Revisions to second printing: Reflection Groups and Coxeter Groups

- 5 The last two lines should read: "number of signs. This semidirect product is also a reflection group, generated by the reflections in S_n and the reflections $\varepsilon_i + \varepsilon_j \mapsto -(\varepsilon_i + \varepsilon_j), i \neq j$."
- 8 Conclude the statement of (a) in the Theorem with "(denoted Φ^+ if Δ is understood)."
- 9 Add to Exercise 2: "When $W = \mathcal{D}_m$, the angle between the two simple roots is $\pi (\pi/m)$."
- 21 Omit "inductively" in Exercise 1.
- 25 In line 16, insert after "More precisely,": "the following proposition shows that". In line -11, read " $\alpha \in \Delta_I$ " rather than " $\alpha \in I$ ".
- 30 In line 5 of proof of Proposition 2.1, read: "the angle θ between them is $\pi \pi/m(\alpha, \beta)$ (1.3, Exercise 2). Since ..."
- 31 In last full paragraph, begin the second sentence with "The (leading) **principal minors** ...", and replace the third sentence with: "Then *A* is positive definite if and only if all its principal minors are positive."
- 35 In line -23, read "... into nonempty sets I, J such that $a_{ij} = 0 = a_{ji}$."
- 35 Remove the \sum at the beginning of line -6.
- 36 In line 4, replace "each i" by " $i \in I$ ".
- 37 Replace all occurrences of n by k in steps (3), (5), (12), (13).
- 42 In the last line, replace c by c_i .
- 43 In line -7, replace odd by even.
- 48 In next-to-last line, replace D_3 by D_6 .
- 48 Expand last sentence in Notes to a new paragraph, as follows: Sekiguchi-Yano [2] show how to embed H₃ in D₆. Lusztig [3, Rem. 3.9(b)] obtains an embedding of H₄ in E₈ as a byproduct of his further exploration of Hecke algebras and W-graphs (beyond Kazhdan–Lusztig [1]). Shcherbak [1] gives a unified treatment for H₂ (dihedral of order 10),

 H_3 , H_4 . His context is far from Lusztig's (whose work he does not mention), but he does cite Sekiguchi-Yano. Although these papers motivate the embeddings in different ways, with divergent methods of proof and varying amounts of detail, all begin with a homomorphism from a non-crystallographic Coxeter group into a crystallographic group having twice the rank. For example, each vertex in the Coxeter graph of H_4 is assigned to a non-connected pair of vertices in the graph of E_8 (so the corresponding product of two reflections again has order 2) via a sort of "folding" of the latter graph. By the Coxeter relations, this defines a homomorphism of the first group into the second (which is not obviously injective).

- 56 Following the displayed equation (16), read: "with r_i homogeneous and deg $r_i > 0$."
- 65 In the statement of Theorem 3.11, replace GL(V) with O(V).
- 71 In part (a) of the Lemma, replace $\chi(1_H^G)$ by $\chi \cdot 1_H^G$.
- 75 In line -4, read: "If ζ is the primitive *h*th root of unity $\exp(2\pi i/h)$, these ..."
- 76 In line 6, read: "In particular, a Coxeter element should have ..." In the first line of the proof of the Lemma, read: "Suppose $w := s_1 \cdots s_n$ fixes some λ ."
- 76 Add a line to the Exercise: "What can be said about exponents?"
- 78 In lines -11 and -10, change w^t to w^m .
- 78 Expand the sentence starting on line -10 as follows: "It follows that w has order precisely h on P. Moreover, the closure of $P \cap C$ is the usual fundamental domain of the dihedral group generated by y and z on P, so w acts as a rotation through $2\pi/h$." (This addition requires tightening of the spacing at the top of page 78.)
- 81 In line -18, read: "In turn, when i > 1,"
- 81 Rewrite line -14: "This (and a similar calculation when i = 1, using $m_1 = 1$) forces"
- 82 The first sentence in Exercise 2 should read: "If h is even and w is the Coxeter element in 3.17, set $z := w^{h/2}$."

- 108 The exercise in 5.2 should be moved to section 5.8, where the Exchange Condition can be used for the "only if" part.
- 113 Replace the sentence starting on line 1 with two sentences: "If m = 2k+1 is odd and $\ell(v_I) = 2k$, then $v_I(\alpha_s) = \alpha_{s'}$. Otherwise the rotation part of v_I moves α_s through at most $\pi 2\pi/m$, still within the ..."
- 120 Rewrite lines 5–10 of the proof of Theorem 5.10, replacing four occurrences of w' by w'', as follows.

"argument can be iterated: If in turn $w'' \to w'$, with w' = w''t', apply the Strong Exchange Condition to the pair $t', w' = s_1 \cdots \hat{s}_i \cdots s_r$ (which is not required to be a reduced expression!) to obtain

$$w'' = w't' = s_1 \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_r$$

or else

$$w'' = s_1 \cdots \hat{s}_i \cdots \hat{s}_i \cdots s_r.$$

- 151 In lines 6–8, the Exchange Condition is not actually needed. Read instead: "The hypothesis sw < w implies that w has a reduced expression $w = s_1 \cdots s_r$ with $s_1 = s$: here $s_2 \cdots s_r$ can be any reduced expression for sw."
- 161 In line -13, replace -1 by -q.
- 162 In the summation on line 1, replace C_v by C_z .
- 165 In line -9, replace ε_x by ε_w .
- 172 Rewrite the last paragraph of 8.1 as follows: "More generally, one can study the *Conjugacy Problem*: given $w, w' \in W$, decide whether or not they are conjugate. Appel–Schupp [1] solved the problem when W is 'extra-large' (all $m(s, s') \ge 4$ when $s \ne s'$). The work of Moussong [1] made it possible to solve the problem for arbitrary Coxeter groups, as explained and refined by Krammer [1]."
- 180 In third paragraph of 8.10, read Frame [1][2] instead of Frame [1]. (A reference Frame [2] must also be added.)
- 188 In the reference Conway et al., "T.R. Curtis" should be "R.T. Curtis".
- 195 In item 6 under G. Lusztig, remove period after "Pure".

(February 2015)

Updated references

J.B. Carrell, [1] The Bruhat graph of a Coxeter group, a conjecture of Deodhar and rational smoothness of Schubert varieties, *Algebraic Groups and Their Generalizations: Classical Methods*, Proc. Sympos. Pure Math., vol. 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 53–61.

A.M. Cohen, [3] Coxeter groups and three related topics, *Generators and relations in groups and geometries* (Lucca, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 333, Kluwer Acad. Publ., Dordrecht, 1991, pp. 235–278.

M. Dyer, [5] Hecke algebras and shellings of Bruhat intervals, *Compositio Math.* **89** (1993), 91–115.

M. Dyer, [6] Hecke algebras and shellings of Bruhat intervals II: twisted Bruhat orders, *Kazhdan–Lusztig Theory and Related Topics*, Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 141–165.

M. Dyer, [7] Quotients of twisted Bruhat orders, J. Algebra 163 (1994), 861–879.

J.S. Frame, [2]: The characters of the Weyl group E_8 , Computational problems in abstract algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 111–130.

P. de la Harpe, [2] An invitation to Coxeter groups, *Group Theory from a Geometrical Viewpoint* (Trieste, 1990), World Scientific, Singapore, 1991, pp. 193–253.

D. Krammer, [1] The conjugacy problem for Coxeter groups, Ph.D. thesis, Utrecht, 1994.

L. Paris, [1] Growth series of Coxeter groups, *Group Theory from a Geometrical Viewpoint* (Trieste, 1990), World Scientific, Singapore, 1991, pp. 302–310.