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In this graduate textbook Professor Humphreys presents a concrete and up-to-
date introduction to the theory of Coxeter groups. He assumes that the reader
has a good knowledge of algebra, but otherwise the book is self-contained making
it suitable either for courses and seminars or for self-study.

The first part is devoted to establishing concrete examples. Chapter 1 develops
the most important facts about finite reflection groups and related geometry,
leading to the presentation of such groups as Coxeter groups. In Chapter 2 these
groups are classified by Coxeter graphs, and actual realizations are described.
Chapter 3 discusses in detail the polynomial invariants of finite reflection groups.
The first part ends with the construction in Chapter 4 of the affine Weyl groups,
a class of Coxeter groups which plays a major role in Lie theory.

The second part (which is logically independent of, but motivated by, the first)
starts by developing from scratch the properties of Coxeter groups in general,
including the Bruhat ordering. In Chapter 6, it is shown how earlier examples
and others fit into the general classification of Coxeter graphs. Chapter 7 in-
troduces the seminal work of Kazhdan and Lusztig on representations of Hecke
algebras associated with Coxeter groups. Finally, Chapter 8 sketches a number
of interesting complementary topics as well as connections with Lie theory.

The book concludes with an extensive bibliography on Coxeter groups and
their applications.
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Preface

‘Les choses, en effet, sont pour le moins doubles.’
Proust, La Fugitive

Since its appearance in 1968, Bourbaki {1] (treating Coxeter groups, Tits
systems, reflection groups, and root systems) has become indispensable
to all students of semisimple Lie theory. An enormous amount of in-
formation is packed into relatively few pages, including detailed descrip-
tions of the individual root systems and a vast assortment of challenging
‘exercises’. My own dog-eared copy (purchased at Dillon’s in London in
the spring of 1969 for 90 shillings) is always at hand. The present book
attempts to be both an introduction to Bourbaki and an updating of
the coverage, by inclusion of such topics as Bruhat ordering of Coxeter
groups. I was motivated especially by the seminal 1979 paper of D.A.
Kazhdan and G. Lusztig 1], which has led to rapid progress in repre-
sentation theory and which deserves to be regarded as a fundamental
chapter in the theory of Coxeter groups.

Part I deals concretely with two of the most important types of Cox-
eter groups: finite (real) reflection groups and affine Weyl groups. The
treatment is fairly traditional, including the classification of associated
Coxeter graphs and the detailed study of polynomial invariants of finite
reflection groups.

Part II is for the most part logically independent of Part I, but lacks
motivation without it. Chapter 5 develops the general theory of Coxeter
groups, with emphasis on the ‘root system’ (following Deodhar {4]), the
Strong Exchange Condition of Verma, and the Bruhat ordering. Spe-
cial cases such as finite and hyperbolic Coxeter grips occupy Chapter
6. Chapter 7 is mainly an exposition of Kazhdan-Lusztig [1]. Finally,
Chapter 8 sketches some related topics of interest, with suggestions for
further reading. Because the subject reaches out in so many directions, I
have provided an extensive (though by no means complete) bibliography.

The arguments in Part 1 are largely self-contained. However, the
treatments of crystallographic reflection groups (Weyl groups) in Chap-
ter 2 and affine Weyl groups in Chapter 4 require some facts about

-_



xii Preface

(crystallographic) root systems which are less directly connected with
the theory of Coxeter groups and are therefore only summarized here.
The coverage in Chapter VI of Bourbaki is thorough and accessible, and
highly recommended for the serious student of Lie theory.

There are interesting groups generated by ‘reflections’ which are not
in a natural way Coxeter groups, including for example most of the
complex reflection groups (these deserve a book of their own). I have
mentioned such related theories only in passing, in order to concentrate
the treatment on Coxeter groups.

The history of the subject is long and intricate: see the Note his-
torique in Bourbaki as well as the historical remarks in Coxeter [1]. Of-
ten a result has been first observed empirically (using the classification
of finite reflection groups, for example) and later proved conceptually.
I have tried to attribute theorems correctly, but have stopped short of
reconstructing the history of each. The notes and references at the ends
of chapters are intended to make it possible for the interested reader to
get back to the original sources, notably the pioneering work of Coxeter
and Witt. I hope readers will call omissions or errors to my attention.

All cross-references are to sections, such as 2.7. Each section contains
at most one result labelled lemma, proposition, theorem or corollary,
later referred to as (for example) Theorem 2.7. In order to emphasize
what I take to be the high points in the development, I have made
a distinction (admittedly subjective) between the labels ‘proposition’
and ‘theorem’. Against considerable odds, I have struggled to make
consistent notational choices, but there are occasional local aberrations.
Exercises are scattered throughout the text. The reader is encouraged
to try all of them; but none is required afterwards except as indicated.

I am indebted to the many people whose books, papers, and lectures
have shaped my own knowledge of the subject, especially N. Bourbaki,
V.V. Deodhar and J. Tits. Special thanks are due to George Avrunin
for initiating me into the mysteries of INTzX. Research support from the
National Science Foundation is also gratefully acknowledged.

J.E. Humphreys
Ambherst, MA
October 1989

For this printing, a number of misprints and minor errors have been cor-
rected, and portions of 4.5, 5.5, 5.10 have been rewritten. I am grateful
to the many readers who pointed out errors and suggested improvements,
especially J. B. Carrell, E. Neher, and L. Tan.
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Chapter 1

Finite reflection groups

In this chapter we begin the study of finite groups generated by reflec-
tions in (real) euclidean spaces. Our main tool will be a well-chosen set
of vectors (‘roots’) orthogonal to reflecting hyperplanes (1.2). A set of
‘simple roots’ (1.3) yields an efficient generating set for the group (1.5),
leading eventually to a very simple presentation by generators and re-
lations as a ‘Coxeter group’ (1.9). The latter part of the chapter treats
a number of geometric and group-theoretic topics, all of which involve
the ‘parabolic’ subgroups generated by sets of simple reflections (1.10),
e.g., Poincaré polynomials (1.11), fundamental domains (1.12), and the
Coxeter complex (1.15).

1.1 Reflections

Recall what is meant by a reflection in a (real) euclidean space V
endowed with a positive definite symmetric bilinear form (A, ). A re-
flection is a linear operator s on V which sends some nonzero vector o
to its negative while fixing pointwise the hyperplane H, orthogonal to
a. We may write 8 = 3,, bearing in mind however that s, = $.o for
any nonzero ¢ € R. There is a simple formula:

s0’,\=,\_.2(L.’0‘20,

()

Indeed, this is correct when A = a and when A € Ho,; so it is correct for
all A € V= Ra® H,. A quick calculation (left to the reader) shows
that s, is an orthogonal transformation, i.e., (s, 8ap) = (A, u) for all
A u € V. Itis clear that s2 = 1, s0 s, has order 2 in the group O(V) of
all orthogonal transformations of V.

A finite group generated by reflections (or finite reflection group,
for short) is an especially interesting type of finite subgroup of O(V).

3




4 Finite reflection groups

The purpose of this chapter and the next will be to classify and describe
all such groups. In doing so, we shall explore alternately the internal
structure of the group itself (e.g., the relations satisfied by the generating
reflections) and the geometric aspects of the action of the group on V
(e.g., fundamental domains).

Here are some basic examples, which should be kept in mind as the
story unfolds. (They are labelled by ‘types’, in accordance with the
classification to be carried out in Chapter 2.)

(I2(m), m > 3) Take V to be the euclidean plane, and define Dy,
to be the dihedral group of order 2m, consisting of the orthogonal
transformations which preserve a regular m-sided polygon centered at
the origin. D,, contains m rotations (through multiples of 27/m) and
m reflections (about the ‘diagonals’ of the polygon). Here ‘diagonal’
means a line bisecting the polygon, joining two vertices or the midpoints
of opposite sides if m is even, or joining a vertex to the midpoint of the
opposite side if m is odd. Note that the rotations form a cyclic subgroup
of index 2, generated by a rotation through 2w/m. The group Dp, is
actually generated by reflections, because a rotation through 27 /m can
be achieved as a product of two reflections relative to a pair of adjacent
diagonals which meet at an angle of § := w/m (see Figure 1). Let

N\
N\

N\

Figure 1: The case m = 4

the reflecting lines H, and Hg contain these diagonals, and choose the
orthogonal unit vectors a = (sin6, — cos#) and 8 = (0,1) which form
an obtuse angle of'w — 6, so (a,3) = —cos §. To see that s,ss is a
(counterclockwise) rotation through 26, take Hs to be the z-axis and
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compute with 2 x 2 matrices relative to the standard basis of R?:
cos 20  sin 20 1 0\ _ [ cos20 —sin20
sin 20 —cos 26 0 -1 /) \sin20 cos26

‘Exercise 1. The reflections form a single conjugacy class in D,,, when m
is odd, but form two classes when m is even.

. (Ap-1, n > 2) Consider the symmetric group S,. It can be
thought of as a subgroup of the group O(n,R) of n x n orthogonal
matrices in the following way. Make a permutation act on R® by per-
muting the standard basis vectors €1,...,€, (permute the subscripts).
Observe that the transposition (ij) acts as a reflection, sending €; — ¢;
to its negative and fixing pointwise the orthogonal complement, which
consists of all vectors in R™ having equal ith and jth components. Since
S, is generated by transpositions, it is a reflection group. Indeed, it is
already generated by the transpositions (¢,¢ +1),1<i<n-—1.

¥

dEzercise 2. Regarding S, in this way as a subgroup of O(n, R), prove
that the transpositions are the sole reflections belonging to S,.

When S, acts on R" in the way just described, it fixes pointwise the
line spanned by €1 +. ..+ &, (these are clearly the only fixed points) and
leaves stable the orthogonal complement, the hyperplane consisting of
vectors whose coordinates add up to 0. Thus S, also acts on an (n — 1)-
dimensional euclidean space as a group generated by reflections, fixing
no point except the origin. This accounts for the subscript n — 1 in
the label A,,_;. When a reflection group W acts on V with no nonzero
fixed points, we say that W is essential relative to V. It is clear that
any subgroup W of O(V) stabilizes the orthogonal complement V’ of its
space of fixed points and is essential relative to V.

(B, n > 2) Again let V = R", so S,, acts on V as above. Other
reflections can be defined by sending an €; to its negative and fixing all
other ;. These sign changes generate a group of order 2" isomorphic to
(Z/2Z)", which intersects S, trivially and is normalized by S,.: conju-
gating the sign change €; — —e; by a transposition yields another such
sign change. Thus the semidirect product of S, and the group of sign
changes yields a reflection group W of order 2™l It is easy to check
that W is essential.

(D, n > 4) We can get another reflection group acting on R", a
subgroup of index 2 in the group of type B, just described: S,, clearly
normalizes the subgroup consisting of sign changes which involve an even
number of signs, generated by the reflections ; +¢€; — —(e; +¢€;5), 1 # j.
So the semidirect product is also a reflection group (and is essential).



6 Finite reflection groups

1.2 Roots

From now on we denote by W a finite reflection group, acting on the
euclidean space V. The letter W is used because ‘most’ finite reflection
groups turn out to be ‘Weyl groups’ (associated with semisimple Lie
algebras or Lie groups). Much of the theory to be developed in this
book is in fact motivated by the problems of Lie theory, cf. Bourbaki [1].

In order to understand the internal structure of W as an abstract
group, we first explore the way in which W acts on V. Each reflection
8o in W determines a reflecting hyperplane H, and a line L, = Ra
orthogonal to it. The following result implies that W permutes the
collection of all such lines.

Proposition Ift € O(V) and a is any nonzero vector in V, then
tsot ™! = 840. In particular, if w € W, then sy, belongs to W whenever
8o does.

Proof. Obviously ts,t~! sends ta to its negative. So we need only show
that ts,t~! fixes H;, pointwise. Note that A lies in H, if and only if
tA lies in Hyq, since (A, a) = (tA, ta). In turn, (tsat™1)(EA) = tsah = tA
whenever A lies in H,. O

Thus W permutes the lines L, where s, ranges over the set of re-
flections contained in W, via w(La) = Lye. Only the lines L, are
determined by W, not the vectors a. However, if we select the pairs of
unit vectors lying in all such lines, the collection of vectors so obtained
will be stable under the action of W. It is this sort of geometric con-
figuration which we shall emphasize below. Actually, we need not insist
that the vectors be of equal length: only the stability under W is sig-
nificant for our purposes. For example, the dihedral group D4 preserves
the collection of eight vectors in R?:

+(1,0), £(1,1), £(0,1), £(-1,1)

For flexibility in some future arguments, it is most convenient to
axiomatize the situation as follows. Take ® to be a finite set of nonzero
vectors in V satisfying the conditions:

(R1) N Ra = {a, —a} for all a € ¥;
(R2) 3,® =@ for all a € P.

Then define W to be the group generated by all reflections s4, a € ®.
Call ® a root system with associated reflection group W. The elements
of ® are called roots because of the historical connection between Weyl
groups and semisimple Lie algebras, where the notion of ‘root’ goes
back ultimately to the characteristic roots of certain operators on the
Lie algebra. However, our notion of ‘root system’ differs somewhat from
that encountered in Lie theory; see 2.9 below.
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As the previous discussion shows, any finite reflection group can be
realized in this way, possibly for many different choices of . Conversely,
any group W arising from a root system is in fact finite. Indeed, each
sa(a € ®) and hence each element of W fixes pointwise the orthogonal
complement of the subspace spanned by ®. So only w = 1 can fix all
elements of ®. This means that the natural homomorphism of W into
the symmetric group on ® has trivial kernel, forcing W to be finite.

To recapitulate: our finite reflection group W C O(V) is henceforth
to be studied in conjunction with a root system ® C V, subject only to
(R1) and (R2) above. The choice of ® is somewhat flexible. It might
consist of unit vectors, or not. The reflections s,(c €.®) might or might
not be known to exhaust all reflections in W. The set ® might span V,
or not. All that really matters for later arguments is that (R1) and (R2)
hold.

Remark. Given a root system ® and corresponding reflection group W,
define ¥’ to be the set of unit vectors proportional to the vectors in &.
Then @' is clearly a root system, with W as corresponding reflection

group.

1.3 Positive and simple systems

Fix a root system @ in the euclidean space V, so that W is the finite
reflection group generated by all so(a € ®). While W is completely de-
termined by the geometric configuration ®, there is one serious drawback
to using ® as a tool in the classification of possible reflection groups: ®
may be extremely large compared with the dimension of V. For exam-
ple, when W is a dihedral group, ¢ may have just as many elements as
W, even though dimV = 2.

This leads us to look for a linearly independent subset of ® (a ‘simple
system’) from which ® can somehow be reconstituted. More precisely,
we ask that each root be an R-linear combination of ‘simple’ roots with
coefficients all of like sign. In this way a simple system will yield a
partition of ® into ‘positive’ and ‘negative’ roots, with precisely one of
each pair {a, —a} labelled as positive. Partitions of this sort are easy
to find (by totally ordering V'), so we take this a§our starting point in
the search for a simple system.

Recall that a total ordering of the real vector space V is a transitive
relation on V (denoted <) satisfying the following axioms.

(1) For each pair A\, € V, exactly one of A < y, A = p, p < A holds.

(2) Forall \,p,vinV,if p<v,then A+ p< A +v.

(3) If 4 < v and c is a nonzero real number, then cp < cv if ¢ > 0,
while cv < cpu if ¢ < 0.
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Given such an ordering, we say that A € V is positive if 0 < A. The
sum of positive vectors is positive, as is the scalar multiple of a positive
vector by a positive real number.

To construct a total ordering of V is easy: choose an arbitrary or-
dered basis Ay,..., A, of V and adopt the corresponding lexicographic
order, where ¥ a;\; < Y b;A; means that ax < by, if k is the least index
1 for which a; # b;. The reader can quickly verify the axioms above.
Note too that all ); are positive in this ordering.

Returning to the root system ®, we call a subset II a positive sys-
tem if it consists of all those roots which are positive relative to some
total ordering of V. It is clear that positive systems exist. Moreover,
since roots come in pairs {a, —a}, it is clear that ® must be the disjoint
union of II and —II, the latter being called a negative system. When
Il is fixed, we can write a > 0 in place of a € II.

Call a subset A of ¢ a simple system (and call its elements simple
roots) if A is a vector space basis for the R-span of ® in V and if
moreover each a € ® is a linear combination of A with coefficients all of
the same sign (all nonnegative or all nonpositive). It is not at all evident
that simple systems exist. ‘

Theorem (2) If A is a simple system in ®, then there is a unique
positive system containing A.

(b) Every positive system Il in ® contains a unique simple system;
in particular, simple systems exist.

Proof. (a) Suppose the simple system A is contained in a positive system
II. Then all roots which are nonnegative linear combinations of A must
also be in II (and their negatives cannot be in IT). So II is characterized
uniquely as the set of all such roots. To see that such a positive system
exists, extend the linearly independent set A to an ordered basis of V
and take II to be the set of positive elements of & in the corresponding
lexicographic ordering. Evidently A C II.

(b) Suppose for a moment that the given positive system II (coming
from some total ordering of V') does contain a simple system A. Then
A may be characterized as the set of all roots in a € II such that a is
not expressible as a linear combination with strictly positive coeflicients
of two or more elements of II. (This follows easily from the definitions.)
So A is the unique simple system in IT.

How can we actually locate a simple system in II? Choose as small
a subset A C IT as possible subject to the requirement that each root in
I be a nonnegative linear combination of A. Obviously such a subset
exists. We need only prove that A is linearly independent. This will
follow from a key geometric condition, to be verified below:

A
(a, 8) <0 for all pairs a # 3 in A. 1)
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+ Assuming the truth of (1), consider what would happen if A failed to
be linearly independent: Y- .5 aqa = 0, with not all aq = 0. Rewrite
this as Y. b3B = Y_ ¢y, where the sums are taken over disjoint subsets
of A and the coefficients are strictly positive. If o denotes the sum just
wrxtten we have o > 0. But, thanks to (1),

1.

o

0<(0,0) = (Q_bsB Y ey <O.

Tlus forces o = 0, which is absurd. Thus A must be linearly indepen-
dent.

It remains to verify (1). Suppose it fails for some pair a, 3. Then the
formula for a reflection gives 5,3 = 8 — ca, with ¢ = 2(ﬁ, a)/(a a) > 0.
Smce saff € ®, either it or its negative must lie in II. Say s,8 =

¢yy (sum over y € A,cy >0). Incase cg < 1, we get 58 =F—ca=

eaB + z,,#, ¢y, or (1 —cg) = nonnegative linear combination of A\
{ }. Since 1 — ¢g > 0, this allows us to discard 3, contradicting the
minimality of A. In case cg > 1, we get instead 0 = (cg — 1)8 + ca +
Y. #p ¢+7- But a nonnegative linear combination of A with at least one
positive coefficient cannot equal 0, by definition of total ordering. So
8,0 cannot be positive. A similar argument shows that s, cannot be
negative either; here the cases to consider are c+¢, > 0 and c+co < 0.
This contradiction implies that (1) must be true. O

Because of the uniqueness statements in the theorem, the proof ac-
tually shows that (1) must hold for any simple system. This is an im-
portant geometric constraint, which plays a role in the classification of
possible reflection groups (Chapter 2):

Corollary (of proof) If A is e simple system in ®, then (o, 8) <0
Joralla#£pBinA. O

The cardinality of any simple system is an invariant of ®, since it
measures the dimension of the span of ® in V. We call it the rank of
W. For example, D,, has rank 2, while S,, has rankn — 1.

Ezercise 1. If ® has rank 2, prove that W is a dihedral group. [This will
be easier to do after Theorem 1.5.]

Exercise 2. Find simple systems for the various groups described in 1.1,
taking for ® in each case a convenient set of vectors (not necessarily unit
vectors).
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1.4 Conjugacy of positive and simple sys-
tems

We have shown that positive and simple systems in ¢ determine each
other uniquely. However, we have not ruled out the unpleasant pos-
sibility that differently chosen simple systems might differ drastically
as geometric configurations. Here we examine the relationship betweer
different systems.

It follows directly from the definition that, for any simple system A
and for any w € W, wA is again a simple system, with corresponding
positive system wlIl (if I1 is the positive system determined by A). T«
understand better the passage from II to wll, consider the special cast
w = 84 (& € A). We find that II and s,II differ only by one root:

Proposition  Let A be a simple system, contained in the positiv
system I1. If a € A, then so(II\{a}) = IN\{a}.

Proof. Let B € I, # a, and write 8 = 3, 5 ¢y (with all ¢, > 0)
Since the only multiples of o in ® are *a, some ¢, > 0 for v # a
Now apply s, to both sides: 3,8 = 8 — ca is a linear combination of /
involving y with the same coefficient ¢,. Because all coefficients in sucl
an expression have like sign, s, 8 must be positive. It cannot be o, fo
then we reach the contradiction: 8 = 34848 = sqc = —a (which is no
in II). Thus s, maps IT\{a} into itself (injectively), hence onto itself. C

Besides being the key step in the proof of the theorem below, thi
result is often helpful in recognizing when a root is in fact equal to .
given simple root a: it characterizes a as the sole positive root mad
negative by s,.

Theorem Any two positive (resp. simple) systems in & are conjugate
under W.

Proof. Let Il and IT' be positive systems, so each contains precisely half
of the roots. Proceed by induction on r = Card(ILNn -I1"). If r = 0,
then Il = II' and we are done. If r > 0, then clearly the simple system
A in IT cannot be wholly contained in II'. Choose a € A with o € —II'.
The proposition above implies that Card(s,JIN—I1') = r—1. Induction,
applied to the positive systems s, II and II’, furnishes an element w € W
for which w(soIl) =1I'. O

1.5 Generation by simple reflections
Fix a simple sysgem A and corresponding positive system I in ®. (The-

orem 1.4 shows that it makes no great difference which A we choose.)
Our next goal is to show that W is generated by simple reflections,
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i.e., those s, for which a € A. First, a definition: if 8 € ®, write
uniquely 8 = Y_,ca Cae, and call 3~ c, the height of 3 (relative to A),
abbreviated ht(3). For example, ht(3) = 1 if g € A.

‘ rem For a fixred simple system A, W 1is generated by the reflec-
W?Ls soa € A).

Proof. Denote by W’ the subgroup of W so generated. We proceed in
several steps to show that W/ = W.

(1) If B € I, consider W/ N1II. This is a nonempty set of positive
roots (containing at least 3}, and we can choose from it an element -y of
smallest possible height. We claim that v € A. Write v = Y A cac,
and note that 0 < (v,7) = Y. ca(7,a), forcing (v,a) > 0 for some
a € A. If vy = a, we are satisfied. Otherwise consider the root s,
which is positive according to Proposition 1.4. Since s, is obtained
ftgm 7 by subtracting a positive multiple of o, we have ht(s,7v) < ht(y).
But s,y € W' (since s, € W’), contradicting the original choice of +.
§o indeed v = o must be simple.

" (2) Now we can argue that W’A = ®. We just showed that the
;?V ’.orbit of any positive root 8 meets A, so that If C W’A. On the
other hand, if 3 is negative, then —g3 € II is conjugate by some w € W’
to some a € A. Then —3 = wa forces 8 = (wsy)a, with ws, € W'.
Thus —II C WA,

(3) Finally, take any generator sg of W. Use step (2) to write 3 = wa
for some w € W' and some a € A. Then Proposition 1.2 shows that
8g = wsqw™! € W’. This proves that W = W’. O

A useful byproduct of the proof is the fact that every root can attain
the status of a simple root (relative to some positive system):

Corollary (of proof) Given A, for every B € ® there exists w € W
such that wB€ A. O

Exercise 1. Let ® be a root system of rank n consisting of unit vectors. If
¥ C ® is a set of n roots whose mutual angles agree with those between
the roots in some simple system, then ¥ must be a simple system.

Ezercise 2. Given a simple system A, no proper subset of the simple
reflections can generate W. [Otherwise find o €'A for which s, is not
needed as a generator of W. Consider w € W for which w(—a) € A)]

Ezercise 3. If 8 € II\A, prove that ht(3) > 1.

Having seen that W can be generated by relatively few reflections,
we may go on to seek an efficient presentation of W as an abstract group,
using these generators together with suitable relations. Certain relations
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among the s, (o € A) are obvious: those of the form
(sas[,)"‘(""ﬂ) =1,

where m(a, 3) denotes the order of the product in W. It turns out
(Theorem 1.9 below) that these obvious relations completely determine
W. This is not difficult to verify in the case of D,,,, but is already rather
challenging in the case of S,, (try it!).

1.6 The length function

In order to obtain the promised presentation of W, we need to study
closely the way in which an arbitrary w € W can be written as a product
of simple reflections, say w = s, - - - 3, (Where s; = 34, for some o; € A).
Define the length ¢(w) of w (relative to A) to be the smallest r for
which such an expression exists, and call the expression reduced. By
convention, £(1) = 0.

Clearly £(w) = 1 if and only if w = s, for some o € A. It is also clear
that (w) = £(w™?!), since w™! = s,---s;, implies £(w™!) < £(w), and
vice versa. Another easy property of the length function follows from
the fact that each reflection has determinant —1 as a linear operator:

det(w) = (—1)%™),

Indeed, det(w) = (—1)" whenever w can be written as a product of r
reflections, so any such r has the same parity as £{(w). From this it
follows that ¢(ww’) has the same parity as £(w) + £(w’). In particular,
if {(w) =r and a € A, then {(s,w) is either r + 1 or r — 1.

It will be shown in 1.7 that £(w) can be characterized geometrically
as the number of positive roots sent by w to negative roots. In case
w = 8o{a € A), this is the content of Proposition 1.4. Here we lay some
of the groundwork.

Having fixed A and the corresponding positive system II, define
n(w) := Card(Il N w™!(—II)) = number of positive roots sent to nega-
tive roots by w. Observe that n(w~!) = n(w), because I Nw~!(~II) =
wH(wll N -II) = —w™}(I1 N w(—TII)), which has the same number of
elements as II N w(~II). This is reassuring, given the similar property
of the length function.

Lemma Letaec A,weW. Then:

(8) wa > 0= n(ws,) = n{w) + 1.

(b) wa < 0 = n(wse) = n{w) — 1.

(¢) w™la > 0 = n(s,w) = n(w) + 1.

(d) wla < 0= n(sqw) =n(w) — 1.
Proof. Set II(w)a:= II N w~!(~II), so that n(w) = Card II(w). If
wa > 0, observe that Il(ws,) is the disjoint union of s,II(w) and {a},
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thanks to Proposition 1.4. If wa < 0, the same result implies that
sall(ws,) = II(w)\{a}, whereas a does lie in H(w) This establishes
(a) and (b). To get (c) and (d), replace w by w™ ! and use the fact that
n(w™ 132) = n(sqw). O

Corollary  If w € W is written in any way as a product of simple
reflections, say w = s1-- -8y, then n(w) < r. In particular, n(w) <

{w)-

Proof. As we build up the expression for w in r steps, the value of the n
function (initially 0) can increase by at most 1 at each step, according
to the lemma. O

Some further properties of the length function which are shared by
the. n function are described in the following exercise.

Eg;ermse 1. (a) If w € W, prove that det(w) = (~1)"®). (b) If
w,w’ € W, prove that n(ww') < n(w) + n(v’) and n(ww'’) = n(w) +
rq(w')(mod 2).

Etércise 2. Taking the simple reflections in S,, to be the transpositions
(z i+ 1), show that the length of a permutation 7 is the number of
mverswns the number of pairs ¢ < j for which 7r(1) > w(j).

1.7 Deletion and Exchange Conditions

The following crucial result reveals how a product of simple reflections
may be shortened if it is not already as short as possible.

Theorem Fizr a simple system A. Let w = sy---s, be any expres-
ston of w € W as a product of simple reflections (say s; = 8q,, with
repetitions permitted). Suppose n(w) < r. Then there exist indices
1 <11 < j < r satisfying:

(8) ai = (siy1---85-1)aj,

(b) 841842 8; = 8i{8i41° 851,

(c)w=s1---8;---5;--- 3, (where the hat denotes omission ).
Proof. (a) Because n(w) < r, iteration of part (a) of Lemma 1.6
shows that, for some j < r, we have (s,---sj—1)a; < 0. But since
a; > 0, there is an index ¢ < j for which s,(s,_,_l s, 1)a; < 0 while
(8i41---sj—1)a; > 0. (In case ¢ = j — 1,8;41---8;j_ is interpreted to
be 1.} Now Proposition 1.4, applied to the simple reflection s;, implies
that the positive root (s;., - - - 8;_1)a; made negative by s; must be a;.

(b) Set @ = aj,w’ = 5441 -+ 8j_1, so that w'a = o; by part (a). By
Proposition 1.2, w's,w'™! = 8,/ = 8;, which means that

(sit1-- - 85-1)s5(85-1- - 8i1) = 5.
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Multiply both sides on the right by s, -- - s;_; to get the desired iden-
tity.

(c) This is just another way to express (b): multiply both sides of (b)
on the right by s; to obtain s;;,---s;_y, = s; - s;, and then substitute
in the original expression for w. O

Corollary Ifw € W, then n(w) = £(w).

Proof. By Corollary 1.6, n(w) < £(w). Suppose n{w) < €(w) = r, and
write w = s, ---8, (reduced expression). Then part (c) above allows
us to rewrite w as the product of r — 2 simple reflections, contrary to
w)=r. 0O

Having identified the functions £ and n, we can restate Lemma 1.6:
multiplying w on the right by s,(a € A) increases the length by 1 if
wa > 0 and decreases the length by 1 if wa < 0, etc.

We can also reinterpret part (c) of the theorem, which may be
called the Deletion Condition: given an expression w = 8;--- 3,
which is not reduced, there exist indices 1 < i < j < r such that
w = 8- 8§95 8. Thus successive omissions of pairs of factors
will eventually yield a reduced expression.

To get a better feel for what the corollary says, it is useful to ask how
we might enumerate for a given w the set II(w). Since Card II{w) =
n(w) = £(w), the answer ought to have something to do with the nature
of a reduced expression w = sy - -3,(3; = 3,,). Indeed, given such an
expression, consider the r roots

Bi = 8r8r_1 - Siy1{a;), with B, == a,.

We claim that II{(w) = {8,,...,06,}, where the 3; are distinct. To see
this, let 8 € II{w). Since 8 > 0 but wB < 0, we can find an index i < r
such that (s;yy---8,)8 > 0 while (s;8;41---5,)8 < 0; in case i = r,
interpret s;4; - - - 8, as 1. Thus the positive root (s; ;) --- 8,)3 is sent by
s; to a negative root; Proposition 1.4 forces (s;¢1-- - s,)8 = a;, whence
B = Bi. As a result, I(w) C {B4,...,6-}. Because Card I{w) = r,
equality must hold (and the §; must be distinct).
There is a nice way to reformulate the essence of the theorem:

Exchange Condition Let w = s;---3, (not necessarily reduced),
where each s; is a simple reflection. If {(ws) < €(w) for some simple re-
flection s = s, then there exists an index i for which ws = 8;---8; - - 8¢
(and thus w = 8, - -- §; - - - 8.8, with a factor s exchanged for a factor s;).
In particular, w has a reduced expression ending in s if and only if
£(ws) < L(w).

Proof. The hypothesis £(ws) < £(w) is now known to be equivalent to:
wa < 0. Repeating the proof of the above theorem for the expression
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ws = 8 ' 88, we can therefore take j = r + 1 in part (a) and then
conclude in part (c) that

This yields the desired expression for w. O

Remark. In Bourbaki [1] (and elsewhere in the literature), the Exchange
Condition is stated under the stricter condition that the given expression
for w is reduced. This is easily seen to be equivalent to our Deletion
Condition. It is clearly implied by the Deletion Condition. In the other
direction, let w = sy ---s, (not reduced). Say s;---s;_; is reduced,
but s, ---8; is not. By the stricter version of the Exchange Condition,
there is an index ¢ < j for which 8y---8;_y = 8;---4;---s;, whence
w=8- -8 §j---8,, asrequired. It is less obvious that our Exchange
Condition is a formal consequence of Bourbaki’s (our derivation being
based on the way W acts on roots). This turns out to be true, as the
result of some indirect arguments given in the setting of general Coxeter
groups; see 5.8 below. The reader might want to attempt a more direct
line of argument.

Egercise 1. In the Exchange Condition, suppose £(w) = r. Prove that
the index { in the conclusion is uniquely determined.

Ezercise 2. Formulate a ‘left-handed’ version of the Exchange Condition,
under the hypothesis £(sw) < £(w).

1.8 Simple transitivity and the longest ele-
ment

Theorem 1.4 expressed the fact that W permutes the various positive
(or simple) systems in a transitive fashion. Corollary 1.7 immediately
implies the following result, which shows that the permutation action of
W is simply transitive.

Theorem Let A be a simple system, I the corresponding positive sys-
tem. The following conditions on w € W are equivalent:
(a) wll =1II;

(b) wA = A; N
(c) n(w) = 0;
(d) e(w) = 0
(e)w=1. 0O

One corollary of the simple transitivity is well worth exploring. It is
clear from the definition that —II is a positive system whenever II is. So
there must exist a unique element w, € W sending II to —II. Moreover,
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&(wo) = n(w,) = Card I is as large as possible, and no other element
of W has as great a length. In particular, w;! = w,. Using Lemma 1.6
we can characterize w, as the unique w € W satisfying €(ws,) < £(w)
for all & € A. This has an interesting consequence. Given a reduced
expression w = 8; ---8,, we can successively multiply w on the right
by simple reflections (increasing the length by 1) until this is no longer
possible and w, is obtained. Thus w, = ww’ with £(w,) = {(w) + £(w’)
for some w’ € W. The conclusion can also be reformulated as follows:

L{wow) = €(w,) — £(w) for all w € W. (2)

Exercise 1. What is w, in the case of S, relative to the simple system
€y —€2,...,Epn—1 — E,.?

Ezercise 2. In any reduced expression for w,, every simple reflection
must occur at least once.

1.9 Generators and relations

Now we are prepared to verify the presentation of W described at the
end of 1.5. Recall that m(a, 3) denotes the order of s, sg in W, for any
roots a, 3. For example, m(a,a) = 1. (We could also write m(s,, sg).)

Theorem Fiz a simple system A in ®. Then W is generated by the
set 8 := {sq, a € A}, subject only to the relations:

(3a38)™P) =1 (a, B € A).

Proof. Rather than introduce notation for a free group on a set having
the cardinality of A, with normal subgroup generated by appropriate
words in the free generators, we argue informally that each relation in
W is a consequence of the given relations. It has to be shown that each
relation

81 --- 8, = 1 (where s; = s,, for some o; € A) 3)

is a consequence of the given relations. Note that r must be even,
since det(s;) = —1. If r = 2, the equation reads s;s; = 1, forcing
s1 = 85! = sy because of the relation s2 = 1. So (3) becomes s? = 1,
one of the given relations. Proceed now by induction on r = 2q, and let
g > 1. The relations s = 1 will henceforth be used tacitly whenever
needed to rewrite expressions. For example, (3) can be rewritten as

¢ Si41--8r81cc- 8 =1 (4)
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iwill repeatedly invoke the Deletion Condition (1.7). Apply it first
tp the element

;‘.,. 81"'8q+l=81’"'8q+2-

Since the length of the right side is at most ¢ — 1, the left side cannot be
& reduced expression. Part (b) of Theorem 1.7 (which is equivalent to
rg‘i.‘e Deletion Condition) then yields indices 1 < i < j < ¢+ 1 for which

Sipr:-85 = 8- 81, (5)
?}ﬁich is equivalent to the relation
Si--+8;_18;- 841 = L. (6)

fn‘ case (6) involves fewer than r simple reflections, the induction hy-
pothesis says that it can be derived from the given relations. Then it is
permissible to replace s;,, - -- 8; by s;---8;_1 in (3) and rewrite (3) as

81"'8{(31'"'8_1‘-])8_1"*.]"'3r=81"’8;’"'8j»..3r=1-

Aka.ln by induction, this last relation is a consequence of the given ones;
80, the same is true of (3). The only catch comes when (6) still involves
r simple reflections: then i = 1,j = ¢ + 1, and (5) becomes

82"'8q+l=81"'3q- : (7)

We could attempt to avoid this impasse by using another version (4) of
our original relation (3), say

828,81 = 1.

3t

Repetition of the above steps will now be successful unless
’\’ 33"'8q+2=82"'8q+l- (8)

In the presence of both (7) and (8), a different strategy is needed. If we
can just show that (8) is a consequence of the given relations, we can
substitute it in (3) and conclude as before. Rewritten once more, (8)
becomes

83(8283- -+ 8q4+1)8g+28¢+1- "84 = L.
The left side is a product of r simple reflections, jlfét’li‘ke (3), so we can
again try our original line of argument. This will be successful unless

82 8qg41 = 538283 8q. (9)

But (9) and (7) together force s; = s3. Similarly, we could cyclically
permute factors and reach a successful conclusion unless s; = s4. Con-
tinuing step-by-step in this way (another induction!), we reach a total
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impasse only in case 8y =383 =...= 8,1 and 8, = 84 = ... = s,. But
then (3) has the form

3a838a33 """ Sasg = 1,
which is a consequence of the given relation (sq85)™*# = 1.0

The presentation of W just obtained is about as simple as could
be hoped for. Any group (finite or infinite) having such a presentation
relative to a generating set S is called a Coxeter group; more precisely,
the pair (W, S) is called a Coxeter system. It is required that all
m{a,a) = 1, but a relation (sa83)™*? = 1 may be omitted to allow
the product to have infinite order. Part II will be devoted to the detailed
study of this rather large class of groups. Eventually (in Chapter 6)
it will be seen that the finite Coxeter groups are precisely the finite
reflection groups.

While the proof of the theorem is still fresh in the reader’s mind, we
point out that the steps depend formally just on the Deletion Condition.
(This fact will be invoked in Chapter 4.) It will be seen in Chapter 5
that groups which satisfy a condition of this type are essentially the
same thing as Coxeter groups, so our choice of strategy in the present
proof was not accidental.

1.10 Parabolic subgroups and minimal coset
representatives

Let us pause to take stock of where we are in our study of finite reflection
groups. We have been studying such a group W in tandem with a root
system, which leads to a small set of generating reflections (correspond-
ing to a simple system). The simple system must be an independent
set of vectors at mutually obtuse angles, constrained strongly by the
fact that distinct pairs of reflections generate finite dihedral groups. In
Chapter 2 we shall classify the possible geometric configurations of this
sort and thereby classify the groups.

Meanwhile, we want to explore further the subgroup structure of W,
in conjunction with various geometric features of the action of W on V.
Much of what we do in the remainder of this chapter will be essential
in the latter half of Chapter 3; but the results are also of interest in
themselves.

We begin by looking more closely at the subgroups of W generated
by sets of simple reflections (for any fixed simple system A). In order
to be consistent with the notation to be introduced in Chapter 5, we
label these subgroups as follows. Having fixed A, let S be the set of
simple reflections sy, € A. For any subset I C S, define W to be the
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T,ﬁubgroup of W generated by all s, € I, and let Ay := {a € Als, € I}

At the extremes, Wy = {1} and Ws = W. Replacing A by another
- simple system wA would just replace W; by its conjugate wWw™1. All
siubgroups of W obtainable in this way are called parabolic subgroups
" (for somewhat arcane reasons which we won’t attempt to explain here).
" They arise constantly in the further study and application of reflection
- groups, in part because they facilitate inductive arguments.

R

“Proposition Fir a simple system A and the corresponding set S of
simple reflections. Let I C S, and define ®r to be the intersection of ®
with the R-span V; of A; in V.

(a) ®; is a root system in V (resp. Vi), with simple system Ay and

with corresponding reflection group Wy (resp. Wy restricted to V).

(b) Viewing Wy as a reflection group, with length function ¢; relative

izo the simple system Ay, we have £ = ¢ on Wry.

(c) Define W := {w € W|e(ws) > &(w) foralls € I}. Given
W, there is a unique u € W! and a unique v € Wi such that
uv. Their lengths satisfy ¢(w) = €(u) + €(v). Moreover, u is the
iynique element of smallest length in the coset wWy.

Proof. (a) It is clear that W stabilizes V; and that conditions (R1) and
(R2) in 1.2 are satisfied by ®; (viewed as a subset of either V or V7). It
is also clear that Ay is a simple system. Therefore the group W; (acting
on either V or V;) is the corresponding reflection group.

