we now describe. Figure 2
may help in visualizing the structure. The figure should be thought of as analogous
to the central hexagon and either of the two “arms” in Figure 1.

We begin by explaining the figure. Each node (wkm) (or (w)) corresponds
to the basis vector B(w, k,m) (or B(w)). Notice that the vectors {B(w, 1,m)} �
{B(w)} are in bijection with the Coxeter word basis of the usual nil-Coxeter algebra
NCAn

((2, . . . , 2)). Let V1 denote their span of k-rank (n+1)!. Now given 1 � m �
n and 1 � k � d − 1 =: d′, define Vk,m to be the span of the basis elements
{B(w, k,m) : w ∈ Sn}, of k-rank n!. Then M = V1 ⊕

⊕
k>1,m Vk,m. Note as a

special case that in Figure 1 the central hexagon spans V1, the nodes 2
k1, 12k1 span

Vk,1, and 2k, 12k span Vk,2. We now define the NCA(n, d)-action:

• Let V1,n+1 denote the k-span of {B(w) : w ∈ Sn}. Then for 1 � m � n+1,
each V1,m has a distinguished basis in bijection with Sn; the same holds
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11m

w′1m

12m

w′2m

1d′m

w′d′m

· · ·

· · ·

V1 V2,m Vd′,m

n n n

n n n

Figure 2. Regular representation for NCA(n, d), with d′ = d− 1

for each Vk,m with k ∈ [2, d − 1] and m ∈ [1, n]. Now equip all of the
above spaces Vk,m with the corresponding module structure over the usual
nil-Coxeter algebra of type An−1. Such a structure is uniquely determined
if given w = si1 · · · sil ∈ Sn with all ij < n, we set Tw · B(1, k,m) :=
B(w, k,m) and Tw · B(1) := B(w).

• We next define the action of Tn on M . Via Lemma 4.3, write w ∈ Sn as
w′sn−1 · · · sm′ with w′,m′ unique. Now using the previous paragraph, it
follows that B(w, k,m) = Tw′Tn−1 · · ·Tm′ · B(1, k,m). Correspondingly, if
w ∈ Sn−1 (i.e., m′ = n), define

Tn ·B(w, k,m) := 1(k � d− 2)B(w, k + 1,m), Tn · B(w) := B(w, 1, n).

• On the other hand, suppose m′ � n − 1. If k � 2, then define Tn ·
B(w, k,m) := 0. Otherwise define Tn · B(w) := B(w′, 1,m′) with w′,m′ as
in Lemma 4.3, and (see equation 4.4):

(4.9) Tn ·B(w, 1,m) :=

{
B(w′sn−1 · · · sm−1, 1,m

′) if m′ < m,

0 otherwise.

It remains to show that the above graph structure indeed defines an NCA(n, d)-
module structure on M ; then a similar argument as above (in the n = 2 case)
completes the proof. In the following argument, we will occasionally use Lemma
4.3 (as well as Remark 4.5) without reference. First notice that the algebra relations
involving only T1, . . . , Tn−1 are clearly satisfied on M as it is an Rn−1-free module
by construction. To verify that the relations involving Tn hold on M , notice (e.g.,
via Figure 2) that the k-basis B of M can be partitioned into three subsets:

B1 := {B(w, k,m) : k � 1,m ∈ [1, n], w ∈ Sn−1} � {B(w) : w ∈ Sn−1},
B2 := {B(w, k,m) : k � 2,m ∈ [1, n], w ∈ Sn \ Sn−1},(4.10)

B3 := {B(w, 1,m) : m ∈ [1, n], w ∈ Sn \ Sn−1} � {B(w) : w ∈ Sn \ Sn−1}.
Recall by the opening remarks in Section 4 that n � 2 and d � 3. We first show

that the relation T d
n = 0 holds as an equality of linear operators on each vector

b ∈ B, and hence on the k-module M . We separately consider the cases b ∈ Bi for
i = 1, 2, 3, as in (4.10).

(1) If b = B(w, k,m) ∈ B1, then b lies in the “top rows” of Figure 2. It is easily
verified that T d−k−1

n ·B(w, k,m) = B(w, d− 1,m), and this is killed by Tn,
as desired. The same reasoning shows that T d

n kills b = B(w) for w ∈ Sn−1.
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(2) Let b = B(w, k,m) ∈ B2. Then the relation holds on b since Tn ·B(w, k,m)
= 0. (These correspond to vectors in Vk,m for k � 2, which do not lie in
the “top rows” in Figure 2.)

(3) Finally, let b ∈ B3; thus w ∈ Sn \ Sn−1, and we write w = w′sn−1 · · · sm′

by Lemma 4.3. It follows from Remark 4.5 that T 2
n · B(w, 1,m) = 0 and

T d
n ·B(w) = T d−1

n ·B(w′, 1,m′) = 0.

We next show that the relation TiTn = TnTi holds on B for all i � n − 2. We
consider the same three cases as in (4.10).

(1) Fix w ∈ Sn−1. If b = B(w, k,m) with k � 1, then verify using the afore-
mentioned action that both TiTn · B(w, k,m) and TnTi · B(w, k,m) equal
B(siw, k+1,m) if �(siw) > �(w) and k � d−2, and 0 otherwise. Similarly,

TiTn ·B(w) = 1(�(siw) > �(w))B(siw, 1, n) = TnTi ·B(w).

