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Foreword

Coxeter groups arise in a multitude of ways in several areas of mathemat-
ics. They are studied in algebra, geometry, and combinatorics, and certain
aspects are of importance also in other fields of mathematics. The theory
of Coxeter groups has been exposited from algebraic and geometric points
of view in several places, also in book form. The purpose of this work is to
present its core combinatorial aspects.

By “combinatorics of Coxeter groups” we have in mind the mathematics
that has to do with reduced expressions, partial order of group elements,
enumeration, associated graphs and combinatorial cell complexes, and con-
nections with combinatorial representation theory. There are some other
topics that could also be included under this general heading (e.g., combi-
natorial properties of reflection hyperplane arrangements on the geometric
side and deeper connections with root systems and representation theory
on the algebraic side). However, with the stated aim, there is already more
than plenty of material to fill one volume, so with this “disclaimer” we limit
ourselves to the chosen core topics.

It is often the case that phenomena of Coxeter groups can be understood
in several ways, using either an algebraic, a geometric, or a combinatorial
approach. The interplay between these aspects provides the theory with
much of its richness and depth. When alternate approaches are possible,
we usually choose a combinatorial one, since it is our task to tell this side
of the story. For a more complete understanding of the subject, the reader
is urged to study also its algebraic and geometric aspects. The notes at the
end of each chapter provide references and hints for further study.



xii Foreword

The book is divided into two parts. The first part, comprising Chapters 1
– 4, gives a self-contained introduction to combinatorial Coxeter group the-
ory. We treat the combinatorics of reduced decompositions, Bruhat order,
weak order, and some aspects of root systems. The second part consists of
four independent chapters dealing with certain more advanced topics. In
Chapters 5 – 7, some external references are necessary, but we have tried
to minimize reliance on other sources. Chapter 8, which is elementary, dis-
cusses permutation representations of the most important finite and affine
Coxeter groups.

Exercises are provided to all chapters — both easier exercises, meant
to test understanding of the material, and more difficult ones representing
results from the research literature. Open problems are marked with an
asterisk. Thus, the book is meant to have a dual character as both graduate
textbook (particularly Part I) and as research monograph (particularly
Part II).

Acknowledgments: Work on this book has taken place at highly irregular
intervals during the years 1993–2004. An essentially complete and final
version was ready in 1999, but publication was delayed due to unfortunate
circumstances. During the time of writing we have enjoyed the support of
the Volkswagen-Stiftung (RiP-program at Oberwolfach), of the Fondazione
San Michele, and of EC grants Nos. CHRX-CT93-0400 and HPRN-CT-
2001-00272 (Algebraic Combinatorics in Europe).

Several people have offered helpful comments and suggestions. We par-
ticularly thank Sergey Fomin and Victor Reiner, who used preliminary
versions of the book as course material at MIT and University of Min-
nesota and provided invaluable feedback. Useful suggestions have been
given also by Christos Athanasiadis, Henrik Eriksson, Axel Hultman, and
Federico Incitti. Günter Ziegler provided much needed help with the mys-
teries of LATEX. Special thanks go to Annamaria Brenti and Siv Sandvik,
who did much of the original typing of text, and to Federico Incitti, who
helped us create many of the figures and improve some of the ones created
by us. Figure 1.1 was provided by Frank Lutz and Figure 1.3 by Jürgen
Richter-Gebert.

Stockholm and Rome, September 2004

Anders Björner and Francesco Brenti



Notation

We collect here some notation that is adhered to throughout the book.

Z the integers
N the non-negative integers
P the positive integers
Q, R, C the rational, real, and complex numbers
[n] the set {1, 2, . . . , n} (n ∈ N), in particular [0] = ∅
[a, b] the set {n ∈ Z : a ≤ n ≤ b} (a, b ∈ Z)
[±n] the set [−n, n] \ {0}
{a1, . . . , an}< the set {a1, . . . , an} with total order a1 < · · · < an

⌊a⌋ the largest integer ≤ a (a ∈ R)
⌈a⌉ the smallest integer ≥ a (a ∈ R)

sgn(a) the sign of a real number: sgn(a)
def
=

⎧
⎨
⎩

1, if a > 0,
0, if a = 0,

−1, if a < 0.

δij or δ(i, j) the Kronecker delta: δij
def
=

{
1, if i = j,
0, if i 	= j.

|A|, #A,

or card(A) the cardinality of a set A
A ⊎B the union of two disjoint sets
A∆B the symmetric difference A ∪B \ (A ∩B)
2A the family of all subsets of a finite set A(
A
k

)
the family of all k-element subsets of a finite set A

A∗ the set of all words with letters from an alphabet A

Each result (theorem, corollary, proposition, or lemma) is numbered con-
secutively within sections. So, for example, Theorem 2.3.3 is the third result
in the third section of Chapter 2 (i.e., in Section 2.3). The symbol � de-
notes the end of a proof or an example. A � appearing at the end of the
statement of a result signifies that the result should be obvious at that
stage of reading, or else that a reference to a proof is given.



1
The basics

Coxeter groups are defined in a simple way by generators and relations.
A key example is the symmetric group Sn, which can be realized as per-
mutations (combinatorics), as symmetries of a regular (n− 1)-dimensional
simplex (geometry), or as the Weyl group of the type An−1 root system or
of the general linear group (algebra). The general theory of Coxeter groups
expands and interweaves the many mathematical themes and aspects
suggested by this example.

In this chapter, we give the basic definitions, present some examples, and
derive the most elementary combinatorial facts underlying the rest of the
book. Readers who already know the fundamentals of the theory can skim
or skip this chapter.

1.1 Coxeter systems

Let S be a set. A matrix m : S × S → {1, 2, . . . ,∞} is called a Coxeter
matrix if it satisfies

m(s, s′) = m(s′, s) ; (1.1)

m(s, s′) = 1 ⇔ s = s′. (1.2)

Equivalently, m can be represented by a Coxeter graph (or Coxeter dia-
gram) whose node set is S and whose edges are the unordered pairs {s, s′}
such that m(s, s′) ≥ 3. The edges with m(s, s′) ≥ 4 are labeled by that
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number. For instance,

⎛
⎜⎜⎝

1 2 3 2
2 1 4 2
3 4 1 ∞
2 2 ∞ 1

⎞
⎟⎟⎠ ←→

s1

s2

s3

s4

∞

4

Let S2
fin = {(s, s′) ∈ S2 : m(s, s′) 	= ∞}. A Coxeter matrix m determines

a group W with the presentation
{

Generators: S

Relations: (ss′)m(s,s′) = e, for all (s, s′) ∈ S2
fin.

(1.3)

Here, and in the sequel, “e” denotes the identity element of any group
under consideration. Since m(s, s) = 1, we have that

s2 = e, for all s ∈ S, (1.4)

which, in turn, shows that the relation (ss′)m(s,s′) = e is equivalent to

s s′ s s′ s . . .︸ ︷︷ ︸
m(s,s′)

= s′ s s′ s s′ . . .︸ ︷︷ ︸
m(s,s′)

. (1.5)

In particular, m(s, s′) = 2 (i.e., two distinct nodes s and s′ are not neighbors
in the Coxeter graph) if and only if s and s′ commute.

For instance, the group determined by the above Coxeter diagram is
generated by s1, s2, s3, and s4 subject to the relations

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s2
1 = s2

2 = s2
3 = s2

4 = e
s1s2 = s2s1

s1s3s1 = s3s1s3

s1s4 = s4s1

s2s3s2s3 = s3s2s3s2

s2s4 = s4s2.

If a group W has a presentation such as (1.3), then the pair (W, S) is
called a Coxeter system. The group W is the Coxeter group and S is the
set of Coxeter generators. The cardinality of S is called the rank of (W, S).
Most groups of interest will be of finite rank. The system is irreducible if

its Coxeter graph is connected.
When referring to an abstract group as a Coxeter group, one usually

has in mind not only W but the pair (W, S), with a specific generating set
S tacitly understood. Some caution is necessary in such cases, since the
isomorphism type of (W, S) is not determined by the group W alone; see
Exercise 2.

The following three statements are equivalent and make explicit what it
means for W to be determined by m via the presentation (1.3):
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1. (Universality Property) If G is a group and f : S → G is a mapping
such that

(f(s)f(s′))m(s,s′) = e

for all (s, s′) ∈ S2
fin, then there is a unique extension of f to a group

homomorphism f : W → G.

2. W ∼= F/N , where F is the free group generated by S and N is the
normal subgroup generated by {(ss′)m(s,s′) : (s, s′) ∈ S2

fin}.
3. Let S∗ be the free monoid generated by S (i.e., the set of words in the

alphabet S with concatenation as product). Let ≡ be the equivalence
relation generated by allowing insertion or deletion of any word of
the form

(ss′)m(s,s′) = s s′ s s′ s . . . s′ s s′︸ ︷︷ ︸
2m(s,s′)

for (s, s′) ∈ S2
fin. Then, S∗/ ≡ forms a group isomorphic to W .

It might seem that to be precise we should use different symbols for the
elements of S and for their images in W ∼= S∗/ ≡ under the surjection

ϕ : S∗ → W. (1.6)

However, this is needlessly pedantic since, in practice, the possibility of
confusion is negligible. It will be shown (Proposition 1.1.1) that s 	= s′ in
S implies ϕ(s) 	= ϕ(s′) in W and (Corollary 1.4.8) that S is a minimal
generating system for W .

Let (W, S) be a Coxeter system. Definition (1.3) leaves some uncertainty
about the orders of pairwise products ss′ as elements of W (s, s′ ∈ S). All
that immediately follows is that the order of ss′ divides m(s, s′) if m(s, s′)
is finite. This leaves open the possibility that distinct Coxeter graphs might
determine isomorphic Coxeter systems. However, this is not the case.

Proposition 1.1.1 Let (W, S) be the Coxeter system determined by a Cox-
eter matrix m. Let s and s′ be distinct elements of S. Then, the following
hold:

(i) (The classes of) s and s′ are distinct in W .

(ii) The order of ss′ in W is m(s, s′).

The proof is postponed to Section 4.1, where it is obtained for free as a
by-product of some other material. Section 4.1 makes no use of (or even
mention of) any material in the intermediate sections, so it is possible for
a systematic reader, who wants to see a proof for Proposition 1.1.1 at this
stage of reading, to go directly from here to Section 4.1.

It is a consequence of Proposition 1.1.1 that the Coxeter matrix
(m(s, s′))s,s′∈S can be fully reconstructed from the group W and the
generating set S. This leads to an important conclusion.
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Theorem 1.1.2 Up to isomorphism there is a one-to-one correspondence
between Coxeter matrices and Coxeter systems. �

The finite irreducible Coxeter systems, as well as certain classes of infinite
ones, have been classified. See Appendix A1 for the classification of the
finite and so-called affine groups and [306] for additional information. From
now on, we will every now and then refer to these Coxeter groups by their
conventional names mentioned in Appendix A1, but the classification as
such will not play any significant role in the book. There is no essential
restriction in confining attention to the irreducible case, since reducible
Coxeter groups decompose uniquely as a product of irreducible ones (see
Exercise 2.3).

The finite Coxeter groups for which m(s, s′) ∈ {2, 3, 4, 6} for all (s, s′) ∈
S2, s 	= s′ are called Weyl groups, a name motivated by Lie theory (see
Example 1.2.10). The Coxeter groups for which m(s, s′) ∈ {2, 3} for all
(s, s′) ∈ S2, s 	= s′ are called simply-laced.

1.2 Examples

Let us now look at a few examples. The following list is not intended to be
systematic — the aim is merely to acquaint the reader with some of the
groups that play an important role in the combinatorial theory of Coxeter
groups and to exemplify some of the diverse ways in which Coxeter groups
arise. More examples can be found in Chapter 8.

Example 1.2.1 The graph with n isolated vertices (no edges) is the
Coxeter graph of the group Z2 × Z2 × · · · × Z2 of order 2n. �

Example 1.2.2 The universal Coxeter group Un of rank n is defined by
the complete graph with all (n

2 ) edges marked by “∞.” Equivalently, it is
the group having n generators of order 2 and no other relations. Each group
element can be uniquely expressed as a word in the alphabet of generators,
and these words are precisely the ones where no adjacent letters are equal. �

Example 1.2.3 The path

s1 s2 s3 sn−2 sn−1

is the Coxeter graph of the symmetric group Sn with respect to the gener-
ating system of adjacent transpositions si = (i, i+1), 1 ≤ i ≤ n−1. This is
proved in Proposition 1.5.4. An understanding of this particular example
is very valuable, both because of the importance of the symmetric group
as such and its role as the most accessible nontrivial example of a Cox-
eter group. We will frequently return to Sn in order to concretely illustrate
various general concepts and constructions. �
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Example 1.2.4 The graph

s0 s1 s2 s3 sn−2 sn−1

4

is the Coxeter graph of the group SB
n of all signed permutations of the

set [n] = {1, 2, . . . , n}. See Section 8.1 for a detailed description of this
group. It can be thought of in terms of the following combinatorial model.
Suppose that we have a deck of n cards, such that the j-th card has “+j”
written on one side and “−j” on the other. The elements of SB

n can then
be identified with the possible rearrangements of stacks of cards; that is,
a group element is a permutation of [n] = {1, 2, . . . , n} (the order of the
cards in the stack) together with the sign information [n] → {+,−} (telling
which side of each card is up). The Coxeter generators si, 1 ≤ i ≤ n − 1,
interchange the card in position i with that in position i + 1 in the stack
(preserving orientation), and s0 flips card 1 (the top card).

The group SB
n has a subgroup, denoted SD

n , with Coxeter graph

s′0

s1 s2 s3 s4 sn−2 sn−1

Here, s′0 = s0s1s0. In terms of the card model this group consists of the
stacks with an even number of turned-over cards (i.e., with minus side up).
The generators si, 1 ≤ i ≤ n− 1, are adjacent interchanges as before, and
s0 flips cards 1 and 2 together (as a package). See Section 8.2 for more
about this group. �

Example 1.2.5 The circuit

s1 s2 s3 sn−2 sn−1

sn

is the Coxeter graph of the group S̃n of affine permutations of the integers.
This is the group of all permutations x of the set Z such that

x(j + n) = x(j) + n, for all j ∈ Z,

and
n∑

i=1

x(i) =

(
n + 1

2

)
,

with composition as group operation. The Coxeter generators are the peri-
odic adjacent transpositions s̃i =

∏
j∈Z

(i + jn, i + 1 + jn) for i = 1, . . . , n.
See Section 8.3 for more about these infinite permutation groups. �
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Example 1.2.6 The one-way infinite path

s1 s2 s3 s4

is the Coxeter graph of the group of permutations with finite support of the
positive integers (i.e., permutations that leave all but a finite subset fixed).
The generators are the adjacent transpositions si = (i, i + 1), 1 ≤ i. �

Example 1.2.7 Dihedral groups. Let L1 and L2 be straight lines through
the origin of the Euclidean plane E2. Assume that the angle between them
is π

m , for some integer m ≥ 2. Let r1 be the orthogonal reflection through
L1, and similarly for r2. Then, r1r2 is a rotation of the plane through the
angle 2π

m and, hence, (r1r2)
m = e.

L1

L2

π/m

π/m

r1(L2) [ = r1r2(L2) ]

Let Gm be the group generated by r1 and r2. Simple geometric consid-
erations show that Gm consists of the m rotations of the plane through
angles 2πk

m , 0 ≤ k < m, and these m rotations followed by the reflection r1.
Hence, |Gm| = 2m.

Now, define I2(m) to be the Coxeter group given by the Coxeter graph

s1 s2

m

Directly from the definition, one sees that every element of I2(m) can
be represented as an alternating word s1s2s1s2s1 . . . or s2s1s2s1s2 . . . of
length ≤ m. (This includes the identity element represented by the empty
word.) Since there are two such words of each positive length and the
two words of length m represent the same group element, it follows that
|I2(m)| ≤ 2m.

Since r2
1 = r2

2 = (r1r2)
m = e, there is a surjective homomorphism f :

I2(m) → Gm extending si �→ ri, i = 1, 2. We have seen that |I2(m)| ≤ |Gm|.
Consequently, f must be an isomorphism.

The group I2(m) is called the dihedral group of order 2m. Similarly, the
group I2(∞) (which is easily seen to be of infinite order) is called the infinite
dihedral group. It arises as the group generated by orthogonal reflections r1

and r2 in lines whose angle is a nonrational multiple of π. �
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Example 1.2.8 Symmetry groups of regular polytopes. The symmetries of
a regular m-gon in the plane are the m rotations and the m orthogonal
reflections through a line of symmetry. Thus, the symmetry group is the
dihedral group I2(m) discussed in the previous example.

The 2-dimensional regular polygons have their counterparts in higher
dimensions among the regular polytopes. A d-dimensional convex polytope
is regular if given two nested sequences of faces F0 ⊆ F1 ⊆ · · · ⊆ Fd−1

(dimFi = i), there is some isometry of d-space that maps the polytope
onto itself and maps the first sequence of faces to the other one. It turns
out that the symmetry groups of regular polytopes are always Coxeter
groups.

The 3-dimensional regular polytopes are known since antiquity. They
are the five Platonic solids. The higher-dimensional regular poytopes
were classified by Schläfli in the mid-1800s. The full classification, with
corresponding Coxeter groups as symmetry groups, is as follows:

Dimension Regular Polytope Coxeter group

d simplex Ad

d cube Bd

d hyperoctahedron Bd

2 m-gon I2(m)
3 dodecahedron H3

3 icosahedron H3

4 24-cell F4

4 120-cell H4

4 600-cell H4

Certain of these polytopes appear in pairs of dual polytopes that share the
same symmetry group. The rest are self-dual.