~ (b) We invoke the characterization of the length function given in
1.7: é(w) is the number of positive roots sent to negative roots by w,
and similarly for ¢; (where the ‘positive’ roots relative to A; are clearly
those in ®* N ®;). Now suppose a € &+ \ ;. Then a involves some
simple root v ¢ Aj, so for all § € Ay, spa still involves y with a
positive coefficient. It follows that sga > 0. In turn, for all w € Wy, we
get wa > 0. Thus the roots in ®* sent by w € W; to negative roots
are precisely the roots in ® sent by w to negative roots. This means
Yw) = &y (w).

(c) Given w € W, choose a coset representative v € wW; of smallest
possible length, and write w = uv for v € W;. Since us € wWj for
all s € I, it is clear that © € W!. Now write reduced expressions:
u=351--8(s; € S) and v = 8] --- 5. (where we may assume s, € I,
thanks to (b)). Then é(w) < é(u) + £(v) = q + r. If the inequality were
strict, the Deletion Condition (1.7) would allow %,to omit two of the
factors s; or s} in uv without changing w. But omitting any factor from
u would yield a coset representative in wWj of smaller length than u,
contrary to the choice we made. So two factors s, s} can be omitted
without changing v, contrary to the fact that the expression for v is
reduced. Therefore {(w) = £(u) + (v).

The only fact about w used in this argument is that it belongs to the
coset wWi; so we have actually shown that any element of this coset can

};344
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be written in the form ww, with £(uv) = €(u) + £(v). Here u is a fixed
coset representative of smallest length (forcing u € W'). In particular,
u is the unique coset representative of smallest length.

Suppose there were another element v’ € W/ lying in wW;, with
v # u. We could then write ' = wv with é(v) = r > 0, say v =
81--- 8, (8; € I). But then ¢('s,) < £(t') contrary to v’ € W!. D

The distinguished coset representatives W in part (c) of the propo-
sition may be called minimal coset representatives. They will play
an essential role in the following section, as well as in 1.15.

Ezercise 1. Is there a result analogous to (c) describing minimal repre-
sentatives of the double cosets WywW) (I,J C S)?

Ezercise 2. When W = S,,, prove that each parabolic subgroup of W is
isomorphic to a direct product of symmetric groups.

Ezercise 3. Given s # s’ in S, set v := 38’38’ --- (m factors, where
m is the order of ss’ in W), so also v = §/ss’s--- (m factors), and
v? = 1. If w € W satisfies £(ws) < &(w) and &(ws’) < £(w), prove that
(wv) = {(w) — m. [Consider Wy, I = {s,s'}. Since w = (wv)v with
v € Wy, it suffices to show that wv € W!. Look at the action on the
roots corresponding to s, s’]

1.11 Poincaré polynomials

Part (c) of Proposition 1.10 has a nice application to the study of the
‘growth’ of W relative to the generating set S. This is measured by the
sequence

ay, := Card {w € W|(w) = n},
which in turn defines a polynomial in the indeterminate ¢:

W(t) =) ant™= Y t)

n>0 weWw

For example, when W = 83, W(t) = 1 + 2t + 2t + 3. Because of its
homological interpretation in special cases (see the remark at the end of
3.15), we refer to W (t) as the Poincaré polynomial of W.

More generally, for an arbitrary subset X C W, we can define

X(t):= ) 0w,
weX

Note for example that for I C S, W;(t) coincides with the Poincaré
polynomial of the reflection group W (since ¢ agrees with the length
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ﬁmptlon ¢r). It is an immediate consequence of part (c) of Proposition
3:10 that

b W) = WieW! (t).

This can be used to derive an effective algorithm for computing W ()
ﬁy"induction on |S|. For brevity, write (—1)/ instead of (—1)!/!. Recall
(1.8) that W has a unique element w, of maximum length N := |II|.

pqsition
| A Z(—l)’%,vl—((ttl) =Y (-1)Iwi) ="

IcS Ics

Proof. The equality of the first and second sum follows from the above
remarks. In turn, consider the contribution which a fixed w € W
ma;kes to the second sum. Set K := {s € S|{(ws) > {(w)}. Then
) € W' precisely when I C K, so t“®) occurs in the sum with co-
ment S ick (1)1, Unless K is empty, it is an easy combinatorial
ercise to show that this quantity is 0. But K = @ precisely when
:-s w,, thereby accounting for the surviving term t" on the right. O

X

R

} 5 ércwe 1. When W = &3, use the formula in the proposition to com-
gute W (t) inductively, starting with the fact that W(t) = 1+ ¢ for a

group of rank 1. Do the same for W = Dy, in general.

;. Note that when 1 is substituted for ¢, Wr(t) becomes |W;|. So the
fonnula in the proposition yields an identity (due originally to Witt [1],

Wi _
DY) 7

Ics

Ezercise 2. The identity just obtained permits an inductive calculation
of |W| when |S] is odd. Suppose for example that |S| = 3, and that the
dihedral subgroups W; are of respective orders 4, 6, 10. What is |[W|?

1.12 Fundamental domains

The goal of this section (and the ones following) is to refine the descrip-
tion of the action of W on V' (in terms of orbits and isotropy groups),
with emphasis on the role of the reflecting hyperplanes In the pro-
cess we get a nice geometric interpretation of the simple transitivity of
W on simple systems, as well as further information about parabolic
subgroups.

Fix a positive system II, containing the simple system A. Associated
with each hyperplane H, are the open half-spaces A, and A/, where

As = {A e V|(A,a) > 0}
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and A, := —A,. Define C := ),cs Aa- As an intersection of open
convex sets, C is itself open and convex. It is also a cone (closed under
positive scalar multiples). Let D be the closure C, the intersection of
closed half-spaces H, U A,. Thus

D={eV|(\a)>0forall a € A}.

Clearly D is a closed convex cone. We intend to show that D is a
fundamental domain for the action of W on V, i.e.,, each A € V is
conjugate under W to one and only one point in D. One part of this is
straightforward:

Lemma FEach A € V is W-conjugate to some u € D. Moreover, p— A
8 a nonnegative R-linear combination of A.

Proof. Introduce a partial ordering of V (not to be confused with earlier
total orderings, which are no longer needed): A < u if and only if 4 — A
is a linear combination of A with nonnegative coefficients. It is trivial
to verify that this is a partial ordering. Consider those W-conjugates u
of A which satisfy A < y. From this nonempty set (which contains at
least A), choose a maximal element u. If @ € A, sou is obtained from
1 by subtracting a multiple of «, namely 2(u,a)/(a,a). Since this is
another W-conjugate of A, the maximality of u forces (u, @) > 0. This
holds for all & € A, so u € D as desired. O

To see that each ) is W-conjugate to at most one 4 € D, it is enough
to show that no pair of distinct elements of D can be W-conjugate. In
the course of the proof, we can get some sharper information about the
isotropy group {w € Wlwu = u} for an arbitrary p € V.

Theorem Fiz II D A (hence D), as above.

(8) If wh = p for A\, u € D, then A = u and w is a product of simple
reflections fizring A. In particular, if A € C, then the isotropy group of A
is trivial.

(b) D is a fundamental domain for the action of W on V.

(c) If X € V, the isotropy group of A is generated by those reflections
8o (@ € ®) which it contains.

(d) IfU is any subset of V, then the subgroup of W fizing U pointwise

15 generated by those reflections s, which it contains.
Proof. (a) Proceed by induction on #(w) = n(w). I n(w) = 0, then
w = 1 and there is nothing to prove. If n{w) > 0, then w must send
some simple root o to a negative root (otherwise wA and hence wll
would consist of positive roots). Thanks to part (b) of Lemma 1.6,
n(wsq) = n{w) — 1. Moreover, since A, u € D, with wa < 0, we have:
0> (p,wa) = (w g, wlwa) = (A, a) > 0, which forces (\,a) =0
and s, A = A. Therefore wsaA = pu. By induction, A = p and ws, is a
product of simple reflections fixing A; so w is also such a product.
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i (b) This follows at once from part (a), together with the above
jemma.

(c) Given A € V, use the lemma to find w € W for which i := wA lies
in D. By part (a), the isotropy group W’ of 1 is generated by the simple
reflections it contains. It is clear that w~!W’w is the isotropy group W’
pf A. Since conjugates of simple reflections are again reflections with
respect to roots, it follows that W’ is generated by those s, which it
conta.lns

(d) The subgroup W? fixing pointwise the span of U (or a basis
At,...,A¢ of this span) is clearly the same as the subgroup fixing U
pointwise. In turn, W is just the intersection of the isotropy groups
of the ;. Proceed by induction on ¢, the case t = 1 being settled by
part (c). We know that the isotropy group W’ of A, is generated by the
set of all reflections s, which it contains (a running over a subset ¢’
of ® containing pairs of roots a, —a). Proposition 1.2 implies that W’
stabilizes ®’. So this reflection group (with root system ®’) can take
the place of W. By induction (formulated to cover all possible reflection
ggoups!), its subgroup fixing {Az, ..., A} pointwise is generated by some
bfithe reflections s,, a € ®’. But this subgroup is just W°. O

Ezercise 1. Show how the theorem can be used to solve the Word Prob-
lem for W: given a product of simple reflections, decide whether or not
it equals 1 in W.

Ezercise 2. If U C D in part (d) of the theorem, then the subgroup of
W fixing U pointwise is generated by simple reflections.

Ezercise 3. If w € W is an involution (an element of order 2), prove that
w can be written as a product of commuting reflections. [Use induction
on the dimension of V]

We have now associated with each simple system A an open con-
vex cone C in V whose points all have trivial isotropy group in W.
It is clear that replacing A by wA just replaces C by wC. Thus the
simply transitive action (1.8) of W on simple systems translates into
a simply transitive action on this family of open sets, which we call
chambers. The chambers are characterized topologically as the con-
nected components of the complement in V of | J5#,: Given a chamber
C corresponding to a simple system A, its walls are defined to be the
hyperplanes H, (o« € A). Each wall has a ‘positive’ and a ‘negative’
side (with C lying on the positive side). Then the roots in A can be
characterized as those roots which are orthogonal to some wall of C and
positively directed. Note finally that the angle between any two walls of
a chamber is an angle of the form 7 /k for a positive integer k > 2. This
follows from our discussion of dihedral groups in 1.1.
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Ezercise 4. Prove that {(w) equals the number of hyperplanes H, (a > 0)
which separate C from wC.

1.13 The lattice of parabolic subgroups

We can use part (d) of Theorem 1.12 to obtain a clearer picture of the
collection of parabolic subgroups of the form W;, where I runs over the
subsets of the set S of simple reflections relative to a fixed choice of A.

Proposition Under the correspondence I — Wi, the collection of
parabolic subgroups Wi (I C S) is isomorphic to the lattice of subsets of
S.

Proof. It is clear that Wy, is the group generated by W; and Wy
(I,J ¢ S). We claim that Wy N W; = Winj, from which it will follow
immediately that the map I — W/ is one-to-one and defines a lattice
isomorphism. Only one inclusion is obvious: Winy; C WrNWj.

Recall from 1.10 the subspaces V; and V; of V. It is clear from the
definition that V; N V; = Vins. Now recall from linear algebra the fact
that, for any two subspaces A, B C V, (ANB)* = AL + B! (proved by
comparison of dimensions). From this we get:

Vit + Vit = (vinVy)t =V,

Now suppose w € W; N W}, so w fixes each vector in Vit + Vit = Vi ;.
According to part (d) of Theorem 1.12, w is a product of reflections s4
which also fix this space pointwise. But then each such « is orthogonal
to this space, hence lies in ® N Viny = ®jny. It follows that w € Winy
as required. O

Ezercise. If 8y,...,s, are distinct elements of S, then £(s; ---s,) = 7.

1.14 Reflections in W

Theorem 1.12 also helps to clear up a possible ambiguity in the way W is
specified. Recall that our study of W has depended on a fixed choice of a
root system ®, with W defined as the group generated by the reflections
3qa (a € ®). There was no requirement that these s, should exhaust the
reflections in W. But this turns out to be true anyway.

Proposition " Every reflection in W is of the form s, for some a € ®.

Proof. Let 3 be a reflection in W, with reflecting hyperplane H fixed
pointwise by s. Thus s lies in the isotropy group of H, which is nontrivial
and thus (thanks to part (d) of Theorem 1.12) is generated by some of the
reflections s, (a €,2). But s, cannot fix H pointwise unless H = H,,
in which case s = s,. O
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Ezercise. Let ¥ be any subset of ¢ for which the reflections s, (a € ¥)

erate W. Prove that every a € ® is W-conjugate to some element
of ¥. [Consider &' := {wal|w € W,a € ¥}. This set satisfies the axioms
for a root system (1.2), with W as the associated reflection group.]

1
12

1.15 The Coxeter complex

At

‘We can give a more detailed description of the fundamental domain D in
1.12 in terms of parabolic subgroups. As before, fix a simple system A
and corresponding set S of simple reflections. It is convenient to assume
that A spans V. For each subset I of S, define

Cl ={AeD|(M\a)=0foralla€ Ay, (\,a) >0forall a € A\ Af}.

Thus C7 is an intersection of certain hyperplanes H, and certain open
‘Bﬂﬁspaces A,. It is clear that the sets C; partition D, with Cy = C
de Cs = {0}. Moreover, the linear span of C; has dimension n — |I|,
: pere n=dim V.

“' Thanks to Theorem 1.12, V is partitioned by the collection C of all
sets wCr(w € W,I C S). More precisely, for each fixed I the sets wCp
and w’C are disjoint unless w and w/' lie in the same left coset in W/Wj,
in which case they coincide. For distinct I and J, all sets wCy and w/'C;
are disjoint. We call C the Coxeter complex of W. Any set wCp is
talled a facet of type I.

Proposition For each I C S, the isotropy group of the facet Cr of
C is precisely W;. Thus the parabolic subgroups of W are the isotropy
groups of the elements of C.

Proof. From the definition of Cj, it is clear that W; fixes it pointwise.
Now suppose w € W satisfies: wCr = Cy. By part (a) of Theorem 1.12,
w fixes C pointwise.

Use part (c) of Proposition 1.10 to write w = uv, where v € W; and
u satisfies: &(usy) > £(u) for all @ € I. Thanks to 1.6, this condition
implies that uA; C ®t. If u # 1, there must be some o € A for
which ua < 0, and (as just observed) a ¢ A;. Choose any A € Cy, so
wA = u) = \. Since o ¢ Ay, we have by definition: (A\,a) > 0. On
the other hand, ua < 0 forces (A, a) = (ul, ua) =X, ua) < 0, which is
absurd. O

The characterization of parabolic subgroups as isotropy groups yields
an interpretation of C as an abstract simplicial complex: The ‘vertices’
are the left cosets wWj, where I is maximal in S (obtained by discarding
one simple reflection). A finite set of vertices determines a ‘simplex’ if
these vertices (left cosets) have a nonempty intersection. The dimension
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of the complex is n — 1 (one less than the cardinality of the largest
possible simplex).

When A spans V, C has a natural geometric realization: by inter-
secting its elements with the unit sphere in V, one gets a simplicial
decomposition of the sphere. Because W preserves the simplicial struc-
ture, it also acts on the integral homology groups of the sphere. This
leads to an interesting formula for the character det of W (realized on
the top homology) in terms of the permutation characters of W on the
cosets of parabolic subgroups, via the Hopf trace formula. In the follow-
ing section we shall derive an algebraic version of this formula.

1.16 An alternating sum formula

In this section we obtain an alternating sum formula for det(w), which
involves counting how many elements of each dimension are fixed by w
in the Coxeter complex C. This formula will be a key ingredient in 3.15,
and could be deferred until then. (We present it here while the features
of the Coxeter complex are still fresh in the reader’s mind.) First we
derive a general combinatorial formula, which the reader may recognize
as an Euler characteristic computation.

Let Hy,..., H, be an arbitrary collection of hyperplanes in the eu-
clidean space V (of dimension n), and form a complex K in the same way
we formed the Coxeter complex. Each hyperplane H = H? determines
a positive half-space Ht and a negative half-space H~. Then a typical
element of X is a (nonempty) intersection of the form

K =()H{*, wheree;€{0,+,—}.

We write dim K = i if the linear span has dimension i. Note that
this linear span L is obtained by intersecting all H? which occur in
the definition of K. In turn, K is the open subset of L obtained by
intersecting various open half-spaces with L.

Lemma Denote by n; the number of elements of K having dimension
i. Then ) ,(—-1)in; = (-1)™.

Proof. We use induction on the number r of hyperplanes used to define
K (the case 7 = 1 being clear). What is the effect of adding to the
list H,,..., H, a new hyperplane H? New elements of the complex are
created just in case H intersects some K in a proper nonempty subset.
Let L be the linear span of K in V. If z € H N K, we can find an
open neighborhood U of z in L contained in K, by the above remarks.
Since H N L has codimension 1 in L, it is clear that U/ meets both H+
and H~. Thus we replace the single element K by two new elements
H* N K,H™ N K of dimension i, together with an element H° N K of
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dimension ¢ — 1. This increases the original n; and n;_, by 1, leaving
the alternating sum unchanged. O

an A and S as before. Consider, for each I C S, the facets vCy of

I, these are in bijective correspondence with left cosets vW;. For

, € W, define fr(w) to be the number of such facets stabilized (i.e.,
ed pointwise) by w. This is the same as the number of left cosets vW;
g;ed under left multiplication by w. As before, we write (—1)! instead

of (-1)V".

Proposntlon
) > (1) fr(w) = det(w).

Ics

Pybof. Fix w and let V'’ be the subspace of V fixed pointwise by w (the
1-eigenspace). Then the facets in C fixed by w are precisely those which
liein V'. Let K be the complex obtained by intersecting the elements of
C with V’. Then the number n; of facets of dimension ¢ in C which lie
in V’ is just the number of facets of dimension 7 in K, so we can apply
the above lemma to this situation, with ¢ := dim V":

D (=1 = (-1

fn:=dim V, dim C; = n —|I|, so we see that

Y fiw).

|Il=n—i

=

Combining, we get

D)™ Y (1) fr(w) = (-1)"

IcS

But w is an orthogonal transformation, so its possible eigenvalues are 1
(with multiplicity c), b pairs of complex conjugate numbers of absolute
value 1, and —1 (with multiplicity n — ¢ — 2b). Accordingly, det(w) =
(=1)"¢=2 = (—1)»¢. So the proposition follows. O

=TS

Notes

We follow the approach in the Appendix to Steinberg (4], supplemented
by Chapter 2 of Carter [1] (where the arguments are given only for
Weyl groups, but usually remain valid for all finite reflection groups).
See also Curtis-Reiner [3], §64. The treatment in Grove-Benson [1]
(or the earlier edition, Benson~Grove [1]) is more leisurely, giving for
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example a detailed account of finite groups of orthogonal transformations
in dimensions 2 and 3. For more of the geometry of finite reflection
groups, see Coxeter [1], Chapter XL

(1.9) This sort of presentation was apparently first studied system-
atically by Coxeter [2](3] and Witt [1]. Emphasis on the Exchange Con-
dition came later, in Matsumoto [1], Iwahori-Matsumoto (1], Bourbaki
[, v, §1.

(1.11) The proposition, due to Solomon (3], will be used in 3.15 below.

(1.15) Coxeter complexes (for general Coxeter groups) are studied in
detail in Brown (1], Ronan [1}; this is directed to the study of ‘buildings’,
as developed by Tits [1][6] (etc.). See also Carter [1], Chapters 2, 15.

(1.16) Solomon [3] gave a topological proof of the proposition; the
version here is due to Steinberg [5], §2. It will be used in 3.15 below.
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Classification of finite
reflection groups

SAadd!

pr
The goal of this chapter is to determine all possible finite reflection
groups, in terms of their ‘Coxeter graphs’ (2.3). Although a general
existence proof will be given in Chapters 5 and 6, we shall describe
in some detail how to construct each (irreducible) type of group and
compute its order. Groups satisfying a crystallographic condition (2.8)
are especially important in Lie theory, where they arise as Weyl groups
and can be studied uniformly.

** Throughout the chapter we reserve the index n for the rank of W.

2.1 Isomorphisms

The presentation of W obtained in Theorem 1.9 shows that (as an ab-
stract group) W is determined up to isomorphism by the set of integers
m(a, 8), o, 3 € A. A convenient way to encode this information in a
picture is to construct a graph I' with vertex set in one-to-one corre-
spondence with A; join a pair of vertices corresponding to a # (3 by
an edge whenever m(a, 3) > 3, and label such an edge with m(a, 3).
(For a pair of vertices not joined by an edge, it is then understood that
m(a, §) = 2.) This labelled graph is called the Coxeter graph of W. It
determines W up to isomorphism. Since simple systems are conjugate,
it does not depend on the choice of A.
For example, the graph of Dy, is

20
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The classification of finite reflection groups given in this chapter will rely
heavily on the study of possible Coxeter graphs.

We can give a somewhat more precise criterion for reflection groups
to be isomorphic, in the geometric setting:

Proposition Fori = 1,2, let W; be a finite reflection group acting on
the euclidean space V;. Assume W; is essential. If Wy and W; have the
same Cozeter graph, then there is an isometry of Vi onto V2 inducing an
isomorphism of Wy onto Wa. (In particular, if Vi = Va, the subgroups
W1 and Ws are conjugate in O(V).)

Proof. Fix asimple system A, for W;. By assumption, A, is a basis of V;.
As remarked in 1.2, we may assume that all roots are of unit length. Let
@ map A; to Az in a way compatible with the common Coxeter graph,
and extend by linearity to a vector space isomorphism of V; onto V. If
o # (B liein Ay, the angle 6 between them is 7 — m/m(a, 8). Since roots
are unit vectors, we get (o, 3) = cos § = —cos (v/m(a, 8)). The same
calculation applies to the inner product of the roots in A, corresponding
to a, 8, since the same m(a, 3) occurs. Thus ¢ is an isometry, which
clearly induces an isomorphism of W; onto W,. O

2.2 Irreducible components

We say that the Coxeter system (W,S) is irreducible if the Coxeter
graph T is connected. (We also call ¢ irreducible in this case.) In
general, let I'y, ..., T', be the connected components of I', and let A;, S;
be the corresponding sets of simple roots and simple reflections. Thus
ifa e A; and B € Aj (i # j), we have m(a, 5) = 2 and therefore
8a83 = SgSa. The following proposition shows that the study of finite
reflection groups can be largely reduced to the case when I' is connected.

Proposition Let (W, S) have Cozeter graph U, with connected com-
ponentsI'y,...,I'y, and let S, ..., S, be the corresponding subsets of S.
Then W is the direct product of the parabolic subgroups Ws,,...,Wsg,_,
and each Cozeter system (Wg,,S;) is irreducible.

Proof. Use induction on r. Since the elements of S; commute with the
elements of S; when ¢ # j, it is clear that the indicated parabolic sub-
groups centralize each other, hence that each is normal in W. Moreover,
the product of these subgroups contains S and therefore must be all of
W. By induction, Wg, g, is the direct product of the remaining W5, and
Proposition 1.13 implies that Wy, intersects it trivially. So the product
is direct. O

Ezercise. Let W be the dihedral group Dg of order 12, with standard
Coxeter generators S = {s,s’}. The Coxeter system (W,S) is irre-
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jlhcible. However, W has another set S’ of Coxeter generators leading
‘o a Coxeter system which is not irreducible: S’ := {s, (s's)3, s(s's)?}.

éa Coxeter graphs and associated bilinear
\ forms

i
Al

We start with a general definition, applicable not only to finite reflection
groups but also to other Coxeter groups encountered later on. Define
a Coxeter graph to be a finite (undirected) graph, whose edges are
labelled with integers > 3 or with the symbol oco. If S denotes the set of
vertices, let m(s, s’) denote the label on the edge joining s # s'. Since
the label 3 occurs frequently, we omit it when drawing pictures. We also
make the convention that m(s,s’) = 2 for vertices s # s’ not joined by
‘an edge, while m(s,s) = 1. (It will be seen in Chapter 5 that every
Loxeter graph comes from some Coxeter group.)

.. 'We associate to a Coxeter graph T with vertex set S of cardinality n
& symmetric n X n matrix A by setting

a(s,s') := — cos ——.
(s,5) ¢ m(s, s')

Recall some terminology. Any symmetric n X n matrix A = At defines a
bilinear form z¥ Ay (z,y € R™), with associated quadratic form zt Az. It
is well known that the eigenvalues of A are all real. A is called positive
definite if z*Az > 0 for all z # 0, positive semidefinite if z Az > 0
for all z. Equivalently, A is positive definite if all its eigenvalues are
(strictly) positive, positive semidefinite if all its eigenvalues are nonneg-
ative. By abuse of language, we also say that A is of positive type if
it is positive semidefinite, including positive definite. (This should not
be confused with the notion of ‘positive matrix’, meaning one whose
entries are strictly positive.) For brevity, we call ' positive definite or
positive semidefinite when the associated matrix (or bilinear form) has
the corresponding property.

There is another well-known characterization of positive typein terms
of determinants, which we shall use in the following two sections. The
principal minors of A are the determinants of the submatrices ob-
tained by removing the last k rows and columnd, {0 < k < n). Then
A is positive definite (resp. positive semidefinite) if and only if all its
principal minors are positive (resp. nonnegative).

When I' comes from a finite reflection group W, the matrix A is in
fact positive definite, because it represents the standard euclidean inner
product relative to the basis A of V' (assumed for convenience to consist
of unit vectors). Our strategy for classifying finite reflection groups
is to assemble a list of all possible connected positive definite Coxeter
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graphs, then to show that each of them does in fact correspond to a
finite reflection group.

2.4 Some positive definite graphs

We claim that the graphs in Figure 1 are all positive definite. To verify

Ap(nz1) O—=0O—~0 ¢ ¢+ O—O—0O

Br(n22) O——O0——0 + 2+ ¢ O—O—0O

D,(n>4) O—O0—0 o o—o<
Ey o-—o—i—c-——o—o

F4 o—o-4-0—o0
Hs 000

Hq 0-2-0—0—0
L (m oo

Figure 1: Some positive definite graphs

this we should compute the principal minors of the corresponding matrix
A. Tt is clear by inspection that (with suitable numbering of vertices)
each minor is itself the determinant of the matrix belonging to one of the
graphs in Figure 1. So by induction on n (the number of vertices), it will
be enough to compute det A itself in each case. Because the denominator
2 occurs so often, it is actually more convenient to compute det 2A.

The cases n < 2 can be checked directly. For example, the matrix A
corresponding to the graph I2(m) is

(Loon trgmy ™)
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Thus det 24 = 4(1 — cos*(n/m)) = 4sin*(x/m) > 0.

If n > 3, a glance at Figure 1 shows that it is possible to number
vertices in such a way that the last vertex (numbered n) is joined by an
edge to only one other vertex (numbered n — 1), this edge being labelled
m = 3 or 4. Let d; be the determinant of the upper left ¢ x ¢ submatrix
of 2A. Then an expansion of det 24 along the last row shows that

det 24 = 2dn—1 - Cdn_g, (1)

where ¢ = 1 (resp. 2) if m = 3 (resp. 4). Keeping in mind that we
multiply each matrix by 2, we compute inductively the values in the
following table.

An Bn Dn Es E7 Eg F4 H3 H4 Iz(m)
n+l 2 4 3 2 1 1 3—+v5 (7-3V5)/2 4sin°(n/m)

Table 1: Determinant of 24

The reader should carry out the required verification as an exercise,
recalling the values:

T V2 m 1+v5 w3

COS% = %, COSZ = 7, COS—S— = ——4——-, COSE = 7
(If the value of cos /5 is not so familiar, look at the derivation in
Bourbaki [1], p. 192 (footnote).)

As an example, we work through the cases of H3 and Hy. For H3 the
smaller minors come from graphs of types I2(5) and A;, so formula (1)
reads:

det 2A = 8 sin*(n/5) — 2 = 3 — V5.

For H4 the smaller minors are of types H3 and I12(5), yielding:

det 24 = 2(3 — V/5) — 4 sin%(x/5) = (7 — 3V5)/2.

2.5 Some positive semidefinite graphs

As a tool in the proof that the Coxeter graphs in Figure 1 of 2.4 are the
only connected positive definite ones, we assembl&dme auxiliary graphs
in Figure 2. We claim that all of these are positive semidefinite (but not
positive definite). The labels are suggestive of the fact that each graph
is obtained from a graph in Figure 1 by adding a single vertex. In each
case, the subscript n therefore indicates that the number of vertices is
n 4+ 1. (For type B, there are two related graphs, labelled B, and C.,.
We write G2 in place of I(6).) The actual significance of the graphs in
Figure 2 will only become clear in Chapter 4.
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A o-=-0
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B.(n33) >>—o + o—odo
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Figure 2: Some positive semidefinite graphs

Since the removal of a suitable vertex from each graph in Figure 2
leaves one of the positive definite graphs in Figure 1, all we have to check
is that the determinant of the matrix A belonging to each graph is 0.
This is immediately clear for type A,, since the sum of all rows in A4
is 0 and hence A is singular. For the remaining types we can use the
inductive formula (1) and the table in 2.4. For example, consider F,.
The relevant subgraphs are of types F4 and Bs, so formula (1) reads:

det2A=2-2=0.

It will be useful later on to know that the Coxeter graphs Z,, Zs
shown below are not of positive type. This follows from the fact that
the determinant of 24 is (respectively) 3 — 2v/5,4 — 2v/5 (each of which
is strictly negative). T{l}ese are quickly computed via (1) in 2.4, using
the determinants found there for types Hs and H,.
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2.6 Subgraphs

Here we obtain a crucial fact for the classification program: each (proper)
‘subgraph’ of a connected graph of positive type is positive definite. By
a subgraph of a Coxeter graph I' we mean a graph IV obtained by
omitting some vertices (and adjacent edges) or by decreasing the labels
on one or more edges, or both. We also say that I' ‘contains’ IV. To
simplify statements, we choose not to call the graph itself a subgraph.
... We shall need some standard (but possibly unfamiliar) facts from
matrix theory, usually associated with the Perron-Frobenius theory of
nonnegative matrices and M-matrices. The following general proposi-
tion will also play a key role in 3.17 and 6.5 below.

A real n X n matrix A is called indecomposable if there is no
partition of the index set into nonempty subsets I, J such that a;; =0
whenever i € I,j € J. Otherwise, after renumbering indices, A could
be written in block diagonal form. (The less exact term ‘irreducible’
is, more commonly used in linear algebra texts.) It is clear that the
matrix belonging to a Coxeter graph is indecomposable precisely when
the graph is connected.

Proposition Let A be a real symmetric n X n matriz which is positive
semidefinite and indecomposable. (In particular, the eigenvalues of A
are real and nonnegative.) Assume that a;; < 0 whenever i # j. Then:
(8) N := {z € R*|zt Az = 0} coincides with the nullspace of A and
has dimension < 1.
(b) The smallest eigenvalue of A has multiplicity 1, and has an eigen-
vector whose coordinates are all strictly positive.

Proof. (&) It is clear that the nullspace of A lies in N. For the reverse
inclusion, we diagonalize A. Since A is symmetric, there is an orthogonal
matrix P for which D := PYAP = diag(dy,...,dn). If 0 = y*Dy =
3" d;y?, then for each i either d; = 0 or else y; =# (since d; > 0). Thus
S diy; = 0, and y lies in the nullspace of D. In turn, if x = Py satisfies
zb Az = 0, we see that x lies in the nullspace of A.

Suppose N has positive dimension, say 0 # z € N. Let z be the
vector whose coordinates are the absolute values of those of z. Since
a;; < 0 whenever ¢ # j, we have

0< Az < 2V Ar = 0,
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forcing z to lie in N. We claim that all coordinates of z are nonzero.
To see this, let J be the (nonempty) set of indices j for which z; # 0,
and let I be its complement. Since N is the nullspace of A, we have
), @ijz; = 0 for each i, where the sum need only be taken over j € J.
Since z; > 0 and a;; < 0, each term in the sum is nonpositive. If I
were nonempty we would get a;; = 0 for all 1 € I, j € J, contrary to the
indecomposability of A. Thus N contains a vector whose coordinates are
all strictly positive. The argument also shows that an arbitrary nonzero
element x € N has no zero coordinate. If dim N were larger than 1, it
would be easy to find a nonzero linear combination of such vectors with
a coordinate equal to 0, so we conclude that dim N < 1.

(b) Recalling that the eigenvalues d; of A are nonnegative, let d be
the smallest one. Observe that A — dI satisfies all the hypotheses of the
proposition. (It is positive semidefinite, since it is orthogonally similar
to the matrix D — dI with nonnegative entries.) Moreover, A —dI is
singular. So its nullspace has dimension exactly 1 and is spanned by a
vector with strictly positive coefficients, according to the argument in
(a). This means that d occurs as an eigenvalue of A with multiplicity 1,
and there is a corresponding positive eigenvector. O

Corollary If T is a connected Cozeter graph of positive type, then
every (proper) subgraph is positive definite.

Proof. Let T’ be a subgraph, and denote by A and A’ the associated
madtrices, so that A’ is k x k for some k < n. The edge labels in I satisfy
m; < m;j, whence a;; = — cos(m/mj;) > — cos(m/m;) = a;;. Suppose
A’ fails to be positive definite. Then there is a nonzero vector z € R*
such that zt A’z < 0. Applying the quadratic form associated with A
to the vector with coordinates |zi],...,|zk],0,...,0 in R"®, we get the
comparison:

0< Y aylaillzil <Y ajleille;l < Y alziz; <0,
where each sum is taken over all ¢, j < k. (In the next-to-last inequality,
we used the fact that a}; < 0 for i # j.) So equality holds throughout.
The first equality shows that we have a null vector for A, which by
the proposition is possible only if k¥ = n and all coordinates of = are
nonzero. But then the second equality forces all a;; = al;, contrary to
the assumption that IV is a (proper) subgraph. O

2.7 Classification of graphs of positive type

Theorem The graphs in Figure 1 of 2.4 and Figure 2 of 2.5 are the
only connected Cozxeter graphs of positive type.

Proof. Suppose there were a connected Coxeter graph I' of positive type
not pictured in either Figure 1 or Figure 2. We proceed in 20 easy steps
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to obtain a contradiction, relying repeatedly on Corollary 2.6 to rule out
various subgraphs. Let I' have n vertices, and let m be the maximum
edge label.

(1) All Coxeter graphs of rank 1 or 2 are clearly of positive type (A,
Io(m), A1), so we must have n > 3.

(2) Since A1 cannot be a subgraph of I, we must have m < oo.

(3) Since X;,(n > 2) cannot be a subgraph of I', " contains no circuits.

Suppose for the moment that m = 3.
(4) T must have a branch point, since I" # A,,.
(5) T contains no D,.,n > 4, so it has a unique branch point.

+ (6) T does not contain ﬁ;, so exactly three edges meet at the branch
point (with @ < b < c further vertices lying in these three direc-
. tions).

'<(7) Since Eg is not a subgraph of ', a = 1.
(8) Since E; is not a subgraph of T, b < 2.
(9) Since I # Dy, b cannot be 1, so b = 2.
(10) Since ﬁ; is not a subgraph of ', ¢ < 4.
(11) Since I' # Eg, E7, Eg, the case m = 3 is impossible. Thus m > 4.
(12) T does not contain 6;,, so only one edge has a label > 3.

(13) I does not contain ﬁ:,, so I' has no branch point.

Now consider what happens if m = 4.
(14) Since I" # B,,, the two extreme edges of I' are labelled 3.
(15) Since I does not contain Fy, n must be 4.
(16) But I' # F4, so the case m = 4 is impossible. Thus m > 5.
(17) Since I' does not contain G, we must have‘"fﬁ‘ = 5.

(18) T does not contain the nonpositive graph Z4 in 2.5, so the edge
labelled 5 must be an extreme edge.

(19) T does not contain the nonpositive graph Zs, so n < 4.

(20) Now I" must be either H3 or Hy, which is absurd. So we have
eliminated all possibilities. O
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The theorem limits the possible finite reflection groups which can
exist. In fact, there does exist a group belonging to each graph in Figure
1 of 2.4. A uniform existence proof will be given in Chapters 5 and
6, along the following lines. Define W abstractly by generators and
relations, as in Theorem 1.9. (It will not yet be obvious whether W is
finite or not.) Then show how to represent W faithfully as a subgroup
generated by reflections in a suitable GL(V'), and argue that W is finite
(being a discrete subgroup of the compact group O(V)).

In the rest of this chapter we shall discuss concretely how to construct
finite reflection groups of all types, and thereby determine their orders.

2.8 Crystallographic groups

A subgroup G of GL(V) is said to be crystallographic if it stabilizes a
lattice L in V (the Z-span of a basis of V): gL C L for all g € G. (Since
G is a group, it is automatic that gL = L.) The name comes from low-
dimensional crystallography, where the classification of possible crystal
structures depends heavily on the available symmetry groups. It turns
out that ‘most’ finite reflection groups are crystallographic.

First we obtain a necessary condition for W to be crystallographic.
The crucial thing to notice is that, for any choice of basis in V, the
traces of the matrices representing a crystallographic group must be in
Z (since the trace could equally well be computed relative to a Z-basis
of L).

Proposition If W is crystallographic, then each integer m(a, 3) must
be 2,3,4, or 6 when o # 3 in A.

Proof. If a # 3, we know that s,83 # 1 acts on the plane spanned
by o and § as a rotation through the angle 6 := 2x/m(a, 3), while
fixing the orthogonal complement pointwise. Thus its trace relative to
a compatible choice of basis for V is (n — 2) 4+ 2 cos@ (n = dim V). So
cos 8 must be a half-integer, while 0 < # < w. The only possibilities are
cosf = —1, —1/2, 0, 1/2, corresponding to the cases m(o, §) = 2, 3,4,6.
0

This criterion rules out the groups of types Hs and Hy as well as all
dihedral groups except those of orders 2, 4, 6, 8, 12. For all remaining
cases, we shall see in the following sections a ‘natural’ construction of a
W-stable lattice. But it is easy enough to show in an ad hoc way that
such lattices exist:

Ezercise. If W satisfies the necessary condition in the proposition (and
is essential), show how to modify the lengths of the roots in a simple
system A so that the resulting Z-span is a lattice in V stable under W.
[Use the fact that the Coxéter graph has no circuits.]
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2.9 Crystallographic root systems and Weyl
groups

The notion of ‘root system’ introduced in 1.2 differs somewhat from that
commonly used in Lie theory. To avoid confusion, we say that a root
gystem @ is crystallographic if it satisfies the additional requirement:

2(e, B)
(8,8)

These integers are called Cartan integers. It is actually enough to re-
quire that the ratios be integers when o, 8 € A. The group W generated
by all reflections s, (o € ®) is known as the Weyl group of &.

The effect of the added condition on @ is to insure that s, is ob-
tained from (3 by adding an integral multiple of «. This in turn implies
that all roots are Z-linear combinations of A, and that (in case W is
essential) the Z-span of A in V' is a W-stable lattice. So W is crystal-
lographic in the sense of 2.8.
~ We shall not give details of the classification (up to ‘isomorphism’) of
crystallographic root systems, since it is similar in spirit to the classifi-
cation of positive definite Coxeter graphs given earlier. (See Chapter VI
of Bourbaki [1] or Chapter III of Humphreys [1].) The conclusion is that
the resulting Wey! groups are precisely the reflection groups for which
all m(o,8) € {2,3,4,6} (when a # 8). So Weyl groups are the same
thing as crystallographic reflection groups. However, there are distinct
crystallographic root systems B,, and C,, each having as Weyl group
the group previously labelled B,,.

It turns out that when ® (or W) is irreducible (in the sense of 2.2),
at most two root lengths are possible. If there are both ‘long’ and ‘short’
roots, the ratio of the squared lengths can only be 2 or 3. (If there is just
one root length, all roots are called ‘long’.) This information is added
to the Coxeter graph by directing an arrow toward the short root when
adjacent vertices represent a long and a short root. By convention, the
label 4 or 6 is replaced in each case by a double or triple edge. (When
only one root length occurs, the graph is therefore ‘simply-laced’.) The
resulting Dynkin diagrams are easily derived from Figure 1 in 2.4
together with 2.10 below. (See Bourbaki [1], p. 197 or Humphreys [1],
p- 58.)