(2) Let b = B(w, k,m) with w ∈ Sn\Sn−1 and k � 2. Then TiTn ·B(w, k,m) =
0. To compute TnTi ·B(w, k,m), since i � n− 2, it follows that siw ∈ Sn \
Sn−1. If TiTw = 0, then we are done since B(w, k,m) = Tw ·B(1, k,m). Else
note that siw ∈ Sn \Sn−1, whence TnTi ·B(w, k,m) = Tn ·B(siw, k,m) = 0
from above.

(3) Finally, let w ∈ Sn \ Sn−1 and write w = w′sn−1 · · · sm′ by Lemma 4.3.
First suppose b = B(w, 1,m). If �(siw) < �(w), then it is not hard to show
that both TiTn · B(w, 1,m) and TnTi · B(w, 1,m) vanish. Otherwise both
terms are equal to B(siw

′sn−1 · · · sm−1, 1,m
′). A similar analysis shows

that if �(siw) < �(w), then TiTn · B(w) = TnTi · B(w) = 0, otherwise
TiTn ·B(w) = TnTi ·B(w) = B(siw

′, 1,m′).

Next, we show that the braid relation Tn−1TnTn−1 = TnTn−1Tn holds on B.
This is the most involved computation to carry out. We consider the same three
cases as above.

(1) Fix w ∈ Sn−1. If b = B(w, k,m) with k � 2, then it is easily verified that
both sides of the braid relation kill B(w, k,m). If instead k = 1, then

TnTn−1Tn ·B(w, 1,m) = TnTn−1 ·B(w, 2,m) = 0.

To compute the other side, first notice B(w, 1,m) = Tn · B(wsn−1 · · · sm).
Hence,

TnTn−1 ·B(w, 1,m) = TnTn−1Tn ·B(wsn−1 · · · sm).

Now if the braid relation holds on B(w) for all w ∈ Sn, then

Tn−1TnTn−1 ·B(w, 1,m) = Tn−1 · TnTn−1Tn ·B(wsn−1 · · · sm)

= Tn−1Tn−1TnTn−1 ·B(wsn−1 · · · sm) ∈ T 2
n−1 · M = 0,

where the last equality follows from the definition of M as an Rn−1-module.
It thus suffices for this case to verify that the braid relation holds on B(w)
for w ∈ Sn. This is done by considering the following four subcases.
(a) If w ∈ Sn−2 commutes with sn−1, sn, then both TnTn−1Tn ·B(w) and

Tn−1TnTn−1 ·B(w) are easily seen to equal B(sn−1w, 1, n− 1).
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(b) Suppose w = w′sn−2 · · · sm′ ∈ Sn−1 \ Sn−2, with w′ ∈ Sn−2 and
m′ ∈ [1, n−2]. Then using Remark 4.5 and the Rn−1-module structure
of M , we compute

TnTn−1Tn ·B(w) = TnTn−1 ·B(w, 1, n) = Tn ·B(w′sn−1 · · · sm′ , 1, n)

= B(w′sn−1, 1,m
′),

Tn−1TnTn−1 ·B(w) = Tn−1Tn ·B(w′sn−1 · · · sm′) = Tn−1 ·B(w′, 1,m′)

= B(sn−1w
′, 1,m′),

whence we are done since sn−1 commutes with w′ ∈ Sn−2.
(c) In the last two subcases, w = w′sn−1 · · · sm′ ∈ Sn \ Sn−1 with m′ ∈

[1, n − 1]. As in the previous two subcases, first suppose w′ ∈ Sn−2.
Similar to the above computations, one verifies that both TnTn−1Tn ·
B(w) and Tn−1TnTn−1 ·B(w) vanish.

(d) Finally, suppose w = w′′sn−2 · · · sm · sn−1 · · · sm′ with m ∈ [1, n− 2],
m′ ∈ [1, n− 1], and w′′ ∈ Sn−2. Then one verifies that

TnTn−1Tn ·B(w) = 1(m < m′)B(w′′sn−2 · · · sm′−1, 1,m) = Tn−1TnTn−1 ·B(w).

(2) Next suppose b ∈ B2 is of the form B(w, k,m) with k � 2 and w =
w′sn−1 · · · sm′ ∈ Sn \ Sn−1. Then Tn · B(w, k,m) = 0 by definition, so
TnTn−1Tn · B(w, k,m) = 0. To show that Tn−1TnTn−1 kills B(w, k,m),
we consider two subcases. If w′ ∈ Sn−2, then Tn−1 · B(w, k,m) = 0 and
we are done. Otherwise suppose w′ = w′′sn−2 · · · sm′′ ∈ Sn−1 \ Sn−2, with
m′′ ∈ [1, n− 2]. Now compute using Remark 4.5 and the relations verified
above:

Tn−1TnTn−1 ·B(w, k,m)

= Tn−1Tn ·B(w′′sn−1 · · · sm′′sn−1 · · · sm′ , k,m)

= 1(m′′ < m′)Tn−1Tn ·B(w′′sn−2 · · · sm′−1sn−1 · · · sm′′ , k,m)

= 1(m′′ < m′)Tn−1 · 0 = 0,

where the penultimate equality uses that k = 2.
(3) Finally, suppose b ∈ B3. By the analysis in the first case above, we

only need to consider b = B(w, 1,m) with w = w′sn−1 · · · sm′ ∈ Sn \
Sn−1. It is now not hard to show that both TnTn−1Tn · B(w, 1,m) and
Tn−1TnTn−1 · B(w, 1,m) vanish if w′ ∈ Sn−2. On the other hand, if
w′ = w′′sn−2 · · · sm′′ ∈ Sn−1 \ Sn−2, then repeated use of Remark 4.5
(and equation (4.4)) shows that