Let us illustrate the link between polytope and group by having a look
at the geometry of the dodecahedron. As illustrated in Figure 1.1, the
dodecahedron has 15 planes of symmetry, and these planes subdivide its
boundary into 120 congruent triangles. The orthogonal reflections through
the planes generate the full symmetry group W , and this group acts simply
transitively on the triangles.

Seen from this geometric perspective, what are the Coxeter generators?
Fix any one of the 120 triangles and call this the “fundamental region.”
Take as S the three reflections in the “walls” of this triangle. Then, (W, S)
is a Coxeter system.

The Coxeter matrix can be read from the geometry in the following
way. Notice in Figure 1.1 that the dihedral angles in the corners of any
triangle (in particular, of the fundamental region) are π/2, π/3, and π/5.
The denominators are the defining numbers m(s, s′) of the Coxeter system
of type H3. �
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Figure 1.1. Symmetries of the dodecahedron.

Example 1.2.9 Reflection groups. The example of the dodecahedron
shows how a certain finite Coxeter group can be realized as a group of
geometric transformations generated by reflections. This is, in fact, true of
all finite Coxeter groups, not only the ones related to regular polytopes. It
is also true for the infinite Coxeter groups, although here one may need to
relax the concept of reflection.

The two most important classes of infinite Coxeter groups are defined
in terms of their realizations as reflection groups. These are the affine and
hyperbolic Coxeter groups. We will not discuss the precise definitions here;
suffice it to say that they arise from suitably defined reflections in affine
(resp. hyperbolic) space. The irreducible groups of both types have been
classified.

Here are a few low-dimensional examples that should convey the general
idea. There are three affine irreducible Coxeter systems of rank 3: Ã2, C̃2,
and G̃2 (cf. Appendix A1). The corresponding arrangements of reflecting
lines are shown in Figure 1.2. There are infinitely many hyperbolic irre-
ducible Coxeter systems of rank 3 (but only finitely many in higher ranks);
the system of reflecting lines for one of them is shown in Figure 1.3.

Just as for the dodecahedron, the Coxeter generators for these affine
and hyperbolic groups can be taken to be the reflections in the three lines
that border a fundamental region. Furthermore, the Coxeter matrix of the
group can be read off from the angles at which these lines pairwise meet.
For instance, these angles are, in the case of Figure 1.3, respectively π/2,
π/3, and 0 = π/∞. Again, the denominators are the edge labels of the
Coxeter diagram

∞
. �
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Figure 1.2. The eA2, eC2, and eG2 tesselations of the affine plane.

Figure 1.3. The
∞

tesselation of the hyperbolic plane.

Example 1.2.10 Weyl groups of root systems. This example concerns a
special class of groups generated by reflections, which is of great importance
in the theory of semisimple Lie algebras. In that context, the following finite
vector systems in Euclidean space Ed naturally arise. (Recall that Ed is the
same as Rd endowed with a positive definite symmetric bilinear form.)

For α ∈ Ed\{0}, let σα denote the orthogonal reflection in the hyperplane
orthogonal to α. In particular, σα(α) = −α.
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Definition. A finite set Φ ⊂ Ed\{0} is called a crystallographic root system
if it spans Ed and for all α, β ∈ Φ, the following hold:

(1) Φ ∩ Rα = {α,−α}.
(2) σα(Φ) = Φ.

(3) σα(β) is obtained from β by adding an integral multiple of α.

The group W generated by the reflections σα, α ∈ Φ, is called the Weyl
group of Φ. It is (with a natural choice of generators) a Coxeter group. It
is known that every finite irreducible Coxeter group, with the exception of
H3, H4, and I2(m) for m 	= 2, 3, 4, 6, can appear as the Weyl group of a
crystallographic root system. The classification of semisimple Lie algebras
proceeds via the classification of their root systems and is thus closely
linked to the classification of finite Coxeter groups.

In Chapter 4, we consider a more general concept of root system, available
for every Coxeter group. The more restrictive crystallographic root systems
will not reappear in this book. �

Example 1.2.11 Matrix groups and BN-pairs. Coxeter groups can arise
as groups of matrices. For instance,

∞ ∼= PGL2(Z), the projective

general linear group (consisting of invertible 2 × 2 matrices with integer
entries where a matrix and its negative are identified).

However, the classical matrix groups over fields are not themselves Cox-
eter groups. Nevertheless, Coxeter groups play an important role in their
theory. In a precise sense, there sits “inside” such a matrix group G a
certain Coxeter group, called its “Weyl group,” which controls important
features of the structure of G.

We now sketch the connection with matrix groups, via the axiomatization
as “groups with BN-pair,” due to Tits.

Definition. A pair B, N of subgroups of a group G is called a BN-pair (or
Tits system) if the following hold:

(1) B ∪N generates G, and B ∩N is normal in N .

(2) W
def
= N/(B ∩N) is generated by some set S of involutions.

(3) s ∈ S, w ∈ W ⇒ BsB ·BwB ⊆ BswB ∪BwB.

(4) s ∈ S ⇒ BsB · BsB 	= B.

It can be shown to follow from these axioms that the set S is uniquely
determined and that the pair (W, S) is a Coxeter system. The group W
is called the Weyl group and the number |S| is the rank of the BN-pair
(G; B, N).

Notice that the double coset BwB is well-defined by the coset w ∈
N/(B ∩N). Axioms (3) and (4) suggest the possibility of an induced alge-
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braic structure on the set {BwB}w∈W . This leads to the so-called “Hecke
algebra” of (W, S), underlying Chapters 5 and 6.

The simplest example of a BN-pair is that of a group G acting doubly

transitively on a set E of size ≥ 3. Let x 	= y in E, and let B
def
= Stab({x})

and N
def
= Stab({x, y}). This is a BN-pair of rank 1. Conversely, given a

BN-pair of rank 1, one can show that G acts doubly transitively on G/B.
A more instructive example is that of the general linear group GLn(F),

consisting of invertible n×n matrices over a field F. Here, there is a “canon-
ical” BN-pair consisting of the group B of upper-triangular matrices and
the group N of monomial matrices (having exactly one nonzero element
in each row and each column). In this case, as is easy to see, the Weyl
group is the group of permutation matrices. Hence, GLn(F) has a BN-pair
of type A and of rank n−1. The other classical matrix groups (orthogonal,
symplectic, etc.) have BN-pairs, as do all groups “of Lie type.” Hence, they
can be classified according to the type of their Weyl group.

It is known that every finite irreducible Coxeter group, with the exception
of H3, H4, and I2(m) for m 	= 2, 3, 4, 6, 8, can appear as the Weyl group of
a finite group with a BN-pair. The finite groups with BN-pairs of rank ≥ 3
have been classified by Tits. They include all of the finite simple groups
except the cyclic groups of prime order, the alternating groups An (n ≥ 5),
and the 26 sporadic groups.

One of the most important features of a group G with a BN-pair is the
following:

Bruhat decomposition: G = ⊎w∈W BwB.

Thus, the Weyl group W acts as indexing set for a partition of the group
G into pairwise disjoint subsets (double cosets w.r.t. the subgroup B). In
the cases of classical matrix groups, this partition induces a partial order
on the set W . This partial order is the topic of Chapter 2. �

1.3 A permutation representation

We now return to the program of deriving the basics of combinatorial Cox-
eter group theory “from scratch,” and we continue the discussion where we
left off in Section 1.1. Our immediate goal is to get as quickly as possible
to the core combinatorial properties of a Coxeter group, such as the ex-
change property that is discussed in the next section. It turns out that the
description of the group via its defining presentation (1.3) is ill suited for
this purpose — one needs the added structure coming from some suitable
concrete realization of the group.

This section describes a realization as a permutation group that leads
quite quickly to the goal. This permutation representation is introduced
here for the sole purpose of proving Theorem 1.4.3 of the following section;
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it will not reappear in this form after that. (However, it will reappear in
the guise of permutations of the root system of (W, S) in Section 4.4, for
the connection see Exercise 4.7.)

Throughout this section, (W, S) denotes a Coxeter system. Let T
def
=

{wsw−1 : s ∈ S, w ∈ W}. The elements of T (i.e., the elements conjugate
to some Coxeter generator) are called reflections. The definition shows that
S ⊆ T and that

t2 = e, for all t ∈ T . (1.7)

The elements of S are sometimes called simple reflections.
Given a word s1 s2 . . . sk ∈ S∗, define

ti
def
= s1 s2 . . . si−1 si si−1 . . . s2 s1, for 1 ≤ i ≤ k, (1.8)

and the ordered k-tuple

T̂ (s1 s2 . . . sk)
def
= (t1, t2, . . . , tk). (1.9)

For instance,

T̂ (abca) = (a, aba, abcba, abcacba).

As stated earlier, we consider words in S∗ also as elements in W (reading
them as a product) without change of notation. Note that

ti = (s1 . . . si−1) si(s1 . . . si−1)
−1 ∈ T, (1.10)

ti s1 s2 . . . sk = s1 . . . ŝi . . . sk (si omitted), (1.11)

and

s1 s2 . . . si = titi−1 . . . t1. (1.12)

Lemma 1.3.1 If w = s1s2 . . . sk, with k minimal, then ti 	= tj for all
1 ≤ i < j ≤ k.

Proof. If ti = tj for some i < j then w = titjs1s2 . . . sk =
s1 . . . ŝi . . . ŝj . . . sk (i.e., si and sj deleted), which contradicts the mini-
mality of k. �

For s1 s2 . . . sk ∈ S∗ and t ∈ T , let

n(s1 s2 . . . sk; t)
def
= the number of times t appears in T̂ (s1s2 . . . sk).

(1.13)
Furthermore, for s ∈ S and t ∈ T , let

η(s ; t)
def
=

{
−1, if s = t,
+1, if s 	= t.

(1.14)

Note that

(−1)n(s1 s2...sk;t) =

k∏

i=1

η(si ; si−1 . . . s1 t s1 . . . si−1). (1.15)
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We will consider the group S(R) of all permutations of the set

R = T × {+1,−1}.
For s ∈ S, define a mapping πs of R to itself by

πs(t, ε)
def
= (sts, ε η(s ; t)).

The computation

π2
s(t, ε) = πs(sts, ε η(s ; t)) = (sstss, ε η(s ; t) η(s ; sts)) = (t, ε)

shows that πs ∈ S(R).

Theorem 1.3.2 (i) The mapping s �→ πs extends uniquely to an
injective homomorphism w �→ πw from W to S(R).

(ii) πt(t, ε) = (t,−ε), for all t ∈ T .

Proof. We verify the assertions in several steps.

(1) It was already shown that π2
s = idR.

(2) Let s, s′ ∈ S and m(s, s′) = p 	= ∞. We claim that

(πs πs′)p = idR.

To prove this, let

si =

{
s′, if i is odd,
s, if i is even

and let s denote the word s1s2 . . . s2p = s′ss′ss′ . . . s′ s. Let T̂ (s) =
(t1, t2, . . . , t2p); that is,

ti = s1 s2 . . . si . . . s2 s1 = (s′s)i−1s′, 1 ≤ i ≤ 2p.

Since (s′s)p = e, we have that

tp+i = ti, 1 ≤ i ≤ p,

which implies that n(s; t) is even for all t ∈ T . Let

(t′, ε′) = (πs πs′)p(t, ε) = πs2p
πs2p−1 . . . πs1(t, ε).

Then, t′ = s2p . . . s1 t s1 . . . s2p = t, since s1s2 . . . s2p = (s′s)p = e.
Furthermore, using (1.15), we get

ε′ = ε

2p∏

i=1

η(si ; si−1 . . . s1 t s1 . . . si−1) = ε (−1)n(s;t) = ε.

So, the claim is proved.

(3) By the universality property and what has just been shown, the
mapping s �→ πs extends to a homomorphism w �→ πw of W . If w =
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sk sk−1 . . . s1, we compute

πw(t, ε) = πsk
πsk−1

. . . πs1(t, ε)

=

(
sk . . . s1 ts1 . . . sk, ε

k∏

i=1

η(si ; si−1 . . . s1 t s1 . . . si−1)

)

= (w t w−1, ε (−1)n(s1s2...sk;t)). (1.16)

In particular, the parity of n(s1s2 . . . sk; t) only depends on w and t.

(4) Suppose that w 	= e. Choose an expression w = sk sk−1 . . . s1 with k

minimal, and let T̂ (s1s2 . . . sk) = (t1, t2, . . . , tk). By Lemma 1.3.1, all ti’s
are distinct, so n(s1s2 . . . sk; ti) = 1. Therefore, πw(ti, ε) = (wtiw

−1,−ε)
for 1 ≤ i ≤ k by equation (1.16), which shows that πw 	= idR. Hence, the
homomorphism is injective.

(5) We show part (ii) of the theorem by induction on the size of a symmetric
expression for t. Let

t = s1s2 . . . sp . . . s2s1, si ∈ S.

The case p = 1 is clear by definition. Then, by induction,

πs1...sp...s1(s1 . . . sp . . . s1, ε)

= πs1πs2...sp...s2(s2 . . . sp . . . s2, ε η(s1 ; s1 . . . sp . . . s1))

= πs1(s2 . . . sp . . . s2,−ε η(s1 ; s2 . . . sp . . . s2))

= (s1 . . . sp . . . s1,−ε η2(s1 ; s2 . . . sp . . . s2))

= (t,−ε).

�

For w ∈ W and t ∈ T , let

η(w ; t)
def
= (−1)n(s1s2...sk;t), (1.17)

where w = s1s2 . . . sk is an arbitrary expression, si ∈ S. Step (3) of the
proof shows that this is well defined. This definition extends that of η(s ; t)
for s ∈ S given in equation (1.14) and makes it possible to rewrite equation
(1.16) as follows:

πw(t, ε) = (w t w−1, ε η(w−1 ; t)). (1.18)

1.4 Reduced words and the exchange property

In this section, we prove some fundamental combinatorial properties of the
system of words representing any given element of a Coxeter group.
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Let (W, S) be a Coxeter system. Each element w ∈ W can be written as
a product of generators:

w = s1s2 . . . sk, si ∈ S.

If k is minimal among all such expressions for w, then k is called the length
of w (written ℓ(w) = k) and the word s1s2 . . . sk is called a reduced word
(or reduced decomposition or reduced expression) for w. As discussed in
Section 1.1, we let “s1s2 . . . sk” denote both the product of these generators
(an element of W ) and the word formed by listing them in this order (an
element of the free monoid S∗).

The following is an immediate consequence of the Universality Property.

Lemma 1.4.1 The map ε : s �→ −1, for all s ∈ S, extends to a group
homomorphism ε : W → {+1,−1}. �

Here are some basic properties of the length function.

Proposition 1.4.2 For all u, w ∈ W :

(i) ε(w) = (−1)ℓ(w),

(ii) ℓ(uw) ≡ ℓ(u) + ℓ(w) (mod 2),

(iii) ℓ(sw) = ℓ(w)± 1, for all s ∈ S,

(iv) ℓ(w−1) = ℓ(w),

(v) |ℓ(u)− ℓ(w)| ≤ ℓ(uw) ≤ ℓ(u) + ℓ(w),

(vi) ℓ(uw−1) is a metric on W .

Proof. Parts (i) – (iii) follow from Lemma 1.4.1. We leave the rest as
exercises. �

It is a consequence of Lemma 1.4.1 that the elements of even length form
a subgroup of W of index 2. This is called the alternating subgroup (fol-
lowing the terminology of the symmetric group) or the rotation subgroup
(following the terminology of finite reflection groups) of W .

We now come to the so-called “exchange property,” which is a funda-
mental combinatorial property of a Coxeter group. In its basic version,
appearing in the following section, the condition t ∈ T in the statement
below is weakened to t ∈ S, hence the adjective “strong” for the version
given here.

Theorem 1.4.3 (Strong Exchange Property) Suppose w = s1s2 . . . sk

(si ∈ S) and t ∈ T . If ℓ(tw) < ℓ(w), then tw = s1 . . . ŝi . . . sk for some
i ∈ [k].

Proof. Recall the number η(w ; t) ∈ {+1,−1} defined in definition (1.17).
We prove the equivalence of these two conditions:

(a) ℓ(tw) < ℓ(w),
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(b) η(w; t) = −1.

First, assume that η(w; t) = −1, and choose a reduced expression
w = s′1s

′
2 . . . s′d. Since n(s′1s

′
2 . . . s′d; t) is odd, we deduce that t =

s′1s
′
2 . . . s′i . . . s′2s

′
1 for some 1 ≤ i ≤ d. Hence,

ℓ(tw) = ℓ(s′1 . . . ŝ′i . . . s′d) < d = ℓ(w).

Second, assume that η(w; t) = 1. Using equation (1.18), we get

π(tw)−1(t, ε) = πw−1 πt(t, ε) = πw−1(t,−ε)

= (w−1tw,−ε η(w; t)) = (w−1tw,−ε).

This means that η(tw ; t) = −1, which by the implication (b) ⇒ (a) already
proved shows that ℓ(t tw) < ℓ(tw), that is, ℓ(tw) > ℓ(w).

The implication (a) ⇒ (b) now concludes the proof. Suppose that
ℓ(tw) < ℓ(w). Then, since η(w ; t) = (−1)n(s1s2...sk;t), we deduce that
n(s1s2 . . . sk ; t) is odd, and hence that t = s1s2 . . . si . . . s2s1 for some i.
Therefore, tw = s1 . . . ŝi . . . sk. �

Corollary 1.4.4 If w = s1s2 . . . sk is reduced and t ∈ T , then the follwing
are equivalent:

(a) ℓ(tw) < ℓ(w),

(b) tw = s1 . . . ŝi . . . sk, for some i ∈ [k],

(c) t = s1s2 . . . si . . . s2s1, for some i ∈ [k].