The construction of the various crystallographlc root systems will be
outlined in the following section, following Bourbaki. For later reference,
we summarize a few general facts:

(1) Setting o = 20/(a, c), the set ®V of all coroots &" (o € )
is also a crystallographic root system in V', with simple system AY :=
{oV|a € A}. 1t is called the inverse or dual root system. The Weyl
group of v is W, with wa¥ = w(c)V. In most cases ®V is isomorphic to

(R3) €Z forall o, € ®.
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®; however, the root systems of types B,, and C,, are dual to each other.
Short roots a in a system ® of type B,, give rise to long roots " in the
system ®V of type C, (and vice versa). (Note: Rather than working
in a euclidean space, Bourbaki defines root systems in an arbitrary real
vector space, with coroots belonging to the dual vector space. This does
not significantly alter any of the results we are quoting.)

(2) The Z-span L(®) of ® in V is called the root lattice; it is a
lattice in the subspace of V spanned by &, which we can usually assume
to be V itself. Similarly, we define the coroot lattice L(®Y). Both
lattices are W-stable. In Chapter 4 it will also be important to introduce
related W-stable lattices (which arise in representation theory). Define
the weight lattice

L(®) == {A e V|(A,a¥) € Z for all a € ¥},
and the coweight lattice
L(®Y) := {A e V|(A, @) € Z for all a € ®}.

Then L(®) contains L(®) as a subgroup of finite index f, and similarly
L(®V) contains L(®") as a subgroup of index f. Here f is just the
determinant of the matrix of Cartan integers (o, 8") (o, 8 € A). (It is
called the index of connection in Lie theory: L/L is isomorphic to
the fundamental group of a compact Lie group of adjoint type having
W as Weyl group; so f is the order of the kernel of the associated map
from the simply connected covering group.)

(3) There is a natural partial ordering on V (when A is fixed): p < A
if and only if A — p is a nonnegative Z-linear combination of A. When
@ is irreducible, there exists a unique highest root (a long root) relative
to this ordering, denoted &; it plays a crucial role in 2.11 below as well
as in Chapter 4. There also exists a unique highest short root. (This is
easy to prove in the axiomatic framework of root systems, but is most
easily understood in terms of the adjoint representation of the simple
Lie algebra over C having ® as root system.)

(4) The long (resp. short) roots form a single orbit under the per-
mutation action of W on ®, assuming W is irreducible. This is seen as
follows if all roots are long. By Corollary 1.5, each root is W-conjugate
to a simple root, and since the Dynkin diagram is connected, it then suf-
fices to see that roots belonging to adjacent vertices are W-conjugate.
But they are clearly in the same orbit under the subgroup (isomorphic
to D3) generated by the two simple reflections involved. (More gener-
ally, it is easy to check that all reflections are conjugate in D,, whenever
m is odd.) If there are two root lengths, the argument is similar, since
simple roots of each length correspond to a connected part of the Dynkin
diagram in types B,,, C,,, ¥y, Ga.
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‘Remark. In Lie theory, one sometimes wants to allow both o and 2a to
be ‘roots’. If the condition (R1) in 1.2 is dropped from the definition of
crystallographic root system, ® may be ‘nonreduced’ (as permitted in
Bourbaki’s definition of ‘root system’). The only new (irreducible) type
one gets is called BC,,: superimpose root systems of type B, and C,,
the long roots of B,, coinciding with the short roots of C,,.

2.10 Construction of root systems

Denote by ¢1,...,&, the standard basis of R®. Whenever we write
combinations such as te; + ¢; below, it is understood that the signs
may be chosen arbitrarily.

We shall outline briefly the construction of (crystallographic) root
systems of all possible types, following Chapter VI of Bourbaki [1] (which
should be consulted for further details). The basic strategy is simple
enough In a suitably chosen lattice L in R"®, define ¢ to be the set of
all vectors having one or two prescribed lengths. Then check that the
rwultmg scalars 2(a, 8)/(8, B) lie in Z. 1t follows automatically that the
reflections with respect to vectors in & stabilize L and hence permute
® as required. (The actual choices to be made are not so obvious; they
arose historically from a close scrutiny of the adjoint representation of a
simple Lie algebra.) The reader should be able to fill in the calculations
without difficulty.

In effect we already encountered root systems of types A,, B,,D, in
1.1 (and C,, is just the dual of B,). In these cases W has a fairly simply
description. In the ‘exceptional’ cases Eg,E7, Eg, F4, Ga, it is harder to
deduce from the description of ® a concrete description of W (apart
from the easy case of G2). In particular, the order of W remains to be
calculated. We shall develop a general method for this in 2.11 below,
and in 2.12 we shall describe some realizations of the exceptional Weyl

groups.

(Ap,n > 1) Let V be the hyperplane in R**! consisting of vectors
whose coordinates add up to 0. Define ® to be the set of all vectors
of squared length 2 in the intersection of V with the standard lattice
Zey + ...+ Zeny1- Then @ consists of the n(n + 1) vectors:

., 4
gi—€; (1<i#j<n+1).
For A take
1 =€) —€2, 2 —€2—€3, ..., ¥p =Ep — En4l-

Then & =€) — €p41- W is Sp41, which acts as usual by permuting the
£€;.
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(Bn,n > 2) Let V = R", and define ® to be the set of all vectors of
squared length 1 or 2 in the standard lattice. So ® consists of the 2n
short roots +¢; and the 2n(n~1) long roots +¢;+¢; (i < j), totalling 2n?.
For A take o) = €1 — €2, g = €2 —€3,...,Qn-1 = En—1 ~ En, Qn = Ep.
Then & = €1 + £2. W is the semidirect product of S,, (which permutes
the ¢;) and (Z/2Z)" (acting by sign changes on the ¢;), the latter normal
in W.

(Cn,n > 2) Starting with B, one can define C, to be its inverse
root system. (Note that B, and C; are isomorphic.) It consists of the
2n long roots +2¢; and the 2n(n — 1) short roots +¢; +¢; (¢ < 5). For A
take o = €1 — €2, p = €2 —€3,...,Qn_] = En—1 —En, On = 26n. Then
a = 2. ’

(Dp,n > 4) Let V = R", and define ® to be the set of all vectors of
squared length 2 in the standard lattice. So ® consists of the 2n(n — 1)
roots t¢; £ &; (1 < i < j < n). For A take o = €1 — €2, 02 =
£9 —E3,...,0n_1 = Epn—-1 —En, Qn =Ep—1+&n. Then @ =€) +62. Wis
the semidirect product of S, (permuting the ¢;) and (Z/2Z)""! (acting
by an even number of sign changes), the latter normal in W.

(Gz) Let V be the hyperplane in R? consisting of vectors whose
coordinates add up to 0. Define ¢ to be the set of vectors of squared
length 2 or 6 in the intersection of V' with the standard lattice. So &
consists of six short roots +(e; — ¢;) (¢ < j) and six long roots *(2¢; ~
gj — €x) (where {i,7,k} = {1,2,3}). For A take a; = €1 ~ €2, a2 =
—~2¢1 + €3 +€3. Then & =263 —£; —e3.

(F4) Let V = R*. If L' is the standard lattice, let L := L' +
Z(3 Yo+, €:). This is also a lattice, and we define @ to be the set of all
vectors in L of squared length 1 or 2. So ® consists of 24 long roots and
24 short roots:

+e; tegj ] <j),

1
+ey, 5(:!:81 teptestey)

For A take
1
Q) =€y —€3, Ay =E3~E4, O3 =€, Qg = 5(61 — €2 — €3 —€4).

Then & = €; +¢».

Since a root system of type Eg must contain canonical copies of both
E7; and Eg, the main task is to construct the former.

(Es) Let V = R8. The choice of lattice is somewhat subtle. Start
with the lattice L’ consist?ing of all 3 cie; with ¢ € Z and 3 ¢; even.
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:ﬁ'l‘?heh let L=L"+2(} Zle €;). Define ® to be the set of all vectors of
 squared length 2 in L. So ® consists of 240 roots:

8
1
+e;te; (2<), 3 Z:ts,- (even number of + signs).

i=1

For A take
\{H"’ 1
g o = 5(81—'52—53—54—55-56—57+58)7
N oy = g1 +ey,
o = g_g—€i2 (3L1<8).

Ipen & = e7 +¢5.

ey ‘

(E-,) Starting with the root system of type Eg just constructed, let
Wibe the span of the a; (1 < i < 7) in R®, and let & be the set of 126
‘6ots of Eg lying in V:

e te;te; (1<i<j<6),
+(e7 — €s),
6

1
15(67 — €8 + Z:te,-),

i=1
where the number of minus signs in the sum is odd. The roots a; (1 <
'# £ 7) form a simple system. Then G = €g — €7.

. (Ee) Start again with the root system of type Eg, and let V be the
splan of the o; (1 < i < 6), with ® defined to be the set of 72 roots of Eg
lying in V:

teite; 1<i<i<8),
1 5
i§(58 ~e7 — €6 + Z +e;),
i=1
where the number of minus signs in the sum is odd. The roots a;(1 < ¢ <
6) form a simple system. Then & = (e) +e2+¢€3 +e4465 —6 — €7 +2s)-

Exercise. In each case, express & as a Z-linear combination of the simple
roots.

2.11 Computing the order of W

In cases where we have a ‘natural’ construction of W (types A,,, B,,, D,,,
I(m)), there is no problem about computing |W|. But in other cases
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the order is not immediately apparent even after @ is exhibited. Here
we describe a general method, based on the elementary group-theoretic
fact: if a finite group G acts as a permutation group on a set X then,
for each x € X, |G| = |Gz||G;|, where Gz is the orbit of x and G, is the
isotropy group of x in G. In our situation, W acts on the set ®, and for
a well-chosen root we can describe the isotropy group explicitly. Here
we consider just Weyl groups, deferring discussion of H3 and Hy to 2.13.

The key fact, stated as (4) in 2.9, is that all long (resp. short) roots
form a single W-orbit (when W is irreducible). Consider the unique
highest root & (which is long). If o € A, we claim that (&,a) > 0.
Otherwise s,& would equal & plus a positive multiple of «, hence would
be higher in the partial ordering. Thus & lies in the fundamental domain
D for W described in Theorem 1.12. According to part (a) of that
theorem, the isotropy group of & is generated by the reflections belonging
to simple roots orthogonal to &. These are easily determined in each
case from the data assembled in 2.10. This gives an inductive method
for calculating |W/{, which we apply now to the remaining types.

(F4) There are 24 long roots. The highest root & is orthogonal to all
simple roots except o, so its isotropy group is of type Cs (having order
48). Therefore |W| = 24 - 48 = 1152 = 2732,

(Eg) The 72 roots form a single orbit. The highest root & is orthog-
onal to all simple roots except a3, so its isotropy group is of type As
(baving order 6!). Therefore [W| = 6!72 = 273%5.

(E7) The 126 roots form a single orbit. The highest root & is orthog-
onal to all simple roots except oy, so its isotropy group is of type Dg
(having order 2°6!). Therefore |W| = 2561126 = 210345 7.

(Eg) The 240 roots form a single orbit. The highest root & is orthog-
onal to all simple roots except ag, so its isotropy group is of type E;
(having the order just computed). Therefore |W| = 21435527.

To summarize this discussion, the following table gives the orders of
all irreducible Weyl groups (along with the number of roots):

A, B,/C., D, Ee¢ E; Es Fy; G
(n+1)! 27nl  27-Tnl 27375 2103957 2135577 2737 12
n(n+1) 2n® 2n(n-—1) 72 126 240 48 12

Table 2: |W| and |®| for Weyl groups

Some other formulas for |W| will be developed in 3.9 and 4.9.

FExercise. Use the method of this section to derive again the orders of
the groups of types A,,, B,, Dy,
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2.12 Exceptional Weyl groups

Here we survey briefly some of the interesting ways in which the Weyl
groups of types F4,Eg, E7,Eg can be described. Only F, arises as the
group of symmetries of a regular solid, but the other three groups have as
close relatives certain simple groups: orthogonal and symplectic groups
over F2 or F3. (See the exercises in Bourbaki [1], pp. 228-229, as well
as the references given below to the Atlas, Conway et al. [1].)

Recall that W always has a normal subgroup W+ of index 2 (the
‘rotation subgroup’ consisting of elements of determinant 1).

(F4) This is the group of symmetries of a regular solid in R* hav-
ing 24 (three-dimensional) faces which are octahedra; see Coxeter [1].
Readers who share the author’s inability to visualize such things may
also welcome a purely group-theoretic description of W (see Bourbaki
{1], p. 213). Observe that the 24 long roots in ® form a root system @’
of type D4. It turns out that W is precisely the automorphism group
of @, in which the Weyl group W’ of type D4 is a normal subgroup
of order 192. (Recall that W' is the semidirect product of S4 and an
elementary abelian group of order 8.) Other automorphisms of @' arise
naturally from symmetries of the Dynkin diagram: one can interchange
the three outer vertices using S3. So W/W’ = 83 (in agreement with
the calculation |W| = 2732 in 2.11 above). In fact, W is the semidirect
product of W’ and S3.

(Eg) W has a number of interesting realizations (see the discussion
in the Atlas under Uy4(2) = S4(3)). For example, W is the group of
automorphisins of the famous configuration of 27 lines on a cubic surface.
The rotation subgroup W+ of W is a simple group of order 25 920, which
has a variety of descriptions as a group of Lie type in the Atlas: SU4(2),
PSp,(3), SO5(3), Og (2). One way to make such identifications is to
pass to quotients of the root lattice. For example, L(®)/2L(®) is a
six-dimensjonal vector space over F2. The usual inner product (divided
by 2) induces a nondegenerate quadratic form on this space, invariant
under the induced action of W. This yields an isomorphism of W onto
the orthogonal group of the form.

(E7) The rotation subgroup W of W has two realizations as a sim-
ple group of Lie type, denoted Sg(2) in the Atlad. On the one hand,
L(®)/2L(®) is a seven-dimensional vector space over F3. The usual in-
ner product (divided by 2) induces a nondegenerate quadratic form on
this space, invariant under the induced action of W. This yields a homo-
morphism of W onto the orthogonal group of the form, with kernel {£1},
inducing an isomorphism of W+ onto O7(2). (This is a simple group of
Lie type B3(2).) On the other hand, L(®)/2L(®) is a six-dimensional
vector space over Fq, on which the usual inner product induces a non-
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degenerate alternating form with associated symplectic group Spg(2) (a
simple group of Lie type C3(2)). Again W is identified with this group.

(Es) L(®)/2L(®) is an eight-dimensional vector space over F;. The
usual inner product (divided by 2) induces a nondegenerate quadratic
form on this space, invariant under the induced action of W. This
yields a homomorphism of W onto the orthogonal group of the form,
with kernel {+1}. The rotation subgroup W+ of W maps onto a simple
subgroup of index 2 in the orthogonal group, denoted OF (2) in the Atlas.
This is a simple group of Lie type D4(2) having order 2123%5%7.

2.13 Groups of types H3 and H;,

Finally, we consider the non-crystallographic groups of types Hs and Hy.
Both of these arise naturally as symmetry groups of regular solids. The
group of type Hj is the symmetry group of the icosahedron (with 20
triangular faces) in R?, or dually, of the dodecahedron (with 12 pentag-
onal faces). W has order 120, contains 15 reflections, and is abstractly
isomorphic to the direct product of its center {+1} and the simple group
of order 60. (See Grove-Benson [1] for a detailed discussion of the ‘icosa-
hedral’ group.) The group of type Hy is the symmetry group of a regular
120-sided solid (with dodecahedral faces) in R4, or dually, of a regular
600-sided solid (with tetrahedral faces); see Coxeter [1], p. 153. It has
order 14 400 and contains 60 reflections.

Rather than attempt a geometric construction of either group, we
look for a suitable root system in R® or R*. The existence of a group
of type Hy will of course imply the existence of a subgroup of type Hj,
so we concentrate on the former. However, we can see in advance that
the order of a group of type Hj (if it exists) must be 120, by a simple
application of the alternating sum formula derived in 1.11:

Ics
Unfortunately, this formula is effective only for groups of odd rank, so
the order of a group of type Hy is not a priori obvious.

Probably the most insightful way to construct the root system of
H; in R* is to identify vectors with elements of the ring H of real
quaternions: A = (c¢;,¢2,€3,¢4) corresponds to A = c¢; + coi + c3j + ¢4k
(where {1,1, ], k} is the usual basis of H). Under this identification the
inner product (A, 1) in R* becomes:

1 -
5(’\/-2 + u/\)v

where A := ¢; — coi — c3j — ¢4k is the usual conjugation. Using the
resulting norm ||A|| ;= AAinverses in the division ring H are computed



2:13. Groups of types Hz and Hy 47

by

| >

A= .
Al
If « € H has norm 1, a quick calculation shows that the reflection s,
transforms H by the rule

>

A= —ala.
How can we locate the root system of Hy as a subset of H? The
following (somewhat surprising) observation provides a clue:

Lemma Any finite subgroup G of even order in H is a root system
(when regarded as a subset of R?).

Proof. Note first that each element of G must be of norm 1, since A" = 1
&nphes JAII™ = 1 and hence ||A]] = 1 (being a positive real number). In
turn since G is closed under inverses, it is closed under conjugation.

It is easy to check that no quaternion except —1 has multiplicative
order 2. Since any group of even order contains an element of order 2,
—vl must lie in G (and thus G contains the negatives of its elements).
In tum, the formula for s, shows that s,G = G (G being closed under
congugatlon) Thus G satisfies the axioms of 1.2 for a root system. O

For a systematic discussion of finite multiplicative subgroups of H,
consult DuVal (1], §20. Here we just specify a particular subgroup of
order 120, without attempting to motivate the choice. It can be seen
directly (or indirectly, using the classification) to be a root system of
type Hy. This will prove the existence of a reflection group of type Hy
(and with it a subgroup of type Hs).

 As the Coxeter graph suggests, the angle 7/5 should figure in the
construction. Set
a::coslz L+ V5 b'=cosz—7r=:£i—\/-5
5 4 7 5 4
Then one checks that

20=2b+1, dab=1, 4a?=2a+1, 4° = -2b+1.

Let ¢ consxst of the unit vectors in H obtained from 1, 3 L1+i+j+k),
and a + 21 + bj by even permutations of coordinates and arbitrary sign
changes. It is routine (but tedious) to check that ® is a group of order
120, hence is a root system. Let W be the resulting reflection group.
It is easy to check that W is irreducible: it is impossible to partition ®
into two nonempty orthogonal subsets. From the classification it follows
that W must be of type Hy. We can exhibit a simple system:

1
= — —1 b.
m a 21+ J]
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1, .
ay = -—a+—2-1+b_)
1+b' j
a3 = = -
3 2 1 —aj
= L ik
4 = 2 a

The resulting inner products are obviously consistent with the graph of
type Hy. Rather than check directly that this is a simple system, the
reader might consult Exercise 1 in 1.5.

To compute the order of W, we use the method of 2.11. Observe
first that the 120 roots form a single W-orbit. Since every root is W-
conjugate to a simple root, it is enough to check that simple roots belong-
ing to adjacent vertices of the Coxeter graph are W-conjugate. Whether
the edge is labelled 3 or 5, we can appeal as before to the general fact
that all roots of a dihedral group D, are in a single orbit when m is
odd.

Note that the roots a,, ag, a3 form a simple system for the subgroup
of type Hj, whose 30 roots are precisely the roots orthogonal to the root
k = (0,0,0,1). By part (c) of Theorem 1.12, the isotropy group of this
root has order 120. Finally, |W| = 120- 120 = 14 400.

Notes

In 2.3-2.7 we follow Witt [1]. (See also Chapter XI of Coxeter [1].)
(2.12) Coxeter [6] has more discussion of the groups of type E,,.
(2.13) For another description of the group of type Hy, exhibiting its

structure, see Huppert {1]. We have mainly followed Witt [1]; note that

the description in Grove-Benson [1] is slightly different. Sekiguchi-Yano

[2] show how to embed Hj in Ds; similarly, Shcherbak [1] embeds Hy in

Es.






Chapter 3

Polynomial invariants of
finite reflection groups

If W is a finite subgroup of GL(V') generated by reflections, it acts in
a natural way on the ring of polynomial functions on V. This chapter
will be devoted to the study of this action, emphasizing the remarkable
features of the subring of invariants, which turns out to be a polynomial
ring on generators of certain well-determined degrees (whose product is
{W1). This is a far-reaching generalization of the fundamental theorem
on symmetric polynomials (the case of a symmetric group).

After some generalities on invariants of arbitrary finite groups (3.1)—
(3.2), we prove the fundamental theorem of Chevalley giving an alge-
braically independent set of generators for the ring of invariants (3.3)—
(3.5) and observe (3.7) that their degrees are uniquely defined. More-
over, the sum and product of the degrees have natural interpretations
(3.9). A standard Jacobian criterion for algebraic independence of poly-
nomials (3.10) allows us to work out some examples (3.12). The degrees
enter in a surprising way into the factorization of the Poincaré polyno-
mial of W (3.15).

In 3.16-3.19 we find a completely different interpretation of the de-
grees, in terms of the eigenvalues of a ‘Coxeter element’ of W (the prod-
uct of simple reflections in some order). For Weyl groups the calculation
of degrees can also be done by counting roots of e.?‘ch height (3.20).

3.1 Polynomial invariants of a finite group

Before dealing specifically with reflection groups, let us consider what
can be said about the polynomial invariants of an arbitrary finite sub-
group of GL(V'), where V is an n-dimensional vector space over a field
K of characteristic 0. Denote by S the symmetric algebra S(V*) of

A0




L eey mevsenaa suvadladls Ol noute refiection groups

the dual space V*, which is the algebra of polynomial functions on V.
Relative to a fixed basis of V, S may be identified with the polynomial
ring K|z,,...,z,], where the z; are the coordinate functions. When
no confusion can result, we sometimes write K|[z], f(z), etc., for short.
(The letter S has been used in Chapters 1 and 2 to denote a set of simple
reflections generating W, and will be used again for that purpose later in
this chapter. Meanwhile, the use of S to denote the symmetric algebra
should cause no confusion.)

There is a natural action of G on § as a group of K-algebra automor-
phisms, coming from the contragredient action of G on V*: (g- f)(v) =
f(g~'v), where g € G, v € V, f € V*. This action preserves the natural
grading of S by ‘degree’. We adopt the usual conventions that deg 0 =
—oo and that deg f is the maximum degree of the homogeneous parts of
f. We say that f € S is G-invariant if g - f = f for all g € G. Denote
by R = S€ the subalgebra of G-invariants. Note that it is homogeneous
relative to the grading of S.

We want to get some feeling for the nature of R — for example,
how ‘big’ is it? (The only obvious invariants are the constants.) It is
instructive to compare the induced action of G on the field of fractions
L of S, which is isomorphic to K(x\,...,z,), a purely transcendental
extension of K of transcendence degree n. Here G acts as a group of
field automorphisms. From field theory we know that L is a finite Galois
extension of the fixed field L®, with Galois group G. It follows that LE
also has transcendence degree n over K.

But how is LC related to R? Obviously the field of fractions of
R is included in L¢. We claim that the reverse inclusion is also true:
Suppose p/q € LE (p,q € S). Both numerator and denominator may be
multiplied by [] g - p, where the product is taken over all g # 1 in G.
The new numerator is visibly G-invariant, forcing the denominator to
be G-invariant as well. Thus L€ is precisely the field of fractions of R.
This shows that R is a reasonably large subalgebra of S.

To summarize:

Proposition Let V be a finite dimensional vector space over a field
K of characteristic 0. Let G be a finite subgroup of GL(V), acting
canonically on the symmetric algebra S of V*, and let R be the subalgebra
of G-invariants. Then the field of fractions of R coincides with the
subfield of G-invariants in the field of fractions of S. In particular, it
has transcendence degree n over K if V has dimension n. O

3.2 Finite generation

Having seen in 3.1 that the ring of invariants R is not ‘too small’, we
show next that it is finftely generated as a K-algebra (and therefore
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is not ‘too big’). Our strategy (following Hilbert) is to exploit the fact
that ideals in polynomial rings such as S are finitely generated (Hilbert’s
Basis Theorem); indeed, it follows easily from Hilbert’s Theorem that a
finite generating set can be extracted from any given set of generators.
Accordingly, we consider the ideal I = SR of S generated by the ideal
R* of R consisting of elements with constant term 0. Choose a finite
set of homogeneous generators for I from R*. We shall show that any
such set (together with 1) generates R as a K-algebra.

For the proof (and for later proofs), we need a sort of projection
operator taking arbitrary elements of S into R, defined by ‘averaging’
over G. For any f € S, define f* by the formula:

P et 1)

9€G

It is clear that the assignment f — f* is a linear map of S onto R,
preserving degrees and leaving all elements of R fixed. Of course, the
fact that |G| is not divisible by the characteristic of K is essential to
the definition. Notice the following useful property of the averaging
operator:

(pq)* = p*q whenever p € S,q € R. (2)

Proposition  With notation as above, suppose fi,..., fr are homoge-
neous elements of Rt which generale the ideal I = SR* of S. Then R
is generated as a K-algebra by these elements (together with 1).

Proof. We have to show that every element f € R is a polynomial in
fi,..., fr. It is enough to do this for homogeneous elements f. Proceed
by induction on the degree of f, the case of degree 0 being obvious.
When deg f > 0, we have f € I, allowing us to write

f=s1fi+...+s.f., wheres; €8. (3)

Since f, fi,...,fr are homogeneous, we may assume (after removing
redundant terms from the s;) that the s; are also homogeneous, with
deg s; = deg f — deg f; for all i. Next we apply our averaging operator
to (3), recalling (2), to obtain

f==sfi+.  +stf.

Now the sg are homogeneous elements of R of degree less than deg f, so
by induction they are polynomials in fi,..., f,, and then sois f. O

This proposition suggests a strategy for the proof of Chevalley’s The-
orem: select a minimal finite set of (homogeneous) generators for I from
R*, and go on to show that they must be algebraically independent.
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Remark. Evidently the above proof of finite generation of R breaks down
badly if we work over a field whose characteristic divides the order of
G. The conclusion is still true, but requires a more subtle analysis due
originally to E. Noether (see, e.g., Flatto [3]). In any case, our proof
of finite generation is only qualitative; much more work is required to
exhibit (for a given G) actual generators.

3.3 A divisibility criterion

Before launching into the proof of Chevalley’s Theorem we record an
easy lemma which will be needed a couple of times. Readers with some
experience in algebraic geometry will see it as an immediate consequence
of more sophisticated ideas (such as Hilbert’s Nullstellensatz).

Lemma Let! be a homogeneous polynomial of degree 1 in the indeter-
minates x,,...,T,, and suppose the polynomial f vanishes at all zeros
of l. Then | divides f in the polynomial ring K|[z] = K[z1,...,zy).

Proof. Suppose (without loss of generality) that z,, occurs with a nonzero
coefficient in /. Then we can carry out the usual division algorithm in
one variable (without leaving K[z]) to obtain

f=lg+r (4)

where ¢ € K[z] and r has degree 0 in z,, i.e., r € K[z1,...,Zn_1]. Un-
less r = 0 we get a contradiction as follows. Find elements a;,...,a0n-1
in the infinite field K for which r(ay,...,a,—1) # 0. Plugging these
values into [, we can solve a single linear equation to find a,, for which

l{(a1,...,a,) = 0. By hypothesis, f(ay,...,a,) = 0, contradicting (4).
n]

3.4 The key lemma

For the rest of this chapter we return to the setting of Chapters 1 and
2: W is a finite (essential) group generated by reflections, acting on
the n-dimensional euclidean space V over R, which may be identified
with R”. As in the preceding sections, W then acts naturally on the
ring S of polynomial functions on V, which we identify with the ring
Riz;,...,z,]. Again we denote by R the ring of W-invariants in S, and
by I the ideal in S generated by R*, the set of elements of R having
constant term 0.

Ezercise 1. Prove that W has an invariant of degree 2 in S. [Hint: W
is a subgroup of the ortbgonal group.]
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We formulate as a lemma the step in the proof of Chevalley’s The-
yrem which uses explicitly the fact that W is generated by reflections.
The statement of this lemma obviously has something to do with de-
sendence relations among polynomials, but is otherwise rather hard to
notivate at this point. The reader will probably want to skip ahead to
‘he next section, deferring the study of the lemma until it is actually

needed.

Lemma Let f1,...,f, € R, with fi not in the ideal of R generated by
fay-- .+ fr. Suppose g1,...,9, are homogeneous elements of S satisfying

Higr+...+ frgr=0. (5)

Then g1 € I.

Proof. Observe first that f; cannot be in the ideal of S generated by
fa,- .., fr- Otherwise we would have

fi1= faha+ ...+ foh, for some h; € S. 6)

Apply the averaging operator together with (2) of (3.2) to (6) to obtain
h=fl=fh+...+fH (™

Since hg € R, equation (7) implies that f; is in the ideal of R generated
by the other f;, contradicting the hypothesis. ’

In order to prove that g, € I, we use induction on degg;. If ¢, is
constant, it must be 0 (hence in I), since otherwise (5) would contradict
the hypothesis on f;. Now assume degg;, > 0.

Consider a typical reflection s = s, in W, and let | be a linear
polynomial (uniquely determined up to a scalar multiple) whose zero
set is the reflecting hyperplane H, in R". It is immediate that the
polynomial s - g; — g; vanishes at all points of H,, since s = s~! fixes
such points. We can therefore invoke Lemma 3.3 to find polynomials h;
for which

8-9i — g = lh;. (8)

Both g¢; and s - g; are homogeneous (of the same degree), so (8) shows
that h; is also homogeneous and of lower degree than g;. Now apply s
to equation (5) to obtain:

fils-g)+ ..+ fo(s-go) =0 (9
Subtract (5) from (9) and then substitute (8) to get
I(fih1+ ...+ frhy) = 0.
Since  is not identically zero, this in turn implies

fiki 4 ...+ fohy = 0.
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By induction, since deg hy < deg g1, we get hy € I. By (8),s-g1—g1 € I,
or s-g1 = g1(mod I).

Since W stabilizes R* and hence also I, it acts naturally on the
quotient ring S/I. We have just seen that each reflection s acts trivially
on the image of g;; since the reflections generate W, this implies that
w-g; = g1{mod I) for all w € W. In turn, gf = g1(mod I). But gg is in
R* (hence in 1), forcing g € I as desired. O

Ezercise 2. In the proof above, avoid the use of Lemma 3.3 to obtain
equation (8) by working with an explicit expression for the action of s
on V (hence on S).

3.5 Chevalley’s Theorem

In this and later sections, it will be essential to work with partial deriva-
tives of polynomials. As long as the base field is R, all the usual proper-
ties of partial differentiation for polynomial functions (notably the chain
rule) may be invoked. Alternatively, one can develop these properties
for polynomials in n indeterminates in a purely formal algebraic way
(valid for any field). In any case, we shall need a familiar identity due
to Euler for an arbitrary homogeneous polynomial f(z,,...,z,):

zz,-g—;: = (deg ). (10)

i=1

The proof of this formula reduces at once to the special case when f is
a monomial.

Theorem  Let R be the subalgebra of Riz,,. .., x,] consisting of W -
invariant polynomials. Then R is generated as an R-algebra by n homo-
geneous, algebraically independent elements of positive degree (together
with 1).
Proof. As in 3.2 we consider the ideal I of S generated by the homo-
geneous invariants of positive degree. We can select (by Hilbert’s Basis
Theorem) a minimal generating set fy,..., fr for I consisting of homo-
geneous invariants of positive degree. Our main task is to show that
these polynomials are algebraically independent. Once we do that, it
will follow from Proposition 3.2 that (together with 1) they generate R
as an algebra. In turn, it will follow from Proposition 3.1 that r = n,
since the field of fractions of R must have transcendence degree n over
R.

The proof of algebraic independence is a bit tricky. Suppose f1, ..., fr
are dependent, i.e., there exists a polynomial h(y1, ..., y,) # 0 for which
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n order to keep track of degrees very precisely, we first refine the choice
f h. Let

1 Er
- Yr
pe any monomial occurring in h. If d; = deg Ji, set d = 3" d;e;, the

jegree of
L affr .o fer

in Ty,...,Tn. Evidently the various monomials in A which yield the
same d add up to a nonzero polynomial with the same property (11) as
h. So we may discard all other monomials in h.

Given the equation (11), it is reasonable to differentiate both sides
with respect to xx for each fixed k (using the chain rule):

Eh af; _0, where h; = %(fly---)fr)' (12)

Note that h; is a homogeneous element of R having degree d — d;, while
the 8f;/0x) are homogeneous elements of S. We would like to apply
Lemma 3.4 to this situation, but unfortunately the hypothesis of that
lemma might not be satisfied by the h;. Renumber them if necessary so
that hq,...,hn is a minimal generating set for the ideal of R generated
by all of the h;. Here 1 < m < r. (If m = r, the rest of the argument
will look much simpler.)
For each i > m, write

m
h; = Z%"’f’ where g;; € R. (13)
=1
As apolynomial in x4, .. ., T,, hi is homogeneous of degree d—d;, so after

discarding redundant terms we can assume that each g;; is homogeneous
of degree d; — d; (= degh; — degh;). After substituting the equations
(13) into (12), we obtain for each fixed k:

m r
6f i E 6f J
> giiz | =0. (14)
im1 6.'rk jomt1 6:1:k
Abbreviate the expression in parentheses by p,(l < i < m) and note
that p; is homogeneous in z,,...,z, of degree di*~ 1.
Now we can apply Lemma 3 4 to (14) and conciude that py € I.
Thus
dfi .
5-%:—* E ]16:r "'Eft‘]u (15)
j=m+1

where ¢; € S.
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At first sight this does not appear helpful. But if we multiply both
sides of (15) by zx and sum over k, we can use Euler’s formula (10) to
get:

T T
difi + Z djginfi = me‘, (16)
j=m+1 i=1

where now degr; > 0. The terms on the left side are homogeneous of
degree d;, so the term f;7; on the right side must cancel with other terms
of degree different from d;. After discarding all but terms of degree d;,
we see that (16) expresses fi as an element of the ideal in S generated
by fa,..., fr, contrary to the original choice of the f; to be a minimal
generating set of 1. O

For brevity, we may refer to a set of algebraically independent homo-
geneous generators of R (of positive degree) as a set of basic invariants
of R.

Ezercise. State and prove a version of Chevalley’s Theorem over an
arbitrary field K of characteristic 0, defining a ‘reflection’ in GL(V') to
be an element of order 2 which fixes a hyperplane pointwise.

Remark. When W is a Weyl group, a theorem of Harish—Chandra (see
Humphreys [1], §23) allows one to derive from Chevalley’s Theorem a de-
scription of the center of the universal enveloping algebra of a semisimple
Lie algebra over C: it too is a polynomial algebra.

3.6 The module of covariants

Our proof of Theorem 3.5 follows closely the original proof in Cheval-
ley [2]. Implicit also in that paper is a complementary description of
the R-module S, which follows readily from Lemma 3.4. While this re-
sult is inessential for what we do in the remainder of this chapter, it
has an interesting cohomological interpretation (see the remark below).
Moreover, it turns out to be equivalent to Chevalley’s Theorem; for ar-
rangements of the proof emphasizing this equivalence, see Bourbaki [1],
V, §5, Hiller [3], IL.3, Springer [3], 4.2.

Proposition Viewed as an R-module, S is free of rank |W|.

Proof. The idea is to compare the R-module S with the vector space
S/1, where as before I denotes the ideal generated by the homogeneous
invariants of positive degree. Start with a set of homogeneous polyno-
mials g, € § whose cosets g, + I span S/I. We claim the g, must span
the R-module S. Clearly the submodule 7" which they do span is graded
by degree, so it is enough to show by induction on d that Ty = Sg.
Since So NI = 0, some g, must have degree 0, so Tp = Sp. Next take
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f € Sa, d > 0, and write it as a finite linear combination
f=23 cagatD_ fohs,
a 2

where ¢, € R, hg € R has positive degree, and fs is homogeneous of
degree less than d. By induction, all fg € T, forcing f € T.

Now suppose gi, . . . , gm 8re homogeneous elements of S whose cosets
gi + I are linearly independent in S/I. Using induction on m, we show
that these elements are independent in the R-module S, the case m =1
being clear. If there is an R-linear combination of the g; equalling 0,
there must be such a relation

ha+... 4 fmgm =0

with all f; homogeneous in R. Since ¢g; ¢ I, we can appeal to Lemma
3.4 to conclude that

Hi=hafo+...+hmfm

for some (homogeneous) elements h; € R. After substituting, this yields:

falgz + hagt) + .- + fm(gm + hmgn) = 0.

Note that the g; + h;9; are homogeneous, and their cosets are linearly
independent in S/I. By induction, f,...,fm are all 0, and in turn
H=0

Combining these steps, we see that a vector space basis of S/I leads
to an R-module basis of S. Recalling the well-known exercise below,
this in turn immediately yields a basis for the extension of the field
of fractions of S over the field of fractions of R, which we know has
dimension |W| (3.1). O

Ezercise. Let B be a subring (with 1) of the integral domain A; denote
the respective fields of fractions by F and E. Suppose E/F is a finite
extension. If the B-module A is free of rank r, then [E : F] =r. (In
fact, a module basis of A over B is also a vector space basis of E over
F))

The proof shows that the vector space S /I has dimension |W|. More-
over, W acts naturally as a group of linear operators on this space. It
can be shown without too much difficulty that this representation of W
is equivalent to the regular representation, using some standard informa-
tion from Galois theory (Normal Basis Theorem) to analyze the action
of W on the field of fractions of S. (See Chevalley [2] or Bourbaki [1],
V, 5.2.) The action of W preserves the natural grading of S/I, and the
decomposition of the graded pieces turns out to be very interesting (see
Beynon-Lusztig [1]).
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Remark. The study of the ‘coinvariant algebra’ S/I is a central theme
of Hiller [3]. When W is a Weyl group, its invariant theory is closely
related to the topology of the corresponding compact Lie group and
its ‘flag manifold’. Early work of A. Borel showed how to identify the
cohomology algebra of the flag manifold with S/I; this also has an in-
terpretation in terms of the Bruhat cell decomposition (indexed by W).
See Bernstein-Gelfand-Gelfand [1], Demazure [1], Hiller [1]-[3].

3.7 Uniqueness of the degrees

The algebraically independent generators of R provided by Theorem
3.5 need not be uniquely determined, e.g., z; + zz and z? + 9:% work
just as well as the elementary symmetric polynomials 2, + z2 and z,z3.
However, the degrees do turn out to be independent of the choice of
generators.

Proposition  Suppose that fi,..., fn and g1,...,gn are two sets of
homogeneous, algebraically independent generators of the ring R of W-
invariant polynomials. Denote the respective degrees by d; and e;. Then,
after renumbering one of the sets if necessary, we have d; = e; for alli.

Proof. Each set of polynomials can be written as polynomials in the
other set. For each pair of indices (,J), we can use the chain rule to
evaluate the partial derivative 3f;/8f;:

Z Ofi Ogx _ .
agk 6f J z].
This shows that the matrices
Of; i
(5,) = (37)
0yg; of;
are inverses, and therefore each has nonzero determinant. The expansion

of the first determinant as a sum of signed products must involve a
nonzero product
I’-'I f;

i=1 agw(t)

for some permutation 7. After renumbering the g; we may assume that
is the identity. Thus when f; is written as a polynomial in g1,...,¢gn, 9i
must actually occur. After discarding redundant terms, we may assume
that each monomial

k k
e gt g
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occurring in f; satisfies: d; = 3 e;k;. So d; > e;. In turn,

n n
Zdi Z Z €;.
i=1 =1

Iéy interchanging the role of the f; and g;, the same argument produces
the reverse inequality. Finally, we conclude that d; = e; for all i. O

R

For brevity, we may refer to the numbers dy, . .., d, (usually written
in increasing order of magnitude) as the degrees of W. The rest of this
chapter will be largely devoted to studying their remarkable properties
and to computing them in all cases. It was noted as an exercise in 3.4
that W must have an invariant of degree 2: as a group of orthogonal
transformations, it leaves invariant the polynomial 7 + ... + z2 when
V is identified with R" with its usual euclidean structure. (Of course,
the degree 1 would also occur if W failed to be essential.)

Exercise. The scalar transformation —1 lies in W if and only if all
degrees are even. [~1 induces an automorphism of S, acting on Sy as
{~1)?. One implication is easy, but the other may require some Galois
theory.]