Tn−1TnTn−1 ·B(w, 1,m)

= Tn−1TnTn−1 ·B(w′′ · sn−2 · · · sm′′ · sn−1 · · · sm′ , 1,m)

= 1(m′′ < m′)Tn−1Tn ·B(w′′ · sn−2 · · · sm′−1 · sn−1 · · · sm′′ , 1,m)

= 1(m′′ < m′)1(m′′ < m)Tn−1 ·B(w′′ · sn−2 · · · sm′−1 · sn−1 · · · sm−1, 1,m
′′)

= 1(m′′ < m′)1(m′′ < m)1(m′ < m)B(w′′sn−2 · · · sm−2sn−1 · · · sm′−1, 1,m)

= 1(m′′ < m′ < m)B(w′′sn−2 · · · sm−2sn−1 · · · sm′−1, 1,m).
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Notice this calculation shows the “braid-like” action of Tn, Tn−1 on strings
of the type

Tn−2 · · ·Tm′′ , Tn−1 · · ·Tm′ , Tn · · ·Tm.

Similarly, one shows that

TnTn−1Tn ·B(w, 1,m) = 1(m′′ < m′ < m)B(w′′sn−2 · · · sm−2sn−1 · · · sm′−1, 1,m),

which verifies that the last braid relation holds in the last case.

Thus the algebra relations hold on all of M , making it an NCA(n, d)-module
generated by B(1), as claimed. In particular, NCA(n, d) � M as k-modules, by the
analysis in the first part of this proof. This completes the proof of all but the last
assertion in Theorem B. Finally, the nil-Coxeter algebra NCAl

((2, . . . , 2)) surjects
onto Rl, and Rl � Rl · B(∅) ⊂ V1 is free of k-rank (l + 1)! from above. Hence
Rl � NCAl

((2, . . . , 2)), as desired. �

5. Proof of Theorem C, primitive elements, and categorification

In this section we continue our study of the algebras NCA(n, d), starting with
Theorem C.

Proof of Theorem C. We retain the notation of Theorem B. Via the k-module
isomorphism M � NCA(n, d), we identify the basis element B(w, k,m) with
TwT

k
nTn−1 · · ·Tm and B(w) with Tw, where w ∈ Sn, k ∈ [1, d− 1], and m ∈ [1, n].

Let � : B → Z�0 be as in equation (1.10).
We now claim that if T = Ti1 · · ·Til is any nonzero word in NCA(n, d), then l

is precisely the length of T when expressed (uniquely) in standard form (4.7). The
proof is by induction on l. For l = 1, Ti is already in standard form (and nonzero).
Now given a word T = TiT ′ of length l + 1 (so T ′ has length l and satisfies the
claim), write T ′ via the induction hypothesis as a word in standard form of length
l. Now the proof of Theorem B shows that applying any Ti to this standard form
for T ′ either yields zero or has length precisely l + 1. This proves the claim.

The above analysis shows (1) and (2). Now suppose k is a field. Then the algebra
NCA(n, d) has a maximal ideal m = 〈{Ti : i ∈ I}〉; in fact, m has k-corank 1 by the
proof of Theorem B. Moreover, m is local because any element of A\m is invertible.
(In particular, one understands representations of the algebra NCA(n, d), e.g., by
[Kha, §6.1].)

The aforementioned claim also proves that ml+1 = 0, where l := �An−1
(w′

◦) +
d + n − 2. This is because any nonzero word can be expressed in standard form
without changing the length. �

As an immediate consequence, we have the following corollary.

Corollary 5.1. If k is a field and T1, . . . , Tn all have graded degree 1, the Hilbert–
Poincaré series of NCA(n, d) is the polynomial

[n]q! (1 + [n]q [d− 1]q), where [n]q :=
qn − 1

q − 1
, [n]q! :=

n∏
j=1

[j]q.

The proof also uses the standard result that the Hilbert–Poincaré series of the
usual nil-Coxeter algebra NCA(n, 2) is [n]q! (see, e.g., [Hum, §3.12, 3.15]).

Next, we discuss a property that was explored in [Kho] for the usual nil-Coxeter
algebras NCA(n, 2): these algebras are always Frobenius. We now study when the
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algebras NCA(n, d) are also Frobenius for d � 3. As the following result shows,
this only happens in the degenerate case of n = 1, i.e., k[T1]/(T

d
1 ).

Theorem 5.2. Suppose k is a field. Given n � 1 and d � 2, the algebra NCA(n, d)
is Frobenius if and only if n = 1 or d = 2.

One checks via equation (2.1) that these conditions are further equivalent to (the
group algebra of) the “generalized Coxeter group” W (Mn,d) being a flat deforma-
tion of NCA(n, d).

The proof of Theorem 5.2 crucially uses the knowledge of “maximal”, i.e., prim-
itive words in the algebra NCA(n, d). Formally, given a generalized Coxeter matrix
M , say that an element x ∈ NC(M) is left (respectively, right) primitive if mx = 0
(respectively, xm = 0); cf. Theorem C(3). Now x is primitive if it is both left- and
right-primitive. Denote these sets of elements respectively by

PrimL(NC(M)), PrimR(NC(M)), Prim(NC(M)).