Furthermore, the index “ i” appearing in (b) and (c) is uniquely determined.

Proof. The equivalence (b) ⇔ (c) is easy to see (and does not require the
hypothesis that s1s2 . . . sk is reduced). Uniqueness is provided by Lemma
1.3.1.

Theorem 1.4.3 shows that (a) ⇒ (b), and the converse is obvious. �

We now have the following definitions:

TL(w)
def
= {t ∈ T : ℓ(tw) < ℓ(w)},

TR(w)
def
= {t ∈ T : ℓ(wt) < ℓ(w)}.

(1.19)

In this notation “L” and “R” are mnemonic for “left” and “right.” TL(w)
is called the set of left associated reflections to w, and similarly for TR(w).
Corollary 1.4.4 gives some useful characterizations of the set TL(w). Ap-
plying these to w−1, we get the corresponding “mirrored” statements for
TR(w), since clearly

TR(w) = TL(w−1).

Corollary 1.4.5 |TL(w)| = ℓ(w) .
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Proof. Let w = s1s2 . . . sk, k = ℓ(w). Then, TL(w) = {s1s2 . . . si . . . s2s1 :
1 ≤ i ≤ k} by Corollary 1.4.4, and these elements are all distinct by Lemma
1.3.1. �

We will quite often need to refer to the associated simple reflections, for
which we introduce the following special notation and terminology:

DL(w)
def
= TL(w) ∩ S,

DR(w)
def
= TR(w) ∩ S. (1.20)

DR(w) is called the right descent set, and similarly for DL(w). Their ele-
ments are called right (resp. left) descents. The reason for this terminology
will become clear in Proposition 1.5.3, where we specialize to the sym-
metric groups, and even more so in Chapter 8. Note that, by symmetry,
DR(w) = DL(w−1).

Corollary 1.4.6 For all s ∈ S and w ∈ W , the following hold:

(i) s ∈ DL(w) if and only if some reduced expression for w begins with
the letter s.

(ii) s ∈ DR(w) if and only if some reduced expression for w ends with the
letter s.

Proof. The “if” direction is clear. The opposite direction follows easily
from Corollary 1.4.4 (or directly from Proposition 1.4.2(iii)). �

We now come to another important consequence of the exchange
property.

Proposition 1.4.7 (Deletion Property) If w = s1s2 . . . sk and ℓ(w) <
k, then w = s1 . . . ŝi . . . ŝj . . . sk for some 1 ≤ i < j ≤ k.

Proof. Choose i maximal so that sisi+1 . . . sk is not reduced. Then,
ℓ(si si+1 . . . sk) < ℓ(si+1 . . . sk) and hence, by Theorem 1.4.3,

si si+1 . . . sk = si+1 . . . ŝj . . . sk,

for some i < j ≤ k. Now multiply on the left by s1 s2 . . . si−1. �

Corollary 1.4.8 (i) Any expression w = s1s2 . . . sk contains a reduced
expression for w as a subword, obtainable by deleting an even number
of letters.

(ii) Suppose w = s1s2 . . . sk = s′1s
′
2 . . . s′k are two reduced expressions.

Then, the set of letters appearing in the word s1s2 . . . sk equals the
set of letters appearing in s′1s

′
2 . . . s′k.

(iii) S is a minimal generating set for W ; that is, no Coxeter generator
can be expressed in terms of the others.
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Proof. Part (i) is a direct consequence of the deletion property.

To prove part (ii), suppose that sj 	∈ I
def
= {s′1, . . . , s′k} and that j is

chosen to be minimal with this property. Then by Corollary 1.4.4,

s1s2 . . . sj . . . s2s1 = s′1s
′
2 . . . s′i . . . s′2s

′
1

for some i and, hence,

sj = sj−1 . . . s1s
′
1 . . . s′i . . . s′1s1 . . . sj−1 .

All letters in the word on the right-hand side belong to I, so taking a
reduced subword, we get that sj ∈ I, contradicting the hypothesis.

Part (iii) follows from (ii). �

1.5 A characterization

The statement that the Exchange Property is fundamental in the combina-
torial theory of Coxeter groups can be made very precise: It characterizes
such groups! This is often a convenient way to prove that a given group is
a Coxeter group, as will be exemplified in the case of the symmetric groups
at the end of this section and for some other cases in Chapters 2 and 8.

Throughout this section we assume that W is an arbitrary group and
that S ⊆ W is a generating subset such that s2 = e for all s ∈ S. The
concepts of length ℓ(w), w ∈ W , and reduced expression s1s2 . . . sk, si ∈ S,
can be defined just as earlier. Note however that properties (i) and (v)
of Proposition 1.4.2 are no longer necessarily true; all we can say is that
|ℓ(sw)− ℓ(w)| ≤ 1, since ℓ(sw) = ℓ(w) is now also a possibility. To say that
such a pair (W, S) has the “Exchange Property” means the following:

Exchange Property. Let w = s1s2 . . . sk be a reduced expression and
s ∈ S. If ℓ(sw) ≤ ℓ(w), then sw = s1 . . . ŝi . . . sk for some i ∈ [k].

Similarly, we say that (W, S) has the “Deletion Property” if the statement
of Proposition 1.4.7 is valid.

Theorem 1.5.1 Let W be a group and S a set of generators of order 2.
Then the following are equivalent:

(i) (W, S) is a Coxeter system.

(ii) (W, S) has the Exchange Property.

(iii) (W, S) has the Deletion Property.

Proof. (i) ⇒ (ii) This is a special case of Theorem 1.4.3.

(ii) ⇒ (iii) The proof of Proposition 1.4.7 goes through to prove this
implication, even if (W, S) is not (a priori) a Coxeter system.

(iii) ⇒ (ii) Suppose ℓ(ss1 . . . sk) ≤ ℓ(s1 . . . sk) = k. Then, by the Deletion
Property, two letters can be deleted from ss1 . . . sk, giving a new expression
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for sw. If s is not one of these letters, then ss1 . . . sk = ss1 . . . ŝi . . . ŝj . . . sk,
would give ℓ(w) = ℓ(s1 . . . ŝi . . . ŝj . . . sk) < k, a contradiction. Hence,
s must be one of the deleted letters and we obtain sw = ss1 . . . sk =
s1 . . . ŝj . . . sk.

(ii) ⇒ (i) Let s1s2 . . . sr = e be a relation in a group with the Exchange
Property. Then, r must be even, say r = 2k; this follows from the already
established Deletion Property. So we can write our relation on the form

s1s2 . . . sk = s′1s
′
2 . . . s′k. (1.21)

We must now prove that (1.21) is a consequence of the pairwise relations
(ss′)m(s,s′) = e, where m(s, s′) is defined as the order of the product ss′

whenever this is finite. We frequently omit mention of the trivial relations
s2 = e, as we did when restating our relation on the form (1.21).

The proof is by induction on k, the case k = 1 being trivially correct.
For simplicity, we will say that a given relation is “fine” if it can be derived
from the relations (ss′)m(s,s′) = e. Thus, we now assume that all relations
of length less that 2k are fine.
Case 1: s1s2 . . . sk is not reduced. Then, there exists a position 1 ≤ i <
k such that si+1si+2 . . . sk is reduced but sisi+1si+2 . . . sk is not. By the
Exchange Property, we then have that

si+1si+2 . . . sk = sisi+1 . . . ŝj . . . sk

for some i < j ≤ k. This relation is of length < 2k and hence fine. Plugging
it into equation (1.21) yields

s1 . . . sisisi+1 . . . ŝj . . . sk = s′1s
′
2 . . . s′k .

Hence, the factor sisi can be deleted, leaving a relation of length < 2k.
Hence, equation (1.21) is fine.
Case 2: s1s2 . . . sk is reduced. We may assume that s1 	= s′1, since otherwise
equation (1.21) is trivially equivalent to a shorter relation. The Exchange
Property shows that

s1s2 . . . si = s′1s1 . . . si−1 (1.22)

for some 1 ≤ i ≤ k. From equations (1.21) and (1.22), we conclude that

s1 . . . ŝi . . . sk = s′2s
′
3 . . . s′k.

Being of length < 2k, this relation is fine, and hence so is

s′1s1 . . . ŝi . . . sk = s′1s
′
2 . . . s′k. (1.23)

If i < k, then also equation (1.22) is fine, and we are done since equation
(1.21) is obtained by substituting equation (1.22) in equation (1.23).

If i = k, we have to work a little harder. The relation (1.23), which we
know is fine, now reads

s′1s1 . . . sk−1 = s′1s
′
2 . . . s′k.
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Thus, it will suffice to show that

s′1s1 . . . sk−1 = s1s2 . . . sk (1.24)

is fine. Let equation (1.24) take the role of equation (1.21) and repeat the
whole argument of Case 2. If not settled along the way, the question will
now (when we again reach “stage (1.24)”) be reduced to whether

s′1s1 . . . sk−1 = s1s
′
1s1 . . . sk−2

is fine. Another iteration will then reduce to the relation

s1s
′
1s1 . . . sk−2 = s′1s1s

′
1s1 . . . sk−3,

and so on. Thus, in the end, the question will be reduced to the relation

s1s
′
1s1s

′
1 . . . = s′1s1s

′
1s1 . . . ,

which is, of course, implied by (s1s
′
1)

m(s1,s′
1) = e. �

The Exchange Property is stated above in its “left” version, since we are
acting with s on the left of w. There is, of course, a “right” version (replace
sw by ws), which is equivalent as a consequence of Theorem 1.5.1.

The rest of this section is devoted to a brief discussion of the symmetric
groups from a Coxeter group point of view. The elements of Sn are per-
mutations of the set [n]. See Appendix A3 for definitions and notational
conventions pertaining to permutations.

As a set of generators for Sn we take S = {s1, . . . , sn−1}, where si
def
=

(i, i + 1) for i = 1, . . . , n− 1. The effect of multiplying an element x ∈ Sn

on the right by the transposition si is that of interchanging the places of
x(i) and x(i+1) in the complete notation of x. For instance, 31524 · s3 =
31254. This makes it clear that s1, . . . , sn−1 generate Sn.

Define the inversion number of x ∈ Sn as the number of its inversions;
that is,

inv(x)
def
= card{(i, j) : i < j, x(i) > x(j)}. (1.25)

Note that

inv(xsi) =

{
inv(x) + 1 , if x(i) < x(i + 1),
inv(x)− 1 , if x(i) > x(i + 1).

(1.26)

Let ℓA(·) denote the length function of Sn with respect to S.

Proposition 1.5.2 Let x ∈ Sn. Then,

ℓA(x) = inv(x) . (1.27)

Proof. Since inv(e) = ℓA(e) = 0, relation (1.26) implies that inv(x) ≤
ℓA(x). The opposite inequality will be proved by induction on inv(x).

If inv(x) = 0, then x = 12 . . . n = e and equation (1.27) clearly holds.
So let x ∈ Sn and k ∈ N be such that inv(x) = k + 1. Then, x 	= e
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and hence there exists s ∈ S such that inv(x s) = k (otherwise relation
(1.26) would imply that x(1) < x(2) < . . . < x(n) and hence that x = e).
This, by the induction hypothesis, implies that ℓA(x s) ≤ k and hence that
ℓA(x) ≤ k + 1. Therefore, ℓA(x) ≤ inv(x). �

As a consequence we obtain the following combinatorial description of
the right descent set of an element of Sn. Note that this agrees with the
definition of right descent set of a permutation given in Appendix A3.4.

Proposition 1.5.3 Let x ∈ Sn. Then,

DR(x) = {si ∈ S : x(i) > x(i + 1)} . (1.28)

Proof. By the definitions and Proposition 1.5.2, we have that

DR(x) = {s ∈ S : inv(x s) < inv(x)} ,

so (1.28) follows from (1.26). �

In the classification of finite irreducible Coxeter groups, the Coxeter
system determined by the graph

s1 s2 s3 sn−2 sn−1

is denoted by An−1 (cf. Appendix A1).

Proposition 1.5.4 (Sn, S) is a Coxeter system of type An−1.

Proof. We show that the pair (Sn, S) has the Exchange Property (in
its “right” version), and this, by Theorem 1.5.1, implies that (Sn, S) is a
Coxeter system. Since

{
sisj = sjsi, if |i− j| ≥ 2
sisjsi = sjsisj , if |i− j| = 1,

(1.29)

one sees that the type of (Sn, S) is An−1.
Let i, i1, . . . , ip ∈ [n− 1] and suppose that

ℓA(si1 . . . sip
si) < ℓA(si1 . . . sip

) . (1.30)

We want to show that there exists a j ∈ [p] such that

si1 . . . sip
si = si1 . . . ŝij

. . . sip
. (1.31)

Let x = si1 . . . sip
, b = x(i), and a = x(i+1). By Proposition 1.5.2, we know

that relation (1.30) means that b > a. Therefore, a is to the left of b in the
complete notation of the identity, but is to the right of b in that of x. Hence,
there exists j ∈ [p] such that a is to the left of b in si1 . . . sij−1 but a is to
the right of b in si1 . . . sij

. Hence, the complete notation of si1 . . . ŝij
. . . sip

is the same as that of si1 . . . sip
, except that a and b are interchanged. This,

by the definitions of x, a, and b, implies equation (1.31). �

There are, of course, other ways of proving that (Sn, S) is a Coxeter
system of type An−1; see, for example, Exercises 1.5 and 4.2.
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Exercises

1. The relation bcbcacababcacbcabacbabacbc = e holds in the Coxeter
group

a b c

x

Determine x.

2. Show that there exist Coxeter systems (W, S) and (W ′, S′) with |S| 	=
|S′| such that W is isomorphic to W ′ as abstract groups.
[Hint: Consider the dihedral group of order 12.]

3. Let a1 = (12)(34), a2 = (12)(45), and a3 = (14)(23) be elements of
S5. Compute the orders of all products aiaj . Conclude the existence
of a surjective homomorphism of H3 onto the alternating subgroup
of S5. Then, prove that the alternating subgroups of H3 and S5 are
isomorphic as abstract groups.

4. Show with a direct and elementary argument that the Coxeter dia-
gram D of a finite irreducible Coxeter group must satisfy the following
graph-theoretic requirements:

(a) D is a tree.
(b) D has at most one vertex of degree 3 and none of higher degree.
(c) D has at most one marked (i.e., label ≥ 4) edge.
(d) If D has a degree 3 vertex, then all edges are unmarked.

[Hint: In the presence of any violation, exhibit an element of infinite
order.]

5. For n ≥ 2, let (An−1, {s̄1, . . . , s̄n−1}) be a Coxeter system of type
An−1 (so A1 ⊆ A2 ⊆ · · · ).
(a) Show that there is a unique group homomorphism f : An−1 →

Sn such that f(s̄i) = si, for i ∈ [n− 1], and that f is surjective.

(b) For x ∈ An−1 \ An−2, let p
def
= min{ℓ(y) : y ∈ An−2x}, and

s̄j1 . . . s̄jp
∈ An−2x. Show that (j1, . . . , jp) = (n − 1, n − 2, . . .,

n− p).
(c) Deduce from (b) that there are at most n right cosets of An−2

in An−1 and hence, by induction on n, that f is injective.

6. Identify the set of transpositions T = {(i, j) : 1 ≤ i < j ≤ n} in Sn

with the edges of the complete graph Kn.

(a) Show that A ⊆ T is a minimal generating set for Sn if and only
if A is a spanning tree of Kn.

(b) show that A ⊆ T is a system of Coxeter generators for Sn if and
only if the corresponding tree is linear.
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(c) Is it generally true for Coxeter groups (W, S) that every minimal
generating set A ⊆ T is of the same cardinality as S?
[Hint: Consider the dihedral groups.]

7. Prove the statement made in Example 1.2.6.

8. Prove the converse of Lemma 1.3.1: If ti 	= tj for all i 	= j, then
s1s2 . . . sk is reduced.

9. Complete the proof of Proposition 1.4.2.

10. Show that every t ∈ T has a palindromic reduced expression; that
is, one can write t = s1s2 . . . sk with k = ℓ(t) and si = sk−i for
1 ≤ i ≤ k, si ∈ S.

11. Show that u 	= w ⇒ TL(u) 	= TL(w), for all u, w ∈ W .

12. Prove that TR(uw) = TR(w) ∆ w−1TR(u)w.

13. Show that the following conditions on u, w ∈ W are equivalent:

(a) ℓ(uw) = ℓ(u) + ℓ(w),
(b) TR(u) ∩ TL(w) = ∅,
(c) TR(uw) = TR(w) ∪ w−1TR(u)w,
(d) TR(uw) = TR(w) ⊎ w−1TR(u)w.

14. Let W be a group and S a set of generators of W of order 2. Show that
(W, S) is a Coxeter system if and only if ℓ(sw) = ℓ(ws′) = ℓ(w)+1 ≥
ℓ(sws′) implies sw = ws′, for all s, s′ ∈ S and w ∈ W .

15. Let (W, S) be a Coxeter group with S = {s1, . . . , sn}. Show that the
alternating subgroup of W is generated by the elements {sisn}n−1

i=1 .

16. Let (W, S) be a Coxeter group, and let K1, . . . , Kk be the connected
components of the subgraph of W ’s Coxeter diagram obtained if all
evenly labeled edges (i.e., with m(s, s′) even) are removed. Further-
more, let A and C be the alternating subgroup and the commutator
subgroup of W , respectively, and let WKi

be the parabolic subgroup
generated by Ki (defined in Section 2.4). Show the following:

(a) Two generators s, s′ ∈ S are conjugate (as elements of W ) if and
only if they belong to the same component Ki.

(b) C ⊆ A.
(c) Ai ⊆ C, where Ai is the alternating subgroup of WKi

.
(d) C = A if and only if k = 1.