Type d], ceey dn

A, 2,3,...,n+1

B 2,4,6,...,2n

D, 2,4,6,...,2n—2,n
Eg 2,5,6,8,9,12

E; 2,6,8,10,12,14,18
Eg 2,8,12,14,18, 20,24, 30
F4 2’ 67 8’ 12

G, 2,6

Hj3 2,6,10

H, 2,12,20,30

L(m) | 2,m

Table 1: Degrees of basic invariants
ttﬁ\“;’

After some further generalities, we shall be better able to discuss
concrete examples (3.12). At the risk of lessening the suspense, we
provide in Table 1 the list of degrees for each type of irreducible W. It
will be some time before we succeed in verifying the table completely, but
meanwhile the reader can compare it with the partial results obtained.
(Notice that, when n is even, the degree n occurs twice in the list for
D,.. This is the only case involving such a repetition.)
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3.8 Eigenvalues

The study of invariants may be viewed as the study of eigenspaces of
certain operators for the eigenvalue 1. But a deeper probe of the de-
grees of W requires some consideration of all eigenvalues, together with
related traces and determinants. First we note a convenient descrip-
tion of the dimension of the space of W-invariants in an arbitrary linear
representation. (Here W could be any finite group.)

Lemma  Let FE be any finite-dimensional W-module over a field of
characteristic 0. Then the dimension of the space of W-invariants in E
is given by the trace of the linear operator on E defined by

ZZIT;’_I > w (17)

weW

Proof. Note that wz = 2 for all w € W. Using this, a quick calculation
shows that the operator z is idempotent. Thus it is diagonalizable (with
possible eigenvalues 0,1), since its minimal polynomial divides z% — «
and therefore has distinct roots. Let E = Ey @ E; be the eigenspace
decomposition (possibly one of these subspaces is 0). It is clear that the
trace of z is dim E;. But FE) is the space of all W-invariants in E. Say
e€ F,. Thene=2z-e=wz-e =w-e for all w € W. In the other
direction, if e is W-invariant, then

1 1
z-eszw-e=l-ﬁ,—IZe=e,

soe€ FE;. O

Now we can develop a combinatorial identity of the frequently occur-
ring type ‘sum = product’, involving the degrees of W on the ‘product’
side. The ‘sum’ is a formal power series, involving the action of W on
S.

In order to work explicitly with eigenvalues, we have to extend the
base field from R to C. As an element of finite order in GL(V), each
w € W acts via a diagonal matrix relative to a suitable basis of V.
Moreover, the eigenvalues of w are roots of unity; they are real or else
occur in complex conjugate pairs (since w is represented by a real ma-
trix). The eigenvalues of w on V* are just the reciprocals (= complex
conjugates) and therefore are the same as the eigenvalues on V. Now if
t is a complex number, it makes sense to write

det(l —tw) = (1 —c1t) - -+ (1 — cat), (18)

where w has eigenvalues Cly -+ Cn We can also regard ¢ as an indeter-
minate (by formally extending the base field to C(t)), in which case the
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reciprocal of (18) has an expansion as a formal power series:

‘ 1
¢ det(l — tw)

s(5 el

(A+at+Et?+..) - (+cat+2t2+..)

k20 \kj+..tkno=k

Proposition Viewing both sides as formal power series in t, we have:

1 1 n 1
W] ugv det(1 — tw) E 1 —~t%)’ (20)

Proof. Fix w € W, with eigenvalues c; as above. Earlier we viewed S as
Qié}algebra of polynomials in z1,...,z, (a basis of V*). After extending
ﬂéfe base field to C, we can instead work with a basis 21, ..., 2, of the
complexified dual. space consisting of eigenvectors for w. To compute
the eigenvalues of w on the homogeneous component Sy of S, we can
use the basis of the complexified space consisting of monomials

zf‘---z:ﬁ"y where k1 + ... + k, = k.

These are eigenvectors for w corresponding to the eigenvalues ¢t - - - ck».
The sum of these eigenvalues is the trace of w on Sk, and agrees with
the coefficient of ¢* in the power series (19).

In view of this interpretation of (19), the coefficient of t* in the left
hand side of (20) is the trace of the linear operator

1
Wl 2,

on Sk. By the above lemma, this is precisely the dimension of the
space Rj of homogeneous invariants of degree k. But the dimension of
this space can be computed another way. If fi,..., f, is a basic set of
invariants, of degrees d,,...,d,, the monomials

e for with Zd,’ei =k"

form a basis of Rx. The number of such n-tuples (e1, ..., e,) is evidently
the coefficient of t* in the formal power series

(L4 428 ) (Dt 124 ),

which is the same as the product on the right hand side of (20). O



- wsymvnuas uivariants ot finite reflection groups

3.9 Sum and product of the degrees

From the identity in Proposition 3.8 we can easily derive computable
expressions for the sum and the product of the degrees of W. Since
the trace of each w € W is real, it is clear that the only elements of W
having n — 1 eigenvalues equal to 1 are the identity and the N reflections
(where NV is the number of positive roots, by 1.14). Thus the polynomial
det(1 — tw) is equal to (1 — )™ if w = 1, or is equal to (1 — )"~ 1(1 +1¢)
if w is a reflection, but is otherwise not divisible by (1 ~ ¢)"~1.

Theorem  Let d,,...,d, be the degrees of W, and N the number of
reflections in W. Thendidy---d, = [W| anddy+da2+...+dn = N+n.

Proof. Multiply both sides of (20) in Proposition 3.8 by (1—t)" to obtain

1 (1-1t) T 1
|‘v17|(1+Nm+(1‘t)2g(t)) *iI:Il1+t+...+td-—1 1)

Here g(t) is a rational function with denominator not divisible by 1 — ¢.
Set t =1 to get
11
,Wl dy---dy, ’

or |W|=d--dy.
If instead we (formally) differentiate both sides of (21), we get

2N 1
|Wl 1+1)?

11‘1 Z:_l+2t+...+(al,~—1)t'1-'—2 (22)
1+t+. +td»—1 T+t 4td1 ’

where h(t) is a rational function with numerator divisible by 1 —¢. Now
set t = 1 in (22) to obtain

+ h(t) =

N 1 1 n
——— = NT(d, 1
2{W| 2d,---d, ;( )

Substituting for [W| the product of the degrees, this yields the desired
expression for the sum of the degrees. O

When W is a symmetric group, the reader should have no trouble
verifying these formulas directly. When W = D,,, the degrees d;,d>
satisfy dids = 2m and d, +d2 = m + 2, forcing d; = 2,do =m

Ezercise. Check that the degrees listed in Table 1 of 3.7 are compatible
with the theorem above, feferring to Table 2 in 2.11.
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In order to treat more complicated examples, we need to develop (in
the following section) an effective way to test a given set of polynomi-
als for algebraic independence. This will also make it easy to prove a
theorem of Shephard and Todd (3.11) which asserts that only for re-
flection groups can the ring of invariants be generated by algebraically
independent polynomials.

For use in the proof of Theorem 3.11, we make a simple but important
observation. In 3.8 as well as in the proof of the above theorem, the only
fact about W used in an essential way is that its ring of invariants is gen-
erated by algebraically independent homogeneous polynomials. (Check
this!)

Remark. It is natural to wonder whether the other elementary symmet-
ric polynomials in d,...,d, can be interpreted in an interesting way.
Actually, it is better to consider the related numbers d; — 1 (whose sig-
nificance will become clear later in the chapter). The theorem shows
that their sum is NV, the number of reflections in W. It was observed by
Shephard-Todd (1] that

n

[T+ (di — 1)t) = a0 + art + - + ant™,

i=1
where aj is the number of elements of W whose fixed point space in
V has dimension n — k. Note that setting ¢t = 1 in the formula re-
covers the fact that |{W| is the product of the d;. A uniform proof of
the formula, involving study of the ring of invariant differential forms,
was later given by Solomon (1] (see the review by Steinberg, Math. Re-
views 27 #4872). Following work of V.I. Arnol'd on symmetric groups,
Brieskorn (1] gave a nice topological interpretation of the formula: the
left side is the Poincaré polynomial of the complement of reflecting hy-
perplanes (in the complexified setting), cf. Lehrer {2], Orlik-Solomon

2]-

3.10 Jacobian criterion for algebraic inde-
pendence

There is a simple criterion for the algebraic indepgndence (over an arbi-
trary field of characteristic 0) of n polynomials fy, ..., fn in n indetermi-
nates 1i,...,Z,, expressed in terms of the Jacobian determinant. Write
J(f1,..., fa) for the determinant of the n x n matrix whose (i, j)-entry
is 8fi/0z;.

Proposition The polynomials f1, ..., fn in indeterminates x1,...,Tn
are algebraically independent (over a field K of characteristic 0) if and

only if J(fr,..., fn) #0.
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Proof. One implication is straightforward. Suppose the polynomials
are algebraically dependent, so that h(f1,..., fn) = 0 for some nonzero
polynomial A(yy, ..., yn). We may assume that the degree of 4 is as small
as possible. For each fixed j, differentiate this relation with respect to
z; (using the chain rule) to get an equation:

}: o (- ,f,.)-g% 0. (23)

The equations (23) for 1 < j < n form a system of linear equations over
the field K(z,...,z,) with coefficient matrix of determinant
J{(f1,..., fa) and with ‘unknowns’

w2 fn)- 24)

Because A is not constant, not all of the partial derivatives dh/dy; can
vanish; since each has smaller degree than h, the choice of h shows that
the polynomials (24) cannot all be 0. Thus the linear system has a
nontrivial solution, forcing its coeflicient matrix to have determinant 0.
The reverse implication is less transparent. Suppose fi,..., f, are al-
gebraically independent. Since K(zy,...,z,) has transcendence degree
n over K, the polynomials z;, fi,..., f, are algebraically dependent for
each fixed ¢. Let hi(yo,%1,--.,¥n) be a polynomial of minimal positive

degree for which
h,'(x,',fl,...,fn) =0. (25)

Now differentiate (25) with respect to zx to obtain:

Zghl(znfl) '7fn) ah

fl’ 7fn)6ik = O (26)

Since the f; are algebraically independent, h; must have positive degree
in yo. So Oh;/0z; is nonzero and of smaller degree than h;, forcing the
value of this polynomial at z;, fi,..., fn to be nonzero. Transpose these
terms to the right side of the equations (26) for 1 < i,k < n, and write
the equations in matrix form as

(«91/,) (gi, ) (‘5if g%) : @7)

The matrix on the right side of (27) is a diagonal matrix with nonzero

determinant, so the Jacobian determinant on the left side is also nonzero.
]

Corollary  Suppose f,..., fn are algebraically independent and ho-
mogeneous, of respective degrees dl, .ydn. Then J(f1,..., fa) 18 ho-
mogeneous of degree Z(d -1)=
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Proof. The above proposition shows that the Jacobian is nonzero. It
can be expressed as a sum of signed products, each product being of the

form
of Ofn

OZx(1) + Oa(n)

for some permutation 7 of the indices. For each nonzero product of this
type, the individual terms are nonzero and homogeneous, of respective
degrees d; -1, ...,d,,—1. In turn, thanks to Theorem 3.9, ) (d;—1) = N.
O

Ezercise. Set fi(z) =Y, zF foreach k= 1,...,n. Verify that fi,..., fa
are algebraically independent.

3.11 Groups with free rings of invariants

There is a sort of converse to Theorem 3.5, proved by Shephard-Todd [1].
While it is not essential to the further study of degrees in this chapter,
it helps to underscore the special status of finite reflection groups among
all finite linear groups.

Theorem  Let V be an n-dimensional euclidean space over R, and
let G be a finite subgroup of GL{V), acting naturally on the polynomials
S = R|z1,...,Za]. Suppose the ring of invariants SC is generated by n
algebraically independent homogeneous polynomials ¢,,...,9,. Then G
is generated by the reflections it contains.

Proof. Denote by H the (possibly trivial) subgroup of G generated by
the reflections in G. Theorem 3.5 says that the ring S¥ is generated by
n algebraically independent homogeneous polynomials fy,..., f,. Say
deg f; = d; and degg; = e;. Evidently SG c S¥, so the g; can be
written as polynomials in the f;. After discarding redundant terms, we
may assume that each monomial

k1 - kn

1 n
occurring in g; satisfies: e; = )_d;k;.

Now we use an argument similar to that in the proof of Proposition

3.7 to compare degrees. Use the chain rule to diffétentiate:

99 _5~09:0f; (28)
3J

sz ij 3(6;, )

Thanks to Proposition 3.10, the Jacobian determinant involving the 8¢g;/
dz), is nonzero, so the corresponding Jacobian involving the d¢;/0f; on
the right side of (28) must be nonzero. After repumbering if necessary,
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we can assume that a product of the form

091 9O9n

8fi  0f

is nonzero. In turn, this forces e; > d; for all i. As observed in 3.9,
Theorem 3.9 can be applied to G as well as H. Therefore

d@-1)=N=>) (e-1), (29)

where N is the number of reflections in H (= the number of reflections
in G). Thus e; = d; for all i. But Theorem 3.9 also shows that

Gl =[] e: and |H| =[] s,
forcing G =H. O

Remark. This theorem, as well as Chevalley’s Theorem, is actually valid
in a wider setting. Define an endomorphism of a finite-dimensional vec-
tor space over C to be a pseudo-reflection if it has finite order and its
fixed point space is of codimension 1; see Shephard [1]. (This is some-
times called a ‘unitary’ or ‘complex’ reflection, or just a ‘reflection’.)
The previous arguments apply with only minor changes to the ring of
polynomial invariants of a finite group generated by pseudo-reflections
(called a unitary reflection group or complex reflection group). In
particular, one has well-determined degrees whose product is the group
order. Among these groups are the reflection groups we have been study-
ing (complexified). But in general the complex reflection groups are not
Coxeter groups in any obvious way, so we do not pursue them here.
They were classified using geometric methods by Shephard-Todd [1].
Suggestions of Coxeter [5] led Cohen [1] to a more elegant formulation,
using ‘root graphs’. (Cohen [2] has also studied quaternionic reflection
groups.)

The formula of Shephard-Todd in the remark at the end of 3.9 re-
mains valid in the setting of groups generated by pseudo-reflections.
There has also been much interest in the topology of the complement
of hyperplanes for a complex reflection group. See the papers of Orlik—
Solomon as well as Terao [1] for further results.

3.12 Examples
We return to the study of a finite (real) reflection group W. In some

cases it is easy to exhibit a set of basic invariants and thereby compute
the degrees directly. This {approach relies on the following criterion.
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Proposition Suppose g1, ..., gn are homogeneous W -invariants, hav-
ing respective degrees ey,...,e,. If g1,...,9n are algebraically indepen-
dent and [] e; = |W|, then they are a set of basic invariants.

Proof. We may assume that e; < ez <... <ep. Let fi,..., fn beaset of
bﬂSlC invariants, of degrees d; < d; <... <d,. Since g, is a polynomial
in the fi, it is clear that e; > d;. We claim that this inequality holds
for each i. Otherwise, let k be the first index for which ex < di. Then
each of ¢1,...,gx must be a polynomial in f1,..., fyx—1. But the field
of rational functions generated by g¢i,...,gx has transcendence degree
k over R, so cannot be contained in a field of smaller transcendence
degree. This proves our claim.

- Thanks to Theorem 3.9 and the hypothesis, [[d; = W] = [e;,
forcing d; = e; for all i. In turn, we see that the dimension of the space
of homogeneous invariants of degree d generated by the g; agrees with
that of the space generated by the f;, for every d. Thus the g; are a set
of basic invariants for W. O

We apply this criterion to groups of types A,,B,,D,. From the
description of ® in 2.10, one sees immediately how W acts on the poly-
nomial functions.

Consider first the symmetric group W = S,,41, of type A,,. Since W
is required to be essential, it acts by permuting z1, ..., Zn+1 subject to
the relation ) = —(z; +...+z,). Rather than work with elementary
symmetric polynomials, we let

fi :=.'4u"1+l +...+z:',++11 1<i<n).
(These are related to the elementary symmetric polynomials by New-
ton’s identities.) The product of degrees of the f; is (n + 1)! = |W]|, so
it just has to be checked (using the Jacobian criterion) that the f; are
algebraically independent. For 1 < ¢,j < n,
d
f (+ 1)z ~ (i + 1)zt .
Thus J = J(f1,..., fn) is (n + 1)! times the n x n determinant K with

(,7) entry z} — x% ,,, which in turn is a close relative of the familiar
Vandermonde determinant V = e

) |

Ty cen Tpyd
n n

Ty Tptl
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Now V is well-known to equal
H (z; — z:).
1<i<j<n+l

By subtracting the last column of V from each of the earlier columns,
one gets V = (—1)"K. Expressed in terms of x;,...xz,, we see that

=(n+1)! H (zj — x:) H(z, + 2),

1<i<j<n

where z .=z +... +z,. Thus J #0.
For W of type B,, the reasoning is similar. Here W actson z,,...,zn
by permutations and sign changes, leaving invariant

fi=z8 4 422 1<i<n),

whose degrees have product 2"n! = |W|. A quick computation yields

J=2"nlzy-- -z, H (z?~z,?)7é0.

1<i<j<n

(Note that we might also have chosen as basic invariants the elementary
symmetric polynomials in the squares of the variables.)

The group W of type D,, acts on z,,...,z, by permutations and by
changes of an even number of signs, so we can easily find invariants by
modifying the preceding choice slightly:

n

fi=) 2 (1€i<n=1), far=21-- 2n.

=1

The product of the degrees is 2"~ 1n! = [W|. With somewhat more effort
than before, one finds

J==2" n-1) J] (%-2d).

1<i<j<n
FExercise. Find basic invariants for the dihedral groups.

3.13 Factorization of the Jacobian

In preparation for a deeper study of the degrees of W, we have to look
more closely at the Jacobian determinant

J =M, fo) = det (Zﬁ)
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where fi,...,fn is a set of basic invariants. So far we have only been
concerned with the fact that the Jacobian is not identically zero. We
can actually describe how J factors in S and what its precise role there
is. To this end, let I, (@ € ®) be a linear polynomial whose zero set is
the hyperplane H,, in V orthogonal to a. Since l, is only determined up
to a nonzero scalar multiple, we specify it (in coordinate-free fashion)
to be the map: A — (a, A). A quick calculation shows that for all roots
a,B: 35 la = lsga. Also, l_o = —l,.

Define a polynomial f € S to be alternating if w- f = (det w) f for
all w € W. (The terms ‘anti-invariant’ and ‘skew-invariant’ may also
be met in the literature.) The alternating polynomials form a subspace

A of S, which is clearly the direct sum of its homogeneous components
Ax = AN Sk,

Proposition Fiz a set of basic invariants fy, ..., fn for W, and let J
be the corresponding Jacobian. For each root o € @, define l, as above,
so that its zero set is the orthogonal hyperplane H,,.

(a) J = k[],cp+ la for some k € R (depending on the choice of the
fi)-

(b) A polynomial f € S is alternating if and only if it can be written
as the product of J and an invariant polynomial.

(c) For each k, dim Ay, = dim Ry,_ .

Proof. (a) Define a mapping ¢ : R® — R™ by setting
(a1, ...,an) = (fi(81,...,84), ..., fala1,...,an)).

Suppose a¢ = (ay,...,a,) € H, for some root a. Then every open
neighborhood of a contains a pair of distinct points b, ¢ for which s,b = c.
But then fi(c) = fi(sab) = (sa : fz)(b) = fi(b)’ forcing So(c) = So(b)
According to the Inverse Function Theorem, for every point ¢ at which
J does not vanish, ¢ maps some open neighborhood of a one-to-one
onto some open neighborhood of ¢(a). We conclude that J must vanish
on H, for all @ € ®. Thanks to Lemma 3.3, I, divides J. Since the
irreducible polynomials l,,a € ®* are nonproportional, their product
also divides J. But this product has degree N, which is also the degree of
J according to Theorem 3.9 and Corollary 3.10. (For a purely algebraic
proof, avoiding the Inverse Function Theorem, see Flatto [3], p. 253.)
{b) In view of (a), we can assume without losd\of generality that

J= 1]
acd+

It has to be shown that a polynomial is alternating if and only if it is
the product of an invariant polynomial with J. We check first that J
really is alternating, using the fact that sg-ly = l,,o. When 3 is simple,
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sg maps (3 to its negative and permutes the other positive roots (1.4).

Therefore
sg - H lo=— H lo.

acdt acdt

Iterating this calculation, we get w - J = (det w)J as desired. Moreover,
it is obvious that the product of J with any invariant is alternating.

Now take f to be any alternating polynomial, so s, - f = —f for any
reflection s,. If a € H,, it follows that

=f(a) = (sa - f)(a) = f(sa(a)) = f(a),

forcing f(a) = 0. Since f vanishes on the zero set of l,, Lemma 3.3 says
that I, divides f. As in the proof of (a) above, it follows that J divides
f: f =gJ for some g € S. Applying an arbitrary w € W to both sides,
we get: (detw)f =w- f = (w-g)(w-J) = (det w)(w- g)J, and therefore
w-g=g. So f is the product of J with an element of R.

(c) This follows immediately from (b), since J has degree N. O

We shall use part (c) right away in 3.15, while part (a) is needed
again in 3.19.

FEzample. Consider again the group of type B,, discussed in 3.12. The
factorization of J found there agrees with the above proposition, since
each of the linear functions z; = 0 defines a hyperplane orthogonal to
one of the short roots +¢; and each of the factors z; + z; or z; — z;
defines a hyperplane orthogonal to a long root £(g; — &;) or +(¢; + €:);
see 2.10.

3.14 Induction and restriction of class func-
tions

In preparation for the theorem in the following section, we have to recall
some simple facts about class functions on finite groups (that is, C-
valued functions which are constant on conjugacy classes). Fix a finite
group G and subgroup H. If x : G — C is a class function on G, it
is obvious that the restriction to H (denoted xg) is a class function on
H. In the other direction, given a class function ¢ on H, we obtain an
induced class function ¢ by setting

¥C(g) = lHl D plzgz™),

z€G

where the sum runs over those x € G for which zgz™! € H.
In the special case o £ 1y (taking value 1 at all elements of H), the
induced class function has a useful interpretation: 1§ (g) is 1/|H| times
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the number of z € G with zgz™! € H, or gz '*H = z7'H. So 1§(g) is
the number of distinct left cosets 1 H fixed by g. Recalling the set-up
of 1.16, we can therefore describe the function f; on W introduced there
as the class function induced from lw,. Using this language, we can
reformulate Proposition 1.16 as follows:

Z(—l)llw, (w) = det(w) for all w € W.
Ics

In the next section we shall need two further observations about
mnduction and restriction:

Lemma (a) If x is any class function on G, then x(1§) = (xu)¢.
{b) If ¢ is any class function on H, then

|—é—| IAOE |71{—| > olh).

9€G heH
Proof. (a) We calculate as follows:
(%) = o X xneos™)
1
= m—l Z x(9)
= x(9) |71{—| 1

If

x(9) 1% (9)-

In each step the summation is taken over those z € G for which zgz~! €
H. In the second equality we used the fact that x is a class function on
G, and in the final equality we used the definition of induction.

(b) By definition, the left side involves a double summation over
those (g,z) € G x G for which zgzr~! € H, divided by |G||H|. A little
bookkeeping shows that each element of G (in particular, each element
of H) occurs in the form zgz~! for |G| distinct pairs (g, z). This yields
the right hand side. O

3.15 Factorization of the Poincaré polyno-
mial

By combining a number of the previous results, we can now obtain a
beautiful factorization of the Poincaré polynomial W(t) = 3 . t4*)
introduced in 1.11; the factors will involve the degrees di,...,d,. For
easy reference, we list the key ingredients needed in the proof:
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(A) According to Proposition 1.11;

W) N
1%.:9( 1) Wi~

(B) Proposition 1.16, recalled above in 3.14, expresses det{w) as an
alternating sum of class functions induced from the constant function 1
on the various parabolic subgroups of W.

(C) Lemma 3.8 allows us to compute the dimension of the space of
W-invariants in a finite-dimensional W-module as the trace of the linear

operator
| Z
weW

(D) As observed in the proof of Proposition 3.8, the coefficient of t*
in the power series expansion of the product

1
Hl_tdi

is the dimension of the space Ry of homogeneous invariants of degree k.
(E) By part {c) of Proposition 3.13, the dimension of the space A;, of
homogeneous alternating polynomials of degree k is equal to dim Ry n.

We also need an alternating sum formula based on the techniques just
developed in 3.14. For this we define Ry to be the space of invariants of
W in S; it is clearly the direct sum of its homogeneous components.

Lemma
Z(—I)I dim(R[)k = dim Ak.
Ics

Proof. Fix k and define a class function on W by x(w) = Trs, (w).
Denote by x; its restriction to Wy. From part (a) of Lemma 3.14, we
get:

(Xl)w = X(lw,),
whence by (B) above:
D) (e (w) = det(w)x(w) (30)
IcS

for all w € W. Now average the left side of (30) over W and apply part
(b) of Lemma 3.14:

1 1
I—WIXI:(—I)I Z (g(l)w(w) Z(—l)lm Z X[(Z),

weWw I zeWr
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which by (C) is the same as

3 (~1)" dim(Ry ).
'Averaging the right side of (30) over W yields:
|W| Z det{w)x(w).
wew

Thanks to (C) again, this gives the dimension of the space of W-invariants
in S under the action w +— det(w)w. But the invariants under this
action are just the alternating polynomials, so the right side of (30)
becomes dim Ay, as required. O

Theorem

rtd -1
wit)=]] —
i=1

Proof. The idea is to use induction on the rank of W, taking advantage
of the alternating sum formula (A) for Poincaré polynomials. Define

di _
Q0 =15

and similarly define Q;(t) for W; in terms of its degrees. The problem
is to prove an analogue of (A) for these polynomials:

o
S G = (31)
or, equivalently,
PN 1 _ tN
P e T OB TR0} 32

We have to compare the coefficient of t* in the power series expansion
of the rational function occurring on each side of (32). The right side

equals
1
N
11 1’

so by (D) the coefficient of t* is dim Rx_n, which i in turn equals dim A
according to (E).

To analyze the left side of (32), consider the action of Wy on the span
of Ay in V. Denote by ey, ..., e; the degrees of basic invariants. (Since
W fixes pointwise the orthogonal complement of this span, its degrees
relative to its action on V are ey,...,e5,1,...,1.) Now

(i- t)lnczz(t) N ((1 - tl)"—'”) II (1——17—) '
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So the coefficient of t* here is dim(R;)x. Now the above lemma implies
equality in (32).

By induction, for each proper parabolic subgroup W;, we have Wy (t)
= @Qi(t). Comparing (A) and (31), we conclude that W(t) = Q(t) as
required. O

The theorem does not help directly to compute the degrees, but in
the special case of Weyl groups it plays a key role in deriving a very
effective method of computation (3.20).

Remark. The factorization of W(t) in the theorem was worked out in
the case of Weyl groups by Chevalley [3], as a means of simplifying
his formula for the orders of finite simple groups of Lie type. Such
groups have a ‘Bruhat decomposition’ (a double coset decomposition
indexed by a Weyl group), leading to an additive expansion for the group
order involving the Poincaré polynomial. To prove his formula, he relied
on a related factorization of the Poincaré polynomial of a compact Lie
group G having W as Weyl group; see Chevalley [1]. The Poincaré
polynomial of W also plays a role here, since W parametrizes a cell
decomposition of the flag manifold of G. Solomon (3] realized that the
factorization of W (t) is also valid for other finite reflection groups, so he
developed a more elementary proof which avoids Lie groups. However,
he still used a topological argument to obtain one key ingredient (our
Proposition 1.16); see Solomon [4] for an algebraic version. Steinberg
[5], 82, substituted a more combinatorial argument (and also generalized
the theorem to cover the case of ‘twisted’ groups of Lie type).

3.16 Coxeter elements

Calculation of the eigenvalues of a single well-chosen element of W is
enough to determine the degrees explicitly. This striking fact will be
proved in 3.19, after we lay the appropriate groundwork. We assume
throughout that W is érreducible and essential It is also convenient to
assume that ¢ consists of unit vectors.

Enumerate a simple system A as ay, . . ., ap, with corresponding sim-
ple reflections sq,...,s,. Then s;---s, is called a Coxeter element
of W. Of course it depends on the choice of A as well as on the way A
is numbered.

Proposition All Cozeter elements are conjugate in W.

Proof. Since all simple systems are W-conjugate (1.4), it will be enough
(in view of Proposition 1.2) to show that for a fixed A = {ay,...,,},
the Coxeter elements resujting from different orderings of indices are
conjugate. '
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Notice that a cyclic permutation of the indices yields a conjugate
element:
Sp81-*Sp—1 = 5n{(81- - 5n)Sn, etc.

It is also clear that an interchange of an adjacent commuting pair s;, s;
leaves the Coxeter element unchanged. We claim that all permutations
of the indices 1,2,...,n can be achieved by combining these two types
of permutations. To get started, we can assume that n corresponds to a
vertex of the Coxeter graph which is adjacent to only one other vertex.
(Recall that the graph is a tree, or look at the actual list of connected
Coxeter graphs in 2.4.) There is nothing to prove if n = 1; so we proceed
by induction on n.

By induction, any permutation of 1,2, ...,n—1 alone can be achieved
by a sequence of cyclic permutations and interchanges of adjacent num-
bers i, j for which s;s; = s;s;. But we have to keep track of n as well.
Whenever a cyclic permutation is needed, we let n be carried along in
the obvious way. The only transposition with which n can interfere in-
volves two numbers i and j which are currently adjacent to n. But s,
commutes with at least one of s; and s;, say the former. So the suc-
cessive interchanges of ¢ with n and i with j are legal, and yield the
desired interchange of i with j (where sjs; = s;s;). Thus all permu-
tations of 1,2,...,n — 1 are achievable by cyclic permutations of all n
numbers combined with interchanges of adjacent numbers correspond-
ing to commuting reflections. In the process, n itself may get moved to
an unpredictable position in the list. But because s, commutes with all
but one s;, n can afterwards be moved to any desired position by using
the permitted transpositions (and, if necessary, a further cyclic permu-

tation). So an arbitrary permutation can be achieved by these moves.
W]

Since all Coxeter elements in W are conjugate, they have the same
order h, which we call the Coxeter number of W. In some cases this is
easy to compute directly. For the dihedral group Dy, a Coxeter element
is just the product of two generating reflections, hence is a rotation
through 27 /m, of order m. For the symmetric group S,,, we can take s;
to be the transposition (2,7+1), 1 < i < n, so the corresponding Coxeter
element is an n-cycle. (Thus the Coxeter number of the group of type
A,_1is n.) The reader might try to compute h for groups of type B,
or D,. e

The fact that Coxeter elements are all conjugate in W (hence similar
in GL(V)) also insures that they have the same characteristic polyno-
mial and eigenvalues. If ¢ is a primitive hth root of unity in C, these
eigenvalues are of the form (™, where 0 < m < h. The exponents of
W are defined to be the various m involved, written as

my<mg <...<my.
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For W of type A,,, these are easily seen to be: 1,2,...,n.

Our main goal will be to show that (miraculously) the degrees of W
are obtained by simply increasing all the exponents by 1. This is clear
already for symmetric and dihedral groups. Since the smallest degree
is 2 (W being essential), we must expect that the smallest exponent is
1. In particular, w should have no nonzero fixed points. This much is
easily checked:

Lemma A Cozeter element has no eigenvalue equal to 1. Thus the
numbers b — m; are a permutation of the m;, forcing Y m; = nh/2.

Proof. Suppose s; --- s, fixes some A\. Then s;--s,A = s;A. The left
side is congruent to A modulo the span of aq,...,q,, while the right
side is congruent to A modulo the span of «;. Since the simple roots
are linearly independent, this forces sz - - - s,A = A = s;A. In particular,
(A1) = 0 and s3---s, fixes . Repetition of the argument shows
eventually that A is orthogonal to all the basis vectors a;y,...,a, of V.
Hence A = 0.

Since w is a real linear transformation, its nonreal eigenvalues come
in complex conjugate pairs, corresponding to exponents m; and h — m;.
We just saw that 1 is not an eigenvalue. The only other possible real
eigenvalue is —1, which would have to be of the form ¢*/?. But then
m; = h/2 = h ~ m;. So the numbers h — m; are a permutation of the
m;. This forces )_m; = Y (h —m;), and in turn }_m; = nh/2. O

Ezercise. When W is not irreducible, Coxeter elements and the Coxeter
number are defined just as above. How are they related to the Coxeter
elements and numbers of the various irreducible factors of W7

3.17 Action on a plane

Consider a Coxeter element w = s;---8,. To avoid trivialities, we
always assume n > 2.

How can we determine the eigenvalues of w? The most obvious
approach would be to write down the matrix of w relative to the basis
ay,. .., 0, of V. This is actually feasible (see Coxeter [4]), but would still
leave us with the formidable task of evaluating the eigenvalues in some
uniform way and then relating them to the degrees of the polynomial
invariants of W. A less direct way is to study the action of w on a
carefully chosen plane P in V. This leads in 3.18 to a simple formula
for the Coxeter number h and also paves the way to the main theorem
in 3.19.

It is a familiar fact from linear algebra that V can be decomposed
into the orthogonal sum of a number of lines and planes invariant under
any given orthogonal transformation (such as w). But the choice of the
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particular plane P we are seeking is somewhat delicate.

We claim that the simple roots can be numbered in such a way that
81, .-, S+ commute pairwise, as do Sy;1,..., 8, for some r < n. As in
3.16, this relies on the fact that the Coxeter graph is a tree, so that some
vertex is connected to only one other vertex. By removing this vertex
and using induction, our claim follows at once. We fix this numbering
of simple roots, and the corresponding Coxeter element w.

Now we have a partition of K := {1,2,...,n} as K = I U J, where
I:={1,...,r}and J:={r+1,...,n}. This induces a factorization w =
yz, where y := s, ---5, and z := Sy41---5,. The choice of numbering
implies that each of y and z has order 2 (as a product of commuting
reflections).

Next define w,,...,w, to be the dual basis of a;,...,a, in V. For
reasons of dimension, the span Y of wyy1,...,ws has orthogonal com-
plement Y+ spanned by aj,...,a,. Similarly, the span Z of wy,...,w,
has orthogonal complement spanned by ary1,...,an. If H; is the hy-
perplane orthogonal to a;, it is clear that Y Cc Y/ := Hyn...N H, and
that Z C 2’ := H,y 1 N...N H,. At the same time, Y' N Z' = 0 (since
only 0 is orthogonal to all «;). Since V = Y @ Z, we conclude that
Y =Y’ and Z = Z'. Obviously y fixes Y pointwise and acts on Y as
—1. Similarly, z fixes Z pointwise and acts as —1 on Z1.

The final ingredient we need is the (positive definite) matrix A of
the bilinear form associated with the Coxeter graph: A = (aij), where
a;; = (i, ;). In our current set-up, A is the matrix (relative to the
dual basis) of the linear operator on V sending each w; to the corre-
sponding a;, since a; = ), a;;w;. Now we can appeal to the general
fact proved in Proposition 2.6 (in the case of an indecomposable posi-
tive definite symmetric matrix with nonpositive off-diagonal entries): A
has a positive eigenvalue ¢ with a corresponding eigenvector (ci,...,cn)
in R™ having all ¢; > 0.

Set
A= Zc,wi, ui= chwj.
il jeJ

Thus XA € Z and y € Y. We want to show that w stabilizes the plane P
spanned by the lines L := R\ and M := Ryu. By choice of the eigenvalue
¢ (and the description of A as a linear operator), we have

Z CrOp — Z CCR Wi .

k€K keK

Taking the inner product of each side with «;(i € I), we get

ci + E Cjl;j = CC;i,
Jj€J
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since (a;,a;) = 0 for all i # [ in I. We use this to calculate as follows
(with sums over i € I, j € J, k € K respectively):

(c—1A = (c- I)Zc,-wi
= Z chaij Wy
i \J
= ZCj (2 a,»]-wi>
3 i

= Zc] (—w] + Zak]wk)
= —ZchJ + Zc]ozJ

= ‘/“+V>

where v is orthogonal to wy,...,w, (hence to Z). In the fourth step we
were able to sum over all of K by using the fact that ax; = 0 for k € J
(unless & = j, in which case aj; = 1). In the fifth step we used again
the fact that Y, arjwe = ;.

The calculation shows that the linear combination v = (¢ — 1)A +
is orthogonal to Z (hence is sent to its negative by z), while A lies in Z
(hence is fixed by z). It follows that z stabilizes the span of these two
vectors, which is just P. A similar argument shows that y stabilizes P.
Moreover, y (resp. z) acts on P as a reflection with fixed line M (resp.
L). Thus w acts on P as a rotation.

What is the order of w, acting on P? Note that A and u lie in
the fundamental domain C of W defined in 1.12, since C consists of
the positive linear combinations of the w;, and C of the nonnegative
combinations. Clearly P N C consists of all a\ + by with a,b > 0; in
particular, P meets C. If w! fixes P pointwise, then it fixes some element
of CN P, so by 1.12 w® = 1. 1t follows that w has order precisely h on
P (so that w acts as a rotation through 2x/h).

As a corollary of this discussion, we see that the primitive hth root
of unity ¢ actually does occur as an eigenvalue of w (since it occurs al-
ready as an eigenvalue of the plane rotation through 2w /h). The inverse
(complex conjugate) of this eigenvalue also occurs, of course. Som; =1,
as our preview of the main theorem led us to expect, and m,, = h — 1.
(This is true even when n = 1, since then h = 2.)

Proposition If the exponents of W are listed asmy, <my < ... < my,
we have my =1 and m,, =h—1. 0
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Ezercise. Is the partition K = I U J unique? Describe such a partition
for each individual Coxeter graph.

3.18 The Coxeter number

Now we can exploit the way w acts on the plane P to derive a simple
formula for h. The promised comparison between exponents and degrees
(to be carried out in the next section) suggests what the formula should
look like. Recall from Lemma 3.16 that the sum of the exponents is
nh/2. On the other hand, Theorem 3.9 implies that the sum of the
numbers d; — 1 is N. The two answers do agree:

Proposition The Cozeter number h = 2N/n, where N is the number
of posilive roots.

Proof. We may assume n > 1. The idea is to see how the N reflecting
hyperplanes H, (o € ®*) intersect the plane P. Since P contains points
of C, no H, contains P, so each such intersection is a line.

- From our previous description of P, we see that rotating the lines L
and M by powers of w produces a total of h lines, all in one orbit under
w if h is odd, but in separate orbits containing L and M respectively if h
is even. All points of P not in these lines are obtained by rotating points
of C. In particular, each H, must intersect P in one of the indicated
lines.

Since L C Z = Hyy1N---NH,,, it is clear that these n—r hyperplanes
intersect P in L. We claim no other H, can do so. Suppose H,NP = L,
and write @ = ) ryag (with ry > 0). To say that A € H, is to say that

0= (/\,a) = (Z CiWwsi, Z rkak) = ZC,'T,‘.

el k€K el

Since all ¢; > 0, this forces r; = 0 (z < r). But the choice of J insures
that the only positive roots obtainable as linear combinations of the
a; (j € J) are the a; themselves (see Proposition 1.10).

Similarly, the only hyperplanes intersecting P in M are Hy,..., H,.

If h is even, it is clear that the number of hyperplanes H, intersecting
P in each of the h/2 distinct lines w' L is n—r, giving a total of (n—r)h/2.
The remaining h/2 distinct lines w*M account fox. an additional rh/2
hyperplanes, giving a grand total of N = nh/2.

If h is odd, the number of H, intersecting P in each of the h lines
w'L is (n—r), giving a total of N = (n —r)h. But the h lines are also of
the form w'M, giving a total of N = rh. This forces r = n/2, so again
N=nh/2. O
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Recalling the discussion at the start of this section, we conclude:
Corollary Y . m;=N=Y1. (d;~1).0

From the proposition we see that h = 2 can occur only if N =1 =n,
which happens only for W of type A,. (In all other cases { is nonreal, a
fact which will be needed in the following section.) By comparing Table
2 in 2.11, one quickly finds all values of h as listed in the table below.

A, B, D, Es Ex Eg Fq G H3 Hy I(m)
n(n+1)/2 n> n(n—-1) 36 63 120 24 6 15 60 m
n+l 2n 2(n—1) 12 18 30 12 6 10 30 m

Table 2: Number of positive roots and Coxeter number

Ezample. The group of type Hz has three exponents, whose sum must
be N = 15 by the corollary above. Proposition 3.17 insures that 1 and
h—1 =9 are exponents, so the remaining one must be 5 = h—5. (What
can be said at this point about groups of type Hy and F4?)