Proposition 5.3. Every generalized nil-Coxeter algebra NC(M) is equipped with
an anti-involution θ that fixes each generator Ti. Now θ is an isomorphism:
PrimL(NC(M)) ←→ PrimR(NC(M)). Moreover, the following hold:

(1) If W (M) is a finite Coxeter group with unique longest word w◦, then

PrimL(NC(M)) = PrimR(NC(M)) = Prim(NC(M)) = kTw◦ .

(2) If NC(M) = NCA(1, d), then

PrimL(NC(M)) = PrimR(NC(M)) = Prim(NC(M)) = k · T d−1
1 .

(3) If NC(M) = NCA(n, d) with n � 2 and d � 3, then:
(a) PrimL(NC(M)) is spanned by Tw◦ := Tw′

◦TnTn−1 · · ·T1 and the
n(d− 2) words

{Tw′
◦T

k
nTn−1 · · ·Tm : k ∈ [2, d− 1], m ∈ [1, n]}.

(b) Prim(NC(M)) is spanned by the d− 1 words Tw′
◦T

k
nTn−1 · · ·T1, where

1 � k � d− 1.

In all cases, the map θ fixes both Prim(NC(M)) as well as the lengths of all nonzero
words.

Proof. The first two statements are obvious since θ preserves the defining relations
in k〈{Ti : i ∈ I}〉. The assertion in (1) is standard (see, e.g., [Hum, Chapter 7])
and (2) is easily verified.

We next classify the left-primitive elements as in (3)(a). Suppose for some k � 2
and 1 � m � n that T = Tw′

◦T
k
nTn−1 · · ·Tm. Then clearly TiT = 0 for all i < n,

and TnT = 0 since k � 2, as discussed in the proof of Theorem B. Similarly, if
T = Tw◦ , then TiT = 0 for i < n, and we also computed in the proof of Theorem
B that Tw◦ = T1 · · ·Tn−1TnTw′

◦ . Hence,

TnTw◦ = T1 · · ·Tn−2(TnTn−1Tn)Tw′
◦ = T1 · · ·Tn−1Tn(Tn−1Tw′

◦) = 0.

To complete the proof of (3)(a), it suffices to show that no nonzero linear combina-
tion of the remaining words of the form TwT

k
nTn−1 · · ·Tm is left-primitive. Suppose

first that there is a word w ∈ WAn−1
such that the coefficient of Tw is nonzero. In

that case, choose such an element w of smallest length and left-multiply the linear
combination by T d−1

n Tw′
◦w

−1 . As discussed in the proof of Theorem B, this kills all

terms Tw′T k
nTw′′ with w′, w′′ ∈ WAn−1

and k � 1. Moreover, by [Hum, Chapter 7],
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left-multiplication by Tw′
◦w

−1 also kills all terms of the same length that are not Tw.

Thus we are left with T d−1
n Tw′

◦w
−1Tw = T d−1

n Tw′
◦ �= 0, so the linear combination

was not left-primitive.
The other case is that all words in the linear combination are of the form

TwT
k
nTn−1 · · ·Tm with k � 1. Once again, choose w ∈ WAn−1

of smallest length for
which the corresponding word has nonzero coefficient, and left-multiply by Tw′

◦w
−1 .

This yields a nonzero linear combination by the analysis in Theorem B, which
proves the assertion about left-primitivity.

We next identify the primitive elements in NC(M) = NCA(n, d). The first claim
is that Tk := Tw′

◦T
k
nTn−1 · · ·T1 is fixed by θ. Indeed, we compute using the braid

relations in type A that θ fixes Tw′
◦ ∈ Rn−1 and Tw′′

◦ ∈ Rn−2. Hence,

(5.4) θ(Tk) = T1 · · ·Tn−1T
k
nTw′′

◦ Tn−1 · · ·T1 = T1 · · ·Tn−1Tw′′
◦ T

k
nTn−1 · · ·T1 = Tk.

Using this we claim that Tk is right-primitive. Indeed, if i < n, then

TkTi = T1 · · ·Tn−1T
k
nTw′

◦Ti = 0,

while for i = n, we compute

TkTn = Tw′
◦T

k
nTn−1Tn · Tn−2 · · ·T1 = T k−1

n Tw′
◦Tn−1 · TnTn−1Tn−2 · · ·T1 = 0.

We now claim that no linear combination of the remaining left-primitive elements
listed in (3)(a) is right-primitive. Indeed, let m0 denote the minimum of the m-
values in words with nonzero coefficients; then m0 > 1 by the above analysis. Now
right-multiply by Tm0−1 · · ·T1. This kills all elements with m-value > m0 + 1,
since Tm0−1 commutes with TnTn−1 · · ·Tm, and hence can be taken past them to
multiply against Tw′

◦ and be killed. The terms with m-value equal to m0 are not
killed by the analysis in Theorem B. It follows that such a linear combination is
not right-primitive, which completes the classification of the primitive elements in
(3)(b).