17. Preserve the notation from Exercise 16, and let ϕ : W → Zk
2 be the

mapping ϕ(w) = (ε1, . . . , εk) defined by letting εi be the (mod 2)-
number of occurences of elements from Ki in some expression w =
s1s2 . . . sq, sj ∈ S. Show the following:

(a) ϕ is well defined (not dependent on choice of expression
s1s2 . . . sq).
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(b) ϕ is a group homomorphism.
(c) C = Ker ϕ.

18. Let (W, S) be a Coxeter system, and let W ′ be a subgroup of W
generated by a some subset of T (such subgroups are called reflection
subgroups). Let

Σ(W ′)
def
= {t ∈ T ∩W ′ : ℓ(t′t) > ℓ(t), for all t′ ∈ T ∩W ′ \ {t}}.

Show that (W ′, Σ(W ′)) is a Coxeter system.

19. Let (W, S) be a Weyl group. Define a directed graph Γ with vertex
set W and edges w → sws for all w ∈ W and s ∈ S such that
ℓ(w) ≥ ℓ(sws). (In case of equal length, the edge will be directed
both ways.) Call w ∈ W conjugacy-reduced if ℓ(w′) = ℓ(w) for all w′

that can be reached on a directed path from w.

Let C be a conjugacy class of W , and put ℓC
def
= min{ℓ(w) : w ∈ C}.

(a) Show that if w ∈ C and w is conjugacy-reduced, then ℓ(w) = ℓC .
(b)∗ Is the same true for general Coxeter groups?

Notes

For the basics of combinatorial group theory, see, e.g., the books by Coxeter
and Moser [166] and Stillwell [518]. The equivalence of properties 2 and 3
in Section 1.1 is a special case of Dyck’s theorem [518, p. 45].

The study of Coxeter groups can be said to go back to Greek antiquity,
the symmetries and classification of regular polytopes being part of the the-
ory. Finite Coxeter groups in the sense of definition (1.3) were first studied
and classified by Coxeter [162, 163] and Witt [555]. The main references for
the core algebraic and geometric aspects of Coxeter groups are the books
by Bourbaki [79] and Humphreys [306]. The newcomer to this area is espe-
cially recommended to study [306], where a good and accessible account of
the classification and the various geometric realizations as reflection groups
is given.

The examples sketchily given in Section 1.2 unfortunately cannot convey
a fair idea of the immense mathematical territory where Coxeter groups
arise. More information can be found in the books by Billey and Lakshmibai
[47], Brown [106], Carter [110, 111], Fulton [248], Hiller [295], Humphreys
[304, 305], Kac [317], Kumar [334], McMullen and Schulte [396], and Tits
[538] and the papers by Hazewinkel et al. [289] and Vinberg [546, 547].

The permutation representation as a tool for quick access to the ex-
change property appears in Bourbaki [79]. The strong exchange property
was introduced by Verma [545]; it can also be found somewhat earlier in
geometric form (for Coxeter complexes) in the work of Tits [534]. The fact
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that Coxeter groups are characterized by the exchange property appears
to be due to Matsumoto [392].

Exercise 14 is from Deodhar [182], where one can also find several
characterizations of Coxeter systems.

Exercise 18. See Deodhar [185] and Dyer [202].
Exercise 19(a). See Geck and Pfeiffer [261]. A positive answer to part (b)

has been conjectured by A. Cohen. See also Gill [266].



2
Bruhat order

One of the most remarkable aspects of Coxeter groups, from a combinatorial
point of view, is the crucial role that is played in their theory by a certain
partial order structure. This partial order arises in a multitude of ways in
algebra and geometry — for instance, from cell decompositions of certain
varieties.

Although order structure is used in some other parts of algebra, the role
of Bruhat order for the study of Coxeter groups, and the deep combinatorial
and geometric properties of this order relation, are unique. In this chapter
we introduce Bruhat order and derive its basic combinatorial properties.

2.1 Definition and first examples

Let (W, S) be a Coxeter system and T = {wsw−1 : w ∈ W, s ∈ S} its set
of reflections. The poset terminology that we use is reviewed in Appendix
A2.2.

Definition 2.1.1 Let u, w ∈ W . Then

(i) u
t→ w means that u−1w = t ∈ T and ℓ(u) < ℓ(w).

(ii) u → w means that u
t→ w for some t ∈ T .

(iii) u ≤ w means that there exist wi ∈ W such that

u = u0 → u1 → · · · → uk−1 → uk = w.
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The Bruhat graph is the directed graph whose nodes are the elements of W
and whose edges are given by (ii). Bruhat order is the partial order relation
on the set W defined by (iii).

The following observations are immediate:

(i) u < w implies ℓ(u) < ℓ(w).

(ii) u < ut ⇔ ℓ(u) < ℓ(ut), for all u ∈ W and t ∈ T .

(iii) The identity element e satisfies e ≤ w for all w ∈ W (any reduced de-
composition w = s1 . . . sq induces e → s1 → s1s2 → · · · → s1 . . . sq =
w).

Since Bruhat order is the transitive closure of the primitive relations u
t→

ut, it might seem at this stage that the concept favors multiplication on
the right-hand side. However, this impression is false; see Exercise 1.

Example 2.1.2 Consider the dihedral group I2(4) ∼= B2 with Coxeter
graph

a b

4

Then, T = {a, b, aba, bab} and the group has the following diagram under
Bruhat order:

a b

ab ba

aba bab

abab = baba

e

Figure 2.1. Bruhat order of B2.

To obtain the Bruhat graph of B2, direct all edges of Figure 2.1 upward
and add the edges e → aba, e → bab, a → abab, and b → baba (cf. Figure
8.3). �

Bruhat order of a general dihedral group I2(m) has the same structure:
a graded poset of length m with two elements on each rank level except the
top and bottom, and with all order relations between successive rank levels.
Bruhat order of the symmetric groups is discussed later in this section and
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that of Bn and several other Coxeter groups in Chapter 8. Figure 2.2 is
the diagram of B3. (The pattern of solid and dashed/dotted edges will be
explained following Corollary 2.4.5.)

Figure 2.2. Bruhat order of B3.

Example 2.1.3 Inclusion order of Bruhat cells. Here we sketch the
algebraic–geometric origin of Bruhat order in a central case — that of
cell decompositions of flag manifolds.

Let G = GLn(C), and let B be the subgroup of upper-triangular ma-
trices. It turns out that the quotient G/B has the structure of a smooth
projective algebraic variety, called the flag variety. Because of the Bruhat
decomposition (see Example 1.2.11), we have an induced decomposition

G/B = ⊎w∈W BwB/B, (2.1)

where W = Sn. The pieces Cw
def
= BwB/B of this decomposition are called

Bruhat cells (or Schubert cells). The decomposition (2.1) is actually a cell
decomposition in the sense of topology (a CW complex) and we may speak
of the topological closure Cw of a Bruhat cell. How are these closed cells
arranged? The elegant answer is

Cu ⊆ Cw ⇔ u ≤ w;
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that is, the combinatorial pattern of inclusion of Bruhat cells determines
Bruhat order on Sn.

This example is only the tip of an iceberg. Similar decompositions of
varieties and a multitude of refinements and variations are associated with
all finite and affine Weyl groups. �

In the rest of this introductory section, we discuss the special case of
Bruhat order of the symmetric group Sn in some detail. Recall from Chap-
ter 1 that Sn is a Coxeter group with respect to the generating set of
adjacent transpositions si = (i, i + 1). The reflection set T of Sn is the set
of all transpositions

T = {(a, b) : 1 ≤ a < b ≤ n},
as is immediately seen from the computation xsix

−1 = (x(i), x(i + 1)), for
x ∈ Sn.

Since reflections t in Sn are transpositions (a, b), and length equals the

inversion number (Proposition 1.5.2), the relation x
(a,b)−→ y here means that

one moves from the permutation x = x(1) . . . x(n) (in complete notation)
to the permutation y by transposing the places of x(a) and x(b), where
a < b and x(a) < x(b). So, for instance,

21543
(2,5)−→ 23541.

This describes the edges of the Bruhat graph of Sn. The Bruhat graph of
S3 is shown in Figure 2.3.

123

132 213

231 312

321

123

132 213

231 312

321

Figure 2.3. Bruhat order and Bruhat graph of S3.

Lemma 2.1.4 Let x, y ∈ Sn. Then, x is covered by y in Bruhat order if
and only if y = x · (a, b) for some a < b such that x(a) < x(b) and there
does not exist any c such that a < c < b, x(a) < x(c) < x(b).
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Proof. If y = x · (a, b) with the stated properties, then inv(y) =inv(x) + 1;
hence, we have a Bruhat covering. Suppose conversely that y = x · (a, b),
a < b, and inv(y) >inv(x). Then, x(a) < x(b). If x(a) < x(c) < x(b) for
some a < c < b, then x < x · (a, c) < y, so x < y is not a covering. �

Using Lemma 2.1.4, one can easily work out small cases, such as that of
n = 4 shown in Figure 2.4. However, for larger values of n, it is compu-

1234

1243 1324

13421423

1432

2134

2143
2314

23412413

2431

3124

3142
3214

3241
3412

3421

4123

4132
4213

42314312

4321

Figure 2.4. Bruhat order of S4.

tationally hard to see from the definition (or from Lemma 2.1.4) whether
two permutations are comparable in Bruhat order. For example,

are x = 368475912 and y = 694287531 comparable? (2.2)

Fortunately, there exist effective criteria. We now present one such rule; for
another one see Theorem 2.6.3.

For x ∈ Sn, let

x[i, j]
def
= |{a ∈ [i] : x(a) ≥ j}| (2.3)

for i, j = 1, . . . , n. One may interpret this function as follows. Represent
the permutation x by placing dots at the points with coordinates (a, x(a))
in the plane, for 1 ≤ a ≤ n. Then, x[i, j] counts the number of dots in the
northwest corner above the point with coordinates (i, j). So, for example,
if x = 31524, then x[1, 3] = 1, x[3, 3] = 2, and x[4, 2] = 3. See Figure 2.5.
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1

1

2

2

3

3

4

4

5

5

Figure 2.5. Illustration of x[4, 2] = 3.

Note that for any x ∈ Sn,

x[n, i] = n + 1− i and x[i, 1] = i (2.4)

for i = 1, . . . , n. Also, we have that

x[i, j]− x[k, j]− x[i, l] + x[k, l] = |{a ∈ [k + 1, i] : j ≤ x(a) < l}| (2.5)

for all 1 ≤ k ≤ i ≤ n and 1 ≤ j ≤ l ≤ n, as is easy to see from the
dot-counting interpretation.

Theorem 2.1.5 Let x, y ∈ Sn. Then, the following are equivalent:

(i) x ≤ y.

(ii) x[i, j] ≤ y[i, j], for all i, j ∈ [n].

Proof. Suppose that (i) holds. We may clearly assume that x → y. This
means that there exist 1 ≤ a < b ≤ n such that y = x · (a, b) and x(a) <
x(b). By definition (2.3), this implies that

y[i, j] =

{
x[i, j] + 1, if a ≤ i < b, x(a) < j ≤ x(b),
x[i, j], otherwise

(2.6)

and (ii) follows.

Assume now that (ii) holds. For brevity, let M(i, j)
def
= y[i, j]− x[i, j] for

all i, j ∈ [n]. If M(i, j) = 0 for all i, j ∈ [n], then x = y. Let (a1, b1) ∈ [n]2

be such that M(a1, b1) > 0 and M(i, j) = 0 for all (i, j) ∈ [1, a1]× [b1, n] \
{(a1, b1)}. Then, y(a1) = b1 and x(a1) < b1. Now, let (a2, b2) ∈ [n]2 be
the bottom right corner of a maximal positive connected submatrix of M
having (a1, b1) as the upper left corner. It follows from equation (2.4) that
a2 < n and b2 > 1. Because of maximality, there exist c ∈ [a1, a2] and
d ∈ [b2, b1] such that M(c, b2 − 1) = 0 and M(a2 + 1, d) = 0. Hence,

M(a2 + 1, b2 − 1)−M(c, b2 − 1)−M(a2 + 1, d) + M(c, d) > 0. (2.7)

This, by (2.5), implies that

|{e ∈ [c + 1, a2 + 1] : y(e) ∈ [b2 − 1, d− 1]}| > 0.

So let (a0, b0) ∈ [c + 1, a2 + 1] × [b2 − 1, d − 1] be such that y(a0) = b0.
Then, a1 < a0 and y(a1) = b1 > b0 = y(a0). It follows that z → y, where
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z
def
= y · (a1, a0). However, x[i, j] ≤ z[i, j] for all i, j ∈ [n] by equation (2.6)

and our choice of (a2, b2). Hence, by induction, we get that x ≤ z and,
therefore, x ≤ y. �

Let us illustrate the preceding theorem by answering question (2.2). Since
in that example x[1, 6] < y[1, 6] and x[4, 3] > y[4, 3], we find that x and y
are incomparable in Bruhat order.

2.2 Basic properties

Throughout this section, let (W, S) be a Coxeter system. Here, we will
establish two fundamental properties of Bruhat order: the “subword prop-
erty” and the “chain property.” They are consequences of the following
lemma. By a subword of a word s1s2 . . . sq we mean a word of the form
si1si2 . . . sik

, where 1 ≤ i1 < · · · < ik ≤ q.

Lemma 2.2.1 For u, w ∈ W , u 	= w, let w = s1s2 . . . sq be reduced, and
suppose that some reduced expression for u is a subword of s1s2 . . . sq. Then,
there exists v ∈ W such that the following hold:

(i) v > u.

(ii) ℓ(v) = ℓ(u) + 1.

(iii) Some reduced expression for v is a subword of s1s2 . . . sq.

Proof. Of all reduced subword expressions

u = s1 . . . ŝi1 . . . ŝik
. . . sq, 1 ≤ i1 < · · · < ik ≤ q,

choose one such that ik is minimal. Let

t = sqsq−1 . . . sik
. . . sq−1sq.

Then, ut = s1 . . . ŝi1 . . . ŝik−1
. . . sik

. . . sq, so ℓ(ut) ≤ ℓ(u) + 1. We claim
that, in fact, ut > u. If so, v = ut satisfies (i) – (iii), and we are done.

Suppose on the contrary that ut < u. Then, by the Strong Exchange
Property, either

t = sqsq−1 . . . sp . . . sq−1sq, for some p > ik (2.8)

or

t = sq . . . ŝik
. . . ŝid

. . . sr . . . ŝid
. . . ŝik

. . . sq, for some r < ik, r 	= ij.
(2.9)

In the first case,

w = w t2

= (s1s2 . . . sq)(sq . . . sik
. . . sq)(sq . . . sp . . . sq)

= s1 . . . ŝik
. . . ŝp . . . sq,
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which contradicts ℓ(w) = q. Similarly, in the second case,

u = u t2

= (s1 . . . ŝi1 . . . ŝik
. . . sq)(sq . . . ŝik

. . . sr . . . ŝik
. . . sq)(sq . . . sik

. . . sq)

= s1 . . . ŝi1 . . . ŝr . . . sik
. . . sq,

which contradicts the minimality of ik.
[Remark: The notation in equation (2.9) and on the preceding line may
seem to indicate that r > i1; however, r < i1 is also possible as should be
clear from the context.] �

Theorem 2.2.2 (Subword Property) Let w = s1s2 . . . sq be a reduced
expression. Then,

u ≤ w ⇔ there exists a reduced expression

u = si1si2 . . . sik
, 1 ≤ i1 < . . . < ik ≤ q.

Proof. (⇒) Suppose that u = x0
t1→ x1

t2→ · · · tm→ xm = w. Then,
xm−1 = wtm = s1 . . . ŝi . . . sq for some i by the Strong Exchange Prop-
erty and, similarly, xm−2 = xm−1tm−1 = s1 . . . ŝi . . . ŝj . . . sq, and so on for
xm−3, xm−4, . . . . Finally, we obtain an expression for u that is a subword of
s1s2 . . . sq (with m deleted letters). By the Deletion Property (Proposition
1.4.7), this contains a reduced subword, which is the sought-after expres-
sion for u.
(⇐) This direction follows from Lemma 2.2.1 via induction on ℓ(w)−ℓ(u). �

Corollary 2.2.3 For u, w ∈ W , the following are equivalent:

(i) u ≤ w.

(ii) Every reduced expression for w has a subword that is a reduced
expression for u.

(iii) Some reduced expression for w has a subword that is a reduced
expression for u. �

Corollary 2.2.4 Bruhat intervals [u, w] are finite (even if S is infinite).
In fact, card[u, w] ≤ 2ℓ(w).

Proof. There are 2ℓ(w) subwords of any reduced expression for w, and there
is an injective map from [u, w] into the set of those subwords. �

Corollary 2.2.5 The mapping w �→ w−1 is an automorphism of Bruhat
order (i.e., u ≤ w ⇔ u−1 ≤ w−1).

Proof. The subword relation is unaffected by reversing all expressions.
(Remark: The result is also easy to derive directly from Definition 2.1.1,
see Exercise 1 ). �
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Theorem 2.2.6 (Chain Property) If u < w , there exists a chain u =
x0 < x1 < · · · < xk = w such that ℓ(xi) = ℓ(u) + i, for 1 ≤ i ≤ k.

Proof. This follows directly from Lemma 2.2.1 and the Subword Prop-
erty. �

We will use the symbol “u � w” or “w � u” to denote a covering in
Bruhat order. Thus, by the Chain Property, u � w means that u < w and
ℓ(u) + 1 = ℓ(w). The Chain Property shows that Bruhat order is a graded
poset whose rank function is the length function. The same is true of every
Bruhat interval [u, w].

The following simple technical tool, allowing Bruhat relations to be
“lifted” (see Figure 2.6), is very useful. In fact, it can be shown to
characterize Bruhat order (see Exercise 14).