3.19 Eigenvalues of Coxeter elements

At last we are ready to relate the exponents and the degrees of W. In
order to bring the eigenvalues of the Coxeter element w into the picture,
we have to complexify the situation. Embed V in its complexification
Ve, and view the inner product on V as the restriction of a (unitary)
inner product on V. With respect to an ordered basis of V, we are
just embedding R™ in C™. Similarly, the ring S of polynomial functions,
identified with R[z1,...,z,], has the ring of complex polynomials as its
complexification.

In the complex setting, we make an important observation about
eigenvectors of w. Still excluding the group of rank 1, we found as a
consequence of Proposition 3.18 that the eigenvalue { (a primitive hth
root of unity) is nonreal. So the plane P contains no eigenvector, though
its complexification P does contain an eigenvector x along with the
distinct complex conjugate vector ; these vectors span Py. We claim
that x cannot be orthogonal to any root a. From (k, @) = 0 we would get
(R, @) = 0 as well, forcing P to be orthogonal to «. This is impossible,
because P contains points of C and therefore does not lie in H,.

Let Aq,..., An be a basis of Vo consisting of eigenvectors for w, rel-
ative to the eigenvalues (™, and denote by y,,. .., ¥y, the corresponding
coordinate functions, which generate S¢. In view of the way W acts on
polynomial functions, we have

£

wey = Ty,
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Now let f1,..., fn be a basic set of invariants in S (of degrees d, .. .,
d.), and express them as polynomials {with complex coefficients) in the
y;- Since the change of variables is linear (over C), the original Jacobian
determinant J = J(f;,..., f,) described in 3.10 is altered only by a
nonzero scalar factor, which we can ignore. Recall from 3.13 that J can
be factored into the product of linear polynomials whose zero sets are
the N root hyperplanes H,,a € ®*. Such a factorization still remains
after the change of coordinates from z; to y;.

Theorem If my,...,m, are the exponents of W, then the degrees of
W are m; +1,...,m, + 1. Therefore |W|=[](m; +1).

Proof. As before, we may assume n > 1. We choose the numbering of
the eigenvectors of w so that \; has eigenvalue { (m; = 1). As observed
above, this eigenvector lies in no hyperplane H,, so J(1,0,...,0) # 0.
Thus at least one of the n! products involved in the determinant is

nonzero at this point. By renumbering the invariants fy, ..., f, suitably,
we can therefore assume that all 8f;/8y; are nonzero at (1,0,...,0).
This just means that
af; _ . .
651 = a;y®* ! + terms involving ¥z, . - ., Yn,
i

with a; # 0. In turn,
fi= aiy‘f“ly,- + terms involving other monomials.
Now apply w to this equation, bearing in mind that w - y; = (" ™y;:
fi=w- fi=a 1‘d""“y‘l""lyi + terms involving other monomials.

This forces
Cl-di_mi =1

whence
di—1=—-m; = h—m; (mod h).

By Lemma 3.16, the numbers h — m; are a permutation of the
numbers m; and, by Corollary 3.18, their sum equals the sum of the
di ~ 1. From d; — 1 = h ~ m; (mod k) and 0 < m; < h we finally get
d; — 1 = h — m,;. This shows that the d; — 1 are equiil to the exponents,
as required. Finally, Theorem 3.9 shows that |W| = [](m; +1). O

Ezample. Now we can easily determine the exponents (and degrees) of
the group of type Hy, for which N = 60,h = 30, |W| = 14400. Since 1
and 29 must occur, the other exponents a,b must add up to 30, while
(a+1)(b+1) = 14400/60 = 240. The solutions of the resulting quadratic
equation are 11 and 19. Thus the degrees are 2, 12, 20, 30, in agreement
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with Table 1. (The reader should do a similar calculation for the group
of type Fy.)

Ezercise 1. In the list of exponents of W, show that 1 and A — 1 occur
only once.

Corollary  The scalar transformation —1 € GL(V') lies in W if and
only if all exponents of W are odd (or if and only if all degrees are even).
In this case, h must be even and, for any Cozeter element w, we have
—1=uwh/?,
Proof. The transformation —1 on V induces in a canonical way an
automorphism of the symmetric algebra S, acting on Sy as (—1)¢. If
—1 € W, it follows that no W-invariant polynomial of odd degree can
exist. So the degrees are all even, and (by the theorem) the exponents
are all odd.

Conversely, let all exponents be odd. Since A — 1 occurs as an ex-
ponent, h must be even. Consider z := w"/? where w is a Coxeter
element. Then z acts on eigenvectors of w by the scalars

Cm.-h/z

which are square roots of 1 but not equal to 1 (since m; is odd). Thus
z = —1. In particular, -1 € W. O

A glance at Table 1 in 3.7 shows in which irreducible cases we have
—1 € W. The exceptions are types A, (n > 2), D, (n odd), Eg, I(m) (m
odd).

Ezercise 2. If h is even and w = s,---s, is a Coxeter element, set
z := wh/?. Show that z is the longest element w, of W (relative to A),
s0 #(z) = N, and exhibit a reduced expression for z. [Use 3.17 to show
that z maps C to —C.]

3.20 Exponents and degrees of Weyl groups

In this final section we explore some special features of crystallographic
reflection groups (Weyl groups). The first result gives a surprisingly easy
way to determine many of the exponents.

Proposition Let W be an irreducible Weyl group, with Cozeter number
h. If1 < m < h—1 and m is relatively prime to h, then m is an exponent
of W.

Proof. Since W stabilizes its root lattice L(®), the matrix of a Coxeter
element w relative to a basis of V consisting of simple roots will have en-
tries in Z. In turn, the ch{gra.cteristic polynomial has integral coefficients.
According to Propositiod 3.17, a primitive hth root of unity ¢ occurs as
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an eigenvalue of w. The distinct primitive hth roots of unity are precisely
the powers (™, with m relatively prime to h and 1 < m < h — 1. Now
it is well-known that the corresponding cyclotomic polynomial (having
all primitive Ath roots of unity as roots) is irreducible over Z, so it must
Hivide the characteristic polynomial of w, with which it has a greatest
zommon divisor of positive degree. O
H
t¢ 'This makes it easy to complete the determination of exponents (and
hence degrees) for the exceptional Weyl groups. In the case of the group
of type F4, we could do the computation earlier by combining several
facts. But our new criterion is much quicker, since 1, 5, 7, 11 are all
relatively prime to 12.

‘ In the case of the groups of type E,,, none of the previous techniques
8, adequate to complete the list, unless we are willing to analyze the
matrices of Coxeter elements. But now the task is easy.

For the group of type Eg, with h = 30, there happen to be precisely
sight values of m between 1 and 29 which are relatively prime to 30:

!

‘ 1,7,11,13,17,19, 23, 29

36 these must be the exponents! For E7, with h = 18, we find only six of
the seven exponents this way: 1,5,7,11,13,17. But then the missing m
must equal h —m, forcing m = h/2 =9 (cf. Lemma 3.16). For Eg, with
h = 12, the numbers 1,5,7,11 must all be exponents. The remaining
ones are forced to be 4 and 8, since the sum of exponents is N = 36 and
the product of degrees is |W/| = 27345,

Ezercise 1. Does the proposition remain valid for any of the non-crystal-
lographic groups?

Ezercise 2. The exponents whose existence is guaranteed by the propo-
sition occur with multiplicity 1.

We conclude by stating a theorem which provides a completely dif-
ferent approach to the computation of exponents (hence degrees), based
on the ‘height’ of roots in a crystallographic root system. Because the
theorem is valid only for Weyl groups, and because its proof requires
some ideas most naturally developed in the context*of representations of
Lie groups, we shall be content with a rough outline of the proof. (See
Carter (1], 10.1-10.2, for complete details.)

Fix a set A of simple roots in the (crystallographic) root system @,
and define the height h(a) of a root a to be the sum of the coefficients
of a when expressed as a linear combination of A. Then let k; be the
number of positive roots of height i, for each ¢ > 0. For example,
k1 = n, since only the n simple roots have height 1. By examining each
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root system, one finds (somewhat surpfisingly) that in all cases:
ki1 2 k2> ...

Thus we have a partition of the number N of positive roots, written
in standard nonincreasing order. Such a partition has a dual partition
£, > ¢3 > ..., where {; is defined to be the number of k; > j. (This
corresponds to transposing the ‘Young diagram’, a topheavy array of
boxes with k; boxes in the ith row.) Note that the dual partition has n
parts, since k1 = n. Now we can state:

Theorem Let W be a Weyl group, with exponents 1 = m; < ... <
my, = h — 1. Written in reverse order m,, > ... > my as a partition of
N, its dual partition isn =k, > ... > kp_1 = 1, where k; is the number
of positive roots of height i. (In particular, the highest root & has height
h—-1)

Before sketching the proof, we should emphasize that a rigorous case-
by-case proof is possible, based on close study of the individual root
systems. Indeed, the theorem was first verified empirically in this way.
For the exceptional Weyl groups, one can consult the explicit lists of
positive roots (arranged by height) in Springer [1]. But naturally one
would prefer a general proof which explains what is going on.

In view of 3.19, the theorem can be derived by factoring the Poincaré
polynomial W(t) = - . t“*) in a new way and comparing the fac-
torization obtained previously in 3.15 (for an arbitrary finite reflection
group W):

Stk -1
w(t) =[] — (33)
=1
The new factorization makes sense only for Weyl groups:
th(a)+1 -1
a>0

The product in (34) is taken over all positive roots, but permits a con-
siderable amount of cancellation (when N is large compared with n).
The idea is already clear for the root system of type By. Say « is the
long simple root, 3 the short simple root. The other positive roots are
a+ 3 and a+ 23, so (ki,k2,k3) = (2,1,1), and the dual partition is
(3,1). The right side of (34) looks like

21 2 -1 -1 t*-1

-1 t-1 £-1 -1
£
After cancelling some numerators with subsequent denominators, this
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becomes the right side of (33):

(- 1)(t* - 1)
(t-1)2

' The identity (34) is actually a specialization of a more sophisticated-
looking identity, which requires the introduction of the group algebra B
(over Q) of the abelian group L(®) (the root lattice). To write the group
operation multiplicatively, use symbols e()) in bijection with elements
X € L(®), with e(A\e(u) = e(A + u). Then B consists of the formal
Q-linear combinations of the e()), and is easily seen to be an integral
domain. We can also work in the polynomial ring B[t] or its fraction
field. With this notation, the more general identity reads:

1 —te(—wa)
W(t) = —. 35
o- 5 (IEEEs) )
To specialize this to (34), define a homomorphism ¥ : B{t] — Qlt,t™],
viewing the latter as the group algebra of the infinite cyclic group with
generator {. Here ¢ sends ¢ to ¢ and sends a typical e(a) to t=h(e) The
fractions occurring in (35) actually represent elements of Blt], so we can
apply ¥ (leaving W(t) unchanged). In the sum over W, all terms for
which w # 1 get sent to 0, since there exists a > 0 for which wa has
height —1 (i.e., w™! # 1 sends some element of —A to &*).

Where does (35) come from? One needs to work with the weight
lattice L(®) and its rational group algebra B (which includes B). The
particular weight p := % Y a>0 @ occurs very often in Lie theory. There
is a notion of ‘alternating’ element for the action of W on B, like that
in 3.13. The operator 8 := ) .y det(w)w maps B into its alternating
elements. In the framework of Weyl’s character formula, one finds the
identity:

8(e(p)) = e(=p) [ (e(@) - 1).

a>0

Because the right side is an alternating element, we get for any w €¢ W

[] (1 - e(~wa)) = e(—wp) det(w)ble(p)),

a>0

to be substituted for the denominator in (35). Expand the product
in the numerator into a sum (over subsets of ®*) and interchange the
order of summation. After some delicate manipulation, one finds that
0(e(p)) also appears in the numerator, and can therefore be cancelled.
Eventually just W (t) is left.
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Notes

As indicated by the length of this chapter, the invariant theory of finite
reflection groups is a rich and highly applicable subject. Useful accounts
are found in many places, including Bourbaki [1], V, §5-6, Carter [1],
Chapters 9-10, Flatto [3], Hiller (3], Chapter II, Springer [3], Steinberg
1], 59. |

(3.5) Case-by-case treatments of rings of invariants appear in Cox-
eter [4] and Shephard-Todd [1], but Chevalley [2] gave the first unified
approach.

(3.11) See Shephard-Todd [1]. A version valid for arbitrary fields is
given by Kac-Watanabe [1].

(3.12) Explicit (or algorithmic) descriptions of basic invariants ap-
pear in many places, e.g., Coxeter [4], Flatto [1][3], Ignatenko [1], Mehta
(1], Saito—Yano-Sekiguchi [1], Sekiguchi-Yano [1][2].

(3.13) According to Coxeter [4], 6.2, this factorization of the Jacobian
was conjectured by J.A. Todd and proved by G. Racah.

(3.16)—(3.19) After initial observations by W. Killing and others,
these ideas were systematized by Coxeter [2][4], whose proofs sometimes
involve case-by-case verifications. He remarks ([4], p. 765), ‘Having com-
puted the m’s several years earlier, I recognized them in the Poincaré
polynomials while listening to Chevalley’s address at the International
Congress in 1950.° Theorem 3.19 explains neatly a symmetry in the
exponents observed by Chevalley [1]. Coleman [1] gave a more unified
proof of the theorem, using however Coxeter’s empirical observation that
h = 2N/n; then Steinberg [1] provided a uniform proof of the latter,
which we have followed. (At about the same time Kostant [1] gave a
Lie-theoretic proof of this formula.) For accounts similar to ours, see
Carter [1], Chapter 10, Bourbaki [1], V, §6. See also (8.4) below for
generalizations to other Coxeter groups.

(3.20) The proposition appears in Bourbaki [1], VI, 1.11, along with
other interesting facts about the Coxeter number. (Note that the proof
of Prop. 33 was revised in the later edition.) The theorem was apparently
first discovered by A. Shapiro (unpublished), then proved uniformly in
a Lie algebra context by Kostant [1). Macdonald [2] instead derives
the theorem from the identity (35), of which he proves a more general
version. Recently Akyildiz—Carrell [1] have placed the theorem itself in
a more general geometric setting.

[






Chapter 4

Affine reflection groups

In this chapter we describe a class of infinite groups generated by affine
reflections in euclidean space, which are intimately related to Weyl
groups and which turn out to have a presentation like that of finite reflec-
tion groups (1.9). This will help to motivate the general study of Coxeter
groups in Part II. For the most part we follow Iwahori-Matsumoto [1].
(See also Bourbaki [1], VI, §2.)

Throughout this chapter W denotes a Weyl group (a finite crystallo-
graphic reflection group), acting on the euclidean space V, as described
in 2.9. The corresponding (crystallographic) root system is denoted &.
We also need the set &V of coroots avV = 2a/(a, ), which is a root
system in V in its own right with Weyl group W.

4.1 Affine reflections

We want to consider not just orthogonal reflections (leaving the origin
in V fixed), but also affine reflections relative to hyperplanes which
do not necessarily pass through the origin. To this end we introduce the
affine group Aff(V'), which is the semidirect product of GL(V') and the
group of translations by elements of V. To each A € V' we associate the
translation ¢(\), which sends p € V to p+ A. Then we see immediately
that, for any g € GL(V) and A € V,

gt (Ng™ =t(e)), -

showing that the group of translations is indeed normalized by GL(V).
For each root a and each integer k, define an affine hyperplane

Hox = {) e V|(\a) =k}

Note that Hyx = H_,,_; and that H, g coincides with the reflecting
hyperplane H,. Note too that H,; can be obtained by translating H,

R7
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by ’§°av. Define the corresponding affine reflection as follows:
Sak(A) = A= (A a) — k)a".

This is geometrically correct, because it fixes H, x pointwise and sends
the 0 vector to kaV. We can also write sy as £(kaV)s,. In particular,
Sa,0 = Su-

Denote by H the collection of all hyperplanes Hqy i (o € ®,k € Z).
The following proposition (the proof of which is an immediate calcula-
tion) shows that the elements of H are permuted in a natural way by
W as well as by certain translations in Aff(V).

Proposition

(a) If we W, then wHpy x = Hyax and wse xw ™! = Swa k-

(b) If A € V satisfies (\,a) € Z for all roots o, then t(\)Hox =
Hy ki (ra) and ¢(N)8a,kt(—A) = Sak+(ra)- D

4.2 Affine Weyl groups

We define the afine Weyl group W, to be the subgroup of Aff(V)
generated by all affine reflections s, x, where o € ,k € Z.

Ezample. If |W| = 2, the corresponding group W, is generated by s,
together with s, subject only to the obvious relations (the square of
each reflection is 1). This group is called the inflnite dihedral group,
denoted D,. To emphasize the connection with the group of type A,,
we say that W, is of type A;. (Similar notation is used for other types.)

We can make the structure of W, more transparent. Recall from 2.9
the root lattice L(®) (the Z-span of ®) and the weight lattice

L(®) = {r e V|(\,a¥) € Z for all o € B}.

Similarly, we obtain lattices associated with the root system ®V. Set
L :=L(®Y) and L := L(®V), the latter characterized by:

L={eV|(\a)cZforallacd.}

(This is the condition appearing in part (b) of Proposition 4.1.) W
stabilizes each of these lattices, which we identify with the corresponding
translation groups in Aff(V').

Proposition W, is the semidirect product of W and the translation
group corresponding to the coroot lattice L = L(®V).

Proof. W normalizes L, and obviously they have trivial intersection;
denote their semidirect product by W’/. We saw in 4.1 that s, =
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t(ka¥)sa, so the generators of W, all lie in W’. The same equation
shows that t(kaV) = 84,k9« lies in Wy, so both L and W are included
in W,. 0O

Since the translation group corresponding to ,I; is also normalized by
W, we can form the semidirect product (called ,VZ,,), which contains W,
as a normal subgroup of finite index. Indeed, W, /W, is isomorphic to
L/L. As a matter of notation, we shall use letters such as w to denote
arbitrary elements of V’lz, throughout this chapter.

From Proposition 4.1 we deduce that W, permutes the hyperplanes
in H. More precisely:

Corollary Ifw € V’V\a and Hy ;. € H, then wHyx = Hgy for some
Be®, le€Z, and thus wsyw™! = sg;. O

4.3 Alcoves

To study how the groups V’V\a and W, permute the hyperplanes in H, we
examine how they permute the collection A of connected components
of V° := V\ Ugyen H. Each element of A is called an alcove. It is

clear (since elements of Aff(V) act as homeomorphisms) that W, does
permute A.

What do alcoves look like? Notice first that V° is open in V. Given
A € VO, for each root a there is some k € Z such that X lies between
H, ) and Hgy k41, 50 we can find an open neighborhood U, of A meeting
no a-hyperplane. Intersecting these neighborhoods for all roots « yields
an open neighborhood of A in V°. Since V° is open, its connected
components are also open.

From now on, we fix a set A of simple roots in ®. We assume more-
over that ® is irreducible. It is convenient to single out one particular
alcove:

As:={AeV|0< ()a)<1foral ac dt}.

This really is an alcove. On the one hand, it is clearly included in V°.
On the other hand, it is convex (hence connected), but any element
outside A, is separated from it by one of the hyperplanes H, or He 1;
so A, is a connected component of V°. In general, an alcove is defined
by a set of inequalities (some of which may be redndant) of the form:
ke < (M a) <ke+1, ae ®t.

Ezample. The alcoves associated with W, when W has rank 2 are tri-
angles having angles 7 /k, n/l, 7/m, where (k,{,m) = 3,3,3), (2,4,4),
(2,3,6), in the respective cases Az, Bz, Ga.
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Erercise. An alcove A consists of all A € V satisfying strict inequalities
ka < (A @) < ko +1, where o runs over ®* and k, € Z. Its upper clo-
sure consists of those A satisfying the inequalities obtained by replacing
the second < by < in each case. Prove that each A € V lies in the upper
closure of a unique alcove.

Since @ is irreducible, there is a unique highest root & (which is long
if there are two root lengths), having the property that, for all positive
roots a, & — a is a sum of simple roots (2.9). We claim that

Ao={XeVI0< (\a)foralacA,(\a <1}

It is obvious that A, is included in this set. On the other hand, if
A satisfies the indicated inequalities, note that also (A,a) > 0 for all
positive a. Since & — a is a sum of simple roots, (A\,&@ — o) > 0, so
(A a) £ (A @) <1 and thus X € A,.

This description shows that A, is simply an intersection of open half-
spaces. Moreover, it is a euclidean simplex (whereas if ¢ has a number of
irreducible components, A, will be a product of simplexes). (Question:
What are the vertices of A,?)

Define the walls of A, to be the hyperplanes H,, a € A and Hs,,
and define S; to be the corresponding set of reflections:

Sa = {Saya € A} U {351}

The walls of wA, can then be defined to be the images of these hyper-
planes under w for any w € W,. As soon as we show that W, acts
transitively on 4, we will have well-defined walls for each alcove.

Proposition  The group W, permutes the collection A of all alcoves
transitively, and is generated by the set S, of reflections with respect to
the walls of the alcove A,.

Proof. Let W’ be the subgroup of W, generated by S,. We first prove
that W’ permutes A transitively. For this it is enough to show: for any
alcove A, there exists w € W’ for which wA = A,. Fix any two elements
A € Ao, p € A. It is clear that the orbit of 1 under the translation group
L = L(®V) is a discrete subset of V. Since W, is an extension of this
lattice by a finite group, the W,-orbit (and a fortiori the W’-orbit) of
p is also discrete in V. So this orbit contains an element v = wpu of
smallest possible distance from ). If we can show that v € A,, it will
follow that wA N A, # 0, and thus wA = A,.

Suppose instead that v ¢ A,. Then A and v must lie in different
half-spaces relative to some wall H of A,. Let s be the corresponding
reflection (so s € W’'). Consider the trapezoid in V (which H bisects)
having vertices v, sv,sA, A. It is an elementary geometric fact (proved
using the Law of Cosindé, for example) that the length of a diagonal
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is greater than the common length of the two nonparallel sides of the
trapezoid. This translates into the inequality: |[sv — A|| < [lv — A|.
Because sv is in the W’-orbit of u, this contradicts the choice of v.

We have shown that W’ permutes A transitively. In particular, each
alcove has well-defined ‘walls’ (the images of the walls of A.), and every
hyperplane H, » occurs as a wall of two or more alcoves. To show that
W' = W, we just have to see that each s,k lies in W’. Let A be any
alcove having H, i as a wall, and find w € W’ for which wA = A,. Then
wH, ) coincides with one of the walls H of A,, whose corresponding
reflection s lies in W’. By Corollary 4.2, ws, sw™! = s, forcing s,k €
W’ as desired. O

Since S, generates W,, it is natural (imitating the procedure in
Chapter 1) to define the length ¢(w) of an element w € W, to be
the smallest r for which w is a product of r elements of S,; such an
expression is called reduced. Our next task is to give a geometric char-
acterization of the length function.

4.4 Counting hyperplanes

Given a hyperplane H = H, x € H, each alcove A € A lies in one or the
other of the half-spaces defined by H. We say that H separates two
alcoves A and A’ if these alcoves lie in different half-spaces relative to
H. For example, H, separates A, and sA,, for each s € S,.

Note that, for a fixed pair of alcoves, the number of H € H which
separate them is finite: indeed, a bounded set (such as the line seg-
ment joining a pair of points from the two alcoves) obviously meets only
finitely many of the parallel hyperplanes H,  for each fixed a. This
allows us to define an integer-valued function on W, by letting n(w) be
the cardinality of the set

L(w) := {H € H|H separates A, and wAo}.

In the following section we shall show that the restriction of n to W,
is nothing but the length function £. Of course, n(1) = 0 = #(1). It is
also easy to see that n(s) = 1 if s € S,, which amounts to showing that
L(s) = {H,}: the line segment joining A € A, to sA meets no H € H
other than H,. o

As a further comparison with the length function, observe that n{w)
= n(w™!): H separates A, and wA, if and only if w—'H separates
w4, and A, so wL(w) = L(w™Y).

Note that, if £(w) is nonempty, then it must contain at least one of
the hyperplanes Hy, s € S,. Otherwise wA, # A, lies in the same open
half-space as A, relative to each H,. But A, is precisely the intersection
of these half-spaces, yielding the contradiction A, = wA..
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As in the case of the length function, it is crucial to determine how
the n function changes when we multiply by an element of S,:

Proposition Letw € VI’Z, and fir s € S,.

(a) H, belongs to exactly one of the sets L(w™!), L(sw™1).

(b) s(C(w™)\ {H,}) = L(sw™!) \ {H, }.

(c) n(ws) = n(w) — 1 if H, € L(w™1), and n(ws) = n(w) + 1 other-
wise.

Proof. (a) Suppose H, lies in both sets. This implies that wH, separates
A, from wA, as well as from wsA,, so the latter two alcoves lie on the
same side of wH,. This forces A, and sA, to lie on the same side of H,,
which is absurd. We get a similar contradiction by supposing that H,
lies in neither set.

(b) Suppose H = H, x # H, belongs to L(w™?!), so wH € L(w).
Since s fixes H,, sH # H,. We have to show that sH € L(sw™!).
Suppose the contrary: sH does not separate A, and sw™'A,, hence H
does not separate sA, and w™1A,, hence wH does not separate wsA,
and A,, ie., wH ¢ L(ws). But, by assumption, wH € L(w), so wH
must separate wA, and wsA,. Thus H € L(s) = {H,} contrary to
the choice of H. This proves one inclusion in (b). To get the reverse
inclusion, just replace w by ws.

(c) This follows immediately from (a) and (b). O

Corollary For any w € W,, we have n(w) < {(w).

Proof. This is clear if w = 1. Otherwise let w = 8, --- s, be a reduced
expression, and use induction on r. Part (c) of the proposition shows
that the value of n can increase at most 1 each time we multiply by a
factor s, so n(w) < r =¥f(w). O

4.5 Simple transitivity

In order to prove that £ = n on W,, as well as to show that W, acts
simply transitively on .4, we want to write down an explicit list of the
hyperplanes separating A, and wA,. The key step is contained in the
following lemma.

Lemma Ifw # 1 in W, has a reduced erpression w = sy - - s, with
8i € S,, then (setting H; := H,,) the hyperplanes

Hl, 51H2a 5132H37- sy 81 'sr—lHr

are all distinct.
&
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Proof. Suppose on the contrary that for some indices p < g we have
81 Sp—1Hp = 81---54_1H,. Then H, = 8p,---5,_1H,. By Corol-
lary 4.2, this implies s, = (sp -+ 84-1)5¢(8q~1""- 5p). Thus sp---5, =
Sp+1° - Sq—1, allowing us to reduce the length of the already reduced
expression for w, which is absurd. O

By combining this lemma with Proposition 4.4, we can easily derive
the promised conclusions:

Theorem (a) Let w # 1 in W, have a reduced ezpression w =
81+ Sr. Then we have (setting H; :== H,,)

L(w) = {Hy,s1H2,s152H3,...,581--5,_1H,}.

Moreover, these r hyperplanes are all distinct.
. (b) The function n on W, coincides with the length function ¢.
(c) The group W, acts simply transitively on A.
Proof. (a) We have already observed that £(s) = {H,;} when s € S,.
Now proceed by induction on r = £(w). When r > 1, the induction
hypothesis says that

£(52 tee sr) = {H21 soH3,..., 82" sr—lHr}-

Moreover, these r — 1 hyperplanes are distinct. If H; were to occur in
this list, then we would have

Hy = s Hy € {s1H3,5,52H3,...,51- - 8,1H,},

contrary to the above lemma. Thus Hy; ¢ L(syw). We now apply
Proposition 4.4 (taking s = s; and replacing w™! there by s2:--s,).
Part (a) forces H; to lie in £L(w). Then part (b) forces L(w) to be the
desired set of r hyperplanes (all distinct, by the lemma).

(b) follows immediately from (a).

(c) We already know from 4.3 that W, acts transitively on A, so
it remains to show that no element w # 1 can fix an alcove, say A,
(without loss of generality). But wA, = A, means that L(w) = §,
contrary to (a). O

It is worth observing that the above list of byperplanes separating
A, from wA, corresponds precisely to a sequence of r affine reflections
whose product is w. This is seen by rewriting w in the form

(1-+Sr—18r8p_1---51)(81- - Sp—28r_18r—2-- " 81) - - - (815281)51-
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Ezercise 1. Show by example that W//\a does not in general permute .4
simply transitively.

Ezercise 2. When restricted to the subgroup W, the length function on
W, agrees with the length function defined in Chapter 1.

Ezercise 3. Each H € H divides V into ‘positive’ and ‘negative’ half-
spaces. Associate to any pair of alcoves A, B an integer d(A, B) as
follows: To each hyperplane H € M which separates A from B, assign
+1 if B lies on the positive side of H or —1 if B lies on the negative side
of H. Sum these values over the (finitely many) hyperplanes separating
A from B to get d(A, B). For all A, B,C € A, prove that

d(A, B) + d(B,C) + d(C, A) =0,

by considering each family of parallel hyperplanes separately. If we
assign to each alcove A the unique element w € W, for which A = wA,,
how does d(A,, A) compare with £(w)? (See Lusztig (2], 1.4.)

The simple transitivity of W, on A has a nice consequence for the
structure of W If we Wa, then the tra.ns1t1v1ty of W, on alcoves
already implies that wA, = w Ao for some w’ € W,. Thus w(w’)~ le =
A,. If Q is the subgroup of W, stabilizing A,, this shows that W
is the product of W, and Q. Simple transitivity further implies that
W.NQ = 1, so in fact the product is semidirect and Q 2 W, /Wo = L/L.

4.6 Exchange Condition

Now we are in a position to derive an analogue of the Exchange Con-
dition for finite reflection groups (1.7), equivalent to the Deletion Con-
dition. This in turn will allow us to deduce that (W,, S,) is a Coxeter
system, just as in 1.9.

Exchange Condition Let w € W, have a reduced expression w =
51---5r, with 8; € 8q. If (ws) < b(w) (s € S,), then there exists an
znde:zl<z<rfor which ws =51---8; - 8,.

Proof. By part (c) of Theorem 4.5,
L(w)={H,51Ha,...,51- -s,—1H,}.
Therefore
C(w"l) = w_l,C(w) = {s,---s1H1,5,---s2Ha,...,s.H.}.

Of course, s; H; = H; in each case. By the hypothesis on s together with
part (c) of Proposition 4. 4 H, must lie in ,C(w’l), say Hy, = 8, - -+ 8341 H;
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for 1 € i < r. Then Corollary 4.2 forces (s, - --8i41)8:(Siq1-+5,) =
3, OF 8iSiy1-* Sy = Siy1---5.5. After substitution, this yields ws
31+ 8;i--- 8y as desired. O

As discussed in 1.7, this version of the Exchange Condition is equiva-
ent to the Deletion Condition. That condition alone is enough to make
the argument in 1.9 work, allowing us to conclude:

Theorem The pair (W,,S,) is a Cozeter system. O

Ezercise. The affine Weyl group of type A:l can be realized as a
group of permutations of Z, as follows. List the elements of S, as
80;81,--.,5n—1, 80 that, for ¢ > 0, s; is the transposition (¢, + 1) in
W = S,. Then associate to s; (0 < i < n) the permutation of Z sending
t—t-lift=i+1l (modn),t—t+1ift=1(modn) t—t
otherwise. Prove that this assignment extends to an isomorphism of W,
onto a subgroup of the permutation group, which may be characterized
a8 the set of permutations = satisfying: m(t+n) =n(t)+nforallt € Z
and 3.t = x(¢) (sums taken from 1 to n). How is the length function
described in this realization?

4.7 Coxeter graphs and extended Dynkin
diagrams

It is not difficult to construct, for each irreducible Weyl group W, the
Coxeter graph belonging to the Coxeter group W,. One just needs to
work out the order of s,sa, for each o € A, to see what new edges
and labels occur when the new vertex is adjoined to the Coxeter graph
of W. Geometrically, this product of reflections depends only on the
angle between the associated hyperplanes, which is the same as the angle
between the parallel hyperplanes (through 0) orthogonal to o and é&. So
the calculation is easily done using the data about roots in 2.10. The
resulting Coxeter graphs are precisely those occurring in Figure 2 of 2.5,
with labels A,,, B,,, etc. Note that A; is the only graph involving the
label oco.

In Lie theory it is convenient to codify in an extended Dynkin
diagram the information about relative root leggths, when an extra
root is added to A. Since the angles between simple roots are obtuse,
it is natural to use —a (often labelled ag) as the extra root. Indeed, its
angle with any simple root is also obtuse: & forms an acute angle with
any simple root «, for otherwise s,& would be a higher root obtained by
adding a positive multiple of a. Imitating the construction of Dynkin
diagrams (2.9), we obtain the extended diagrams in Figure 1.
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Figure 1: Extended Dynkin diagrams

Ezample. Consider the crystallographic root system of type B, de-
scribed in 2.10. In terms of the standard basis of R™, the simple roots
are

o] =&; — €2, X3 =€2 —€3,..., OAn_} = Ep~1 ~ En, Qn = €En,

while @ = €; + €2. Thus for n = 2 a double edge joins the vertex
associated with the short root az and the new vertex associated with
the long root —&. When n > 3 both of these roots are long, so a single
edge joins the vertex associated with az and the new vertex.

Exzercise. If I is a proper subset of S,, the resulting ‘parabolic subgroup’
generated by I is finite. (What can be said about its order?)

4.8 Fundamental domain

Returning to the geometric discussion which led up to the presentation
of W,, we can imitate in a straightforward way the description of funda-
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mental domains for finite reflection groups (1.12). Here the appropriate
subset of V is the closure A, of A,.

Theorem The closure of A, 13 a fundamental domain for the action
of W on V.

Proof. Obviously each element of V lies in the closure of at least one
alcove. So Proposition 4.3 implies that W, sends each element of V
to some element of A,. It just has to be shown that no two distinct
elements A\, 1 € A, can be conjugate under W,. Suppose the contrary:
w) = u for some w € W,. We may assume that £(w) > 0 is as small as
possible.

Now we imitate the proof of Theorem 1.12. Find s € S, for which
#(ws) < ¢(w). Thanks to the fact that £(w) = n(w) (Theorem 4.5), part
{c) of Proposition 4.4 shows that H, € L(w™!). Thus H, separates A,
from w'A,. Since A = w™" lies in w™'A4,, we must have (A, o) < 0 (in
case s = s, for a simple root &) or else (A, &) > 1 (in case s = s5,1). But,
by assumption, (A, a) > 0 and (), &) < 1, s0 we get either (A\,a) =0 or
else (A, @) = 1. In either case, sA = A, and thus wsA = p contrary to
the minimality of £(w).

(As in the proof of Theorem 1.12, this argument actually shows that
the stabilizer of an element of A, is generated by those elements of S,
which it contains.) O

4.9 A formula for the order of W

Comparison of fundamental domains for W, and for one of the related
translation groups leads to a beautiful formula for the order of the Weyl
group W, which is independent of the earlier methods developed in 2.11
and 3.9.

Recall the lattices L = L(®") and L = L(®Y). The index of L
in L is denoted by f and called the index of connection (2.9). It is
easy to compute f in each case from the matrix of Cartan integers (see
Humphreys [1], §13); see the table below.

Another ingredient in the formula is the expression of the highest
root & as a linear combination of simple roots:

N

a= an,—, where A = {ay,.. ?an}

The integers ¢; are listed in the table below; they can be derived easily
from the data in 2.10.

Theorem If W is an irreducible Weyl group of rank n, then

[W|=nlcy- -enf,
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Type | Coeflicients of & f
A, |1,1,...,1 n+1
B, {1,22,...,2 2
Cn 12,2,...,2,1 2
D. |1,2,...,2,1,1 4
Ee |1,2,2,32,1 3
Er 122,3,4,3,21 2
Eg |2,3,4,6,54,3,2 1
Fs }12,3,4,2 1
Ga 13,2 1

Table 1: Coefficients of highest root and index of connection

where f is the index of connection and the c; are the coefficients of the
highest root.

Proof. The idea is to compare the volumes of two fundamental domains
in V (identified with R") relative to the usual Lebesgue measure. Since
hyperplanes have measure 0, we do not have to be too precise about the
boundaries involved.

Let P be the (open) parallelepiped determined by the bas15 vectors
w) of L dual to the a; € A:

P:={AeV0<()a) <1 for all i}.

Since P is bounded by some of the hyperplanes in H, it is clear that P
is a union of certain alcoves (including A,) and parts of their closures.
Moreover, P together with part of its boundary forms a fundamental
domain for the translation group corresponding to L.

We want to compare A, with P. Since (w), a;) = 6;;, we see that
the vertices of A, are the points (1/c;)w) together with 0. Indeed,
these are precisely the points obtained by intersecting all but one of the
hyperplanes in S,. An elementary calculation with multiple integrals
shows that the volume of the standard n-simplex in R"™ is 1/n!. If the
standard basis is modified by factors 1/¢;, the resulting volume is just
multiplied by these factors. A change of basis to the vectors w) in
turn modifies the volume by a factor equal to the absolute value of the
determinant of the coordinate matrix of these vectors. The same factor
changes the volume of the standard unit parallelepiped into the volume
of P. So this factor does not affect the ratio:

vol(P)/vol(Ao) =nley - cn.

Another way to compute the ratio of volumes is simply to count how
many alcoves are contained in P. We claim that the number of these is
|W|/ f, which will yield#¢he desired formula for |W|.
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wsr-To prove the claim, we first look for all possible elements of VI//\G which
‘thap Ao into P. Any such element is the product of a translation by
ome i € L and an element of W. Let A € A, be arbitrary, and w € W.
Suppose translation by u = Y a,w takes w into P, so (wA + p, ;)
d4ié8 between 0 and 1 for all i. Now (wA, ;) = (A, w™ ;) lies between
0and 1 (resp. 0 and —1) provided w~'q; is positive (resp. negative),
gince A\ € A,. Moreover, all such values are attainable as )\ varies. On
the other hand, (u, ;) = @; is an integer. Therefore, (wA + p, ;) lies
‘between 0 and 1 precisely when we have a; = 0 (resp. 1) for wlo; >0
(resp. < 0). Denote by pY, the sum of all w)’ for which w—la; < 0. We
‘have shown that t(pY,) w is the unique element of I/Va involving w which
'maps A, into P. .

Now for each such element of W,, its product with each of the f
elements of 2, the subgroup stabilizing A, defined in 4.5, takes A, to
the same alcove in P. On the other hand, two elements of W, which
miap A, to the same alcove obviously differ by an element of Q2. It follows
that the number of distinct alcoves in P (those which are images of A,
under W,) is [W|/f, as claimed. O

Remark. The fact that f divides |W| is not a priori obvious, but becomes
clear when one sees how to locate naturally a subgroup of W isomorphic
to Q. This and other refinements, such as the precise determination of
which elements p), lie in L, may be found in Verma [3] (in a formulation
dual to ours) and Iwahori-Matsumoto [1].

Ezercise 1. Use the table to check (case-by-case) that the formula in the

theorem is in agreement with the earlier formulas for |W| developed in
2.11 and 3.9.

Ezercise 2. Verify (using the table) that f—1 is the number of coefficients
of & equal to 1.

4.10 Groups generated by affine reflections

In this chapter we have constructed a particular class of groups generated
by affine reflections, which turn out to be Coxeter groups. It is natural
to ask whether some larger class of ‘discrete’ groups generated by affine
reflections may be found. In a word, the answer #'no (if the limitation to
‘discrete’ groups is formulated appropriately). This question is explored
exhaustively in Chapters V and VI of Bourbaki [1] (cf. Coxeter [2], Witt
(1]). For a very helpful outline (with some proofs filled in) see Brown
(1], Chapter VI, §1. Here we offer just a brief guide to what is done in
Bourbaki, with references to sections.

(1) Start with an arbitrary collection H of affine hyperplanes in V,
and consider the group G generated by the corresponding reflections.
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Using Proposition 4.1, we may enlarge  if necessary so that G permutes
H. To insure that G is not ‘too big’, we might require that H be ‘locally
finite’ (any compact set meets only finitely many H € H). This follows
from the formal requirement that G (given the discrete topology) act
‘properly’ on V: given two compact sets, only finitely many G-translates
of the first meet the second. In particular, G will be discrete in the
natural topology of Aff(V). [See V, §3.]