Next, that Prim(NC(M)) is fixed by θ was shown in equation (5.4). Moreover, if
NC(M) equals NCA(n, d) or kW (M) with W (M) finite, then it is equipped with a
suitable length function �. Now θ preserves the length because the algebra relations
are �-homogeneous and preserved by θ. �

Remark 5.5. In light of Proposition 5.3, it is natural to ask how to write right-
primitive words in standard form. More generally, given w = w′sn−1 · · · sm′ for
unique w′ ∈ Sn−1 and m′ ∈ [1, n] (via Lemma 4.3), we have: Tm · · ·Tn−1T

k
nTw =

Tw̃T
k
nTn−1 · · ·Tm′ , where w̃ = sm · · · sn−1w

′.

With Proposition 5.3 in hand, we turn to the Frobenius property of NCA(n, d).
The following proof reveals thatNCA(n, d) is Frobenius if and only if Prim(NC(M))
is one dimensional.

Proof of Theorem 5.2. For finite Coxeter groups W (M), the corresponding nil-
Coxeter algebras NC(M) are indeed Frobenius; see, e.g., [Kho, §2.2]. It is also
easy to verify that NCA(1, d) = k[T1]/(T

d
1 ) is Frobenius by using the symmet-

ric bilinear form uniquely specified by σ(T i
1, T

j
1 ) = 1(i + j = d − 1). Thus,

it remains to show that for n � 2 and d � 3, the algebra NCA(n, d) is not
Frobenius. Indeed, if NCA(n, d) is Frobenius with nondegenerate invariant bi-
linear form σ, then for each nonzero primitive p there exists a vector ap such
that 0 �= σ(p, ap) = σ(pap, 1). It follows that we may take ap = 1 for all p.
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Now the linear functional σ(−, 1) : Prim(NCA(n, d)) → k is nonsingular, whence
dimk Prim(NCA(n, d)) = 1. Thus n = 1 or d = 2 by Proposition 5.3. �

We conclude this section by discussing the connection of NCA(n, d) to the cate-
gorification by Khovanov [Kho] of the Weyl algebra Wn := Z〈x, ∂〉/(∂x = 1 + x∂).
Namely, the usual type A nil-Coxeter algebra An := NCA(n, 2) is a bimodule over
An−1, and this structure was studied in loc. cit., leading to the construction of
tensor functors categorifying the operators x, ∂.

We now explain how the algebra NCA(n, d) fits into this framework.

Proposition 5.6. For all n � 1 and d � 2, we have an isomorphism of An−1-
bimodules:

NCA(n, d) � An−1 ⊕
d−1⊕
k=1

(
An−1 ⊗An−2

An−1

)
.

When d = 2, this result was shown in [Kho, Proposition 5]. For general d � 2,
using the notation of [Kho], this result implies in the category of An−1-bimodules
that the algebra NCA(n, d) corresponds to 1 + (d− 1)x∂ (including the previously
known case of d = 2). In particular, Proposition 5.6 strengthens Theorems B
and C, which explained a left An−1-module structure on NCA(n, d) (namely, that
NCA(n, d) is free of rank 1 + n(d− 1)).

Proof of Proposition 5.6. From the proof of Theorem B, the algebra NCA(n, d)

has a “regular representation” ϕ : M
∼−→ NCA(n, d), sending B(w) �→ Tw and

B(w, k,m) �→ TwT
k
nTn−1 · · ·Tm for w ∈ Sn, k ∈ [1, d − 1], and m ∈ [1, n]. Also

recall the subspaces Vk,m defined in the discussion following equation (4.7): Vk,m =⊕
w∈Sn

kB(w, k,m).

By Theorem B, Mk :=
⊕n

m=1 ϕ(Vk,m) is a free left An−1-module of rank one.
It is also a free right An−1-module of rank one, using the anti-involution θ from
Proposition 5.3 and Remark 5.5. In fact, the uniqueness of the standard form (4.7)
shown in the proof of Theorem B implies that for all 1 � k � d− 1 the map

ϕk : An−1 ⊗An−2
An−1 → Mk, a⊗ a′ �→ aT k

na
′

is an isomorphism of An−1-bimodules. Now the result follows from (the proof of)
Theorem B. �

Remark 5.7. Notice that the proof of Proposition 5.6 also categorifies Corollary
5.1.

6. Proof of Theorem D: Finite-dimensional generalized

nil-Coxeter algebras

We now prove Theorem D, which classifies the generalized nil-Coxeter algebras
of finite k-rank. The bulk of the proof involves showing (1) =⇒ (2). We again
employ the diagrammatic calculus used to show Theorem B, now applied to the
five diagrams in Figure 3.

We begin by assuming that W = W (M) is a generalized Coxeter group and
then by classifying the algebras NC(M) that have finite k-rank. Following this
classification, we address the remaining finite complex reflection groups W (and all
d), followed by the infinite discrete complex reflection groups with their Coxeter-
type presentations.
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Figure 3. Modules for the infinite-dimensional generalized nil-
Coxeter algebras
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Case 1. Suppose mii = 2 for all i ∈ I. In this case W (M) is a Coxeter group, so
by, e.g., [Hum, Chapter 7], NC(M) has a k-basis in bijection with W (M), which
must therefore be finite.

Case 2. Suppose mαα,mγγ � 3 for some α, γ ∈ I with mαγ � 3. In this case we
appeal to Figure 3.1 and work as in the proof of [Mar, Proposition 3.2]. Thus, fix
a free k-module M with basis given by the countable set {Ar, Br, Cr, Dr : r � 1},
and define an NC(M)-action via Figure 3.1. Namely, Ti kills all basis vectors for
all i ∈ I, with the following exceptions:

Tα(Ar) := Br, Tγ(Br) := Cr, Tγ(Cr) := Dr, Tα(Dr) := Ar+1 ∀r � 1.