Proposition 2.2.7 (Lifting Property) Suppose u < w and s ∈ DL(w)\
DL(u). Then, u ≤ sw and su ≤ w.

u

w

su

sw

Figure 2.6. The lifting property.

Proof. Let α ≺ β here denote the subword relation between a word β
and a subword α. Choose a reduced decomposition sw = s1s2 . . . sq. Then,
w = s s1s2 . . . sq is also reduced, and there exists a reduced subword

u = si1si2 . . . sik
≺ s s1s2 . . . sq.

Now, si1 	= s since su > u; hence,

si1si2 . . . sik
≺ s1s2 . . . sq ⇒ u ≤ sw

and

s si1si2 . . . sik
≺ ss1s2 . . . sq ⇒ su ≤ w.

�

The Lifting Property has the following corollaries about local configura-
tions in Bruhat order:

Corollary 2.2.8 (i) For s ∈ S, t ∈ T , s 	= t: w � sw, tw ⇒ sw, tw �

stw.
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(ii) For s, s′ ∈ S: w�sw, ws′ ⇒ either sw, ws′�sws′ or w = sws′. �

Recall that a poset P is said to be directed if for any u, w ∈ P , there
exists z ∈ P such that u, w ≤ z.

Proposition 2.2.9 Bruhat order is a directed poset.

Proof. We will use induction on ℓ(u) + ℓ(w), the ℓ(u) + ℓ(w) = 0 case
being trivially correct. Choose s ∈ S so that su < u (we may assume that
ℓ(u) > 0). By induction, there exists x ∈ W such that su, w ≤ x. By the
Lifting Property, sx < x ⇒ u ≤ x and sx > x ⇒ u ≤ sx. Hence, in the
first case, {u, w} has the upper bound x and, in the second case, it has the
upper bound sx. �

We end this section with a technical lemma that is needed later.

Lemma 2.2.10 Suppose that x < xt and y < ty, for x, y ∈ W , t ∈ T .
Then, xy < xty.

Proof. Suppose to the contrary that xy > xty = t′xy, where t′ = xtx−1.
Let x = s1 . . . sk and y = s′1 . . . s′q be reduced expressions. Then, by the
Strong Exchange Property,

t′xy =

⎧
⎨
⎩

a1 . . . âi . . . akb1 . . . bj . . . bq

or

a1 . . . ai . . . akb1 . . . b̂j . . . bq

for some i and j. In the first case, we then have

xt = t′x = a1 . . . âi . . . ak < a1 . . . ai . . . ak = x,

and in the second, xty = t′xy = xb1 . . . b̂j . . . bq, and hence

ty = b1 . . . b̂j . . . bq < b1 . . . bj . . . bq = y.

Thus, in both cases, we reach a contradiction. �

2.3 The finite case

If W is finite, directedness (Proposition 2.2.9) just says that W has a
greatest element. This unique element of maximal length is customarily
denoted “w0.” In this section, we derive some of its basic properties. We
also discuss automorphisms of Bruhat order.

Proposition 2.3.1 (i) If W is finite, there exists an element w0 ∈ W
such that w ≤ w0 for all w ∈ W .

(ii) Conversely, suppose that (W, S) has an element x such that DL(x) =
S. Then, W is finite and x = w0.
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Proof. Existence and uniqueness were already motivated.
For part (ii), we prove that u ≤ x for all u ∈ W by induction on length.

If u 	= e, we can find s ∈ S such that su < u. By induction, su ≤ x and
this can be lifted (Proposition 2.2.7) to u ≤ x. Thus, W = [e, x], which is
finite. �

Proposition 2.3.2 The top element w0 of a finite group has the following
properties:

(i) w2
0 = e.

(ii) ℓ(ww0) = ℓ(w0)− ℓ(w), for all w ∈ W .

(iii) TL(ww0) = T \ TL(w), for all w ∈ W .

(iv) ℓ(w0) = |T |.
Proof. (i) Since ℓ(w−1

0 ) = ℓ(w0), uniqueness of w0 implies that w−1
0 = w0.

(ii) The inequality ≥ follows from ℓ(w−1) + ℓ(ww0) ≥ ℓ(w0). For the
opposite inequality, we will use induction on ℓ(w0) − ℓ(w), starting with
w = w0. For w < w0, choose s ∈ S such that w < sw. This is possible
according to Proposition 2.3.1(ii). Then,

ℓ(ww0) ≤ ℓ(sww0) + 1 ≤ ℓ(w0)− ℓ(sw) + 1

= ℓ(w0)− (ℓ(w) + 1) + 1 = ℓ(w0)− ℓ(w).

(iii) A consequence of (ii) is that for every t ∈ T and w ∈ W :
tw < w ⇔ tww0 > ww0.

(iv) Putting w = e in equation (iii) and using Corollary 1.4.5, we get
ℓ(w0) = |TL(w0)| = |T |. �

Corollary 2.3.3 (i) ℓ(w0w) = ℓ(w0)− ℓ(w), for all w ∈ W .

(ii) ℓ(w0ww0) = ℓ(w), for all w ∈ W .

Proof. ℓ(w0w) = ℓ(w−1w0) = ℓ(w0)− ℓ(w−1) = ℓ(w0)− ℓ(w). �

Translation and conjugation by the top element w0 induce (anti)auto-
morphisms of Bruhat order, as can be seen from Proposition 2.3.2(ii) and
Corollary 2.3.3.

Proposition 2.3.4 For Bruhat order on a finite Coxeter group, the
following hold:

(i) w �→ ww0 and w �→ w0w are antiautomorphisms.

(ii) w �→ w0ww0 is an automorphism. �

The top element w0 in the symmetric group Sn is the “reversal permu-
tation” i �→ n + 1 − i. Hence, the effects of the mappings of Proposition
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2.3.4 in S5 are exemplified by

41523 −→

⎧
⎨
⎩

(ww0) 32514, reverse the places,
(w0w) 25143, reverse the values,
(w0ww0) 34152, reverse places and values.

The mapping x �→ w0xw0 is an inner group automorphism of W , and
w0Sw0 = S by Corollary 2.3.3(ii). Hence, x �→ w0xw0 preserves all Coxeter
group structure, in particular its action on S induces an automorphism of
the Coxeter diagram. Conversely, every such diagram automorphism (there
may be others) amounts to a renaming of the Coxeter generators preserving
all relations and therefore induces an automorphism of Bruhat order, also
in the infinite case.

Temporarily dropping the assumption of this section that W be finite,
let us ask for a description of all automorphisms of Bruhat order. For rank
2, the answer is nontypical and quite special (see Exercise 2). For rank > 2
however, the following result of van den Hombergh [298] and Waterhouse
[551] provides the answer.

Theorem 2.3.5 Suppose that (W, S) is irreducible and |S| ≥ 3. If ϕ :
W → W is an automorphism of Bruhat order and ϕ(s) = s for all s ∈ S,
then either ϕ(x) = x for all x ∈ W or ϕ(x) = x−1 for all x ∈ W . �

Corollary 2.3.6 If (W, S) is irreducible and |S| ≥ 3, then the automor-
phism group of Bruhat order is generated by the diagram automorphisms
and the mapping x �→ x−1. �

For instance, the diagram of type An, n ≥ 2, has a unique nontrivial
automorphism, and this, in fact, induces the mapping x �→ w0xw0. Hence,
the automorphism group of Bruhat order of the symmetric group Sn, n ≥ 4,
is the dihedral group of order 4 generated by x �→ w0xw0 and x �→ x−1.
In fact, it follows from Corollary 2.3.6 that the automorphism group of
Bruhat order of a finite irreducible Coxeter group of rank ≥ 3 (other than
D4) is always either Z2 (no nontrivial diagram automorphism) or Z2×Z2.

The mapping x �→ w0xw0 is an inner group automorphism of order ≤ 2
and also a Bruhat order automorphism. When is it the identity? Equiva-
lently, when does w0 belong to the center of W? For the answer, see Exercise
4.10.

2.4 Parabolic subgroups and quotients

For J ⊆ S, let WJ be the subgroup of W generated by the set J . Sub-
groups of Coxeter groups (W, S) of this form are called parabolic. In this
section, we will describe their basic combinatorial properties. Subscripts
“J” appended to familiar symbols will always refer to such a subgroup; for
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example, “ℓJ(·)” refers to the length function of WJ with respect to the
system J of involutory generators.

Proposition 2.4.1 (i) (WJ , J) is a Coxeter group.

(ii) ℓJ(w) = ℓ(w), for all w ∈ WJ .

(iii) WI ∩WJ = WI∩J .

(iv) 〈WI ∪WJ 〉 = WI∪J .

(v) WI = WJ ⇒ I = J .

Proof. Let w ∈ WJ . By definition, w = s1s2 . . . sq, for some si ∈ J , and
by the Deletion Condition, we may assume that this is reduced in W , and
hence in WJ . This proves (ii). Since ℓJ(w) = ℓ(w), the Exchange Property
holds in (WJ , J) as a special case of the Exchange Property in (W, S).
Hence, (i) follows from Theorem 1.5.1.

Statements (iii) and (v) are implied by Corollary 1.4.8, and (iv) is
elementary. �

It is a consequence that the parabolic subgroups form a sublattice of W ’s
subgroup lattice that is isomorphic to the Boolean lattice 2S . The Coxeter
diagram for (WJ , J) is obtained by removing all nodes in S \ J and their
incident edges from the diagram for (W, S).

If WJ is finite it has a top element (Proposition 2.3.2), which will be
denoted as follows:

w0(J)
def
= top element of WJ . (2.10)

Thus for instance, w0(∅) = e and w0(S) = w0 (if W is finite). One sees
from Corollary 1.4.8(ii) that w0(I) 	= w0(J) if I 	= J .

Parabolic subgroups have complete systems of combinatorially distin-
guished coset representatives; namely, each coset has a unique member of
shortest length. To discuss these and other systems of coset representatives,
we need the following concepts.

Definition 2.4.2 For I ⊆ J ⊆ S, let

DJ
I

def
= {w ∈ W : I ⊆ DR(w) ⊆ J},

W J def
= DS\J

∅ ,

DI
def
= DI

I .

Sets of the form DJ
I are called (right) descent classes. The special descent

classes W J = {w ∈ W : ws > w for all s ∈ J} are called quotients for a
reason that will soon become clear.

Lemma 2.4.3 An element w belongs to W J if and only if no reduced
expression for w ends with a letter from J .
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Proof. This follows from Corollary 1.4.6. �

Proposition 2.4.4 Let J ⊆ S. Then, the following hold:

(i) Every w ∈ W has a unique factorization w = wJ · wJ such that
wJ ∈ W J and wJ ∈ WJ .

(ii) For this factorization, ℓ(w) = ℓ(wJ ) + ℓ(wJ ).

Proof. (Existence) Choose s1 ∈ J so that ws1 < w, if such s1 exists.
Continue choosing si ∈ J so that ws1 . . . si < ws1 . . . si−1 as long as such
si can be found. The process must end after at most ℓ(w) steps. If it ends
with wk = ws1 . . . sk, then wks > wk for all s ∈ J ; that is, wk ∈ W J . Now,
let v = sksk−1 . . . s1 ∈ WJ . We have that w = wkv, and, by construction,
ℓ(w) = ℓ(wk) + k.

(Uniqueness) Suppose that w = uv = xy, with u, x ∈ W J and v, y ∈ WJ .
Let u = s1s2 . . . sk and vy−1 = s′1s

′
2 . . . s′q with the first expression reduced,

si ∈ S, s′j ∈ J . Then,

x = uvy−1 = s1s2 . . . sks′1s
′
2 . . . s′q.

From this, we can extract a reduced subword for x. It cannot end in some
letter s′j , since x ∈ W J . Hence, it is a subword of s1s2 . . . sk, and x ≤ u
follows. By symmetry, u ≤ x. So, u = x and v = y follow. �

The following statements are immediate consequences of Proposition
2.4.4:

Corollary 2.4.5 (i) Each left coset wWJ has a unique representative of
minimal length. The system of such minimal coset representatives is

W J = DS\J
∅ .

(ii) If WJ is finite, then each left coset wWJ has a unique representative
of maximal length. The system of such maximal coset representatives
is DS

J . �

Proposition 2.4.4 and its corollary are illustrated in Figure 2.2, where
W = B3 and WJ = B2. The six cosets of B2 are drawn with solid lines,
the eight translates of the six-element chain W J (including DS

J ) are drawn
with dashed lines, and the additional Bruhat edges are drawn with dotted
lines. Notice how the direct product poset W J×WJ (i.e., the poset induced
by the solid and dashed lines only) sits as a scaffolding inside the poset W .

Suppose that S = {s1, s2, . . . , sn}, and for i = 1, . . . , n, let

Qi = (W{s1,...,si})
{s1,...,si−1}.
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Thus, Q1 = W{s1} = {e, s1}, and Qi for i ≥ 2 is the system of minimal left
coset representatives of W{s1,...,si−1} in W{s1,...,si}. Repeated application of
Proposition 2.4.4 then gives the following:

Corollary 2.4.6 The product map Q1 × · · · ×Qn → W , defined by

(q1, q2, . . . , qn) �→ qnqn−1 · · · q1,

is a bijection satisfying ℓ(qnqn−1 · · · q1) = ℓ(q1) + ℓ(q2) + · · ·+ ℓ(qn). �

The preceding constructions can of course be mirrored. There is a
complete system

JW
def
= {w ∈ W : DL(w) ⊆ S \ J} = (W J)−1 (2.11)

of minimal length representatives of right cosets WJ w. Every w ∈ W can
be uniquely factorized,

w = wJ · Jw, where wJ ∈ WJ and Jw ∈ JW, (2.12)

and then

ℓ(w) = ℓ(wJ ) + ℓ(Jw).

Furthermore, an element w belongs to JW if and only if no reduced
expression for w begins with a letter from J .

Let us now exemplify the preceding in the case of the symmetric groups.
The parabolic subgroups of Sn are often called Young subgroups in the
literature. Since there is no essential loss of generality, we describe for
notational simplicity only the maximal parabolic subgroups and their quo-
tients. All permutations x ∈ Sn will be denoted here in complete notation
as x = x1x2 . . . xn where xi = x(i). For k ∈ [n− 1], let

S(k)
n

def
= {x ∈ Sn : x1 < · · · < xk and xk+1 < · · · < xn}. (2.13)

Recall our convention in the case of Sn to let si denote the adjacent
transposition (i, i + 1). The following is then clear from the definitions.

Lemma 2.4.7 Let J
def
= S \ {sk}. Then,

(Sn)J = Stab([k]) ∼= Sk × Sn−k and (Sn)J = S(k)
n . �

The reader will have no trouble figuring out what the corresponding
statements are for a general subset J ⊆ S. The following is an example that
should make the general situation clear. To simplify notation, we identify
si with i. Say n = 6 and J = {2, 3, 5}. Then, (Sn)J = {x ∈ S6 : x2 < x3 <
x4, x5 < x6}.

Again, let J = S \ {sk}. The map x �→ xJ from Sn to S
(k)
n is easy

to describe; namely, xJ is obtained from x by first rearranging the values
x1, . . . , xk so that they appear in increasing order in the places 1, . . . , k,
and then similarly for xk+1, . . . , xn.
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Again, the general case should be quite clear. We illustrate with an ex-
ample: say n = 7, x = 7125346, and J = {1, 2, 4, 6}. Then, xJ is obtained
from x by rearranging in increasing order the numbers {7, 1, 2}, {5, 3},
and {4, 6}; hence, xJ = 1273546. Similarly (see Exercise 4), Jx is obtained
by permuting the elements {1, 2, 3}, {4, 5}, and {6, 7} so that they form
increasing subsequences; hence, Jx = 6124357.

Bruhat order restricted to the quotient S
(k)
n has a simple description.

Proposition 2.4.8 For x, y ∈ S
(k)
n , the following are equivalent:

(i) x ≤ y.

(ii) xi ≤ yi, for 1 ≤ i ≤ k.

(iii) xi ≥ yi, for k + 1 ≤ i ≤ n.

Proof. (i) ⇒ (ii). This is an immediate consequence of Theorem 2.1.5.
(ii) ⇒ (i). Suppose that xj < yj for some 1 ≤ j ≤ k and xi = yi for all

j + 1 ≤ i ≤ k. Then, xj + 1 = xm for some m > k (since xj + 1 ≤ yj <
yj+1 = xj+1 if j < k). Let x′ = (xj , xj + 1) · x = x · (j, m). Then, x′

i ≤ yi

for 1 ≤ i ≤ k and x � x′, so we are done by induction on
∑k

i=1(yi − xi).
The equivalence of (ii) and (iii) is left to the reader. �

It is clear from definition (2.13) that an element x ∈ S
(k)
n is determined

by the set {x1, x2, . . . , xk}, so we can make the identification

S(k)
n ↔

(
[n]

k

)
.

Thus, Proposition 2.4.8 shows that the maximal parabolic quotient S
(k)
n

under Bruhat order can be identified with the family of k-subsets of [n]
under product order of k-tuples. This latter poset is sometimes denoted
L(k, n − k) in the literature. It is isomorphic to the lattice of Ferrers di-
agrams that fit into a k × (n − k) box, ordered by inclusion. The Bruhat

poset S
(3)
6

∼= L(3, 3) is depicted in Figure 2.7.

2.5 Bruhat order on quotients

Quotients W J (and, more generally, descent classes) have interesting poset
structure under Bruhat order. See Figures 2.7 and 2.8 for examples. The
latter depicts W J for (W, S) = E6 and J ⊂ S such that (WJ , J) = D5.

Much of the structure found in Bruhat order on all of W is inherited when
restricting to the subposet W J . This can to some extent be understood as
transfer of structure via the projection maps defined as follows.