(2) With these assumptions in place, the complement of the union
of hyperplanes in M will be open; its connected components may be
called ‘chambers’. They have naturally defined ‘walls’ in H. G then
permutes the collection of all chambers. (Lower dimensional cells and
faces can also be defined in a natural way by systems of equalities and
inequalities.) [See V, §1, §2.]

(3) Study of the action of G on chambers leads to a number of
familiar-looking conclusions: If C is any fixed chamber, and R the col-
lection of reflections with respect to its walls, then R is finite, G is gener-
ated by R and acts simply transitively on the collection of all chambers.
Moreover, (G, R) is a Coxeter system, and H consists of all affine hy-
perplanes whose reflections lie in G. [See V, §3.]

(4) Note that G might actually be finite (if it fixes a point of V).
In general, there are only finitely many parallel classes of hyperplanes
in M, and there exist ‘special points’ where hyperplanes from all these
classes intersect. [See V, §3.]

(5) Suppose G is infinite, and ‘irreducible’ in a natural sense (which
does not limit the generality significantly). Then G contains a transla-
tion lattice of rank equal to the dimension of V, which is the root lattice
of a (crystallographic) root system. Moreover, the stabilizer in G of a
special point (which we may as well take to be 0) is a finite subgroup
generated by reflections, which normalizes the translation lattice (its
root lattice). The conclusion is that G is an affine Weyl group. [See VI,
§2.

Related to this line of reasoning in Bourbaki is a discussion which
characterizes such affine reflection groups among all possible Coxeter
groups, in terms of the ‘geometric representation’ and associated bilinear
form. [See V, §4 and VI, 4.3.] We shall discuss these matters in Chapters
5 and 6 below.

Notes

For the notion of upper closure in the exercise in 4.3, and various refine-
ments, see Jantzen [3], p. 261.

(4.5) The arrangement of the arguments here was suggested by J.B.
Carrell. )

(4.6) The exercise is due to Lusztig [3] (see Shi [1], p. 67). He has
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worked out similar descriptions for other affine Weyl groups; see Bédard

1].
. (4.9) This formula is due to Weyl (see Coxeter [1], 11.9). Our treat-
ment follows Verma [3]. The proof in Bourbaki [1], VI, 2.4, prop. 7 (p.
178) uses some facts about Haar measure. For a different proof, based
on a comparison of Poincaré series for W and W,, see Proposition 1.32
of Iwahori-Matsumoto [1].
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Chapter 5

Coxeter groups

Motivated by the examples of finite reflection groups (Chapter 1) and
affine Weyl groups (Chapter 4), we embark on the general study of Cox-
eter groups. After introducing the basic notions in 5.1-5.3, we examine
the ‘root system’ in 5.4-5.7, following Deodhar [4]. This leads to the
‘Strong Exchange Condition’ (5.8). Then we study the Bruhat ordering
in 5.9-5.11. Finally, we look more closely at parabolic subgroups, deriv-
ing an inductive formula to express Poincaré series as rational functions
in 5.12 and finding a fundamental domain for the action of our group in
5.13.

5.1 Coxeter systems

We define a Coxeter system to be a pair (W, S) consisting of a group
W and a set of generators S C W, subject only to relations of the form

(ssl)m(a,s') =1,

where m(s,s) = 1, m(s,s') = m(s’,8) > 2for s # s’ in S. In case no
relation occurs for a pair s, s', we make the convention that m(s, s') = co.
Formally, W is the quotient F//N, where F is a free group on the set S
and N is the normal subgroup generated by all elements

TN

(ss')mos), *

Call |S| the rank of (W,S). The canonical image of S in W is a gen-
erating set which might conceivably be smaller than S, but in fact it
will soon turn out to be in bijection with S (5.3). In the meantime, we
may allow ourselves to write s € W for the image of s € S, whenever
this creates no real ambiguity in the arguments. Moreover, we may refer
to W itself as a Coxeter group, when the presentation is understood.

n\
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Although a good part of the theory goes through for arbitrary S, we
shall always assume that S is finite.

This definition is of course motivated by the two geometric examples
studied earlier: finite groups generated by reflections (Chapter 1) and
affine Weyl groups (Chapter 4). However, the subject becomes vastly
more general when the choices of the m(s, §') are essentially unrestricted.
As a result, the reader may well be skeptical at this point about the
depth or interest of such a generalization. It will be seen presently that
Coxeter groups do admit a sort of geometric interpretation as groups
generated by ‘reflections’ (in a weak sense), and that they share many
interesting features. The special cases just mentioned are the ones most
often encountered in applications, but there are further useful classes
of Coxeter groups (e.g., the ‘hyperbolic’ ones, and the ‘Weyl groups’
associated with Kac-Moody Lie algebras). While the general theory
may be regarded at first as mainly a nice unification of existing theories,
it also suggests new viewpoints and problems.

To specify a Coxeter system (W, S) is to specify a finite set S and a
symmetric matrix M indexed by S, with entries in Z U {oo} subject to
the conditions: m(s, s) =1, m(s,s’) > 2 if s # s’. Equivalently, one can
draw an undirected graph I"' with S as vertex set, joining vertices s and
s’ by an edge labelled m(s, s') whenever this number (oo allowed) is at
least 3. If distinct vertices s and s’ are not joined, it is then understood
that m(s,s’) = 2. As a simplifying convention, the label m(s,s’) = 3
may be omitted. As in 2.1, I is called a Coxeter graph.

Here are a couple of examples not previously encountered.

Ezample 1. In case all m(s, s') = oo when s # s’, we call W a universal
Coxeter group (see Dyer [2]). If |S| = 2, W is just the infinite dihedral
group D, an affine Weyl group of type A;.

Example 2. Let S = {s1, 82,83}, with m(sy,s2) = 3, m(s1,83) = 2,
m(sz, 83) = 00, s0 the Coxeter graph is

oo
O—0 — O

The resulting Coxeter group W turns out to be isomorphic to PGL(2, Z)
= GL(2, Z)/{%1}. Denote the canonical map GL(2,Z) — PGL(2, Z) by

(ca)-[ea]

Then send the generators 8;, 32, 33 to the respective elements of order 2

in PGL(2, Z):
Bt
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By checking the orders of the products, we see that this assignment in-
duces a homomorphism ¢ : W — PGL(2,Z). The image of ¢ includes
the subgroup PSL(2, Z) of index 2, since ¢(s1s3) and ¢(s283) respec-
tively come from elementary matrices

01 11
(20)=(s1)
which are well known to generate SL(2, Z). Because PSL(2, Z) does not
contain the images of matrices of determinant —1 representing the s;,
we conclude that ¢ is surjective. To see that ¢ is injective, one can use
the standard fact that PSL(2, Z) is the free product of the groups of
orders 2 and 3 generated by ¢(s1s3) and ¢(s182). (W is an example of
a ‘hyperbolic’ Coxeter group; see 6.8 below. It is discussed from several
perspectives in Brown [1], pp. 40-46.)

It is notoriously difficult to say much about a group given only by
generators and relations — for example, is the group trivial or not? In
our case, we can see right away that W has order at least 2. Start
with a homomorphism from the free group F onto the multiplicative
group {1, -1}, defined by sending each element of S to —1. It is obvious
that all elements (ss')™(**) lie in the kernel, so there is an induced
epimorphism € : W — {1, —1} sending the image of each s € S to —1.
In particular, each of these generators of W does have order 2. The
map € is the generalization for an arbitrary Coxeter group of the sign
character of the symmetric group.

Proposition There is a unique epimorphisme : W — {1, —1} sending
each generator 3 € S to —1. In particular, each s has order 2 in W. O

Note that when |S| = 1, W is just a group of order 2. When |S| =
2, W is dihedral, of order 2m(s,s') < oo if § = {s,9'}. So we are
already well acquainted with these types of Coxeter groups in the guise
of reflection groups.

Ezercise 1. Denote the kernel of € by W*. If S = {s1,...,8,}, prove
that W is generated by the elements s;s, (1 <i < n—1).

Ezercise 2. If W has rank n and all m(s,s'), s # &', are even, then
W[ > 2. .

5.2 Length function

Since the generators s € S have order 2 in W, each w # 1 in W can be
written in the form w = s;8; - - - 3, for some s; (not necessarily distinct)
in S. If r is as small as possible, call it the length of w, written £(w),
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and call any expression of w as a product of r elements of S a reduced
expression. By convention, £(1) = 0. More formally, a reduced expres-
sion should be viewed as an ordered r-tuple (s;,...,sr). Note that the
lengths of partial products are predictable when w = 3, - - - 3, is reduced:
£(sy---8r—1) =1 —1, £(82---8,_1) = r — 2, etc. However, the length
function has its subtleties, because a typical element of W may have
numerous reduced expressions.

Ezercise. Prove that W is of ‘universal’ type (5.1) if and only if each
element has a unique reduced expression.

Here are some elementary properties of the length function:

(L1) l(w) = Lw™). Hw=s-8, w =38.---8, sol(w!) <
{(w), and similarly for w™! in place of w.)

(L2) £(w) =1 if and only if w € S.

(L3) f(ww'y < lw)+ £L(w'). [f w=s;-- 3, and w' = 8] -5, then
the product ww' = s; -+ sp8] - - - 5 has length at most p + q.

(L4) f(ww') > £(w) — £(w'). [Apply (L3) to the pair ww’, (w')~!, then
use (L1)]

(L5) &(w)—1 < f(ws) < l(w)+1, for s€ S and w € W. [Use (L3) and
(L4).]

Proposition The homomorphism ¢ : W — {1, -1} of 5.1 is given by
g(w) = (—1)¥®). As a result, L(ws) = L(w) £ 1, for all s € S,w € W,
and similarly for £(sw).

Proof. Write a reduced expression w = s; -- - 8,. Then
e(w) = e(s1) -+ £(s,) = (-1)" = (-1)4),

as required. Now e(ws) = —e(w) implies that £(ws) # £(w). By property
(L5) above, the lengths must differ by precisely 1. O

In our study of Coxeter groups (as in the special cases treated earlier),
we shall often prove theorems by induction on £(w). It will therefore be
essential to understand the precise relationship between £(w) and £(ws)
(or £(sw)). For this we need a way to represent W concretely.

5.3 Geometric representation of W

Given a Coxeter system (W, S), it is too much to expect a faithful rep-
resentation of W as a group generated by (orthogonal) reflections in a
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suclidean space. But we can get a reasonable substitute if we redefine a
reflection to be merely a linear transformation which fixes a hyperplane
pointwise and sends some nonzero vector to its negative. The idea is to
begin with a vector space V over R, having a basis {a,|s € S} in one-
to-one correspondence with S, and then to impose a geometry on V in
such a way that the ‘angle’ between a, and a, will be compatible with
the given m(s, 8'), i.e., with the previously studied geometry of dihedral
groups. Accordingly, we define a symmetric bilinear form B on V by
requiring:
B(o,,04) = —cos m-

(This expression is interpreted to be —1 in case m(s, s') = 00.) Evidently
B(as, 05) = 1, while B(a,,ay) < 0if s # ¢'. Since a, is non-isotropic,
the subspace H, orthogonal to o, relative to B is complementary to the
line Ro,.

For each s € S we can now define a reflection o, : V — V by the
rule:

0sA = A — 2B(as, N)as.

Clearly 0,0, = —a,, while g, fixes H, pointwise. In particular, we see
that o, has order 2 in GL(V).

A quick calculation (left to the reader) shows that o, preserves the
form B, ie., B(os\ 0,u) = B(A\p) for all \,p € V. As a result, each
element of the subgroup of GL(V') generated by the o,(s € S) will also
preserve B.

Our first task is to show that there exists a homomorphism from W
onto this linear group, sending s to o,. For this it is enough to check
that

(0,05)™®%) = 1 whenever s # 5.

Set m := m(s, s') and consider first the two-dimensional subspace V; 4
= Ros & Ros. We claim that the restriction of B to V, 4 is positive
semidefinite, and moreover is nondegenerate precisely when m < oo. To
check the first part, just take any A = aa, +bo, (a,b € R), and compute

B(\, \) = a% —2abcos(r/m) +b? = (a—bcos(w/m))? +bZsin®(r/m) > 0.

In turn, the form is positive definite on V; o if sin (x/m) # 0, ie.,
m < oo (whereas otherwise the nonzero vector a, . is isotropic).

Having seen precisely how the form B behaves on‘V,,,/, we note fur-
ther that o, and o, leave V, , stable: just look at the defining formula
for each reflection. So it makes sense to calculate the order of 0,0,
viewed as an operator on V, . Two cases are possible:

(a) m < oco. Here the form is positive definite, so we find ourselves
in the familiar situation of the euclidean plane. Both o, and o, act as
orthogonal reflections. Since B(a,, oy} = —cos(n/m) = cos(x — (7 /m)),
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the angle between the rays Rta, and Rta, is 7 — (r/m), forcing the
angle between the two reflecting lines to be 7/m. From our previous
study of dihedral groups (1.1), we recognize 0,0, as a rotation through
the angle 2 /m; it therefore has order m.

(b) m = 00. Here B(as,ay) = —1. If A = a, + ay, B(A a,) =
0 = B(\ ay), so that both o, and o, fix A. In turn, o,000, =
o0y + 204) = 3a, + 2a, = 2\ + a,, and by iteration, (0,0, )*a, =
2kA+ o, (k € Z). This implies that 0,0,/ has infinite order on V; .+ (and
therefore also on V).

In case (a), the fact that B is nondegenerate on V; , implies that
V is the orthogonal direct sum of V; ,+ and its orthogonal complement;
evidently both ¢, and o, fix the latter subspace pointwise. Thus o,0,
also has order m on V. To summarize:

Proposition There is a unique homomorphism ¢ : W — GL(V)
sending s to o,, and the group o(W) preserves the form B on V. More-
over, for each pair s,s8' € S, the order of ss’ in W is precisely m(s, s').
(]

This last observation removes any possible ambiguity in the status of
the generators s € S: if s # s’ in the subset S of the free group F, then
also 8 # &’ in W, as promised in 5.1, and the subgroup of W generated
by 8,4’ is dihedral of order 2m(s, s’). Now we know that W is not ‘too
small’. It remains to be seen that W is not ‘too big’, i.e., that ¢ has
trivial kernel (Corollary 5.4 below). This will require a closer study of
the action on V.

For convenience we shall refer to the homomorphism o as the geo-
metric representation of W. (However, it should be emphasized that
there may be other interesting ways to represent W as a group generated
by ‘reflections’, e.g., acting in a hyperbolic space. See Vinberg [1]-[5].)

Question. If W is an affine Weyl group, how does the geometric rep-
resentation compare with the action on euclidean space described in
Chapter 4?7 (This will be discussed in 6.5.)

Ezercise. Prove that s, s’ € S are conjugate in W if and only if the fol-
lowing condition is satisfied: (*) There are elements s = s;, 83,...,8; =
s’ in S for which every s;s;4; has (finite) odd order.

(«=) In case w = ss’ itself has odd order 2p + 1, note that wPsw™? =
s'. Iterate!

(=) Fix s € $, and consider the set $’ of all ¢ satisfying (*). It
must be shown that no element of 5" := §\ &’ is conjugate to s. Define
f:8 = {1,-1} by f(8') = 1, f(8") = —1. Show that f induces a
homomorphism from W te {1, —1}. Then all conjugates of s must lie in
Ker f.
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8.4 Positive and negative roots

ey

In this section we obtain a precise criterion for £(ws) to be greater or
gmaller than £(w), in terms of the action of W on V. This will be the key
to:all further combinatorial properties of W relative to the generating
get S. To avoid cumbersome notation, we may write w(a,) in place of
q:(w)(aa)~

L. First we introduce the root system ® of W, consisting of a set of
unit vectors in V permuted by W. Define ¢ to be the collection of all
vectors w(cas), where w € W and s € S. These are unit vectors, because
W preserves the form B on V. Note that ® = —®, since s(a,) = —a,.
if a is any root, we can write it uniquely in the form

a= Zc,a, (cs € R).

s€S
o
K

Call o positive (resp. negative) and write a > 0 (resp. a < 0) if all
s => 0 (resp. all ¢, < 0). For example, each a, is positive. Write &t
and &~ for the respective sets of positive and negative roots. It will be
an immediate consequence of the theorem below that these sets exhaust
o

Note that, in contrast to the situation in Chapter 1, we have in effect
specified once and for all a set of ‘simple’ roots.

We also have to introduce at this point the parabolic subgroup W;
of W, defined as in 1.10 to be the subgroup generated by a given subset
I ¢ S. (More generally, we refer to any conjugate of such a subgroup as
a parabolic subgroup.) In the following section, W; will be seen to be
a Coxeter group in its own right. For the present, we just note that it
has a length function £; relative to the generating set of involutions I.
It is clear that £(w) < £;(w) for all w € W;. (It will be seen in 5.5 that
equality holds.)

Theorem Letw e W and s € S. If L(ws) > £(w), then w(a,) > 0.
If L(ws) < £(w), then w(a,) < 0.

Proof. Observe that the second statement follows from the first, applied
to ws in place of w: indeed, if #(ws) < £(w), then £((ws)s) > £(ws),
forcing ws(a,) > 0, ie., w(—a,) > 0, or w(a,) < 0.

To prove the first statement, we proceed by iffhiction on £(w). In
case £(w) = 0, we have w = 1, and there is nothing to prove. If £(w) > 0,
we can find an s’ € S for which ¢(ws') = £(w) — 1, say by choosing s’ to
be the last factor in a reduced expression for w. Since £(ws) > £(w) by
assumption, we see that s # s'. Set I := {s, s'}, so that W is dihedral.
Now we make a crucial choice within the coset wW/;. Consider the set

A= {ve W lwe W and £(v) + £; (v w) = £L(w)}.
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Evidently w € A. Choose v € A for which £(v) is as small as possible,
and write vy := v~ 'w € W;. Thus w = vvy, with £(w) = £(v) + £r(vy).
The strategy now is to analyze how each of v and vy acts on roots.

Observe that ws' € A: Indeed, (s'w™!)w = s lies in Wy, while
f(ws') +£1(s') = ({(w) — 1) + 1 = £(w). The choice of v therefore forces
{(v) < f(ws') = &(w) — 1. This will allow us to apply the induction
hypothesis to the pair v, 3. But for this we need to compare the lengths
of v and vs. ‘

Suppose it were true that £(vs) < £(v), ie., £(vs) = £(v) — 1. Then
we could calculate as follows:

£v) + £r(v w)
{w).

f(w) < Lvs)+L((sv™H)w) [use (L3) from 5.2
< f(vs) + £(sviw) [since sv~lw € Wy and £ < £)]
= (fv) — 1)+ £;(sv™w)
< fv)-14& @ w)+1

So equality holds throughout, forcing £(w) = £(vs) + £;((sv™})w)
and therefore vs € A, contrary to £(vs) < £#(v). This contradiction
shows that we must instead have £(vs) > £(v). By induction, we obtain:
v(as) > 0. An entirely similar argument shows that £(vs') > £(v),
whence v(a,) > 0.

Since w = vvy, we will be done if we can show that v; maps o, to a
nonnegative linear combination of «, and «,.

We claim that £;(vrs) > £r(vr). Otherwise we would have:

£(ws) = L(vv~ ws) < £(v) + L(v™ ws) = £(v) + £(vr8)

< £(v) + L1 (vis) < &(v) + £y (vr) = L(w),

contrary to £(ws) > £(w). In turn, it follows that any reduced expression
for vy in W (an alternating product of factors s and 8') must end in 8'.
Consider the two possible cases:

(a) If m(s,8') = 00, an easy direct calculation shows that vr(a,) =
aa,s + bay, with a,b > 0 and |a — b} = 1. Indeed, B(a,, ay) = —1, s0
that 8'(a,) = as + 20y, 88'(0s) = 204 + 305, 8’38 (s) = Ba, + 4oy,
and so on.

(b) If m := m(s,s’) < o0, notice that £;(vy) < m. Indeed, m is
clearly the maximum possible value of £;, and an element of length m
in W; has a reduced expression ending with s. So vy can be written as
a product of fewer than m/2 terms ss’, possibly preceded by one factor
8'. Direct calculation will now show that v;(«,) is a nonnegative linear
combination of a; and a, . (A rough sketch should make the argument
transparent.) Recall that we are now working in the euclidean plane,
with unit vectors o, and a, at an angle of 7 — w/m, and ss’ rotates
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o, through an angle of 27/m toward a,. So the rotations involved
in v; move a, through at most an angle of # — 27 /m, still within the
positive cone defined by «, and a,. If vy further involves a reflection
corresponding to 8', the resulting vector still lies within this positive
cone, because the angle between «, and the reflecting line is (7/2) —
(w/m). O

Corollary The representation o : W — GL(V) is faithful.

Proof. Let w € Ker 0. If w # 1, there exists s € S for which £(ws) <
£(w). The theorem says that w(a,) < 0. But w(a,) = o, > 0, which is
a contradiction. O

5.5 Parabolic subgroups

With Theorem 5.4 in hand, we can get more precise information about
the internal structure of W. First we want to clarify (as promised)
the nature of the parabolic subgroups W; (I C S). The set I and the
corresponding values m(s, 8') give rise to an abstractly defined Coxeter
group Wy, to which our previous results apply. In particular, W; has
a geometric representation of its own. This can obviously be identified
with the action of the group generated by all o, (s € I) on the subspace
Vi of V spanned by all o, (s € I), since the bilinear form B restricted
to V; agrees with the form B; defined by W;. The group generated by
these o, is just the restriction to V; of the group o(W;). On the other
hand, W; maps canonically onto W7, yielding a commutative triangle:

W; — GL(Vi)

N/

Wi

Since the map W — GL(Vr) is injective by 5.4, we conclude that Wy is
isomorphic to W; and is therefore itself a Coxeter group.

Theorem (8) For each subset I of S, the pair (Wy,I) with the given
values m(s, ') is a Cozeter system

(byLet ICS. Ifw=8;---8.(si€8)isa mduced expression, and
w€E Wi, thenalls; € I. In partzcular the function 2 agrees with £1 on
Wiand WinS=1.

(c) The assignment I — Wi defines a lattice isomorphism between
the collection of subsets of S and the collection of subgroups W of W.

(d) S is a minimal generating set for W.
Proof. We have just verified (a). For (b), use induction on £(w), noting
that £(1) = 0 = £;(1). Suppose w # 1, and set 3 = s,. According to
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Theorem 5.4, w(a,) < 0. Since w € W}, we can also write w =t -- - ¢
with all ¢; € I. Therefore

q

q
w(a,) = a, + Zc,-a,i (c; € R).

i=1

Because w(as) < 0, we must have s = t; for some i, forcing s € I.
In turn, ws = 8 ---8,—; € W, and the expression is reduced. By
induction, all s; € I. The remaining assertions of (b) are clear.

To prove (c), suppose I,.J C S. If Wy C W, then I = Wi;NSC
W; NS = J, thanks to (b). Thus I ¢ J (resp. I = J) if and only
if Wi ¢ Wy (resp. Wy = W,). It is clear that Wy, is the subgroup
of W generated by W; and W;. On the other hand, (b) implies that
Wing = Wiy N W;. This yields the desired lattice isomorphism. To
prove (d), suppose that a subset I of § generates W,so W; =W = Ws.
According to (c), / = S. O

Ezample. When the Coxeter group in question is an affine Weyl group
W, associated with a Weyl group W (Chapter 4), W itself is a parabolic
subgroup of W,: its Coxeter graph is obtained from that of W, by
removing a single vertex. In particular, the length functions of these
groups are compatible.

5.6 Geometric interpretation of the length
function

Our next goal is to extract from Theorem 5.4 a more precise description
of the way in which W permutes . Once we have this information in
hand, we can explore more deeply the internal structure of W itself.
Recall that & is the disjoint union of the sets * and ®~ of positive and
negative roots. For brevity, write II = 7.

Proposition (a) Ifs € S, then s sends a, to its negative, but permutes
the remaining positive roots.

(b) For any w € W, €(w) equals the number of positive roots sent by
w to negative roots.
Proof. Note that part (a) is a special case of part (b); but it is needed
in the proof of (b).

(a) Suppose a > 0, but @ # a,. Since all roots are unit vectors, a
cannot be a multiple of a,. We can therefore write

o= E Cexy,

£ tes
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where all coefficients are nonnegative and some ¢; > 0, t # s. Applying

s to  only modifies this sum by adding some constant multiple of a;,
so the coefficient of o remains strictly positive. It follows that s(a)
cannot be a negative root, so it lies in II and is obviously distinct from

ds. Thus s(IT\ {as}) € I\ {a,}. Apply s to both sides to get the
reverse inclusion.

(b) If w € W, define n(w) to be the number of positive roots sent by
w to negative roots, so

n(w) = Card M(w), where I(w) := M Nw !(-I).

(It is not instantly obvious that n(w) is finite, but this will follow from
the proof that n(w) = #(w).) Notice that part (a) implies that n(s) =1
for s€ S.

To see that n(w) behaves like the length function, we first verify that,
for s € S,w € W, the condition w(c,) > 0 implies n(ws) = n(w) + 1,
whereas w(a,) < 0 implies n(ws) = n(w) — 1. Indeed, if w(c,) > 0,
part (a) implies that I1(ws) is the disjoint union of s(Il(w)) and {a,}.
Similarly, if w(e,) < 0, we get: II(ws) = s(II(w)\ {a,}), with a, € TI(w).

Now we proceed by induction on £(w) to prove that n(w) = ¢(w) for
all w € W. This is clear if £(w) = 0, and also (by part (a)) if £(w) = 1.
Theorem 5.4 says that #(ws) = &(w) + 1 (resp. £(w) — 1) just when
w(o,) > 0 (resp. < 0). Combining this with the preceding paragraph
and the induction hypothesis completes the proof. O

As in the case of finite reflection groups, part (a) of the proposition is
invoked frequently, usually as a device for recognizing that a positive root
obtained in the course of an argument is none other than a, (because s
sends it to a negative root).

Ezercise 1. Given a reduced expression w = s, --- 8, (8; € ), set o :=
a,, and fB; 1= s,:8,_1 - - 8i+1(), interpreting S, to be a,. Prove that
TI(w) consists of the r distinct positive roots 8, ..., Gy.

Ezercise 2. If W is infinite, prove that the length function takes ar-
bitrarily large values, hence that ® is infinite. (Thetrefore the scalar
—1 € GL(V) does not lie in o(W).) If W is finite, prove that there is
one and only one element w, € W of maximum length, and that w,
maps II onto —I1.

Ezercise 3. Use the fact that £(w) = n(w) to give another proof of part
(b) of Theorem 5.5. [Note that for w € Wy, n(w) > nr(w) is clear, if ny
has the obvious meaning.]
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5.7 Roots and reflections

By the way 0 : W — GL(V) was defined, each s € S actson V as a
reflection. More generally, we can associate a reflection in GL(V') with
each root a € P, as follows. Say a = w(a,) for some w € W,8 € S.
Consider how wsw™! acts on V:

wsw™(A) wlw™(A) = 2B(w™1()), as) @)
A = 2B(w™()), as) w(a,)

A — 2B\ w(a,)) w(as,)
A—-2B()\ a)a.

It follows that wsw ™! depends only on «, not on the choice of w and
8. So we may denote it by s,. Moreover, s, acts on V as a reflection,
sending « to —a and fixing pointwise the hyperplane orthogonal to a. Of
course, both a and —o determine the same reflection s, = s_o. Denote
by T the set of all reflections 8,, @ € $. Thus

T= U wSwL.
wew

In order to pass back and forth freely between roots and reflections, we
should observe that the correspondence & s, is bijective (for a € II).
Indeed, suppose that s, = sg. From the above formula for s, (with
A = B) we get B = B(B, @), forcing o = 3 since both are unit vectors
in IT.

One other observation is useful:

Lemma Ifa, 8 € ® and B = w(a) for some w € W, then wsaw™! =
33.

Proof. This is immediate from the above formula for a reflection and
the fact that B is W-invariant. O

The following proposition generalizes Theorem 5.4 to arbitrary re-
flections.

Proposition Let w € W,a € II. Then f(ws,) > £(w) if and only if
w(a) > 0.

Proof. As in the proof of Theorem 5.4, it will be enough to verify the
‘only if’ part. Proceed by induction on £(w), the case £(w) = 0 being
trivial. If £(w) > 0, there exists s € S such that {(sw) < €(w). Then
£((sw)sq) = £(8(wse)) > b(ws,) — 1 > £(w) — 1 = £(sw). By induction,
sw(a) > 0. Suppose w(a) < 0. The only negative root made positive
by s is —a, (5.6), so w(a) = —c,. But then sw(a) = o, would imply
(sw)sa(sw)™! = s (by the above lemma), whence ws, = sw. This
contradicts £(ws,) > £(w) > £(sw). As a result, w(a) must be positive.
O



5.8. Strong Exchange Condition 117

5.8 Strong Exchange Condition

We are now able to prove a key fact about the nature of reduced ex-
pressions in W, which is at the heart of what it means to be a Coxeter
group.

Theorem Let w = 38;---8,(8; € S), not necessarily a reduced expres-
sion. Suppose a reflection t € T satisfies £(wt) < €(w). Then there is
an indez i for which wt = 81 --- 8;--- 8, (omitting s;). If the ezpression
for w is reduced, then i is unique.

Proof. Write t = s, (say a > 0). Since #(wt) < £(w), Proposition
5.7 forces w(a) < 0. Because @ > 0, there exists an index 1 < r
for which 8;4;---s.(a) > 0 but 8;8;41---3,.(@) < 0. According to
part (a) of Proposition 5.6, the only positive root which s; sends to
a negative root is a,,, S0 811 - 8,(@) = s,. Now Lemma 5.7 implies
(Sit1--+ 87 )t(8y -+ 8ip1) = 8;, OF Wl = 81 --- §; - - - 8, as required.

In case £(w) = r, consider what would happen if there were distinct
indices i < j such that wt = s;---8;---8;---8, = 81-+-8;--- 8- 8.
After cancelling, this gives 8;41---8; = 8;---8;_1, O 8---8; = 8i31- -
8j_1, allowing us to write w = 81 ---§;--- §; - - - 8,. This contradicts the
assumption that f(w) =r. O

Ezxercise 1. Prove a version of the theorem in which the hypothesis reads:
{(tw) < &(w).

We shall refer to the main assertion of the theorem as the Strong
Exchange Condition. If ¢ is required to lie in S, the resulting weaker
statement is called the Exchange Condition, generalizing what we
proved in the case of finite reflection groups (1.7) and affine Weyl groups
(4.6):

Corollary (a) Suppose w = s1---8, (8; € S), with {(w) < r. Then
there exist indices i < j for which w = sy---8;---8;---8,. (This is
called the Deletion Condition.)

(b) If w=181---8,(s; €8), then a reduced expression for w may be
obtained by omitting certain s; (an even number, in fact).
Proof. (a) The hypothesis implies that there exists an index j for
which ¢(w's;) < €(w’), where w' := s;---s;_;. Applying the Ex-
change Condition to the pair w’,s;, we get w's; % §,.--5;---5;_1, or
W=8yBir By 8y

(b) This follows inductively from (a). O

This brings us full circle: recall that the proof in 1.9 shows that any
group generated by a set S of involutions and satisfying the Deletion
Condition must be a Coxeter group. The theory developed so far in this
chapter should, in principle, allow us to answer any reasonable question
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about Coxeter groups. In practice, some ingenuity is often required.
For example, it turns out to be true that the subset of S involved in
writing a reduced expression for an element w € W is independent of
the particular reduced expression chosen. A related fact is the equality
Wi "W W; = Winy. The reader might think about how to prove these
using the Exchange Condition (see 5.10 below for a less direct approach).

Exercise 2. Let I C S. Prove that W; is normal in W if and only if all
8 € S\ I commute with all s’ € I. In terms of the Coxeter graph, this
means that I corresponds to & union of some connected components.
[Use the Exchange Condition to analyze the length of ss's in Wy.]

Ezercise 3. Suppose w € W acts on V as a reflection, in the sense that
there exists a unit vector & € V' for which w(A) = A — 2B(\, a)a for all
A € V. Prove that o is a root and w = 8,. [First show that, if s € §
and #(ws) < é(w), then either £(sws) = £(w) — 2 or else w(o,) = —ax,
using just the fact that w? = 1: find a reduced expression w = 81+ - - 8,
with 8, = 3, 80 w = s,---8; is also reduced, and use the Exchange
Condition together with 5.6. Now proceed by induction on £(w), to
show that w(3) = —f for some root 3, whence 8 = a or -, and w is
the reflection belonging to a.]

Ezercise 4. If I C S, set Tr := Uy,ew, wlw™" (the set of reflections
in the Coxeter group Wi). Prove that TNnW; =Ty [ft € TN Wy,
write t = wsw™! = s,...8,, withs € S, w e W, s; € I for all 7, and
£(ws) > é(w). Use the Exchange Condition to show that t = (w’)"1s'w’
for some s’ = s;, w’' = 8;,1--- 8,

5.9 Bruhat ordering

Among the possible ways to partially order W in & way compatible
with the length function, the most useful has proven to be the Bruhat
ordering, defined as follows.

As before, T is the set of reflections in W with respect to roots.
Write w’' — w if w = w't for some ¢ € T with £(w) > é(w'). Then define
w’ < w if there is a sequence w’ = wy — w; — ... — Wy, = w. It is clear
that the resulting relation w’ < w is a partial ordering of W (reflexive,
antisymmetric, transitive), with 1 as the unique minimal element. Fol-
lowing Verma (2], we call it the Bruhat ordering. The terminology
is motivated by the way this ordering arises for Wey! groups in connec-
tion with inclusions among closures of Bruhat cells for a corresponding
semisimple algebraic group. In view of the way the ordering is defined,
it should not be surprising to find the Strong Exchange Condition used
below in investigating its properties.

£
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&+ The definition has a one-sided appearance, since we have written
¢ on the right in defining the arrow relation. But this version could
just as well be replaced by a left-sided version. Say w = w’s,, with
l(w) > l(w’) Setting 8 = w'(a), we get (w')"!sgw’ = 34, hence

&= 8gw’. (On the other hand, if we had insisted that ¢ belong to S, the
resultmg partial ordering, sometimes called the weak ordering, would
actually have a one-sided nature, as the reader can check for dihedral
groups. We won'’t pursue this possibility here, but see Bjorner [2].)
5i One other remark about the definition: when w’ — w, the precise
length difference is not specified; it must be odd but need not be 1 (as
seen already in dihedral groups). So it is not clear at first whether two
immediately adjacent elements in the Bruhat ordering must differ in
length by just 1. This turns out to be true, but requires some delicate
arguments (5.11).

Another natural question about the ordering will also be deferred.

If I C S, the Coxeter group W; has a Bruhat ordering of its own; does
t!us agree with the restriction to W; of the Bruhat ordering of W? The
a.nswer will be given in 5.10.

Ezercise. Prove that v < w if and only if v~ < w1,

distinct lengths are comparable in the Bruhat ordering (but not in the
weak ordering): v < w if and only if £(v) < é(w).

Ezample 1. If W is a dihedral group D,,, m < 00, all elements of

Ezample 2. If W is the symmetric group S,, each element 7 can be
represented by the string of n integers (m(1),...,m(n)). Then 7 < g if
and only if o is obtainable from 7 by a sequence of transpositions (ij),
where i < 7 and i occurs to the left of j in #. For example, when n = 5,
we have 24153 — 42153 — 45123 — 54123, or more directly, 24153 —
54123. Another criterion, due to Deodhar, goes as follows. Given a
sequence of integers (ai,...,ax), denote by [ai,...,ax] the sequence
rewritten in increasing order. Order Z* by (a1,...,ax) < (b1,...,bx) iff
a; < b; for all . Then 7w < o iff [7(1),...,m(k)] < [0(1),...,0(k)] for
1<k<n.

Ezample 3. There is added symmetry in case W is finite, with longest
element w, (see Exercise 2 in 5.6). One sees easily that v < w if and
only if wow < wov. (This will be used in 7.6.) =~

One rather subtle property of the Bruhat ordering is needed in 5.10:

Proposition Let w' < w and s € §. Then either w's < w or else
w's < ws (or both).



Proof. The proof reduces quickly (as the reader should check) to the
case w’ — w, where w = w't (t € T) and {(w) > €(w’). If s = ¢, there i5
nothing to prove, so we assume 8 # t. Two cases have to be analyzed:

(a) If £(w's) = £(w') — 1, then w's — w’' — w, forcing w’'s < w.

(b) If £(w’'s) = £(w') + 1, we shall argue that w's < ws. Since
(w’'s)t’ = ws for the reflection t’ = sts, it is enough to show that
#(w’'s) < €(ws). Suppose the contrary, i.e., #(ws) < £(w's). Then the
Strong Exchange Condition (5.8) can be applied to the pair ¢/, w’s asg
follows. For any reduced expression w’' = 81---8,, w's = 8;---5,8 is
also reduced, since £(w’s) > £(w’) by assumption. Then ws = (w’'s)t’ is
obtained from w’s by omitting one factor in this reduced decomposition.
This factor cannot be 8, since 8 # t. Thus ws = 8;---§; - - - 3,8 for some
i, Or w = 8y - - §; - - - 8., contradicting £(w) > £(w’). O

5.10 Subexpressions

There is a very simple and useful characterization of the Bruhat or-
dering in terms of subexpressions of a given reduced expression w =
8182 - - 8y, by which we mean products (not necessarily reduced, and
possibly empty) of the form s;, 8, (1 €141 <i2 <...< i < 1)
Formally, the given reduced expression is an ordered r-tuple of elements
of S, and a subexpression is a ¢g-tuple obtained by discarding some or
all of these elements.

Theorem Letw = 8;---8, be a fired, but arbitrary, reduced expression
for w. Then w' < w if and only if w' can be obtained as a subexpression
of this reduced expression.

Proof. Let us first show that any w’ < w occurs as a subexpression of
the given reduced expression for w. Start with the case w’' — w, say
w = w't. Since {(w') < £(w), the Strong Exchange Condition can be
applied to the pair ¢, w to yield w’ = wt = 81 --- §; - - - 8, for some . This
argument can be iterated. If in turn w’ — w’, with w' = w't/, apply the
Strong Exchange Condition to the pair ¢/,w' = 8, ---§;---s, (which is
not required to be a reduced expression!) to obtain

wI:wltl=81.,,8“i...8}..~3r
or else
w’:sl...sj...si...sr.

In the other direction, we are given a subexpression s;, ---s;, and
must show it to be < w. Here we can use induction on r = {(w), the
case r = 0 being trivial. If i; < r, the induction hypothesis can be
applied to the reduced expression s; - - - 8,1 to yield:

4

-

85y 8i, £ 81 81 = WSy < W.
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r we first use induction to get s;, ---8;,_, < 81---8,_1, and then
y Proposition 5.9 to get either

8i18iy " 8i, <818 1 <W

8iy8iy "85, < 8182+ -8, =w. O

| This characterization of the Bruhat ordering would be awkward to
.a8 the initial definition, because of the apparent dependence on a
ked choice of reduced expression, e.g., transitivity would be far from
wvious. But it helps to make explicit computations more transparent, as
h,the exercise below. And it answers a natural question about parabolic

bgroups

sub
‘K llary IfI C S, the Bruhat ordering of W agrees on W with the
v\at ordering of the Cozeter group Wr.

vof. If w € Wi, it has a reduced expression (in W) involving just
sements of I, thanks to 5.5. By the theorem, the elements < w in
hhe Bruhat ordermg of either W or W are the subexpressions of this
reduced expression. O

Bwercise. Describe the Bruhat ordering of Sy, and verify that directly
wdjacent elements always differ in length by 1. Further verify that in
sach closed interval

W', w] = {z € W' <z < w},

the number of elements of even length equals the number of elements
of odd length. For example, if we write S = {s1, 52,83} with 8183 =
8381, the interval from 1 to 8;828382 contains the following intermediate
elements:

81, 82, 83, 8182, 8183, 8283, 8382, 818283, 518382, 828382.

(For a picture, see Shi [1], p. 20, or Bjérner [2].)

5.11 Intervals in the Bruhat grdering

To show that elements of W directly adjacent in the Bruhat ordering
must differ in length by just 1, we first examine closely a configuration
which will arise in the proof.