(The “+” at the head of an arrow refers precisely to the index increasing by 1.) It is
easy to verify that the defining relations of NC(M) hold in Endk(M ), as they hold
on each Ar, Br, Cr, Dr. Therefore M is a module over NC(M) that is generated
by A1 but is not finitely generated as a k-module. As NC(M) � M , NC(M) is
also not a finitely generated k-module.

This approach is used in the remainder of the proof, to obtain a k-basis and the
NC(M)-action on it, from the diagrams in Figure 3. Thus we only mention the
figure corresponding to each of the cases below.

Case 3. Figure 3.1 is actually a special case of Figure 3.2 and was included to
demonstrate a simpler case. Now suppose more generally that there are two nodes
α, γ ∈ I such that mαα,mγγ � 3. Since the Coxeter graph is connected, there exist
nodes β1, . . . , βm−1 for some m � 1 (in the figure we write m′ := m− 1) such that

α ←→ β1 ←→ · · · ←→ βm−1 ←→ γ

is a path (so each successive pair of nodes is connected by at least a single edge).
Now appeal to Figure 3.2, i.e., define an NC(M)-module structure on the free
k-module

M := span
k
{Ar, B1r, . . . , Bmr, Cr, B

′
1r, . . . , B

′
mr : r � 1},

where each Ti kills all basis vectors above, except for the actions obtained from
Figure 3.2. Once again, M is generated by A1, so proceed as above to show that
NC(M) is not finitely generated.

Case 4. The previous cases reduce the situation to a unique vertex α in the Coxeter
graph of M for which mαα � 3. The next two steps show that α is adjacent to a
unique node γ and that mαγ = 3. First suppose α is adjacent to γ with mαγ � 4.
Now appeal to Figure 3.3, setting (s, t, u) � (α, α, γ), and define an NC(M)-
module structure on M := span

k
{Ar, Br, Cr : r � 1}. Then proceed as above.

Case 5. Next suppose α is adjacent in the Coxeter graph to two nodes γ, δ. By the
previous case, mαγ = mαδ = 3. Now appeal to Figure 3.4 with m = 1 to define an
NC(M)-module structure on M := span

k
{Ar, B1r, B

′
1r, Cr, Dr : r � 1} and then

proceed as in the previous cases.
We now observe that if NC(M) is finitely generated, then so is NCM ((2, . . . , 2)),

which corresponds to the Coxeter group WM ((2, . . . , 2)). Hence the Coxeter graph
of M is of finite type. These graphs were classified by Coxeter [Cox1]. We now
rule out all cases other than type A, in which case the above analysis shows that
d = (2, . . . , 2, d) or (d, 2, . . . , 2).
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Case 6. First notice that dihedral types (i.e., types G2, H2, I) are already ruled out
by the above cases. The same cases also rule out one possibility in types B,C,H,
where we may now set n � 3. For the remaining cases of types B,C,H, assume
that the Coxeter graph is labelled

α ←→ β1 ←→ · · · ←→ βm−1 ←→ γ,

withmαα � 3,mγγ = 2,mβm−1γ � 4. In this case we construct the NC(M)-module
M by appealing to Figure 3.5; now proceed as above.

Case 7. The next case is of type Dn, with n � 4. Notice that α is an extremal
(i.e., pendant) vertex by the above analysis. First assume α is the extremal node
on the “long arm” of the Coxeter graph. Now appeal to Figure 3.4 with m = n− 2
to construct an NC(M)-module M .

The other subcase is when α is one of the other two extremal nodes in the Dn-
graph. Define the quotient algebra NC ′(M) whose Coxeter graph is of type D4

(i.e., where we kill the n − 4 generators Ti in the long arm that are the furthest
away from α). Now repeat the construction in the previous paragraph, using Figure
3.4 with m = 2. It is easy to verify that the space M is a module for NC ′(M)
and hence for the algebra NCD4

((2, 2, 2,mαα)). This allows us to proceed as in the
previous subcase and show that NC ′(M) is not finitely generated, whence neither
is NC(M).

Case 8. If the Coxeter graph is of type E, then we may reduce to the Dn-case by
the analysis in the previous case. Hence it follows using Figure 3.4 that NC(M) is
not finitely generated.

Case 9. If the Coxeter graph is of type F4, then we may reduce to the Bn-case
by the analysis in Case 7. It now follows from Case 6 that NC(M) is not finitely
generated.

This completes the classification for generalized Coxeter groups W (M). We
now appeal to the classification and presentation of all finite complex reflection
groups whose Coxeter graph is connected. These groups and their presentations are
listed in [BMR2, Tables 1–4]. In what follows, we adopt the following notation: if
W = Gm for 4 � m � 37, then the corresponding generalized nil-Coxeter algebras
will be denoted by NCm(d). Similarly if W = G(de, e, r), then we work with
NC(de,e,r)(d). In what follows, we will often claim that NCW (d) is not finitely
generated (over k), omitting the phrase “unless it is the usual nil-Coxeter algebra
over a finite Coxeter group”.