Let J ⊆ S. Adhering to the notation used in Proposition 2.4.4, define a
mapping

P J : W → W J (2.14)
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{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 2, 6}

{1, 3, 4}

{1, 3, 5}

{1, 3, 6}{1, 4, 5}

{1, 4, 6}

{1, 5, 6}

{2, 3, 4}

{2, 3, 5}

{2, 3, 6}
{2, 4, 5}

{2, 4, 6}

{2, 5, 6}

{3, 4, 5}

{3, 4, 6}

{3, 5, 6}

{4, 5, 6}

Figure 2.7. The Bruhat poset S
(3)
6 .

by P J(w)
def
= wJ . In other words, the projection map P J sends w to its

minimal coset representative modulo WJ .

Proposition 2.5.1 The map P J is order-preserving.

Proof. Suppose that w1 ≤ w2 in W . We will show that wJ
1 ≤ wJ

2 by
induction on ℓ(w2).

To begin with, note that wJ
1 ≤ w1 ≤ w2. Hence, if wJ

2 = w2, we are
done. If not, then there exists some s ∈ J such that w2s < w2. The relation
wJ

1 ≤ w2 can then be lifted (Proposition 2.2.7) to wJ
1 ≤ w2s. By induction,

wJ
1 ≤ (w2s)

J = wJ
2 . �

Corollary 2.5.2 Suppose u ∈ W J , w ∈ W and u � w. Then, either w =
us, for some s ∈ J , or w ∈ W J .

Proof. If w 	∈ W J , then u ≤ P J (w) < w. �

Corollary 2.5.3 W J is a directed poset.

Proof. This follows from Propositions 2.2.9 and 2.5.1. �

In particular, if W J is finite, then it has a unique maximal element, which
will be denoted

wJ
0

def
= top element of W J . (2.15)
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Figure 2.8. The Bruhat poset E6 modulo D5.

Thus, in that case, w ≤ wJ
0 for all w ∈ W J .

If W is finite, we have the following relation between the various top
elements:

w0 = wJ
0 w0(J), ℓ(w0) = ℓ(wJ

0 ) + ℓ(w0(J)), (2.16)

or, equivalently, wJ
0 = (w0)

J and w0(J) = (w0)J . Since w0 and w0(J) are
involutions, it follows that wJ

0 is an involution if and only if w0 and w0(J)
commute. In particular,

wJ
0 is an involution if w0 ∈ center (W ). (2.17)

This sufficient (but not necessary) condition is often fulfilled; see Exercise
4.10.

Quotients in finite groups have a remarkable combinatorial symmetry.

Proposition 2.5.4 Let (W, S) be finite, J ⊆ S. Then,

α : x �→ w0xw0(J)

defines an antiautomorphism α : W J → W J of Bruhat order (that is,
x ≤ y ⇔ α(x) ≥ α(y)).
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Proof. We have that x ∈ W J ⇒ xw0(J) ∈ DS
J ⇒ w0xw0(J) ∈ W J ,

by Proposition 2.4.4 and Corollary 2.3.3. Furthermore, if x, y ∈ W J , then
x ≤ y ⇒ xw0(J) ≤ yw0(J) ⇒ w0xw0(J) ≥ w0yw0(J). �

The following is a stronger version of Theorem 2.2.6 (the J = ∅ case). It
can be further generalized to descent classes DJ

I (see Exercise 23).

Theorem 2.5.5 (Chain Property) If u < w in W J , then there exist
elements wi ∈ W J , ℓ(wi) = ℓ(u) + i, for 0 ≤ i ≤ k, such that u = w0 <
w1 < · · · < wk = w.

Proof. It suffices to construct w1; the rest follows via induction. Let w =
s1s2 . . . sq, and take a reduced subword expression

u = s1 . . . ŝi1 . . . ŝik
. . . sq, 1 ≤ i1 < · · · < ik ≤ q,

such that ik is minimal. Let w1 = s1 . . . ŝi1 . . . ŝik−1
. . . sik

. . . sq. The
proof of Lemma 2.2.1 shows that u � w1 ≤ w. It remains only to
check that w1 ∈ W J . If not, then, by Corollary 2.5.2, w1 = us, where
s = sqsq−1 . . . sik

. . . sq−1sq ∈ J . However, then ws = s1 . . . ŝik
. . . sq < w,

contradicting that w ∈ W J . �

Corollary 2.5.6 All maximal chains from u to w in W J have the same
length. �

We will later make use of the notation

[u, w]J
def
= [u, w] ∩W J (2.18)

for intervals in W J . The corollary shows that such intervals are graded
posets. In particular, if W J is finite, then W J = [e, wJ

0 ]J is a graded poset.

2.6 A criterion

Bruhat order on proper quotients W J is induced by the order on W . It is an
interesting and useful fact that the converse is also true: If one knows the
order relation of sufficiently many projections of two group elements onto
quotients, then one can deduce the original order relation of the elements.

Theorem 2.6.1 Let Ji ⊆ S, i ∈ E, be a family of subsets and I
def
=⋂

i∈E Ji. Let u ∈ W I and w ∈ W . Then,

u ≤ w ⇐⇒ P Ji(u) ≤ P Ji(w), for all i ∈ E.

Proof. The forward direction is known from Proposition 2.5.1. The back-
ward direction will be proved by induction on ℓ(w). If ℓ(w) = 0, then
P Ji(u) = e for all i ∈ E, which implies that u ∈ ⋂i∈E WJi

= WI . Since
WI ∩W I = {e}, we deduce that u = e, so u = w in this case.
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Assume now that ℓ(w) > 0 and choose s ∈ S such that sw < w. We
make the following claim:

Claim: P J(u) ≤ P J(w) ⇒
{

P J(su) ≤ P J(sw), if su < u,
P J(u) ≤ P J(sw), if su > u.

Here, J ⊆ S is arbitrary. Based on this claim, the proof can be concluded
as follows.

If su < u, then P Ji(su) ≤ P Ji(sw) for all i, which by induction (since
ℓ(sw) < ℓ(w) and su ∈ W I) implies that su < sw. However, this can be
lifted (Proposition 2.2.7) to u ≤ w. If on the other hand su > u, then
P Ji(u) ≤ P Ji(sw) for all i, which in the same way via induction gives
u ≤ sw < w.

So, it remains to prove the claim. For this, we need to have a handle on
what the relevant projections are in various cases. We begin by assembling
this information in statements (2.19) and (2.20). From now on, we write
xJ = P J(x), etc., to simplify notation.

sx < x and sxJ < xJ ⇒ (sx)J = sxJ . (2.19)

If sxJ had a reduced expression ending in a letter from J , then so would xJ ;
hence, sxJ ∈ W J . Furthermore, sx = sxJxJ with xJ ∈ WJ , and statement
(2.19) follows.

sx < x and sxJ > xJ ⇒ (sx)J = xJ . (2.20)

We have that sx = sxJxJ , but ℓ(sx) < ℓ(x) = ℓ(xJ ) + ℓ(xJ ) < ℓ(sxJ ) +
ℓ(xJ). Hence, sxJ 	∈ W J , so (by Corollary 2.5.2) sxJ = xJs′ for some
s′ ∈ J . We conclude that sx = sxJxJ = xJs′xJ with s′xJ ∈ WJ ; hence,
statement (2.20) holds.

We are now ready to prove the claim. There will be four cases, all tacitly
referring to statements (2.19) and (2.20).
Case 1: su < u, swJ < wJ . We have to prove that suJ ≤ swJ (if suJ < uJ)
or that uJ ≤ swJ (if suJ > uJ). This follows from uJ ≤ wJ by lifting.
Case 2: su < u, swJ > wJ . This time we want suJ ≤ wJ (if suJ < uJ) or
uJ ≤ wJ (if suJ > uJ), which follows from uJ ≤ wJ by transitivity.
Case 3: su > u, swJ < wJ . We want uJ ≤ swJ . Since ℓ(suJ) + ℓ(uJ) ≥
ℓ(suJuJ) = ℓ(su) > ℓ(u) = ℓ(uJ) + ℓ(uJ), it follows that suJ > uJ . Hence,
we get uJ ≤ swJ from uJ ≤ wJ by lifting.
Case 4: su > u, swJ > wJ . We want uJ ≤ wJ , as assumed. �

The quotients W J that are of greatest interest in connection with Theo-
rem 2.6.1 are those of maximal parabolic subgroups (i.e., for |J | = |S|−1).
These quotients are the smallest in size, and Bruhat order sometimes ad-
mits an easy explicit characterization when restricted to them (see, e.g.,
Proposition 2.4.8). Theorem 2.6.1 shows that the size of the right descent
set DR(u) determines how many projections of this kind are needed to
test for a Bruhat relation u ≤ w. Let us formally state this important
specialization.
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Corollary 2.6.2 Let u, w ∈ W . Then,

u ≤ w ⇐⇒ PS\{s}(u) ≤ PS\{s}(w), for all s ∈ DR(u). �

If (W, S) is finite, one gets via antiautomorphism the following alternative
criterion:

u ≤ w ⇐⇒ PS\{s}(w0w) ≤ PS\{s}(w0u), for all s ∈ S \DR(w). (2.21)

We now return to the topic of describing Bruhat order for the symmetric
groups Sn, continuing the discussion from Section 2.1. Recall that a combi-
natorial procedure for deciding Bruhat relations in Sn (the “dot criterion”)
was given in Theorem 2.1.5.

Theorem 2.6.1 implies, because of the simplicity of Bruhat order on quo-

tients S
(k)
n , a very efficient procedure for deciding when two permutations

are comparable. This is the so-called “tableau criterion,” in practice often
the most convenient algorithm.

Theorem 2.6.3 (Tableau Criterion) For x, y ∈ Sn, let xi,k be the i-
th element in the increasing rearrangement of x1, x2, . . . , xk, and similarly
define yi,k. Then, the following are equivalent:

(i) x ≤ y.

(ii) xi,k ≤ yi,k, for all k ∈ DR(x) and 1 ≤ i ≤ k.

(iii) xi,k ≤ yi,k, for all k ∈ [n− 1] \DR(y) and 1 ≤ i ≤ k.

Proof. Condition (ii) can, as shown by Proposition 2.4.8, be restated as
saying that PS\{k}(x) ≤ PS\{k}(y) for all k ∈ DR(x). Similarly, condition
(iii) says that PS\{k}(w0y) ≤ PS\{k}(w0x) for all k ∈ DR(w0y). The result
therefore follows from Corollary 2.6.2 and its alternative version (2.21). �

For example, let us check whether x = 368475912
?
< y = 694287531.

Since DR(x) = {3, 5, 7}, we generate the three-line arrays of increasing
rearrangements of initial segments of lengths 3, 5, and 7:

x y

3 4 5 6 7 8 9

3 4 6 7 8

3 6 8

2 4 5 6 7 8 9

2 4 6 8 9

4 6 9

Comparing entry by entry, we find two violations (3 > 2) in the upper
left corner, so we conclude that x 	< y. Since [8] \ DR(y) = {1, 4}, it is
quicker to use the alternative version (iii) of the criterion, which requires
comparing the smaller arrays

x y

3 4 6 8

3

2 4 6 9

6
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The fact that the arrays used are tableaux (increasing along rows and
columns) explains the name of the criterion. To reduce the size of a cal-
culation based on this criterion (the size of the tableaux), it may be
worth having a preprocessing step to determine which of the sets DR(x),
DL(x), [n − 1] \ DR(y), and [n − 1] \ DL(y) has the smallest size. If it is
DL(x) = DR(x−1), one uses that x ≤ y ⇔ x−1 ≤ y−1 and applies the
criterion to x−1 and y−1, and similarly for DL(y) = DR(y−1).

2.7 Interval structure

What can be said about the combinatorial structure of intervals [u, w] in
Bruhat order, and more generally of such intervals [u, w]J in quotients W J?
One result in this direction is Corollary 2.5.6, which implies that [u, w]J is
a graded poset with rank function ρ(x) = ℓ(x) − ℓ(u). In this section, we
will probe deeper into this question. It turns out that some of the results
are best expressed using concepts from topology.

Throughout the section, (W, S) denotes a general Coxeter system, J ⊆ S,
u, w ∈ W J , and u < w. We already introduced the notation [u, w]J =
[u, w]∩W J for the closed interval spanned by u and w in W J . We use the
corresponding notation for open intervals: (u, w)J = (u, w)∩W J . Also, we
write

ℓ(u, w)
def
= ℓ(w)− ℓ(u).

Let M(u, w) denote the set of maximal chains in the Bruhat interval
[u, w], and let w = s1s2 . . . sq be a reduced expression. We are go-
ing to associate with each m ∈ M(u, w) a string of integers λ(m) =
(λ1(m), λ2(m), . . . , λk(m)), where k = ℓ(u, w). The k-tuple λ(m) is
induced by the given reduced word as follows.

Suppose that m is the chain w = x0 � x1 � · · ·� xk = u. By the Strong
Exchange Property (see Corollary 1.4.4), x1 = x0t1 = s1s2 . . . ŝi . . . sq,
where the deleted generator si is uniquely determined. Let λ1(m) = i.
Now repeat the process. After f steps, we have reached xf , and after f
deletions, we have obtained a uniquely determined reduced subword ex-
pression xf = sj1sj2 . . . sjq−f

, 1 ≤ j1 < j2 < · · · < jq−f ≤ q. Again,
xf+1 = xf tf+1 = sj1sj2 . . . ŝji

. . . sjq−f
where the deleted generator sji

is
uniquely determined. Let λf+1(m) = ji. Hence, the idea is to label by the
positions of the generators which are successively deleted from the chosen
reduced expression for w as we go down the maximal chain m from w to
u.

Example 2.7.1 Let W be the dihedral group of order 6 on two generators
S = {a, b} (or equivalently, the symmetric group S3). Its Bruhat order is
depicted in Figure 2.9.
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a b

ab ba

aba = bab

e

Figure 2.9. Bruhat order of S3.

Choosing “aba” as reduced expression for the top element, the induced
labels of the four maximal chains are

λ(aba � ba � a � ∅) = (1, 2, 3),

λ(aba � ba � b � ∅) = (1, 3, 2),

λ(aba � ab � b � ∅) = (3, 1, 2),

λ(aba � ab � a � ∅) = (3, 2, 1). �

Lemma 2.7.2 There is at most one chain m ∈ M(u, v) for which λ(m)
is increasing (meaning that λ1(m) < λ2(m) < · · · < λk(m)).

Proof. The statement is clear for intervals of length 1, so we may in-
ductively suppose that it has been shown for length k − 1. Suppose that
there are two maximal chains m : w = x0 � x1 � · · · � xk = u
and m′ : w = x′

0 � x′
1 � · · · � x′

k = u with increasing la-
bels λ(m) = (i1, i2, . . . , ik) and λ(m′) = (j1, j2, . . . , jk). Then, u =
s1 . . . ŝi1 . . . ŝi2 . . . ŝik

. . . sq = s1 . . . ŝj1 . . . ŝj2 . . . ŝjk
. . . sq.

Assume that ik < jk, and let tjk
= sqsq−1 . . . sjk

. . . sq−1sq. Then,
x′

k−1 = utjk
= s1 . . . ŝi1 . . . ŝi2 . . . ŝik

. . . ŝjk
. . . sq, so ℓ(x′

k−1) ≤ ℓ(u) − 1,
contradicting that x′

k−1 � u. Hence, jk ≤ ik, and by symmetry, ik ≤ jk.
The equality ik = jk implies that xk−1 = x′

k−1. Since the interval [xk−1, w]
by the induction assumption does not admit two distinct maximal chains
with increasing labels, we conclude that m = m′. �

From this, we can deduce the structure of intervals of length 2.

Lemma 2.7.3 If ℓ(u, w) = 2, then [u, w] ∼= .

Proof. Among all reduced expressions for u which are subwords of
s1s2 . . . sq, choose u = s1 . . . ŝi . . . ŝj . . . sq so that i < j and j is mini-
mal. Let y = s1 . . . ŝi . . . sj . . . sq. The proof of Theorem 2.5.5 shows that
w � y � u, and the label (i, j) of this chain is increasing. It is thus, by
Lemma 2.7.2, the unique chain in [u, w] with increasing label.
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Now, mirror the situation, exchanging left and right (i.e., choose a re-
duced subword expression u = s1 . . . ŝm . . . ŝp . . . sq so that m < p and m
is maximal, and so on . . . ). By symmetry, the same argument produces a
chain in [u, w] with label (p, m), which is the unique one with decreasing
label. The label λ(m) = (λ1, λ2) of every m ∈M(u, w) is either increasing
or decreasing. Hence, there are exactly two such chains. �

Let MJ(u, w) denote the set of maximal chains in the quotient Bruhat
interval [u, w]J . Since MJ(u, w) ⊆ M(u, w), the injective mapping m �→
λ(m) restricts to MJ(u, w). We write (a1, . . . , ak) ≺ (b1, . . . , bk) for the
lexicographic order relation of distinct integer strings. This means that
ai < bi for the minimal index i such that ai 	= bi.

Lemma 2.7.4 (i) There is a unique chain m0 ∈ MJ(u, w) such that
λ(m0) is increasing.

(ii) λ(m0) ≺ λ(m) for all m 	= m0 in MJ(u, w).

Proof. A chain m with increasing λ(m) is constructed in Theorem 2.5.5,
and it is unique by Lemma 2.7.2. This proves part (i).

Part (ii) will be proved by induction on length. For the ℓ(u, w) = 2 case,
we refer to the proof of Lemma 2.7.3. It shows that there are at most
two maximal chains in [u, w]J , namely the increasing one with label (i, j)
and (perhaps) a decreasing one with label (p, m), where, by construction,
i < j ≤ p. Since (i, j) ≺ (p, m), we are done with this case.