Lemma Let w' < w, with {(w) = £(w') + 1. Suppose there ezists
8 € S for which w' < w's (i.e., {(w') < f(w's)) and w's # w. Then both
w < ws and w's < ws.
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Proof. Proposition 5.9 implies that w's < w or w’'s < ws. The first is
impossible since the lengths are equal and w's # w. Since w’ # w, we
get w’'s < ws. In turn, é(w) = £(w's) < £(ws), forcing w < ws. O

Ezercise 1. Prove a dual version of the lemma: supposing ws < w and
ws # w', conclude that both w's < w’ and w's < ws.

Proposition Let w’ < w. Then there exist wg, ..., w, € W such that
w=wy<wy <...< Wy =w, and b(w;) = lw;)+1 for1 <i<m.
Proof. Proceed by induction on #(w) + £(w’). If this is 1, then w' =1
and w € S, so there is nothing to prove. Now w # 1, so £(ws) < £(w)
for some s € §, say s = s, in a reduced expression w = 81 -+ s, (from
the Exchange Condition). By Theorem 5.10, w’ = s;, ---s;, for some
11 < ... < iq. Two cases are possible:

(a) Suppose w’ < w's. If ¢y = r, note that w’'s is also a subexpression
of ws =s;1---8.-3 < w, so we have v’ < w's < ws < w. By induction,
we can find a chain of the desired type from v’ to ws, and one more
step gets us to w. On the other band, if i, # r, then w' is itself a
subexpression of ws < w, and induction similarly applies.

(b) Suppose w's < w’. Now induction provides a chain from w’s up
to w:

ws=wy<w <...<Wp =w,
with £(w;) = €(wi-1)+1. Choose the smallest index i for which w;s < w;.
Note that wys = w’ > w's = wy, while w,s = ws < w = w,,, so such
an 7 > 1 does exist. We claim that w; = w;_;s. Otherwise we could
apply the above lemma to the situation:

Wi—1 < Wi—1§ # Wi

to get w; < w;s, contrary to the choice of i. Thus w; = w;_;s. However,
for 1 < j <1, we have instead w; # wj_1s, because w; < wjs. For such
indices 7, the lemma can be applied to the situation:

Wi < Wj—18 # wj

to obtain w;_;s < w;js. Combining these observations, we find a chain
of the desired type:

W=ws<wuys<..<wi8=w; <wipy <...<Wp=w. 0O

Ezercise 2. An order-preserving bijection W — W also preserves lengths.
(Examples of such bijections?)

5.12 Poincaré series

In the remainder of this chapter we examine more carefully the parabolic
subgroups of W, in both ¢ombinatorial and geometric settings.
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t‘w First we generalize straightforwardly the description in 1.10 of a dis-
tinguished set of coset representatives for W/Wy, I C S. Define

ke
. W= {w € W|e(ws) > £(w) for all s € I}.

ri‘hen the proof of part (c) of Proposition 1.10 can be repeated word-for-
word to obtain the same result for an arbitrary Coxeter group:

Fiz I C S. Given w € W, there is a unique u € W! and o
unique v € W such that w = wv. Then €(w) = £(u) + £(v).
Moreover, u is the unique element of smallest length in the
coset wWj.

With this in hand we can generalize to W the construction of Poincaré
polynomials in 1.11. But when W is infinite, we get a formal power series
in the indeterminate t. As before, we define

W(t) = ant",

b n>0

where a,, 1= = n}. (This is finite, since S is finite.)
We call W(t) the Poincaré series of W.

As in 1.11, we can similarly define X (¢) for an arbitrary subset X
of W, by counting only the number of elements of X of each length. In
particular, W;(t) coincides with the Poincaré series of the Coxeter group
Wy, since £ = £; on W;. It also follows immediately from the discussion
above that

W(t) = W ()W (t).

Before stating the analogue of Proposition 1.11, we recall Exercise 2 in
5.6: when W is infinite the length function takes arbitrarily large values
whereas, when W is finite, there is a unique element w, of maximum
length N (sending all positive roots to negative roots). This is an imme-
diate consequence of Proposition 5.6. To simplify notation, write (—1)'
instead of (—1)!7.

Proposition (a) In the field of formal power series in t, we have the

identity
W@
-1)! DIwie) =o,
SV gy = W
&
unless W is finite, in which case the right side equals tN .
(b) W () is an explicitly computable rational function of t.
Proof. (a) When W is finite, the proof of Proposition 1.11 may be
repeated verbatim. When W is infinite, the set K := {s € S|f(ws) >
£(w)} used in that proof is nonempty for all w, so the calculation there
results in a right hand side equal to 0.
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(b) Proceed by induction on |.S}; if this is 1, then W(t) = 1+ ¢. In
general, use the equation in part (a), first moving the term for which
I = § from the left side to the right side and then dividing both sides
by W (t). This yields:

Z (__ )I 1 f (t)

27 Wi T Wy

where f(t) := ~(—1)° unless W is finite, in which case f(t) := tV —
(—=1)5. The left side involves only those Wy(t) for which I # S, and is
therefore a computable rational function of ¢, by induction. Therefore
W (t) can also be computed as a rational function. O

What is involved in carrying out the computation of W(¢) by this
method can be illustrated quickly in the case of the infinite dihedral
group W = D, where S = {s,s'} and m(s, s’} = co. It follows directly
from the definition that W (t) = 1+2¢+2t2+... The inductive approach
to computing W (¢) as a rational function requires knowing that W;(t) =
1 when I = 0, while Wy (¢) = 1+t when I = {s} or {s'}. Accordingly,
the left side above becomes

and the right side is —1/W(¢). Thus we get the expected result

1+t

Wi = ;.

Exercise. Let W, be the affine Weyl group of type 6’;, with § =
{s0, 51, 82} and m(sg, 81) = 4 = m(s1, s2), m(so0, 82) = 2. Show that

(1-¢2)(1 - t4)

WO = sy

How is this related to the Poincaré polynomial of the corresponding Weyl
group? (This and the example D, illustrate a general theorem of Bott
on affine Weyl groups (8.9).)

5.13 Fundamental domain for W

Theorem 5.4 is the key fact about how W acts on V in the geometric
representation ¢ : W — GL(V). To get more insight into the action
of parabolic subgroups, we must make the geometry of the situation
more explicit, along the lings of 1.12. But we no longer have a euclidean
inner product to work with; indeed, the bilinear form B may well be
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degenerate. There is no direct analogue here of the positive and negative
half-spaces defined by a reflecting hyperplane. To restore at least part of
the analogy with 1.12, we consider the contragredient action o* : W —
GL(V*). Elements of V* will be denoted by f,g,h, ..., and the natural
pairing with V' will be denoted by (f, A). Then the action of W on V*
is characterized by:

(w(f),wA)) = (f,\) forweW,feV* reV.
We can now introduce for each s € S the hyperplane
Z, = {f € V*|(f,0s) =0},
together with the associated half-spaces
A, = {f e V*|(f,a,) > 0},

Al = {f € V*|{(f,a,) <0} = s(A,).

Finally, let C be the intersection of all A;, s € S.

Observe that s fixes Z, pointwise. Take a, to be the first element in
an ordered basis of V, followed by a basis of the fixed point space of 7.
Denote the dual basis by fi,..., fn, n = |S|. Then, for all ¢ > 1, the
effect of s(f;) on the basis of V is clearly the same as that of f;.

If we identify V' with R" (n = |S|), say by fixing the basis consisting
of all a, (s € S), then V* with the dual basis may also be identified with
R"™. Relative to the standard topology of R™ (which has nothing to do
with the bilinear form B), Z, is closed, while each of A, and A, is open;
therefore C is open. It is clear that the closure A, of A, is A, U Z,, and
in turn D := C is the intersection of all A,. Note too that the action of
each w € W on V or V* is continuous. While we might avoid the use
of such topological information in the theorem below, some steps would
become less transparent. (And in determining the finite Coxeter groups
in Chapter 6 below, the topological viewpoint will be essential.)

The object now is to study the action of the parabolic subgroups W;
by partitioning D into corresponding subsets C;, defined by

At the extremes, Cp = C, while Cg = {0}. Since s fixes Z, pointwise,
W fixes each point of C;. In the other direction, if s € S fixes a point
f € Cy, then s must belong to I: (f,a;) = (s(f),s(as)) = —(f,as)
forces f € Zs. But it is not yet clear that W; is the full stabilizer of
each point.

Define U to be the union of all w(D), w € W. This is a W-stable
subset of V*, the union of the family C of all sets of the form w(Cj),
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where w € W and I C S. It will be shown below that these sets in fact
form a partition of U. Note that D is a convex cone. This implies at
once that U is a cone: the Tits cone. It will be seen below that U is
also convex. The action of W on the Tits cone is what we can describe
rather well. (However, it is easy to see that U is a proper subset of V*
unless W is finite; see the exercise below.)

Lemma Let s € S and w € W. Then £(sw) > £(w) if and only i
w(C) C A,, whereas £(sw) < £(w) if and only if w(C) C A.

Proof. This is just a translation of Theorem 5.4. Indeed, £(sw) > £(w)
means that {(w='s) > €(w™!), which is equivalent to w~!(a,) > 0.
If f € C, then (w(f),as) > 0 means that (f,w!(as)) > 0, which is
equivalent (by the way C is defined) to saying that w*‘(a,) > 0. So
w(C) C A, if and only if £(sw) > ¢(w). O

Theorem (a) Letw e W andI,J C S. Ifw(C1)NCy # @, thenI =J
and w € Wy, so w(Cy) = Cy. In particular, Wy is the precise stabilizer
in W of each point of C, and C is a partition of U.

(b) D is a fundamental domain for the action of W on U: the W-
orbit of each point of U meets D in exactly one point.

(c) The cone U is convex, and every closed line segment in U meets

Just finitely many of the sets in the family C.
Proof. (a) Proceed by induction on #(w), the case w = 1 being obvious.
If ¢(w) > 0, write w = s(sw) with £(sw) < ¢(w) for some s € S.
The lemma above forces w(C) C s(As) = A;, whence by continuity
w(D) C A!. Combined with the fact that D C A,, this implies that
Dnw(D) C Z,. Thus s fixes each point in the intersection — in particular,
each point in the (nonempty!) set CyNw(C;). Two things follow. First,
s fixes some point of Cy and hence (as remarked earlier) s € J. Second,
Cynsw(Cy) = s(Cy N w(Cy)) is nonempty. The induction hypothesis,
applied to sw, shows that I = J and sw € W. Since s € J = I, we get
w € W as required. We conclude that the sets w(C;) comprising the
family C are all disjoint, as w runs over coset representatives in W/W;
and I runs over the subsets of S.

(b) By definition of U, each W-orbit in U meets D in at least one
point. Suppose f,g € D both lie in the same W-orbit: w(f) = g for
some w € W. Say f € Cy,g € Cy, so that w(Cr) N C; is nonempty. By
part (a), / = J and w € Wy, forcing f = w(f) =

(c) It is enough to prove: if f,g € U, the closed segment [f g] joining
them 1is covered by finitely many of the sets in C.

This is clear when both f and g belong to D, which is convex and is
covered by the sets Cj. In general we may replace f, g by their images
under some element of W; so without loss of generality we may assume
that f € D and g € w(D). Now proceed by induction on £(w), the case
w = 1 having just been dealt with. Let £(w) > 0. The segment [f g]
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)jntersects D in a closed segment {f k], which can be covered by finitely
many sets from C. It remains to cover [k g]. We may assume g ¢ D. Say
ge A, forseclandge A, fors¢ . If wehad h € A, for all s € I,
then all nearby points k on [h g] would also satisfy k € A;(s € I}, k €
A, (s ¢ I) and hence lie in D, which is absurd. Therefore h € Z, for
some s € I. Since g € A},, we must have w(D) C A}, hence w(C) C 4.
By the above lemma, {(sw) < ¢(w). So the induction hypothesis may
be applied to h € D and s(g) € sw(D). Thus the segment from h to
s(g) has a finite cover from C, and transforming the picture by s yields
a finite cover of the segment from s(h) = h to s2(g) =

Ezercise. If the Tits cone U is equal to V*, prove that W is finite. {Find
w € W for which w(C) meets ~C. Then show that w™!(a,) < 0 for all
8 € S, and deduce that W is finite.] Conversely, if W is finite, it will be
seen in 6.4 that V* is a euclidean space, with W acting as in Chapter 1;
thus U = V* will follow.

Remark. The theorem provides a concrete (though rather impractical)
way to solve the Word Problem for W. Fix the basis of V consisting
of the a, (s € S) and let {f,;|s € S} be the dual basis. Then f:=3 f,
lies in C, and is therefore fixed by no element of W except 1. To decide
whether or not a given product of elements from S is equal to 1 in
W, apply the corresponding product of elements o*(s) to f and see
whether or not the result is f. (See 8.1 for another approach to the
Word Problem.)

As in 1.15, we can formulate the geometry here as a Coxeter com-
plex, based on the family of parabolic subgroups of W. It can be re-
garded as an abstract simplicial complex, and provides an essential in-
gredient in the more elaborate complexes introduced by Tits and known
as buildings. For a thorough account of all this, see Brown [1], Ronan
(1], Tits [6)].

Notes

The basic facts about Coxeter groups are developed in Bourbaki [1], IV,
§1, following earlier work of Coxeter, Witt, Tits, and others.

(5.3) The exercise is based on Bourbaki [1], v, 3, Prop. 3.

(5.4)—(5.7) Our treatment is heavily influenced by Deodhar [4][7],
who developed the general notion of root system for a Coxeter group.
The proof of Theorem 5.5 follows suggestions of E. Neher.

(5.8) Verma [2] introduced the Strong Exchange Condition. Exercise
4 here is due to him. We follow Deodhar [4] (from which Exercise 3 is
drawn).
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(5.9)-(5.11) The Bruhat ordering of a Weyl group had beep im-
plicit in the literature for some time, notably in Chevalley’s study of
Schubert varieties, before its formal development in Verma’s 1966 thegig
and Verma [1), Steinberg [4], Bernstein-Gelfand-Gelfand [2], Deodhar
(1][21[5][7][8][9]. See aiso Bjorner [2], Hiller [3], Proctor (1], Shi [1], Stan.
ley [3], and (8.5)~(8.8) below. While it would be more apt historically
to adopt the terminology ‘Chevalley ordering’ (as pointed out recently
by A. Borel), there is by now a large amount of literature referring to
the ‘Bruhat ordering’,

(5.12) See Steinberg [5], 1.25.

(5.13) We follow Bourbaki [1], V, 4.6.







Chapter 6
Special cases

Having laid out the general theory of Coxeter groups in Chapter 5, we
turn our attention to some of the most important special cases. First
we indicate how to reduce most questions to the case when the Coxeter
gmph is connected (6.1). Then we reconsider the geometric representa-
tion of W relative to the bilinear form B, and show in 6.4 that the only
finite Coxeter groups are the finite reﬂection groups studied in Part I.
The treatment follows Bourbaki [1}, V, §4, based on Witt [1].

We also compare in 6.5 the geometric representation of an affine Wey1
group with the description given in Chapter 4. In 6.6 we characterize
‘crystallographic’ Coxeter groups. Another large class of interesting ex-
amples consists of ‘hyperbolic Coxeter groups’ (6.8).

As a matter of notation, we use both s and ¢ to denote elements of
S, when (W, S) is a Coxeter system.

6.1 Irreducible Coxeter systems

We say a Coxeter system (W, S) is irreducible if the Coxeter graph I’ is
connected, as in 2.2. The argument of Proposition 2.2 can be repeated
here:

Propaosition Let (W,S) be any Cozeter system. IfT'y,...,I', are the
connected components of the Coxeter graph T', let § , Sy be the corre-
sponding subsets of S. Then W 1is the direct produ(“:? of the parabolic sub-
groups Wg,,...,Wg,, and each Cozeter system (Wg,,S;) is irreducible.

Proof. Use induction on r. Since the elements of S; commute with the
elements of S; when i # j, it is clear that the indicated parabolic sub-
groups centralize each other, hence that each is normal in W. Moreover,
the product of these subgroups contains S and therefore must be all of
W. By induction, Wg\s, is the direct product of the remaining Wg,,
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and part (c) of Corollary 5.10 implies that Wy, intersects it trivially. So
the product is direct. O

6.2 More on the geometric representation

Recall from 5.3 the construction of the representation o : W — GL(V),
which was shown in 5.4 to be faithful. The elements of S are represented

by ‘reflections’ o, relative to the bilinear form B on V. On the basis
{as|s € S}, B is defined by:

T
B(a,, a;) = —cos m.

We need to examine more closely some topological features of this
situation, based on the discussion in 5.13. Relative to any fixed ordered
basis of V, we may identify V' with R" and GL(V) with GL(n, R), the
latter in turn being viewed as a subspace of R™ in an obvious way.
Note that GL(n, R) is an open set, being the set of non-zeros of the
determinant polynomial on the set of all n x n matrices. Note too
that multiplication of a set of matrices by one fixed matrix induces a
homeomorphism of the space of n x n matrices.

By using a dual basis for V*, we get similar identifications for V*
and GL(V*). Recall from 5.13 the open set C in V* (an intersection of
finitely many open half-spaces), whose closure is a fundamental domain
for the action of W on the union of all its W-translates. It is clear that,
for any fixed f € V*, the orbit map GL(V*) — V* sending g — g - f
is continuous (being given in coordinate form by linear polynomials).
Thus the inverse image of C (call it Cp) is an open neighborhood of
the identity element 1 in GL(V*). Choose f € C. Then Theorem 5.13
implies that o*(W)NCq = {1}. In turn, an arbitrary element g = o*(w)
has an open neighborhood gCy intersecting o*(W) in {g}. This means
that o*(W) is a discrete subset of GL(V*). By ‘transport of structure’
we obtain:

Proposition o(W) is a discrete subgroup of GL(V), topologized as
above. O

Corollary If the form B is positive definite, then W is finite.

Proof. If B is positive definite, V is just a euclidean space, which may
be identified with V*. By using an orthonormal basis of V' in the discus-
sion above, we identify o(W') with a subgroup of the orthogonal group
O(n,R) € GL(n,R). It is well-known that O(n, R) is a compact subset
of the set of all n x n matrices : it is closed by virtue of being defined
by polynomial equations (matrix times transpose equals 1), and it is
bounded because the rows (or columns) of an orthogonal matrix are
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unit vectors. On the other hand, the proposition shows that o(W) is a
discrete subgroup of O(n,R). Since a discrete subgroup of a compact
Hausdorff group is closed (hence finite), W = o(W) is finite. O

. We shall prove the converse of this coroliary in 6.4 below, thus show-
ing that finite Coxeter groups are the same as finite reflection groups.
The characterization in terms of positive definiteness of B of course fits
in well with the strategy we adopted in Chapter 2 for classifying finite
reflection groups.

6.3 Radical of the bilinear form

As illustrated by dihedral groups (finite and infinite), the symmetric
bilinear form B on V may or may not be nondegenerate. Here we look
more closely at the radical of B:

L= {AeV|B(\pu)=0 for all p € V}.

Note first of all that V1 is a W-invariant proper subspace, since B is
W -invariant and not identically 0. We claim that V+ = scs Hs (Where
H, is the orthogonal complement of a, relative to B) and is therefore
fixed pointwise by W. One inclusion is clear. In the other direction,
B()\a,) =0 for all s € S forces A € V1, since the o, span V.

Proposition Assume that (W, S) is irreducible.

(a) Every proper W -invariant subspace of V' is included in the radical
VL of the form B, where V* =(\,cs H, is fized pointwise by W.

(b) If B is degenerate, then V fails to be completely reducible as a
W -module.

(c) If B is nondegenerate, then V is irreducible as a W-module.

(d) The only endomorphisms of V' commuting with the action of W
are the scalars.

Proof. (a) Let V' # V be a W-invariant subspace. Suppose first that no
root a, (s € S) lies in V'. Each o, acts semisimply on V' (with possible
eigenvalues 1, —1). But the (—1)-eigenspace (spanned by a,) does not
occur in V', by assumption. This forces o, to fix V' pointwise, so that
V' lies in the intersection of all H,, which has been observed to be Vi

What happens if some o, does lie in V'? Take any neighbor ¢ of s
in the Coxeter graph T, so that o:(a,) = as + cay; for some nonzero c.
Since o¢(as) € V', this forces a; € V' as well. But I is connected, so
we can proceed step-by-step to get all o, (t € S) in V', whence V! =V
contrary to hypothesis.

(b) If B is degenerate, V= is a proper nonzero W-invariant subspace,
which according to part (a) cannot have any W-invariant complement.
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(c) If B is nondegenerate, part (a) implies that V has no nonzero
proper W-submodules.

(d) Suppose an endomorphism z of V' commutes with all o(w), w €
W. Fix any s € S. Since z commutes with o,, the line L spanned by o,
is z-invariant, so z acts there with an eigenvalue c. We claim that z is
just c times the identity operator 1. Consider the kernel V' of t —c- 1.
This is clearly stable under o(W), and contains L, which does not lie in
VL. Thanks to part (a), we must have V' =V. O

Ezercise 1. Assume that (W, S) is irreducible. Determine the center
Z(W) of W as follows. If W is finite and w, = —1 (where w, is the
unique longest element, as in Exercise 2 of 5.6), then Z(W) = {1, -1}.
Otherwise Z(W) = {1}.

Ezercise 2. Suppose p : G — GL(E) is an irreducible representation of a
group G, with dim E < oo. If G contains at least one pseudo-reflection
(an element of finite order whose 1-eigenspace has codimension 1 in E),
then the only endomorphisms of E commuting with p(G) are the scalars.

6.4 Finite Coxeter groups

Our goal is to show that the finite Coxeter groups are precisely the finite
reflection groups studied in Chapter 1. For this we need to review some
standard facts about group representations.

Lemma Letp: G — GL(E) be a group representation, with E a finite
dimensional vector space over R.

() If G is finite, then there erists a positive definite G-invariant
bilinear form on E.

(b) If G is finite, then p is completely reducible.

(c) Suppose the only endomorphisms of E commuting with p(G) are
the scalars. If B and ' are nondegenerate symmetric bilinear forms on
E, both G-invariant, then B’ is a scalar multiple of 3.

Proof. (a) Start with any positive definite symmetric bilinear form 3 on
E, and ‘average’ it over G to obtain one which is also G-invariant:

B(Avﬂ) = Zﬂ(g . A)g . y’)v

geG

where A\, p € E and g - A = p(g)(}), etc.

(b) Now E is the direct sum of any subspace and its orthogonal
complement relative to the positive definite form 3 constructed in (a),
by nondegeneracy. On the other hand, the orthogonal complement of
a G-invariant subspace is glso G-invariant, since § is an invariant form.
Complete reducibility follows.
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(c) Any nondegenerate form sets up a vector space isomorphism be-
ween E and its dual space E* in the usual way. When the form is
nvariant, this becomes an isomorphism of G-modules (relative to p and
ts contragredient). Composing the isomorphism defined by 3 with the
nverse of that defined by 3’ gives a G-module isomorphism of E onto it-
self, i.e., an endomorphism of E commuting with p(G). By assumption,
this is just a scalar, so 3 and 3’ are proportional. O

Theorem The following conditions on the Cozeter group W are equiv-
alent:

(a) W is finite.

(b) The bilinear form B is positive definite.

(c) W is a finite reflection group (in the sense of Chapter 1).

Proof. Without loss of generality, we may assume that (W, S) is an
irreducible Coxeter system.

(a) = (b). Thanks to part (b) of the lemma above, W acts completely
reducibly on V. Then part (b) of Proposition 6.3 implies that B must
be nondegenerate. In turn, part (c) of that proposition says that W acts
irreducibly, and (d) says that the scalars are the only endomorphisms of
V commuting with the action of W. From part (c) of the lemma above,
we conclude that (up to scalar multiples) B is the unique nondegenerate,
W-invariant symmetric bilinear form on V. But, by part (a) of the
lemma, there exists a positive definite W-invariant form on V, say B'.
So B’ = cB for some nonzero ¢ € R. Since B(a,, o,) = 1, we must have
¢ > 0. Therefore B is also positive definite.

(b) = (c). Apply Corollary 6.2.

(c) = (a). This is immediate. O

Note that when W is a finite subgroup of GL(V') generated by re-
flections (V' euclidean), its geometric representation as a Coxeter group
(5.3) looks just like its given representation on V: the angles between
simple roots (in the sense of Chapter 1) agree with the angles between
the a, relative to B.

6.5 Affine Coxeter groups

We found in 4.7 that the Coxeter graphs of (irreducible) affine Weyl
groups are precisely the positive semidefinite ones Which are not positive
definite. These graphs were completely determined in Chapter 2.

The affine Weyl group W, was constructed in Chapter 4 as a group
generated by affine reflections in a euclidean space. On the other hand,
the geometric representation of W, as a Coxeter group (5.3) provides
another concrete realization. In this section we discuss briefly how the
two constructions are related.
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Begin with the irreducible Coxeter system (W, S) of rank n whose
graph is one of those in Figure 20f 2.5; son > 2. Let o : W — GL(V) be
its geometric representation, with associated bilinear form B and matrix
A relative to the basis (a,),8 € S. Since A is indecomposable and
positive semidefinite (but not positive definite), Proposition 2.6 shows
that its nullspace is one-dimensional, spanned by a vector with strictly
positive coordinates cs, 8 € S. Moreover, the corresponding vector A :=
3" c,sa, spans the radical V* of B. The quotient space V/V+ becomes
a euclidean space (of dimension n — 1) relative to the positive definite
form induced by B.

By Proposition 6.3, V1 is the intersection of the hyperplanes H, and
is therefore fixed pointwise by W, ie,, w(A) = A forallw e W. Asa
result, W leaves stable the hyperplane orthogonal to V* in the dual
space V*:

Z:={feV*|(f,)) =0}.
Asin 5.13, we write (f, A) for f(A). Moreover, Z identifies naturally with
the dual space of V/V' and thus acquires the structure of a euclidean
space.

Note that W also stabilizes the translated affine hyperplane

E:={feV'|(f,) =1}.

The euclidean structure on Z transfers naturally to E, making it an
affine (euclidean) space with translation group Z. It is clear that E (like
any other affine hyperplane not containing 0) spans the vector space V*,
so the action of W on E is faithful. Because of the euclidean structure,

the isotropy group in W of any point in E acts on E as a group of
orthogonal transformations.

Now consider how the various hyperplanes

Zy = {f € Vil(f:aa) =0}

intersect E. Since |S| > 1 and all ¢ > 0, )\ is not proportional to any
o, and thus Z # Z,. This forces Z, to intersect E; the intersection is an
affine hyperplane E, in E (fixed pointwise by s). Since s acts on E as
a transformation of order 2, it acts as an orthogonal reflection relative
to E,. Thus we have realized W as a subgroup of GL(E) generated by
affine reflections. N

Unless we are in type Aj, pictured in Figure 1, all m(s, t) < oco. Since
st acts on E as a transformation of order m(s, t), the angle between the
hyperplanes E, and E; must agree with the corresponding angle in the
realization of W as an affine Weyl group in Chapter 4. So the affine hy-
perplanes E; yield the same geometric configuration as the hyperplanes
bounding the alcove A,: indeed, A, corresponds to the region in E ob-
tained by intersecting the cone C of 5.13 with the positive half-spaces
of the various E;. This recovers the geometric description of the affine
Weyl group given in Chapter 4.
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Figure 1: The case K;

6.6 Crystallographic Coxeter groups

In 2.8 we determined which of the finite reflection groups (acting in a
euclidean space V') can stabilize a lattice in V. The answer turned out to
be very simple: all integers m(s,t), s # ¢ in S, must take one of the values
2, 3, 4, 6. We want to ask a similar question about arbitrary Coxeter
groups, relative to the geometric representation o : W — GL(V). Call
W crystallographic relative to o if W stabilizes a lattice L in V.

It should be emphasized that this definition depends on the way
we have chosen to represent W as a group generated by ‘reflections’.
There may well be other interesting representations for special classes of
Coxeter groups (see the remark below). We are following Bourbaki [1],
V, 84, exercise 6.

Some of the reasoning used in the finite case can be adapted easily
to the general case, to yield a necessary condition for W to be crystallo-
graphic, based on the fact that the trace of o(w) must then lie in Z for all
w € W. Recall from 5.3 that, for s # ¢ in S, the corresponding reflections
o, and o; generate a dihedral subgroup acting on a plane and leaving
pointwise fixed its orthogonal complement relative to B. The product
050 acts on the plane as a rotation through 27 /m(s, t), if m(s,t) < oo,
from which we deduce as in the finite case that m(s,t) € {2,3,4,6}.
If m(s,t) = oo, the trace of o,0; is n = dim V. So a crystallographic
group must at least satisfy m(s,t) € {2,3,4,6,00} forall s #t € S.

Unfortunately, this simple condition is not always sufficient to insure
the existence of a lattice stabilized by W, in case the Coxeter graph I'
contains a circuit. If there is a circuit, label its vertices consecutively
by 81,...,8, (with corresponding roots aji,...,a}) and consider w =
818, If 8 = s;, write o4(a;) = a; + b;jjay, so bj = ~2B(ai,a5) =
2cos(m/m(s;,s;)). Assuming that all m(s,t) € {2,3,4,6,00} when s #
t, the respective values of b;; are 0, 1, V2,v3,2.

To compute the trace of o(w), note that o(w)(A) = X modulo the
span of the roots a,,...,a,, so we need only consider how o(w) acts
there. A direct calculation shows that o(w)(a1) = cay modulo the span
of the other a;, where ¢ = b%z + bfl — 1+ bygbes- - br—_1,+br1. On the
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other hand, fori =2,...,r — 1, we get o(w)(e;) = (b?;,, — 1)a; modulo
the span of the other aj, and o(w)(ar) = —a, modulo the span of
Qq,...,0,_1. Since the squares all lie in Z, it follows that the trace of
o(w) lies in Z if and only if by2bos -+ - by € Z. This is true if and only
if the number of edges of the circuit labelled 4 (resp. 6) is even. This
gives another necessary condition for W to be crystallographic (relative
to o).

To see whether these necessary conditions are actually sufficient, we
ask how we might construct a suitable lattice in V. The easiest pro-
cedure would be to choose a basis for the lattice consisting of vectors
As = Csa4,8 € S. Suppose we are able to find scalars c, satisfying the
following conditions:

m(s,t)= 3 = c,=c
m(s,t)= 4 = ¢ =V2core =2,
m(s,t) = 6 = c,=V3c orc =3,
m(s,t) =00 = c,=¢

Then we see at once that g,(\;) = \; + d(s,t)A, for some d(s,t) € Z,
whence W stabilizes the lattice with basis )\,,s € S.

The only problem is to see that consistent choices of the c, can be
made, under our assumptions on m(s,£). If I' contains no circuit this is
straightforward: start at a terminal vertex s (having only one adjacent
vertex), and choose ¢, to meet the above conditions, assuming the other
¢; already chosen (by induction on |S]).

If I" contains one or more circuits, we have to invoke the evenness
assumption on the number of edges of each circuit labelled 4 or 6. The
idea is to fix an arbitrary vertex s in I, for which c, is defined to be 1.
Then assign values ¢; by the following algorithm. Take a path of minimal
length from s to ¢, and choose successive values of c,, along the path
by the rule: keep the previous value if the edge is labelled 3 or oo, but
alternate multiplication and division of the previous value by v2 (resp.
v/3) as successive edges labelled 4 (resp. 6) are encountered. Eventually
¢; is defined. This is ambiguous only if distinct minimal paths from s
to ¢ exist, but combining two such paths makes a circuit. The evenness
assumption is just what is needed to make ¢; well defined in this case.

Proposition In case the Cozeter graph of W contains no circuit, W
is crystallographic (relative to o) if and only if m(s,t) € {2,3,4,6, 0}
forall s #t in S. Otherwise W is crystallographic (relative to o) if and
only if the same condition is fulfilled and, moreover, for each circuit in
the Cozeter graph, the number of edges labelled 4 (resp. 6) is even. O

Exzercise 1. If W is cryst&llographic relative to o, then every parabolic
subgroup Wy (I C S) is also crystallographic (relative to its geometric
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representation).

Ezercise 2. Multiply the matrix of B by 2 to obtain a matrix A; for
a parabolic subgroup Wi, denote by A; the similarly defined matrix.
Then W is crystallographic relative to o if and only if det A; € Z for
all I C S. (See Monson [1].)

Remark. In the literature the notion of crystallographic Coxeter
group is usually defined to mean simply that all m(s, t) € {2, 3,4, 6,00},
for s # t. One reason for this is the fact that such Coxeter groups are
precisely the ‘Weyl groups’ of Kac-Moody Lie algebras; see Kac [1],
Chapter 3. These Lie algebras are defined by generators and relations,
starting with a ‘generalized Cartan matrix’ (a;), whose entries are in-
tegers subject to the requirements: a;; = 2,a;; < 0if i # j, a5 =0 if
and only if aj;; = 0. Such a Lie algebra has a ‘root system’ and a cor-
responding ‘Weyl group’ W, which stabilizes the root lattice. W turns
out to be a Coxeter group on a set of generators indexed by the same
index set as the matrix. The resulting values m(s,t) may be labelled
mg; and are correlated with the a;; as follows: m;; = 2,3,4,6,00 when
aijaji = 0,1,2,3,> 4 (respectively), i # j. (Many generalized Cartan
matrices may lead to the same group W.)

6.7 Coxeter groups of rank 3

Having classified the Coxeter graphs of positive type (2.7), we see that
there are many other connected graphs of rank 3. These in fact have a
unified characterization, which will be a first step toward the discussion
of ‘hyperbolic’ Coxeter groups in 6.8 below.

Let T be a connected Coxeter graph of rank 3. Two cases should be
distinguished. First, suppose I' is not a cycle, and label its two edges by
m,n>3:

m n
0O—o0—0

Set a := cos(w/m), b := cos(n/n). The matrix of the form B is then

1 —a 0
-a 1 -b s <
0 —b 1 SO

Its characteristic polynomial is (¢ —1)(t* — 2t +c), where ¢ = 1 —a% — %,
Thus the eigenvalues are 1,1 + v/a? + b2.

These are all positive just when a? + b* < 1. Since the cosines
in question range in value from 1/2 to 1, there are only three such
possibilities: (m,n) = (3, 3),(3,4),(3,5). These correspond respectively
to the finite groups of types Az, B3, Hs.
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The eigenvalue 0 occurs only when a? + 4% = 1, which can happen in
just two cases: (m,n) = (4,4),(3,6), corresponding to the affine Weyl
groups of types BNQ,G-«;;

In all other cases, a?+b% > 1, so precisely one eigenvalue is negative,
and B has signature (2,1).

Consider now what happens when I' is a cycle. Label the edges
m,n,p > 3, with a and b as before and with ¢ := cos(r/p). Now the

matrix of B is
1 —-a -—c
-a 1 -b
~-c b 1

The determinant is d = 1 — a% — b? — ¢2 — 2abc < 0, since a,b,c > 1/2,
and d =0 just whena=b=c= ll'2,orm=n=p=3, corresponding
to the affine Weyl group of type A;. Suppose on the other hand that
d < 0. Since the trace is 3, not all elgenvalues are negative. Therefore
the signature must be (2,1).

Thus all but the finite and affine types lead to the same signature
2,1).

There is a suggestive way to summarize the possibilities just dis-
cussed. Denote by ¢ the sum of the reciprocals of the three labels
m(s,t),s # t. Then ¢ > 1 if and only if B is positive definite, ¢ = 1 if
and only if B is positive semidefinite (but not positive definite), ¢ < 1
if and only if B is nondegenerate of signature (2,1). (Here cr can be
interpreted as the sum of angles of a triangle in a geometry which is
respectively spherical, euclidean, hyperbolic.)

6.8 Hyperbolic Coxeter groups

We concentrate now on the case when (W, S) is irreducible and the form
B is nondegenerate, allowing us to identify V' with its dual. As in 6.2,
topological concepts such as connectedness come from an identification
of V with R" relative to some (hence any) fixed basis.

Denote by w, (s € S) the basis dual to the basis o, (s € §), relative
to B. Recall from 5.13 the cone C (now viewed as a subset of V):

C={\€eV|B(\a,)>0forall s € 5} = {D_ cows|c, > 0}.

In particular, all w, lie in the closure D of C, which is a fundamental
domain for the action of W on the union of all w(C), w € W. Note that
D is the convex hull of the vectors w;.

Define the (irreducible) Coxeter system (W, S) to be hyperbolic if
B has signature (n—1, 1) and B(\, \) < 0 for all A € C. We also say that
W is hyperbolic. (The motivation for this terminology will be discussed
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below.) Note that the definition forces B(A,X) < 0 for all A € D; this
applies in particular to the dual basis elements w,.

Our aim is to characterize the corresponding Coxeter graphs in a
way which will make it reasonable to carry out a complete classification.
The following general lemma will be helpful.

Lemma Let E be an n-dimensional real vector space, endowed with a
symmetric bilinear form B of signature (n — 1,1). Fiz a nonzero vector
A€ E, and set H := {u € E|B(\, ) = 0}. Then the restriction of B to
H is of positive type if and only if B(A,A) <0.

Proof. Note that, if B(A\,)) # 0, s0 A ¢ H, E is the orthogonal direct
sum of H and the line through A. In this case the restriction of B to
H is nondegenerate, and is of positive type (in fact, positive definite)
precisely when B(), A) < 0 because of the hypothesis on the signature.

Suppose the restriction of B to H is of positive type. The preceding
remarks imply that B(), A} cannot be strictly positive.

Conversely, suppose B(M\,A) < 0. If B(A\,)) < 0, the above re-
marks already show that the restriction of B to H is of positive type.
If B(A\,X) =0, so A € H, the restriction of B to H is degenerate. But
since B has signature (n—1, 1), its restriction to some hyperplane H' is
positive definite, and the same is true of its restriction to the hyperplane
H'NH in H (not containing }). It follows that B is of positive type on
H. O

Propaosition Let (W,S) be an irreducible Cozeter system, with graph
I’ and assoctated bilinear form B. It is hyperbolic if and only if the
following conditions are satisfied:

(a) B is nondegenerate, but not positive definite.

(b) For each s € S, the Cozeter graph obtained by removing s from
I is of positive type.
Proof. Suppose first that W is hyperbolic, so (a) follows from the as-
sumption on the signature of B. To verify (b), fix s € S. As remarked
above, B(w,,w;) < 0. Let L, be the hyperplane orthogonal to w,. The
a; (t # 8) form a basis of L,. The lemma shows that the restriction of
B to L, is of positive type. But the matrix of this restricted form is the
matrix associated with the Coxeter graph obtained by removing s from
T, so (b) follows.

Conversely, suppose W satisfies (a) and (b). THdnks to (a), the set
N := {X € V|B()\,)) < 0} is nonempty. Because of (b), the intersection
of N with each hyperplane L, is empty, so each connected component of
N lies in one of the connected components of the complement of | J,c g L.
These are sets of the form {3, 5csa;}, with ¢, > 0 for certain s, and
cs < 0 for the others. Now we can see why the signature of B must
be (n—1,1). Otherwise, owing to (a), we would have at least a two-
dimensional subspace Z of V for which Z\ {0} C N. But Z is connected
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and therefore lies in one of the sets just described, which contradicts the
fact that Z is closed under taking negatives.

Finally, we show that C lies in N, which is now a standard cone
(minus the origin) with two connected components, each of them convex.
According to (b), B is of positive type on the hyperplane L, orthogonal
to w,, and therefore the above lemma shows that B(w,,w,) < 0. So each
wy lies in the closure of N. It follows that their convex hull D lies in the
closure of N,soC C N. O

FEzercise. Hyperbolic Coxeter groups can only exist in ranks > 3. In
rank 3, all connected Coxeter graphs which are not of positive type yield
hyperbolic Coxeter groups (see the discussion in 6.7 above). Determine
the hyperbolic Coxeter groups of rank 4.

As promised above, we discuss briefly some of the motivation behind
the definition of hyperbolic Coxeter groups. See Bourbaki [1] (pp. 131-
135) and Koszul [1] for further details.

In the situation where B is nondegenerate, W is a discrete subgroup
of the corresponding orthogonal group G := O(V). Now G is a real Lie
group, with a Haar measure which provides a notion of volume for the
homogeneous space G/W. It can be shown that this volume is finite
if and only if B is positive definite (in which case W is finite), or else
B has signature (n—1,1) and B(A\,)) < 0 for all A € C. When B has
signature (n—1, 1), one component of {\ € V|B(A,\) = —~1} provides a
standard model of (n—1)-dimensional hyperbolic space.