Case 10 (Exceptional types with finite Coxeter graph). If W = Gm for m =
4, 8, 16, 25, 32, then its Coxeter graph is of type A. This case has been addressed
above; thus the only possibility that NCW (d) has finite rank is that it equals
NCAn

((2, . . . , 2, d)) for d � 2, as desired.
Next if W = Gm for m = 5, 10, 18, 26, then its Coxeter graph is of type B, which

was also addressed above and never yields an algebra of finite k-rank. Now suppose
W = G29. Then s, t, u form a subdiagram of type B3, whence the quotient algebra
NC ′

29 generated by Ts, Tt, Tu is not finitely generated by arguments as in Case 7
above. It follows that NC29(d) is also not finitely generated.

The next case is if W = Gm for m = 6, 9, 14, 17, 20, 21. In this case the Coxeter
graph is of dihedral type, which was also addressed above.
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Case 11 (All other exceptional types). For the remaining exceptional values of
m ∈ [4, 37], with W not a finite Coxeter group, we will appeal to Figure 3.3. There
are three cases: first, suppose m = 31. In this case, set (s, t, u) � (s, u, t) in Figure
3.3 and define an NCm(d)-module M that is k-free with basis {Ar, Br, Cr : r � 1}.
Now proceed as above.

Next if m = 33, 34, then set (s, t, u) � (w, t, u) in Figure 3.3 to define an
NCm(d)-module M and proceed as above.

Finally, fix any other m, i.e., m = 7, 11, 12, 13, 15, 19, 22, 24, 27. In this case, use
Figure 3.3 to define an NCm(d)-module M and proceed as above.

Case 12 (The infinite families). It remains to consider the six infinite families
enumerated in [BMR2] which make up the family G(de, e, r). Three of the families
consist of finite Coxeter groups of types A,B, I, which were considered above. We
now consider the other three families:

(a) Suppose W = G(de, e, r) with e � 3. Then by [BMR2, Table 1], consider
the quotient algebraNC ′

(de,e,r) ofNC(de,e,r)(d) which is generated by s, t :=

t′2, u := t2, by killing all other generators Ti. The generators of NC ′
(de,e,r)

now satisfy the relations

T ds
s = T dt

t = T du
u = 0, TsTtTu = TtTuTs, TuTsTtTu · · ·︸ ︷︷ ︸

(e+1) times

= TsTtTuTs · · ·︸ ︷︷ ︸
(e+1) times

.

Thus, use Figure 3.3 to define an NC ′
(de,e,r)-module structure on M and

proceed as above to show that NC(de,e,r)(d) is not finitely generated.
(b) Suppose W = G(2d, 2, r) with d � 2; see [BMR2, Table 2]. Apply a similar

argument as in the previous subcase, using the same generators and the
same figure.

(c) Suppose W = G(e, e, r) with e � 2 and r > 2. If e = 2, then G(2, 2, r)
is a finite Coxeter group, and hence was addressed above. Next, if r > 3,
then killing Ts reduces to (a quotient of) the Dn-case, which was once again
addressed above. Finally, suppose r = 3 � e. Setting s := t3, t := t′2, u :=
t2, the generators of NC(e,e,3) satisfy

T ds
s = T dt

t = T du
u = 0, TsTtTs = TtTsTt, TsTuTs = TuTsTu,

(TsTtTu)
2 = (TtTuTs)

2, TuTtTuTt · · ·︸ ︷︷ ︸
e times

= TtTuTtTu · · ·︸ ︷︷ ︸
e times

.

Once again, use Figure 3.3 to define an NC(e,e,3)-module structure on M
and proceed as above.

This completes the proof of (1) =⇒ (2) for finite complex reflection groups.
Next, by, e.g., [Hum, Chapter 7], for no infinite Coxeter groupW isNCW ((2, . . . , 2))
a finitely generated k-module; hence the same result holds for NCW (d) when all
di � 2. We now use the classification of the (remaining) infinite complex reflection
groups W associated to a connected braid diagram. These groups were described
in [Pop1] and subsequently in [Mal]. Thus, there exists a complex affine space E
with group of translations V ; choosing a basepoint v0 ∈ E, we can identify the
semidirect product GL(V ) � V with the group A(E) of affine transformations of
E. Moreover, W ⊂ A(E). Define Lin(W ) to be the image of W in the factor group
GL(V ) and define Tran(W ) to be the subset of W in V , i.e.,

(6.1) Tran(W ) := W ∩ V, Lin(W ) := W/Tran(W ).
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It remains to consider three cases for irreducible infinite complex reflection groups
W .

Case 13. The group W is noncrystallographic, i.e., E/W is not compact. Then by
[Pop1, Theorem 2.2], there exists a real form ER ⊂ E whose complexification is E,
i.e., ER ⊗R C = E. Moreover, by the same theorem, restricting the elements of W
to ER yields an affine Weyl group WR. Hence if NCW (d) is a finitely generated
k-module, then so is NCWR

((2, . . . , 2)), which is impossible.

Case 14. The group W is a genuine crystallographic group, i.e., E/W is compact
and Lin(W ) is not the complexification of a real reflection group. Such groups were
studied by Malle in [Mal], and Coxeter-type presentations for these groups were
provided in Tables I, II in loc. cit. Specifically, Malle showed that these groups are
quotients of a free monoid by a set of braid relations and order relations, together
with one additional order relation Rm0

0 = 1. We now show that for none of these
groups W is the algebra NCW (d) (defined in Definition 1.11) a finitely generated
k-module. To do so, we proceed as above by specifying the subfigure in Figure 3
that corresponds to each of these groups. There are three subcases:

(1) Suppose W is the group [G(3, 1, 1)] in [Mal, Table I] or [Km] in [Mal, Table
II] for m = 4, 8, 25, 32. For these groups we appeal to Figure 3.1 and
proceed as in Case 2 above.