Suppose that ℓ(u, w) > 2, and let m : w = x0 � x1 � · · · � xk = u be the
maximal chain in [u, w]J whose label λ(m) = (λ1(m), . . . , λk(m)) is lexico-
graphically minimal. We want to show that λ(m) is increasing. The simple
key observation is as follows (with the labelings induced by the reduced
expressions w = s1s2 . . . sq and x1 = s1s2 . . . ŝλ1(m) . . . sq, respectively):

• The chain w = x0 � x1 � · · · � xk−1 has lexicographically minimal
label in the interval [xk−1, w]J .

• The chain x1 � x2 � · · · � xk = u has lexicographically minimal
label in the interval [u, x1]

J .

Hence, by induction, the two strings

(λ1(m), . . . , λk−1(m)) and (λ2(m), . . . , λk(m))

are increasing. Since they overlap, we obtain that λ(m) = (λ1(m), . . . , λk(m))
is increasing. �

We now discuss the order complex ∆((u, w)J ), whose faces are the chains
of the open interval (u, w)J . By Corollary 2.5.6, this complex is pure
(ℓ(u, w) − 2)-dimensional. See Appendices A2.3 and A2.4 for all relevant
definitions, results, and references concerning these notions and the con-
cept of shellability. The following result provides the main technical tool of
this section.
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Theorem 2.7.5 The order complex of (u, w)J is shellable.

Proof. It is notationally more convenient to prove the statement for the
order complex of the closed interval [u, w]J , whose facets are the maximal
chains in MJ(u, w). Since ∆([u, w]J ) is the double cone over ∆((u, w)J )
(with cone points u and w), shellability for one is equivalent to shellability
of the other; see statement (A2.4).

For m′,m ∈ MJ(u, w), define m′ ≺ m to mean that λ(m′) ≺ λ(m).
Thus, we are letting the lexicographic order of labels λ(m) induce a linear
order on the set MJ(u, w) (i.e., on the set of facets of ∆([u, w]J )). We
will show that this is a shelling order. We have to prove (cf. Definition
A2.4.1) that if m′ ≺ m, then there exists k ∈ MJ(u, w) such that k ≺ m,
m′ ∩m ⊆ k ∩m, and |k ∩m| = |m| − 1.

Consider two maximal chains m : w = x0 � x1 � · · · � xk = u and
m′ : w = x′

0 � x′
1 � · · · � x′

k = u, and suppose that m′ ≺ m. Let d be
the greatest integer such that xi = x′

i for i = 0, 1, . . . , d, and let g be the
least integer such that g > d and xg = x′

g . Then, g − d ≥ 2, and d < i < g
implies that xi 	= x′

i.
Now, focus attention on the subinterval [xg, xd]

J and the labeling of its
maximal chains that is induced by the reduced word for xd that one gets
by following the chain w = x0 � x1 � · · · � xd (or, equivalently, the
chain w = x′

0 � x′
1 � · · · � x′

d) and making the corresponding deletions
in the given reduced expression w = s1s2 . . . sq. (To be precise, the letters
sλi(m) for i = 1, . . . , d are the deleted ones in the reduced subword for xd.)

The chain xd � xd+1 � · · · � xg cannot be the unique maximal chain of
[xg, xd]

J with increasing label, because then the property stated in Lemma
2.7.4 would force λ(m) ≺ λ(m′), contrary to the assumption that m′ ≺ m.
Consequently, the label λ(m) must have a descent λe(m) > λe+1(m) for
some e with d < e < g. Then, in the sub-subinterval [xe+1, xe−1]

J , with its
induced labeling of maximal chains, the chain xe−1 � xe � xe+1 has a
decreasing label. So, again by Lemma 2.7.4, there is a chain xe−1 � y �

xe+1 whose label is increasing and comes earlier in lexicographic order. If we
define k to be the chain w � x1 � · · · � xe−1 � y � xe+1 � xe+2 � · · · � u,
it follows that λ(k) ≺ λ(m). Furthermore, the construction shows that
k ∩m = m− {we} ⊇ m′ ∩m. �

Corollary 2.7.6 The order complex of (u, w)J is Cohen-Macaulay.

A closed interval [u, w]J in the quotient poset W J is said to be full if
[u, w]J = [u, w], and similarly for open intervals.

Theorem 2.7.7 The order complex of (u, w)J is PL homeomorphic to

(i) the sphere Sℓ(u,w)−2, if (u, w)J is full;

(ii) the ball Bℓ(u,w)−2, otherwise.
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Proof. The complex ∆
(
(u, w)J

)
is pure (ℓ(u, w) − 2)-dimensional, and

Lemma 2.7.3 implies that it is thin if (u, w)J is full and subthin otherwise.
Hence, Theorem 2.7.5 and Fact A2.4.3 force the conclusion. �

The theorem implies the following characterization of full intervals of
length 3. Call a poset a k-crown if it is isomorphic to the poset depicted in
Figure 2.10. For instance, Bruhat order of S3 is a 2-crown; see Figure 2.9.

x1 x2 x3 xk

y1 y2 y3 yk

Figure 2.10. A k-crown.

Corollary 2.7.8 Suppose that ℓ(u, w) = 3. Then, the closed interval [u, w]
is a k-crown, for some k ≥ 2.

Proof. The order complex of (u, w) triangulates the circle S1. The k-crown
clearly has the only possible isomorphism type. �

The length 3 intervals in Bruhat order of S4 provide examples of 2-, 3-,
and 4-crowns; see Figure 2.4. It is a nontrivial fact that these are the only
types that can occur in a finite Weyl group (H3 and H4 also contain 5-
crowns); see Section 2.8. In contrast, arbitrarily large k-crowns can exist in
infinite Coxeter groups, as we now show.

Example 2.7.9 Let (W, S) be given by the Coxeter diagram

a b

c

4

44

Let u = (abc)n−1 and w = (abc)n. Then, u < w, ℓ(u, w) = 3 and the
interval [u, w] is a 3n-crown. To see this, observe that each of the 3n letters
in the reduced word w = abc abc . . . abc can be deleted, creating a reduced
subword of length 3n − 1, which uniquely represents an element of [u, w].
�

Let µJ(u, w) denote the Möbius function computed on the quotient
Bruhat poset W J ; see Appendix A2.2 for the definition. Since, by Fact
A2.3.1, µJ (u, w) is the reduced Euler characteristic of ∆((u, w)J ), the
following is a direct consequence of Theorem 2.7.7.
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Corollary 2.7.10 µJ(u, w) =

{
(−1)ℓ(u,w), if [u, w]J is full,

0, otherwise.
�

Computing on the full Bruhat order of W , the corollary specializes to
say that µ(u, w) = (−1)ℓ(u,w) for all u ≤ w. From definition (A2.1), one
sees that this is equivalent to the following:

Corollary 2.7.11 In a closed interval [u, w], u < w, the number of
elements of odd length equals the number of elements of even length. �

The last two corollaries can, of course, be given direct combinatorial
proofs. If there exists some s ∈ DL(w) � DL(u), then the mapping x �→
sx matches the odd-length and the even-length elements of [u, w], as is
easily seen from Proposition 2.2.7. In general, a more detailed combinatorial
argument is needed; see Exercise 13.

Theorem 2.7.7 shows that the order complex of an open interval (u, w)
triangulates a sphere. This triangulation is actually the barycentric sub-
division of a more intrinsic cell decomposition of the sphere. We refer to
Appendix A2.5 for explanations of the concepts used.

Theorem 2.7.12 Suppose that ℓ(u, w) ≥ 2. Then, there exists a regu-
lar CW complex Γu,w, uniquely determined up to cellular homeomorphism,
whose cell poset is isomorphic to (u, w) and such that ‖Γu,w‖ ∼= Sℓ(u,w)−2.

Proof. Let X = ‖∆((u, w))‖, the geometric realization of the order com-
plex of (u, w). Then, by Theorem 2.7.7, X ∼= Sℓ(u,w)−2. For each z ∈ (u, w),
let σz = ‖∆((u, z])‖. This subspace of X is a cone (with cone point
z) over the sphere ‖∆((u, z))‖; hence, it is a ball. Our claim is that
Γu,w = {σz : z ∈ (u, w)} is a regular CW decomposition of X .

The two conditions of Definition A2.5.1 are easily verified. A point p ∈
X lies in the interior of σz if and only if the support of its barycentric
coordinates is a chain in which z is the greatest element. Hence, the interiors
◦
σz partition X . The boundary of σz is ‖∆((u, z))‖, which is the union of
σy for all u < y < z. �

Example 2.7.13 Consider an interval of length 3 (i.e., a k-crown as in
Figure 2.10). The CW complex Γu,w has vertices x1, . . . , xk and edges
y1, . . . , yk, forming the boundary of a k-gon. Its barycentric subdivision,
the order complex of (u, w), has vertices x1, . . . , xk and y1, . . . , yk and 2k
edges.

For another example, take the open interval (1234, 3241) in S4, shown to
the left in Figure 2.11. The corresponding regular CW decomposition of S2

appears to the right. It has three vertices, four edges, and three 2-cells (one
of the triangular 2-cells fills the outer region of the compactified plane). �
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1243 1324 2134

1342 2143 2314 3124

2341 3142 3214

a

a

b

b

c

c

α

α

β

β γγ

δ

δ

A

A BB

C

C

Figure 2.11. Regular CW interpretation of a Bruhat interval.

Theorem 2.7.12 has a combinatorial corollary concerning labelings of the
edges of the poset diagram of [u, w] by +1 and −1. Let

Cov[u, w]
def
= {(v, z) ∈ W 2 : u ≤ v � z ≤ w},

and say that a mapping sg : Cov[u, w] → {+1,−1} is balanced if for all
x < y in [u, w] such that ℓ(x, y) = 2:

sg(x � a)sg(a � y) + sg(x � b)sg(b � y) = 0, (2.22)

where a and b are the two “middle” elements of [x, y] (cf. Lemma 2.7.3).
Equivalently, the number of “(−1)”s assigned to the four edges of [x, y] is
odd.

For each i ∈ [ℓ(u), ℓ(w)], let Ci[u, w] be the free Abelian group generated
by the set of elements z ∈ [u, w] such that ℓ(z) = i. Assume that we have
a signature sg : Cov[u, w] → {+1,−1}, and for i ∈ [ℓ(u) + 1, ℓ(w)], define a
homomorphism di : Ci[u, w] → Ci−1[u, w] by linear extension of

di(z) =
∑

u≤x�z

sg(x, z)x.

Thus, we have a sequence of successive maps di:

0 → Cℓ(w)[u, w] → Cℓ(w)−1[u, w] → · · · → Cℓ(u)[u, w] → 0. (2.23)

One easily sees that sg is balanced if and only if Im di ⊆ Ker di−1, for all i.

Corollary 2.7.14 Suppose that ℓ(u, w) ≥ 2. Then, there exists a signature
sg : Cov[u, w] → {+1,−1} such that the following hold:

(i) sg is balanced.

(ii) Im di = Ker di−1, for all i ∈ [ℓ(u), ℓ(w)].

Proof. Extend the cell complex Γu,w by attaching a (ℓ(u, w) − 1)-cell via
some homeomorphism of its boundary onto ‖Γu,w‖. This gives a regular
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CW complex Γ̂u,w which decomposes the ball Bℓ(u,w)−1 and whose cell
poset is isomorphic to the half-open interval (u, w].

Now, consider the cellular chain complex of Γ̂u,w (see Appendix A2.5).
The incidence numbers of cells [σ : τ ] ∈ {+1,−1} can, via the poset iso-
morphism, be transferred to the coverings v � z such that u < v � z ≤ w.
This induces a partial labeling, which extends to a complete labeling
sg : Cov[u, w] → {+1,−1} by putting sg(u � z) = +1 for the “bottom
edges” (i.e., for all elements z that cover u in [u, w]). This signature sg is
balanced, since di−1 ◦ di = 0 in the cellular chain complex. Furthermore,
via transfer of structure, the chain complex (2.23) can be identified with

the cellular chain complex of Γ̂u,w. Therefore, part (ii) is a consequence of
the fact that reduced cellular homology of the ball Bℓ(u,w)−1 vanishes in all
dimensions. �

2.8 Complement: Short intervals

When studying Bruhat intervals of length m in finite Coxeter groups it is
sufficient to consider groups of rank m. The reason for this surprising fact is
made precise by the following theorem. Recall that a reflection subgroup is
a subgroup generated by some subset of the set T of reflections. It is known
(see Exercise 1.18) that such subgroups are themselves Coxeter groups.

Theorem 2.8.1 Suppose that (W, S) is finite, and let [u, w] be a Bruhat
interval in W with ℓ(u, w) = m. Then, there exists a reflection subgroup
(W ′, S′) of rank |S′| ≤ m and a Bruhat interval [u′, w′] in W ′ such that
[u, w] ∼= [u′, w′]. �

This theorem, due to Dyer [203], has the following consequence, since by
the classification there are only finitely many finite Coxeter groups of each
rank.

Corollary 2.8.2 Up to isomorphism, only finitely many posets of each
length m ≥ 0 occur as intervals in Bruhat order of finite Coxeter groups. �

What are the possible types? Or, at least, how many are there? Here
is what is known about this question for three important classes of finite
groups.

m = 2 m = 3 m = 4 m = 5

Symmetric groups 1 3 7 25
Simply-laced groups 1 3 10

Weyl groups 1 3 24

Number of length m intervals
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That all length 3 intervals in a finite Weyl group are k-crowns with
2 ≤ k ≤ 4 was shown by Janzen [316]. Since there are only two irreducible
Weyl groups of rank 3 (A3 and B3), and the rank 2 and reducible cases are
easy, this follows from Theorem 2.8.1 by checking A3 and B3. The group
H3 also contains some 5-crowns.

The classification of length 4 intervals, and for symmetric groups also
length 5, was done by Hultman [301, 302]. The 24 types of intervals that
occur for m = 4 are shown in Figure 2.12. The pictures show the regu-
lar CW decompositions of S2 that the respective intervals determine. For
instance, the poset diagram of an interval of type 1 is shown in Figure 2.11.

Referring to Figure 2.12, the following is also shown in [302]:

Only intervals of type 1–7 appear in the symmetric groups.
Only intervals of type 1–10 appear in the simply-laced groups.

It is an interesting fact that all 24 types of length four intervals are
represented within the group F4.

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19. 20.

21. 22. 23. 24.

Figure 2.12. All length 4 intervals that appear in Weyl groups.
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Exercises

1. Define “left Bruhat order” by exchanging “w = ut” for “w = tu” in
Definition 2.1.1. Show (without using the Subword Property) that it
coincides with the “right Bruhat order” of Definition 2.1.1.

2. Show that the automorphism group of Bruhat order of the dihedral
group I2(p) is isomorphic to Z

p−1
2 .

3. Let J1, . . . , Jk be the node sets of the connected components of the
Coxeter graph for (W, S). Show the following:

(a) W is (group-theoretically) isomorphic to the direct product of
the irreducible subgroups WJi

.
(b) Bruhat order on W is (order-theoretically) isomorphic to the

direct product of Bruhat order on the respective subgroups WJi
.

4. Let k ∈ [n − 1] and J = S \ {sk}, and use complete notation for
permutations.

(a) Show that J(Sn) consists of the shuffles of the two sequences
1, . . . , k and k + 1, . . . , n. [Remark: A shuffle of two sequences
is any linear order of their set-theoretic union in which the
elements of each sequence appear in their original order.]

(b) Show that the projection map x �→J x ∈ J(Sn) has the follow-
ing description: Jx is obtained from x by permuting the values
1, . . . , k so that they form an increasing subsequence on their
original set of places, and then similarly for k + 1, . . . , n.

5. Let x = 316725948. Compute xJ and Jx in S9, when J = {1, 7}, {1},
{7}, ∅, and {1, 2, 3, 4, 5, 6, 7, 8}, respectively.

6. Show that the set {x ∈ S2n : |x(i)− i| ≤ n} forms an interval in the
Bruhat order of S2n, and that this interval has 2n− 1 atoms and n2

coatoms.

7. For W = Sn, interpret concretely in terms of permutations the
bijections of Corollary 2.4.6 and Proposition 2.5.4.

8. Prove the following version of the tableau criterion for Sn. Choose
k ∈ [n] and let x, y ∈ Sn. Then, x ≤ y if and only if x1 . . . xi ≤ y1 . . . yi

for 1 ≤ i ≤ k−1 and xj . . . xn ≥ yj . . . yn for k +1 ≤ j ≤ n. Here, the
overline denotes increasing rearrangement, and comparison of strings
is componentwise.

9. Deduce Theorem 2.6.3 from Theorem 2.1.5 by direct combinatorial
reasoning.

10. Let W be finite and w ∈ W . Show the following:

(a) DL(ww0) = S \DL(w).
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(b) DL(w0w) = w0(S \DL(w))w0 = S \ w0DL(w)w0.
(c) DL(w0ww0) = w0DL(w)w0.
(d) TL(w0ww0) = w0TL(w)w0.

11. Let J ⊆ S and u, w ∈ WJ . Show that u ≤ w in WJ if and only if
u ≤ w in W .

12. Suppose u ≤ w, J ⊆ S, and that u < us and w > ws for all s ∈ J .
Show that the Bruhat interval [u, w] is a union of left cosets xWJ .

13. Prove Corollary 2.7.11 by a combinatorial matching argument.

14. For a Coxeter system (W, S) and a partial order ≤ on W , say that ≤
has the lifting property if for any u, w ∈ W and s ∈ S with ℓ(su) >
ℓ(u) and ℓ(sw) < ℓ(w), one has that the following are equivalent:

(i) su ≤ w
(ii) u ≤ w
(iii) u ≤ sw.