The finiteness of the volume is expressed by saying that W is a ‘lat-
tice' in G. The study of lattices in Lie groups is an old and rich subject,
related to the nature of fundamental groups for manifolds on which G
acts, and involving such questions as whether the lattice is ‘arithmeti-
cally’ defined. It is useful to distinguish those lattices W (called ‘uni-
form’ or ‘co-compact’) for which G/W is compact. In the hyperbolic
case these were classified by Lannér [1] in his thesis. Here there is a very
neat criterion, refining the above proposition, which we state without
proof:

W is compact hyperbolic if and only if both conditions hold:
(a) B is nondegenerate, but not positive definite.

(b) For each s € S, the Cozeter graph obtained by removing
s from T is positive definite.

Remark. Hyperbolic Coxeter groups as defined here provide interest-
ing examples for the study of discrete groups acting on real hyperbolic
spaces. But they are not the only Coxeter groups which arise as discrete
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groups generated by ‘reflections’ in hyperbolic spaces: they are the par-
ticular ones having a simplex as fundamental domain. See the papers of
Vinberg for the general theory of hyperbolic reflection groups.

6.9 List of hyperbolic Coxeter groups

Armed with Proposition 6.8 and the remarks following it, one can hope
to determine all connected Coxeter graphs for which W is hyperbolic
(resp. compact hyperbolic). It is a lengthy exercise to fill in the details
rigorously, but the end result (when n > 4) is summarized below in
Figures 2 and 3. By direct inspection, each exhibited graph meets con-
ditions (a) and (b) of the proposition. Less trivial is the verification that
no graphs have been overlooked. The list here is taken from Chein [1],
who developed an algorithm which was programmed for a computer by
N. Spiridon; a version of this list appears in Koszul [1]. (There are some
obvious misprints both in Koszul’s list and in the exercises in Bourbaki
[1]. We invite the skeptical reader to do an independent check!)

The most striking facts about the classification are these: hyperbolic
Coxeter groups exist only in ranks 3 to 10, and there are only finitely
many in each of ranks 4 to 10. (This is related to the fact that the
‘exceptional’ types of positive semidefinite Coxeter graphs have rank
< 9.) Compact hyperbolic groups exist only in ranks'3, 4, 5.

(n=4 oto—oio I:I n=5 o-4to—0—o0-io
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Figure 2: Compact hyperbolic Coxeter groups (n > 4)
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Figure 3: Noncompact hyperbolic Coxeter groups (n > 4)



k9. List of hyperbolic Coxeter groups 143

Lo

"
L., T

(=6 o—oto—o0—0—0
o—o—o4o0—0—0

(n=7)

@F%%%%@






Special cases







References

N. A’Campo
1. Sur les valeurs propres de la transformation de Coxeter, Invent.
Math. 33 (1976), 61-67.
E. Akyildiz, J.B. Carrell
1. A generalization of the Kostant-Macdonald identity, Proc. Natl.
Acad. Sci. U.S.A. 86 (1989), 3934-3937.
D. Alvis
1. The left cells of the Coxeter group of type Hy, J. Algebra 107
(1987), 160-168.
D. Alvis, G. Lusztig
1. The representations and generic degrees of the Hecke algebra of
type Hy, J. Reine Angew. Math. 336 (1982), 201-212.
H.H. Andersen
1. An inversion formula for the Kazhdan-Lusztig polynomials for
affine Wey! groups, Adv. in Math. 60 (1986), 125-153.
K.I. Appel, P.E. Schupp
1. Artin groups and infinite Coxeter groups, Invent. Math. 72 (1983),
201-220.
H. Asano
1. A remark on the Coxeter—Killing transformations of finite reflec-
tion groups, Yokohama Math. J. 15 (1967), 45-49.
R. Bédard
1. Cells for two Coxeter groups, Comm. Algebra 14 (1986), 1253~
1286. o
2. The lowest two-sided cell for an affine Weyl group, Comm. Algebra
16 (1988), 1113-1132.
3. Left V-cells for hyperbolic Coxeter groups, Comm. Algebra 17
(1989), 2971-2997.
M. Benard

1. On the Schur indices of characters of the exceptional Wey! groups,
Ann. of Math. 94 (1971), 89-107.

1QK

- 0



186 References

C.T. Benson, L.C. Grove ,
1. Finite Reflection Groups, Bogden & Quigley, Tarrytown-on-Hud-
son, NY, 1971.
2. The Schur indices of the reflection group I, J. Algebra 27 (1973),
574-578. ‘

S. Berman, Y.S. Lee, R.V. Moody
1. The spectrum of a Coxeter transformation, affine Coxeter trans-
formations, and the defect map, J. Algebra 121 (1989), 339-357.

LN. Bernstein, .M. Gelfand, S.I. Gelfand
1. Schubert cells and cohomology of the spaces G/P, Russian Math.
Surveys 28 (1973), 1-26.
2. Differential operators on the base affine space and a study of g-
modules, Lie groups and their representations, Halsted, New York,
1975, pp. 21-64.

W.M. Beynon, G. Lusztig

1. Some numerical results on the characters of exceptional Weyl

groups, Math. Proc. Cambridge Philos. Soc. 84 (1978), 417-426.
A. Bjorner

1. Some combinatorial and algebraic properties of Coxeter complexes
and Tits buildings, Adv. in Math. 52 (1984), 173-212.

2. Orderings of Coxeter groups, Combinatorics and Algebra, Contem-
porary Math. vol. 34 , Amer. Math. Soc., 1984, pp. 175-195.

3. Posets, regular CW complexes and Bruhat order, European J.
Combin. 5 (1984), 7-16.

4. Coxeter groups and combinatorics, Proc. 19th Nordic Congress of
Mathematicians (Reykjavik, 1984), Icel. Math. Soc., Reykjavik,
1985, pp. 24-32.

A. Bjorner, M. Wachs

1. Bruhat order of Coxeter groups and shellability, Adv. in Math. 43
(1982}, 87-100.

2. Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc.
308 (1988), 1-37.

B.D. Boe

1. Kazhdan-Lusztig polynomials for Hermitian symmetric spaces,

Trans. Amer. Math. Soc. 309 (1988), 279-294.
B.D. Boe, D.H. Collingwood

1. Multiplicity free categories of highest weight representations I,

Comm. Algebra 18 (1990), 947-1032.
R. Bott

1. An application of the Morse theory to the topology of Lie-groups,

Bull. Soc. Math. France 84 (1956), 251-281.



187

2. The geometry and representation theory of compact Lie groups,
Representation Theory of Lie Groups, London Math. Soc. Lecture
Note Ser. 34, Cambridge University Press, 1979, pp. 65-90.

N. Bourbaki

1. Groupes et algébres de Lie, Ch. 46, Hermann, Paris, 1968; Mas-

son, Paris, 1981.
E. Brieskorn

1. Sur les groupes de tresses (d’aprés V.I. Arnol’d), Sém. Bourbaki
(1971/72), Exp. 401, Lect. Notes in Math. 317, Springer, Berlin,
1973.

2. Die Fundimentalgruppe des Raumes der regulidren Orbits einer
endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971),
57-61.

E. Brieskorn, K. Saito

1. Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972),
245-271.

T. Brocker, T. tom Dieck

1. Representations of Compact Lie Groups, Springer, New York,
1985.

N. Broderick, G. Maxwell

1. The crystallography of Coxeter groups II, J. Algebra 44 (1977),
290-318.

K.S. Brown
1. Buildings, Springer, New York, 1989.
J.B. Carrell

1. Some remarks on regular Weyl group orbits and the cohomology of

Schubert varieties, Contemp. Math., Amer. Math. Soc., to appear.
R.W. Carter

1. Simple Groups of Lie Type, J. Wiley & Sons, London, 1972.

2. Weyl groups and finite Chevalley groups, Proc. Cambridge Philos.
Soc. 67 (1970), 269-276.

3. Conjugacy classes in the Weyl group, Compositio Math. 25 (1972),
1-59.

4. Finite Groups of Lie Type: Conjugacy C’lass%s and Complez Char-
acters, Wiley Interscience, London, 1985. ‘

P. Cartier

1. Groupes finis engendrés par des symétries, Exposé 14, Séminaire

C. Chevalley 1956-1958, Paris, 1958.
R. Charney, M. Davis

1. Reciprocity of growth functions of Coxeter groups, Geom. Dedicata
39 (1991), 373-378.



188 References

M. Chein
1. Recherche des graphes des matrices de Coxeter hyperboliques
d’ordre < 10, Rev. Francaise Informat. Recherche Opérationnelle
3 (1969), Sér. R-3, 3-16.
C. Chevalley
1. The Betti numbers of the exceptional simple Lie groups, Proc.
Intern. Congress of Math. (Cambridge, Mass., 1950), vol. 2, Amer.
Math. Soc., Providence RI, 1952, pp. 21-24.
2. Invariants of finite groups generated by reflections, Amer. J. Math.
77 (1955), 778-782.
3. Sur certains groupes simples, Tohoku Math. J. 7 (1955), 14-66.
A M. Cohen
1. Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup. 9
(1976), 379-436.
2. Finite quaternionic reflection groups, J. Algebra 64 (1980), 293~
324.
3. Coxeter groups and three related topics, lecture notes.
A.J. Coleman
1. The Betti numbers of the simple Lie groups, Canad. J. Math. 10
(1958), 349-356.
2. Killing and the Coxeter transformation of Kac—Moody Lie alge-
bras, Invent. Math. 95 (1989), 447-477.
J.H. Conway, T.R. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson
1. Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
M. Couillens
1. Algeébres de Hecke, Séminaire sur les groupes finis II, Publ. Math.
de P'Université Paris VII, 1983, pp. 77-94.
H.S.M. Coxeter
1. Regular Polytopes, 3rd edn., Dover, New York, 1973.
2. Discrete groups generated by reflections, Ann. of Math. 35 (1934),
588-621.
3. The complete enumeration of finite groups of the form R2?
= (R;R;)*s =1, J. London Math. Soc. 10 (1935), 21-25.
4. The product of the generators of a finite group generated by re-
flections, Duke Math. J. 18 (1951), 765-782.
5. Finite groups generated by unitary reflections, Abh. Math. Sem.
Univ. Hamburg 31 (1967), 125-135.
6. Regular and semi-regular polytopes III, Math. Z. 200 (1988), 3—45.
H.S.M. Coxeter, W.0.J. Moser
1. Generators and relations for discrete groups, 3rd revised edn.,
Springer, New York, 1980.



189

C.W. Curtis

1. Representations of finite groups of Lie type, Bull. Amer. Math.
Soc. (N.S.) 1 (1979), 721-757.

2. The Hecke algebra of a finite Coxeter group, The Arcata Con-
ference on Representations of Finite Groups, Proc. Symp. Pure
Math. 47, part 1, Amer. Math. Soc., Providence RI, 1987, pp.
51-60.

3. Representations of Hecke algebras, Orbites wunipotentes et
représentations, I. Groupes finis et algébres de Hecke, Astérisque,
168 (1988), pp. 13-60.

C.W. Curtis, G.I. Lehrer

1. Generic chain complexes and finite Coxeter groups, J. Reine

Angew. Math. 363 (1985), 146-173.
C.W. Curtis, I. Reiner

1. Representation Theory of Finite Groups and Associative Algebras,
Wiley Interscience, New York, 1962.

2. Methods of Representation TheoryI, Wiley Interscience, New York,
1981.

3. Methods of Representation Theory II, Wiley Interscience, New
York, 1987.

M.W. Davis

1. Groups generated by reflections and aspherical manifolds not cov-
ered by Euclidean space, Ann. of Math. 117 (1983), 293-324.

2. Coxeter groups and aspherical manifolds, Algebraic topology
(Aarhus, 1982), Lect. Notes in Math. 1051, Springer, Berlin, 1984,
pp. 197-221.

3. The homology of a space on which a reflection group acts, Duke
Math. J. 55 (1987), 97-104.

4. Some aspherical manifolds, Duke Math. J. 55 (1987), 105-139.

M.W. Davis, M.D. Shapiro
1. Coxeter groups are almost convex, Geom. Dedicata 39 (1991), 55-
57.
M. Demazure
1. Desmgula.nsatlon des variétés de Schubert gﬁnerahsees, Ann. Sci.
Ecole Norm. Sup. T (1974), 53-88.
V.V. Deodhar
1. Some characterizations of Bruhat ordering on a Coxeter group and
determination of the relative Mobius function, Invent. Math. 39
(1977), 187-198.

2. On Bruhat ordering and weight-lattice ordering for a Weyl group,
Indag. Math. 40 (1978), 423-435.



190

10.

11.

12.

References

. On the Kazhdan-Lusztig conjectures, Indag. Math. 44 (1982),

1-17.

. On the root system of a Coxeter group, Comm. Algebre 10 (1982),

611-630.

. On some geometric aspects of Bruhat orderings. I. A finer decom-

position of Bruhat cells, Invent. Math. 79 (1985), 499-511.

. Local Poincaré duality and non-singularity of Schubert varieties,

Comm. Algebra 13 (1985), 1379-1388.

. Some characterizations of Coxeter groups, Enseign. Math. 32

(1986), 111-120.

. On some geometric aspects of Bruhat orderings. II. The parabolic

‘analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987),
483-506.

. A splitting criterion for the Bruhat orderings on Coxeter groups,

Comm. Algebra 15 (1987), 1889-1894.

A note on subgroups generated by reflections in Coxeter groups,
Arch. Math. 53 (1989), 543-546.

A combinatorial setting for questions in Kazhdan—Lusztig Theory,
Geom. Dedicata 36 (1990), 95-119.

Duality in parabolic set up for questions in Kazhdan—Lusztig the-
ory, J. Algebra 142 (1991), 201-209.

. Douglass
. An inversion formula for relative Kazhdan-Lusztig polynomials,

Comm. Algebra 18 (1990), 371-387.

A. Dress

1.

On finite groups generated by pseudoreflections, J. Algebra 11
(1969), 1-5.

J. Du

1.

2.

3.

The decomposition into cells of the affine Weyl group of type B,
Comm. Algebra 16 (1988), 1383-1409.

Two-sided cells of the affine Weyl group of type C3, J. London
Math. Soc. 38 (1988), 87-98.

Cells in the affine Weyl group of type Dy, J. Algebra 128 (1990),
384-404.

4. Sign types and Kazhdan-Lusztig cells, Chinese Ann. Math. Ser.

B 12 (1991), 33-39.

P. DuVal

1.

Homographies, Quatemions and Rotations, Clarendon Press, Ox-
ford, 1964. ’



191

M. Dyer

1. Hecke algebras and reflections in Coxeter groups, PhD thesis, Uni-
versity of Sydney, 1987.

2. On some generalisations of the Kazhdan—Lusztig polynomials for
‘universal’ Coxeter groups, J. Algebra 116 (1988), 353-371.

3. Reflection subgroups of Coxeter systems, J. Algebra 135 (1990),
57-73.

4. On the “Bruhat graph” of a Coxeter system, Compositio Math. T8
(1991), 185-191.

5. Hecke algebras and shellings of Bruhat intervals I, to appear.

6. Hecke algebras and shellings of Bruhat intervals II: twisted Bruhat
orders, to appear.
7. Quotients of twisted Bruhat orders, to appear.

M.J. Dyer, G.I. Lehrer

1. On positivity in Hecke algebras, Geom. Dedicata 35 (1990), 115

125.
L. Flatto

1. Basic sets of invariants for finite reflection groups, Bull. Amer.
Math. Soc. 74 (1968), 730-734.

2. Invariants of finite reflection groups and mean va.lue problems II,
Amer. J. Math. 92 (1970), 552-561.

3. Invariants of finite reflection groups, Enseign. Math. 24 (1978),
237-292.

L. Flatto, M.M. Wiener

1. Invariants of finite reflection groups and mean value problems,

Amer. J. Math. 91 (1969), 591-598.
J.S. Frame

1. The classes and representations of the groups of 27 lines and 28

bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83-119.
A M. Garsia, T.J. McLarnan

1. Relations between Young’s natural and the Kazhdan—Lusztig rep-

resentations of S,,, Adv. in Math. 69 (1988) 32—92
S.I. Gelfand, R. MacPherson ‘

1. Verma modules and Schubert cells: a dictionary, Sém. d’algébre P.
Malliavin et M.-P. Malliavin, Lect. Notes in Math. 925, Springer,
Berlin, 1982, pp. 1-50. .

D.M. Goldschmidt

1. Abstract reflections and Coxeter groups, Proc. Amer. Math. Soc.
67 (1977), 209-214.



e References

M. Goresky
1. Kazhdan-Lusztig polynomials for classical groups, Northeastern
University Mathematics Dept. [no date].
R.L. Griess, Jr.
1. Quotients of infinite reflection groups, Math. Ann. 263 (1983),
267-278.
L.C. Grove
1. The characters of the hecatonicosahedroidal group, J. Reine
Angew. Math. 265 (1974), 160-169.
L.C. Grove, C.T. Benson
1. Finite Reflection Groups, 2nd edn., Springer, New York, 1985.
E. Gutkin
1. Geometry and combinatorics of groups generated by reflections,
Enseign. Math. 32 (1986), 95-110.
2. Schubert calculus on flag varieties of Kac-Moody Lie groups, Al-
gebras Groups Geom. 3 (1986), 27-59.
3. Operator calculi associated with reflection groups, Duke Math. J.
55 (1987), 1-18.
A. Gyoja
1. A generalized Poincaré series associated to a Hecke algebra of a
finite or p-adic Chevalley group, Japan J. Math. (N.S.) 9 (1983),
87-111.
2. On the existence of a W-graph for an irreducible representation of
a Coxeter group, J. Algebra 86 (1984), 422-438.
A. Gyoja, K. Uno
1. On the semisimplicity of Hecke algebras, J. Math. Soc. Japan 41
(1989), 75-79.
Z. Haddad
1. Infinite dimensional flag varieties, PhD thesis, M. L. T., 1984.
2. A Coxeter group approach to Schubert varieties, Infinite-dimen-
sional groups with applications, Springer, New York, 1985, pp. 157-
165.
P. de la Harpe
1. Groupes de Coxeter infinis non affines, Ezposition. Math. 5 (1987),
91-96.
2. An invitation to Coxeter groups, Group Theory from a Geometrical
Viewpoint (Trieste, 1990), World Scientific, Singapore, 1991.
M. Hazewinkel, W. Hesselink, D. Siersma, F.D. Veldkamp

1. The ubiquity of Coxeter-Dynkin diagrams (an introduction to the
A-D-E problem), Nieuw Arch. Wisk. 25 (1977), 257-307.



193

A. Heck
1. A criterion for a triple (X,I,u) to be a W-graph of a Coxeter
group, Comm. Algebra 16 (1988), 2083-2102.
H.L. Hiller
1. Schubert calculus of a Coxeter group, Enseign. Math. 27 (1981),
57-84.
2. Combinatorics and intersections of Schubert varieties, Comment.
Math. Helv. 57 (1982), 41-59.
3. Geometry of Cozeter Groups, Research Notes in Mathematics, No.
54, Pitman, Boston, 1982.
M.E. Hoffman, W.D. Withers
1. Generalized Chebyshev polynomials associated with affine Weyl
groups, Trans. Amer. Math. Soc. 308 (1988), 91-104.
A. van den Hombergh
1. About the automorphisms of the Bruhat-ordering in a Coxeter
group, Indag. Math. 36 (1974), 125-131.
R.B. Howlett
1. Normalizers of parabolic subgroups of reflection groups, J. London
Math. Soc. 21 (1980), 62-80.
2. Coxeter groups and M-matrices, Bull. London Math. Soc. 14
(1982), 137-141.
3. On the Schur multipliers of Coxeter groups, J. London Math. Soc.
38 (1988), 263-276.
R.B. Howlett, G.I. Lehrer
1. Duality in the normalizer of a parabolic subgroup of a finite Cox-
eter group, Bull. London Math. Soc. 14 (1982), 133-136.
J.E. Humphreys
1. Introduction to Lie Algebras and Representation Theory, Springer,
New York, 1972.
2. Linear Algebraic Groups, Springer, New York, 1975.

B. Huppert
1. Zur Konstruktion der reellen Spiegelungsgruppe Hy, Acta Math.
Acad. Sci. Hungar. 26 (1975), 331-336.

V.F. Ignatenko *
1. Some questions in the geometric theory of invariants generated
by orthogonal and oblique reflections, J. Soviet Math. 33 (1986),
933-953.

S. Thara, T. Yokonuma
1. On the second cohomology groups (Schur-multipliers) of finite re-
flection groups, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 155-
171.



194 References

H.-C. Im Hof
1. A class of hyperbolic Coxeter groups, Ezposition. Math. 3 (1985),
179-186.
N. Iwahori
1. On the structure of a Hecke ring of a Chevalley group over a finite
field, J. Fac. Sci. Univ. Tokyo Sect. 110 (1964), 215-236.
N. Iwahori, H. Matsumoto
1. On some Bruhat decomposition and the structure of the Hecke
rings of p-adic Chevalley groups, Inst. Hautes FEtudes Sci. Publ.
Math. 25 (1965), 5-48.
J.C. Jantzen
1. Moduln mit einem héchsten Gewicht, Lect. Notes in Math. 750,
Springer, Berlin, 1979.
2. Einhiillende Algebren halbeinfacher Lie-Algebren, Springer, Berlin,
1983. ) ‘ L
3. Representations of Algebraic Groups, Academic Press, Orlando,
1987. : _ -
V.G. Kac : I
1. Infinite Dimensional Lie Algebras, Birkhauser, Boston, 1983; 2nd
edn., Cambridge University Press, 1985.
V.G. Kac, D.H. Peterson
1. Generalized invariants of groups generated by reflections, Geome-
try Today, Birkhauser, Boston, 1985, pp. 231-249.
V.G. Kac, K. Watanabe
1. Finite linear groups whose ring of invariants is a complete inter-
section, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 221-223.
M. Kaneda
1. On the inverse Kazhdan-Lusztig polynomials for affine Weyl
groups, J. Reine Angew. Math. 381 (1987), 116-135.
G. Karpilovsky
1. The Schur Multiplier, Clarendon Press, Oxford, 1987.
S.I. Kato
1. A realization of irreducible representations of affine Weyl groups,
Indag. Math. 45 (1983), 193-201.
2. On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv.
in Math. 55 (1985), 103-130.
D. Kazhdan, G. Lusztig

1. Representations of Coxeter groups and Hecke algebras, Invent.
Math. 53 (1979), 165-184.



195

2. Schubert varieties and Poincaré duality, Geometry of the Laplace
operator, Proc. Sympos. Pure Math. 34, Amer. Math. Soc., Prov-
idence, RI, 1980, pp. 185-203.

S.V. Kerov

1. W-graphs of representations of symmetric groups, J. Soviet Math.

28 (1985), 596-605.
D. Kletzing

1. Structure and representations of Q-groups, Lect. Notes in Math.

1084, Springer, Berlin, 1984.
T. Kondo

1. The characters of the Weyl group of type F4, J. Fac. Sci. Univ.

Tokyo 11 (1965), 145-153.
B. Kostant

1. The principal three-dimensional subgroup and the Betti numbers
of a complex simple Lie group, Amer. J. Math. 81 (1959), 973~
1032.

J.L. Koszul )

1. Lectures on hyperbolic Cozeter groups, University of Notre Dame

Math. Dept., 1967.
F. Lannér

1. On complexes with transitive groups of automorphisms, Comm.

Sém. Math. Univ. Lund 11 (1950), 71 pp.
A. Lascoux, M.-P. Schiitzenberger

1. Polyndmes de Kazhdan & Lusztig pour les grassmanniennes,
Young tableauzr and Schur functions in algebra and geometry,
Astérisque, 8788 (1981), pp. 249-266.

G. Lawton )

1. Two-sided cells in the affine Weyl group of type A,,_,, J. Algebra
120 (1989), 74-89.

G.I. Lehrer :

1. A survey of Hecke algebras and the Artin braid groups, Braids
(Santa Cruz, CA, 1986), Contemp. Math. 78, Amer. Math. Soc.,
Providence, RI, 1988, pp. 365-385. -

2. On the Poincaré series associated with Coxéter group actions on
the complements of hyperplanes, J. London Math. Soc. 36 (1987),
275-294.

G.I. Lehrer, L. Solomon
1. On the action of the symmetric group on the cohomology of the

complement of its reflecting hyperplanes, J. Algebra 104 (1986),
410-424.



1Y0

References

G. Lusztig

1.

9.
10.

11.

Some problems in the representation theory of finite Chevalley
groups, The Santa Cruz Conference on Finite Groups, Proc. Sym-
pos. Pure Math. 37, Amer. Math. Soc., Providence, RI, 1980, pp.
313-317.

. Hecke algebras and Jantzen’s generic decomposition patterns, Adv.

in Math. 37 (1980), 121-164.

. Some examples of square integrable representations of semisimple

p-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653.

. Left cells in Weyl groups, Lie Group Representations I, Lect. Notes

in Math. 1024, Springer, Berlin, 1984, pp. 99-111.

. Characters of reductive groups over a finite field, Ann. of Math.

Studies 107, Princeton Univ. Press, 1984.

. Cells in affine Weyl groups, Algebraic Groups and Related Topics,

Adv. Studies in Pure. Math. 6, North-Holland, Amsterdam, 1985,
pp. 225-287.

. The two-sided cells of the affine Weyl group of type A,, Infinite-

dimensional groups with applications, Springer, New York, 1985,
pp- 275-283. ,

. Sur les cellules gauches des groupes de Weyl, C.R. Acad. Sci. Paris.

Sér. I Math. 302 (1986), 5-8.

Cells in affine Weyl groups II, J. Algebra 109 (1987), 536-548.
Cells in affine Weyl groups III, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 34 (1987), 223-243.

Cells in affine Weyl groups IV, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 36 (1989), 297-328.

G. Lusztig, Xi Nanhua

1. Canonical left cells in affine Wey! groups, Adv. in Math. 72 (1988),

284-288.
I.G. Macdonald

1. Spherical functions on a group of p-adic type, Publ. Ramanujan
Inst. No. 2, Madras, 1971.

2. The Poincaré series of a Coxeter group, Math. Ann. 199 (1972),
161-174.

3. Affine root systems and Dedekind’s 7-function, Invent. Math. 15
(1972), 91-143.

4. On the degrees of the irreducible representations of finite Coxeter
groups, J. London Math. Soc. 6 (1973), 298-300.

5. Affine Lie algebras and modular forms, Sém. Bourbaki (1980/81),

Exp. 577, Lect. Notes in Math. 901, Springer, Berlin, 1982, pp.
258-276.



197

D. Martinais
1. Classification des groupes cristallographiques associés aux groupes
de Coxeter irréductibles, C.R. Acad. Sci. Paris Sér. I Math. 302
(1986), 335-338.
H. Matsumoto
1. Générateurs et relations des groupes de Weyl généralisés, C.R.
Acad. Sci. Paris 258 (1964), 3419-3422.
G. Maxwell
1. The crystallography of Coxeter groups, J. Algebra 35 (1975), 159-
177.
2. On the crystallography of infinite Coxeter groups, Math. Proc.
Cambridge Philos. Soc. 82 (1977), 13-24.
3. The Schur multipliers of rotation subgroups of Coxeter groups, J.
 Algebra 53 (1978), 440-451.
4. Sphere packings and hyperbolic reflection groups, J. Algebra 79
(1982), 78-97.
5. Wythoff’s construction for Coxeter groups, J. Algebra 123 (1989),
351-377.
M.L. Mehta
1. Basic sets of invariant polynomials for finite reflection groups,
Comm. Algebra 16 (1988), 1083-1098
V.F. Molchanov
1. Poincaré polynomials of representations of finite groups generated
by reflections, Math. Notes 31 (1982), 423-427.
B. Monson
1. The Schlaflian of a crystallographic Coxeter group, C.R. Math.
Rep. Acad. Sci. Canada 4 (1982), 145-147.
2. Simplicial quadratic forms, Canad. J. Math. 35 (1983), 101-116.
G. Moussong
1. Hyperbolic Coxeter groups, Ph.D. thesis, Ohio State University,
1988.
H. Nakajima
1. Invariants of finite groups generated by pseudoreflections in posi-
tive characteristics, Tsukuba J. Math. 3 (1979% 109-122.
Nguyen Viet Dung
1. The fundamental groups of the spaces of regular orbits of the affine
Weyl groups, Topology 22 (1983), 425-435.
P. Orlik, L. Solomon

1. Unitary reflection groups and cohomology, Invent. Math 59 (1980),
T7-94.



198 References

2. Combinatorics and topology of complements of hyperplanes, In-
vent. Math. 56 (1980), 167-189.

3. Complexes for reflection groups, Algebraic Geometry, Lect. Notes
in Math. 862, Springer, Berlin, 1981, pp. 193-207.

4. Coxeter arrangements, Singularities, Part 2, Proc. Sympos. Pure
Math. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 269-291.

5. Arrangements defined by unitary reflection groups, Math. Ann.
261 (1982), 339-357.

6. The Hessian map in the invariant theory of reflection groups,
Nagoya Math. J. 109 (1988), 1-21.
7. Discriminants in the invariant theory of reflection groups, Nagoya
Math. J. 109 (1988), 23-45.
P. Orlik, L. Solomon, H. Terao

1. On Coxeter arrangements and the Coxeter number, Complez ana-
lytic singularities, Adv. Stud. Pure Math. 8, North-Holland, Am-
sterdam, 1987, pp. 461-477.

L. Paris
1. Growth series of Coxeter groups, Group Theory from a Geometrical
Viewpoint (Trieste, 1990), World Scientific, Singapore, 1991.
H. Pfeuffer

1. Uber die reelle Spiegelungsgruppe H; und die Klassenzahl der
sechsdimensionalen Einheitsform, Arch. Math. 31 (1978/79), 126
132.

S.J. Pride, R. Stohr

1. The co(homology) of aspherical Coxeter groups, J. London Math.
Soc. 42 (1990), 49-63.

R.A. Proctor

1. Classical Bruhat orders and lexicographic shellability, J. Algebra
77 (1982), 104-126.

R.W. Richardson

1. Conjugacy classes of involutions in Coxeter groups, Bull. Austral.
Math. Soc. 26 (1982), 1-15.

M. Ronan
1. Lectures on Buildings, Academic Press, San Diego, 1989.
W. Rudin
1. Proper holomorphic maps and finite reflection groups, Indiana U.
Math. J. 31 (1982), 701-720.
K. Saito, T. Yano, J. Sekiguchi

1. On a certain generator system of the ring of invariants of a finite
reflection group, Comm. Algebra 8 (1980), 373-408.



199

I. Sekiguchi, T. Yano

1. The algebra of invariants of the Weyl group W(Fy), Sci. Rep.
Saitama Univ. Ser. A 9 (1979), no. 2, 21-32.
2. A note on the Coxeter group of type Hg, Sci. Rep. Saitama Univ.
Ser. A 9 (1979), no. 2, 33-44.
0.P. Shcherbak
1. Wavefronts and reflection groups, Russian Math. Surveys 43
(1988), 149-194.
G.C. Shephard
1. Unitary groups generated by reflections, Canad. J. Math. 5 (1953),
- 364-383.
2. Some problems on finite reflection groups, Enseign. Math. 2
(1956), 42-48.
G.C. Shephard, J.A. Todd
1. Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274
304.
Shi Jian-yi
1. The Kazhdan-Lusztig cells in certain affine Weyl groups, Lect.
Notes in Math. 1179, Springer, Berlin, 1986.
2. A two-sided cell in an affine Weyl group 1, J." London Math. Soc.
36 (1987),407-420.
3. A two-sided cell in an affine Weyl group II, J. London Math. Soc.
37 (1988), 253-264.
4. A result on the Bruhat order of a Coxeter group, J. Algebra 128
(1990), 510-516.
L. Smith
1. On the invariant theory of finite pseudo reflection groups, Arch.
Math. 44 (1985), 225-228.
L. Solomon
1. Invariants of finite reflection groups, Nagoya Math. J 22 (1963),
57-64.
2. Invariants of Euclidean reflection groups, Trans. Amer. Math. Soc.
113 (1964), 274-286. .
3. The orders of the finite Chevalley groups,’J. Algebra 3 (1966),
376-393.
4. A decomposition of the group algebra of a finite Coxeter group, J.
Algebra 9 (1968), 220-239.
5. A Mackey formula in the group ring of a Coxeter group, J. Algebra

41 (1976), 255-264.



200 References
T.A. Springer
1. Some arithmetical results on semi-simple Lie algebras, Inst. Hautes
Etudes Sci. Publ. Math. 30 (1966), 115-141.
2. Regular elements of reflection groups, Invent. Math. 25 (1974),
159-198.
3. Invariant Theory, Lect. Notes in Math. 585, Springer, Berlin, 1977.
4. A construction of representations of Weyl groups, Invent. Math.
44 (1978), 279-293.
5. Some remarks on involutions in Coxeter groups, Comm. Algebra
10 (1982), 631-636.
6. Quelques applications de la cohomologie d’intersection, Sém.
Bourbaki (1981/82), Exp. 589, Astérisque 92-93 (1982).
R.P. Stanley
1. Relative invariants of finite groups generated by pseudoreflections,
J. Algebra 49 (1977), 134-148.
2. Invariants of finite groups and their applications to combinatorics,
Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511.
3. Weyl groups, the hard Lefschetz theorem, and the Sperner prop-
erty, SIAM J. Alg. Disc. Meth. 1 (1980), 168-184
4. On the number of reduced decompositions of elements of Coxeter
groups, European J. Combin. 5 (1984), 359-372.
R. Steinberg
1. Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493-
504.
2. Invariants of finite reflection groups, Canad. J. Math. 12 (1960),
616-618.
3. Differential equations invariant under finite reflection groups,
Trans. Amer. Math. Soc. 112 (1964), 392-400.
4. Lectures on Chevalley Groups, Yale University Math. Dept., 1968.
5. Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.
No. 80 (1968).
6. Finite subgroups of SU;, Dynkin diagrams and affine Coxeter el-
ements, Pacific J. Math. 118 (1985), 587-598.
E. Stiefel
1. Uber eine Beziehung zwischen geschlossenen Lie’schen Gruppen
und diskontinuierlichen Bewegungsgruppen euklidischer Riume
und ihre Anwendung auf die Aufzdhlung der einfachen Lie’schen
Gruppen, Comment. Math. Helv. 14 (1941/42), 350-380.
E. Straume
1. The topological version of groups generated by reflections, Math.

Z. 176 (1981), 429-445.



201

K. Takahashi

1.

The left cells and their W-graphs of Weyl group of type Fy, Tokyo
J. Math. 13 (1990), 327-340.

H. Terao

1.

Generalized exponents of a free arrangement of hyperplanes and
Shephard-Todd-Brieskorn formula, Invent. Math. 63 (1981), 159-
179.

J. Tits

1. Groupes et géométries de Coxeter, IHES, 1961.

2. Racines et groupes engendrés par reflexions, Algébres de Lie semi-
simples et systémes de racines, Université Libre de Bruxelles,
1963-1964.

3. Géométries polyédriques finies, Rend. Mat. e Appl. 23 (1964),
156-165.

4. Structures et groupes de Weyl, Sém. Bourbaki (1964/65), Exp.
288, Secrétariat Mathématique, Paris, 1966.

5. Le probléme des mots dans les groupes de Coxeter, Symposia
Mathematica (INDAM, Rome, 1967/68), Academic Press, Lon-
don, 1969, vol. 1, pp. 175-185.

6. Buildings of spherical type and finite BN-pairs, Lect. Notes in
Math. 386, Springer, Berlin, 1974.

7. Two properties of Coxeter complexes, J. Algebra 41 (1976), 265~
268.

8. Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, In-
vent. Math. 43 (1977), 283-295.

9. Sur le groupe des automorphismes de certains groupes de Coxeter,
J. Algebra 113 (1988), 346-357.

T. Uzawa

1. Finite Coxeter groups and their subgroup lattices, J. Algebra 101

(1986), 82-94.
D.-N. Verma

1. Mﬁbigs inversion for the Bruhat ordering on a Weyl group, Ann.
Sci. Ecole Norm. Sup. 4 (1971), 393-398.

2. A strengthening of the exchange property of Coxeter groups,
preprint, 1972. o

3. The role of affine Weyl groups in the representation theory of al-
gebraic Chevalley groups and their Lie algebras, Lie groups and
their representations, Halsted, New York, 1975, pp. 653-705.

E.B. Vinberg
1. Discrete groups generated by reflections in Lobacevskii spaces,

Math. USSR-Sb. 1 (1967), 429-444.



- References

2. Geometric representations of Coxeter groups [Russian], Uspekhi
Mat. Nauk 25 (1970), no. 2, 267-268.

3. Discrete linear groups generated by reflections, Math. USSR-Izv.
5 (1971), 1083-1119.

4. Discrete reflection groups in Lobachevsky spaces, Proc. Intern.
Congress Math. (Warsaw, 1983), PWN, Warsaw, 1984, pp. 593
601.

5. Hyperbolic reflection groups, Russian Math. Surveys 40 (1985),
31-75.

D.A. Vogan, Jr
1. A generalized T-invariant for the primitive spectrum of a semisim-
ple Lie algebra, Math. Ann. 242 (1979), 209-224.

P. Wagreich
1. The growth function of a discrete group, Group actions and vector
fields, Lect. Notes in Math. 956, Springer, Berlin, 1982, pp. 125-
144.

W.C. Waterhouse
1. Automorphisms of the Bruhat order on Coxeter groups, Bull. Lon-
don Math. Soc. 21 (1989), 243-248.

E. Witt
1. Spiegelungsgruppen und Aufzéhlung halbeinfacher Liescher Ringe,
Abh. Math. Sem. Univ. Hamburg 14 (1941), 289-322.

Xi Nanhua
1. An approach to the connectedness of the left cells in affine Weyl
groups, Bull. London Math. Soc. 21 (1989), 557-561.

T. Yokonuma
1. On the second cohomology groups (Schur multipliers) of infinite
discrete reflection groups, J. Fac. Sci. Univ. Tokyo Sect. I 11
(1965), 173-186.



Index

affine group 87

affine reflection 87

affine Weyl group 88
alcove 89

alternating polynomial 69

basic invariants 56
Bruhat ordering 118
building 127

Cartan integer 39

chamber 23

class function 70

coinvariant algebra 58

compact hyperbolic group 140

complex reflection group 66

coroot lattice 40

coroot 39

coweight lattice 40

Coxeter complex 25, 127

Coxeter element 74, 174

Coxeter graph 29, 31, 106

Coxeter group 18, 105

Coxeter number 75

Coxeter system 18, 105

crystallographic (relative to o)
135

crystallographic Coxeter group
137

crystallographic group 38

crystallographic root system 39

degrees 59

Deletion Condition 14, 117
dihedral group 4

dual root system 39
Dynkin diagram 39

essential 5

Exchange Condition 14, 94, 11
exponents 75

extended Dynkin diagram 95

facet 25
finite reflection group 3
fundamental domain 22

generic algebra 146
geometric representation 110

Hecke algebra 150
height of root 11, 83
hyperbolic Coxeter group 138

indecomposable 35

index of connection 40

induced class function 70

infinite dihedral group 88

invariant 50

inverse root system 39

irreducible Coxeter system 30,
129

irreducible 30

isotropy group 22

Jacobian criterion 63

Kazhdan-Lusztig polynomials
159%

left cell 168

length 12, 91, 107
lexicographically shellable 177
longest element 15

Mbébius function 175



204 Indez

minimal coset representatives 20

negative root 111
negative system 8

parabolic subgroup 19, 111
Poincaré polynomial 20
Poincaré series 123
positive definite 31
positive root 111
positive semidefinite 31
positive system 8
positive type 31
positive 8

principal minor 31
pseudo-reflection .66

rank 9, 105

reduced expression 12, 91, 108
reflection group 3

reflection subgroup 172
reflection 3, 109

right cell 168

root lattice 40, 88

root system 6, 111

root 6

Schur multiplier 181
separates 91

shellable 177

simple reflections 10

simple root 8

simple system 8

Strong Exchange Condition 117
subexpression 120

subgraph 35

symmetric group 5

Tits cone 126
total ordering 7
two-sided cell 168

unitary reflection group 66

universal Coxeter group 10
upper closure 90

wall 23, 90

weak ordering 119
weight lattice 40, 88
Weyl group 39
Word Problem 127



Hj‘l!l:g

51505 f ’ \cp uanARY . TESTE