(2) For W = [K33], [K34], notice that it suffices to show the claim that given

the Ã3 Coxeter graph (i.e., a 4-cycle) with nodes labelled α1, . . . , α4 in
clockwise fashion, the corresponding algebra NC

˜A3
(d) is not a finitely gen-

erated k-module. For this we construct a module M , using Figure 4 with
n = 4. Now proceeding as above shows the claim, and hence the result for
[K33], [K34].

Bn B1

B2

αn

α1

· · ·

...

+

Figure 4. Module M for NC
˜An
(d)

(3) For the remaining cases in [Mal, Tables I, II], we appeal to Figure 3.3 as in
Case 11 above, with three suitably chosen generators in each case.

Case 15. Finally, we consider the remaining “nongenuine, crystallographic” cases
as in [Pop1, Table 2]. Thus, E/W is compact and Lin(W ) is the complexification of
a real reflection group. In these cases, verify by inspection from [Pop1, Table 2] that
the cocycle c is always trivial. Thus W = Lin(W )�Tran(W ), with W ′ := Lin(W )
a finite Weyl group and Tran(W ) a lattice of rank 2|I ′|, where I ′ indexes the simple
reflections in the Weyl group W ′.

We now claim that the corresponding family of generalized nil-Coxeter algebras
NCW (d) are not finitely generated as k-modules. To show the claim requires
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a presentation of W in terms of generating reflections. The following recipe for
such a presentation was communicated to us by Popov [Pop2]. Notice from, e.g.,
[Pop1, Table 2] that Tran(W ) is a direct sum of two Lin(W )-stable lattices Λ1

and Λ2 = αΛ1 (with α �∈ R), each of rank |I ′|. Thus, Λ1
∼= Λ2 as ZW ′-modules,

with W ′ = Lin(W ) a finite real reflection group as above. Moreover, for j =
1, 2, the semidirect product Sj := W ′ � Λj is a real crystallographic reflection
group whose fundamental domain is a simplex; this yields a presentation of Sj via
|I ′|+1 generating reflections in the codimension-one faces of this simplex. One now
combines these presentations for S1, S2 to obtain a system of |I ′|+2 generators for
W ; see in this context the remarks following [Mal, Theorem 3.1]. In this setting, it
follows by [Pop1, Theorem 4.5] that each Sj is isomorphic, as a real reflection group,

to the affine Weyl group W̃ ′ over W ′, since the Coxeter type of Sj is determined
by the Coxeter types of W ′ and Λj . Thus W is in some sense a “double affine
Weyl group”. (For simply laced W ′, it is also easy to verify by inspection from
[Pop1, Table 2] that Λj is isomorphic as a ZW ′-module to the root lattice for W ′,

whence Sj
∼= W̃ ′ for j = 1, 2.)

Equipped with this presentation of W from [Pop2], we analyze NCW (d) as
follows. Fix a ZW ′-module isomorphism ϕ : Λ1 → Λ2 and choose affine reflections
s0j ∈ Sj , corresponding to μ1 and μ2 = ϕ(μ1) respectively, which together with

the simple reflections {si : i ∈ I ′} ⊂ W generate Sj
∼= W̃ ′. Then W � W̃ ′ upon

quotienting by the relation s01 = s02. Using the presentation of NCW (d) via the
corresponding |I ′|+ 2 generators {Ti : i ∈ I ′} � {T01, T02},
NCW (d) � NCW ((2, . . . , 2)) � NCW ((2, . . . , 2))/(T01−T02) ∼= NC

˜W ′((2, . . . , 2)),

and this last term is an affine Weyl nil-Coxeter algebra, hence is not finitely gener-
ated as a k-module. Therefore neither is NCW (d), as desired.

This shows that (1) =⇒ (2); the converse follows by [Hum, Chapter 7] and
Theorem B.

We now show that (2) and (3) are equivalent. Note from the above case-by-
case analysis that if NCW (d) is not finitely generated, then either it surjects onto
an affine Weyl nil-Coxeter algebra NC

˜W ′((2, . . . , 2)) or one can define a module
M as above, and for each r � 1 there exists a word Twr

∈ NCW (d), expressed
using O(r) generators, which sends the k-basis vector A1 ∈ M to Ar. It follows in
both cases that m is not nilpotent. Next, if W = W (M) is a finite Coxeter group,
then it is well known (see, e.g., [Hum, Chapter 7]) that m is nilpotent. Finally, if
NC(M) = NCA(n, d), then m is nilpotent by Theorem C. This shows (2) ⇐⇒ (3).

The final statement on the length function � and the longest element also follows
from [Hum, Chapter 7] and Theorem C. �
Remark 6.2. If M is a generalized Coxeter matrix with some mij = ∞, then we
can similarly work with M the k-span of {ar, br : r � 1}, where

Ti : ar �→ br, br �→ 0, Tj : br �→ ar+1, ar �→ 0,

and all other Tk kill M . It follows that NC(M) once again has infinite k-rank.
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[BMR2] Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid
groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. MR1637497

[Ca] Roger W. Carter, Representation theory of the 0-Hecke algebra, J. Algebra 104 (1986),
no. 1, 89–103, DOI 10.1016/0021-8693(86)90238-3. MR865891
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