Show that any ordering on W with the lifting property must coincide
with the Bruhat ordering.

15. Let I, J ⊆ S.

(a) Show that every double coset WIwWJ , w ∈ W , has a unique
element of minimal length.

(b) Characterize the system IW J of such minimal double coset
representatives in terms of the quotients W I and W J .

16. Suppose that WJ is finite and define an upper projection operator

P
J

: W → DS
J by P

J
(w) = maximal length representative of the

coset wWJ . Show that the following hold:

(a) P
J

is order preserving.
(b) W J and DS

J are isomorphic as posets.
(c) Let u, w ∈ W and J = DR(w). Show that u ≤ w if and only if

P
J
(u) ≤ w.

17. Suppose that W is infinite and irreducible. Show that W J is infinite
for all proper subsets J ⊂ S.

18. Let si = (i, i+1), i = 1, . . . , n−1, be the standard Coxeter generators
of the symmetric group Sn, and let J ⊂ {s1, . . . , sn−1}. Show that
the following conditions are equivalent:

(a) (Sn)J is a lattice.
(b) (Sn)J is a distributive lattice.
(c) card(J) = n− 2.

19. Let (W, S) be an irreducible finite Coxeter group. Show that if W J

is a lattice, then it is in fact a distributive lattice and card(J) =
card(S)− 1.
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20. Suppose w ∈ W and J ⊆ S. Show that then [e, w] ∩WJ = [e, u], for
some u ∈ WJ .

21. Suppose that ℓ(xw) = ℓ(x) + ℓ(w) and ℓ(yw) = ℓ(y) + ℓ(w), for
x, y, w ∈ W . Show that xw < yw ⇔ x < y.

22. Let (W, S) be a Coxeter group and V ⊆ W . Let

W/V
def
= {w ∈ W : ℓ(wv) = ℓ(w) + ℓ(v) for all v ∈ V }.

Such subsets, called generalized quotients, are considered here as
posets under the induced Bruhat order. Show the following:

(a) Ordinary quotients: If J ⊆ S, then W/J = W J .
(b) W/V is a graded poset whose rank function is r(w) = ℓ(w).
(c) The order complex of any interval in W/V is shellable.
(d) If W is finite, then for every V ⊆ W , there exists an element

u ∈ W such that W/V = W/{u}.
23. Prove the following properties of descent classes DJ

I under Bruhat
order, I ⊆ J ⊆ S:

(a) DJ
I 	= ∅ if and only if WI is finite. Suppose in the following parts

that this is the case.
(b) DJ

I has a least element, namely w0(I).
(c) DJ

I is finite if and only if WS\J is finite, and if so, DJ
I has a

greatest element, namely w
S\J
0 .

(d) DJ
I is isomorphic (as a poset) to a generalized quotient, namely

DJ
I
∼= W/V, where V

def
= {w0(I) · s : s ∈ S \ J}.

(e) Conclude from part (d) and Exercise 22 that all maximal chains
in an interval [u, w]JI inDJ

I are of length equal to ℓ(w)−ℓ(u), that
the order complex of [u, w]JI is shellable, and that the expression
for the Möbius function in Corollary 2.7.10 generalizes.

24. The order dimension of a finite poset P , denoted odim(P ), is the least
integer d such that P is isomorphic to an induced subposet of Nd (with
product order). See [540] for a discussion of this concept. Consider
now the finite irreducible Coxeter groups under Bruhat order. Show
the following:

(a) odim(I2(m)) = 2, for all m ≥ 2,

(b) odim(An−1) = ⌊n2

4 ⌋, for all n ≥ 2,
(c) odim(Bn) =

(
n
2

)
+ 1, for all n ≥ 2,

(d) odim(H3) = 6,
(e) odim(H4) = 25,
(f) 14 ≤ odim(D6) ≤ 22,
(g) 14 ≤ odim(E6) ≤ 26,
(h) 10 ≤ odim(F4) ≤ 12,
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(i)* Determine the order dimension of Bruhat order in the remaining
open cases.

25. Show that Bruhat order determines the Bruhat graph (i.e., knowl-
edge of the edges that come from Bruhat order coverings determine
knowledge of all edges of the Bruhat graph).

26. For any subset A ⊆ W , let BG(A) denote the directed graph on the
vertex set A induced by the Bruhat graph of (W, S) (i.e., u → w is an
edge of BG(A) if and only if u → w in W and u, w ∈ A). Let J ⊆ S.
Show that the following hold:

(a) The Bruhat graph of (WJ , J) coincides with BG(WJ ).
(b) This graph is isomorphic to BG(wWJ ), for any w ∈ W .

27. Let (W, S) be a Coxeter group, and for any i ≥ 0, let Γi be the
(undirected) bipartite graph whose vertices are the group elements
of lengths i and i + 1 and whose edges are pairs x < y. Show that
Γi does not contain the complete bipartite graph K2,3 as an induced
subgraph.

28. Let (W, S) be a Coxeter group with |S| 	= ∞. Show that every an-
tichain in Bruhat order of W is finite. (Equivalently, every linear
extension of Bruhat order is well-ordered.)

29. Let x, y ∈ Sn, n ≥ 4. Say that the ordered pair (x, y) satisfies
“condition 4C” if the following hold:

(i) x and y (written in complete notation) agree in all but four
positions.

(ii) In these positions, we have the patterns

x = . . . a . . . c . . . b . . . d . . . ,

y = . . . c . . . d . . . a . . . b . . .

for some numbers 1 ≤ a < b < c < d ≤ n.
(iii) No number e with a < e < c appears in a position between a

and c in x.
(iv) No number f with a < f < d appears in a position between c

and b in x.
(v) No number g with b < g < d appears in a position between b

and d in x.

(a) Show that the interval [x, y] is a 4-crown if and only if either
(x, y) or (yw0, xw0) satisfies condition 4C.

(b) Show by a direct argument that k-crowns for k ≥ 5 cannot
occur in the symmetric groups.

30. Suppose that ℓ(u, w) = 3. Then, [u, w] is a 2-crown if and only if
u → w is an edge in the Bruhat graph.
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31. Show that both the finite group H3 and the affine group G̃2 contain
Bruhat intervals that are 5-crowns.

32. For any Coxeter group (W, S) and any k ≥ 0, show that
∑

ℓ(w)≤k

(−1)k−ℓ(w) ≥ 0,

with equality if and only if W is finite and k ≥ ℓ(w0).

33. Consider an open interval (u, w)J , ℓ(u, w) = k ≥ 2. Suppose that
E ⊆ [k − 1] and define the length-selected subposet

(u, w)J
E

def
=
{
x ∈ (u, w)J : ℓ(x)− ℓ(u) ∈ E

}
.

Show the following:

(a) The order complex of (u, w)J
E has the homotopy type of a wedge

of (|E| − 1)-dimensional spheres.
(b) Suppose that the interval is full, and let hE denote the number

of spheres in the wedge. Then,

(i) hE ≥ 1, and

(ii) hE = h[k−1]�E .

34. Let E be a finite set of positive integers and (W, S) a Coxeter group
that is either infinite or finite with ℓ(w0) > max E. Show that the
order complex of the induced Bruhat poset on {w ∈ W : ℓ(w) ∈ E}
has the homotopy type of a wedge of (|E| − 1)-dimensional spheres.

35. For a Coxeter group (W, S), let Invol(W ) denote the subposet of
involutions in W with induced Bruhat order. Figure 2.13 shows the
set of involutions as a subset of Bruhat order of S4 and Figure 2.14
shows the poset Invol(S4) by itself.
The absolute length of w ∈ W is defined by

aℓ(w)
def
= min{k : w = t1t2 · · · tk, for some t1, t2, . . . , tk ∈ T }.

Show the following:

(a) Invol(W ) is a graded poset (i.e., every interval is pure).
(b) The rank function of Invol(W ) is

r(w) =
ℓ(w) + aℓ(w)

2
.

(c) The Möbius function of Invol(W ) is

µ(u, w) = (−1)r(w)−r(u).

(d) If W is finite of type A, B, or D, then every interval [u, w]
is shellable. Conclude that the order complex of (u, w) is
homeomorphic to a sphere.
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1234

1243 1324

1342 1423

1432

2134

2143

2314

2341 2413

2431

3124

3142 3214

3241

3412

3421

4123

4132 4213

4231 4312

4321

Figure 2.13. Bruhat order of S4, with the involutions marked.

1234

1243 1324

1432

2134

2143 3214

3412 4231

4321

Figure 2.14. The induced subposet Invol(S4).

(e)∗ Prove that every interval [u, w] is shellable for general (W, S).

36.∗ The Robinson-Schensted correspondence specializes to a bijection
w ↔ (P, P ) between involutions w and standard Young tableaux P .
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Thus, Bruhat order on involutions induces a partial order on the set
SY Tn. For n = 4, see Figure 2.14. Characterize directly in terms of
the tableaux this partial order structure on SY Tn.

37.∗ Consider only Bruhat intervals occurring in finite Weyl groups. For
m = 1, 2, . . . , let a(m) be the number of isomorphism types of length
m intervals, b(m) the maximum number of atoms of a length m
interval, and c(m) the maximum cardinality of a length m inter-
val. Determine the order of growth (and, if possible, the generating
functions) of the sequences

{a(m)}∞m=1 = {1, 1, 3, 24, . . .},
{b(m)}∞m=1 = {1, 2, 4, 8, . . .},
{c(m)}∞m=1 = {2, 4, 10, 32, . . .}.

The same question can be asked about the corresponding numbers
for intervals occurring in the symmetric groups.

Notes

Bruhat order was first considered in a geometric context, namely as de-
scribing the containment ordering of Schubert varieties in flag manifolds,
Grassmannians, and other homogeneous spaces. In this form, Bruhat order
was first considered probably by Ehresmann [220] and later in more general
settings by Chevalley [134] and others. Since these beginnings, and because
of its intimate relationship with naturally induced cell decompositions of
certain varieties, Bruhat order has frequently figured in the vast literature
on the geometry and representation theory of groups and algebras of Lie
type.

The first step to a purely combinatorial study of Bruhat order seems to
have been taken by Verma, who conjectured [543], and later proved [544],
the formula for the Möbius function of a general Coxeter group (the J = ∅
case of Corollary 2.7.10). Further steps in this direction were later taken
by Bernstein, Gelfand, and Gelfand [35]; and by Deodhar [176].

Incidentally, Verma [543] also seems to be responsible for coining the
name “Bruhat order,” presumably because of its connection with Bruhat
decomposition of semisimple algebraic groups. The name has been ques-
tioned, and the historically more correct “Chevalley order” [72], or the
more neutral “strong order” [54], has been proposed. However, the name
“Bruhat order” seems by now to be firmly established and is undoubtedly
here to stay.

The subword property (Theorem 2.2.2) is due to Chevalley [134]. The
tableau criterion for the symmetric groups (Theorem 2.6.3) was known to
Ehresmann [220], whereas the general version (Theorem 2.6.1) is due to
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Deodhar [176]. Section 2.7 is based on the work of Björner and Wachs
[65, 55].

Exercise 13. See Verma [544].
Exercise 14. See Deodhar [176].
Exercise 17. See Deodhar [179].
Exercise 18 and 19. See Proctor [424]. This also contains the classification

of all cases in which W J is a lattice.
Exercise 20. See van den Hombergh [298].
Exercises 21, 22, and 23. See Björner and Wachs [67].
Exercise 24. See Reading [430].
Exercises 25 and 26. See Dyer [203].
Exercise 27. See Brenti, Caselli, and Marietti [100].
Exercise 28. See Higman [294] and Björner [54].
Exercise 29(a). See Kerov [325].
Exercise 30 follows from a more general result of Dyer; see [206].
Exercise 33. See Björner and Wachs [65].
Exercise 35. See Richardson and Springer [445], Incitti [309, 310, 311, 312]

and Hultman [303].



3
Weak order and reduced words

When working with a Coxeter group, one is sooner or later faced with prob-
lems concerning the combinatorics of reduced words. When do two such
words represent the same group element? How should one best choose “dis-
tinguished” reduced words to represent the group elements? Such questions
are discussed in this chapter and the following one.

We begin with a partial order structure on the group W that is intimately
related to the language of reduced words. This partial order is, in fact, a
semilattice (and in the finite case a lattice), which introduces additional
algebraic structure.

3.1 Weak order

Let (W, S) be a Coxeter group, and let u, w ∈ W .

Definition 3.1.1 (i) u ≤R w means that w = us1s2 . . . sk, for some
si ∈ S such that ℓ(us1s2 . . . si) = ℓ(u) + i, 0 ≤ i ≤ k.

(ii) u ≤L w means that w = sksk−1 . . . s1u, for some si ∈ S such that
ℓ(sisi−1 . . . s1u) = ℓ(u) + i, 0 ≤ i ≤ k.

This defines the right weak order and the left weak order, respectively.
Right and left weak order are distinct partial orderings of W ; however,
they are isomorphic via the map w �→ w−1. We henceforth often drop the
adjective “weak” and speak only of right order and left order. Also, results
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are usually stated for the right order only, although sometimes referred to
for left order.

It is immediate from the definition that these orderings are strictly
weaker than Bruhat order in the sense of having fewer relations:

u ≤R w or u ≤L w ⇒ u ≤ w. (3.1)

We have the convention that all partial order notation refers to Bruhat
order, unless given a subscript “R” or “L,” in which case it refers to the
respective weak orderings. For instance, [u, w]R = {x ∈ W : u ≤R x ≤R w}
is a right order interval, and u �L w denotes a covering in left order.

The following are a few immediate observations.

Proposition 3.1.2 (i) There is a one-to-one correspondence between
reduced decompositions of w and maximal chains in the interval
[e, w]R.

(ii) u ≤R w ⇐⇒ ℓ(u) + ℓ(u−1w) = ℓ(w).

(iii) If W is finite, then w ≤R w0 for all w ∈ W .

(iv) Weak order satisfies the “prefix property”:

u ≤R w ⇔ there exist reduced expressions

u = s1s2 . . . sk and w = s1s2 . . . sks′1s
′
2 . . . s′q.

(v) Weak order satisfies a “chain property” analogous to Theorem 2.2.6.

(vi) Suppose s ∈ DL(u) ∩DL(w). Then, u ≤R w ⇐⇒ su ≤R sw. �

Property (v) shows that W under weak order is a graded poset ranked
by the length function, and so is also every interval [u, w]R.

The diagrams of the dihedral groups I2(4) ∼= B2 and I2(∞) under right
order are shown in Figure 3.1.

a ab b

ab abba ba

aba ababab bab

abab = baba

e e

Figure 3.1. Weak order of dihedral groups.
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For the symmetric group Sn, we have that x ≤R y if and only if the per-
mutation y can be obtained from x via a sequence of adjacent transpositions
that at each step increases the number of inversions. For instance,

263154 — 263514 — 623514 — 623541 — 632541

shows that 263154 <R 632541. The right order of S4 is shown in Figure 3.2
and that of the group H3 is shown in Figure 3.3. (The labels, x, y, and z
in Figure 3.3 are explained in Exercise 1.)

1234

1243 1324

13421423

1432

2134

2143
2314

23412413

2431

3124

3142 3214

3241
3412

3421

4123

4132
4213

42314312

4321

Figure 3.2. Weak order of S4.

Let r(w) denote the number of reduced decompositions of an element
w ∈ W . Then,

r(w) =
∑

u�Rw

r(u), (3.2)

as is easily seen from Proposition 3.1.2(i). This recurrence can be used to
count reduced decompositions in small examples. For instance, computing
over the order diagram of Figure 3.2, we quickly find that r(w0) = 16 for
the top element w0 = 4321 of S4. In general, more sophisticated tools are
needed for counting reduced decompositions; we will return to this topic in
Chapter 7.

The following is a simple characterization of weak order in terms of sets
of associated reflections.
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x y z

Figure 3.3. Weak order of H3.

Proposition 3.1.3 u ≤R w ⇔ TL(u) ⊆ TL(w).

Proof. If u = s1s2 . . . sk and w = s1s2 . . . sksk+1 . . . sq are reduced, then

TL(u) = {s1s2 . . . si . . . s2s1 : 1 ≤ i ≤ k}
⊆ {s1s2 . . . si . . . s2s1 : 1 ≤ i ≤ q} = TL(w).

Conversely, suppose that u = s1s2 . . . sk is reduced. Let ti = s1s2 . . . si . . . s2s1,
1 ≤ i ≤ k, and assume that

TL(u) = {t1, t2, . . . , tk} ⊆ TL(w).

For 0 ≤ i ≤ k, consider the following claim:

C(i): there exists a reduced expression w = s1s2 . . . sis
′
1s

′
2 . . . s′q−i.

Clearly, C(0) is true. Now, suppose that C(i) is true, for some 0 ≤ i < k.
The fact that ti+1 ∈ TL(w) and that tj 	= ti+1 for j ≤ i (Lemma 1.3.1)
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shows that

ti+1 = s1 . . . sis
′
1 . . . s′m . . . s′1si . . . s1

for some 1 ≤ m ≤ q − i. Hence,

w = t2i+1w

= (s1 . . . si+1 . . . s1)(s1 . . . sis
′
1 . . . ŝ′m . . . s′q−i)

= s1 . . . si+1s
′
1 . . . ŝ′m . . . s′q−i,

which establishes C(i + 1). Hence, by induction, C(k) is true, as was to be
shown. �

Corollary 3.1.4 The mapping w �→ TL(w) provides an order-preserving
and rank-preserving embedding of W , as a poset under weak order, into the
lattice of all finite subsets of T . �

Weak order on a finite Coxeter group shares with Bruhat order the
symmetries induced by the top element.

Proposition 3.1.5 For weak order on a finite W , the following hold:

(i) w �→ w0w and w �→ ww0 are antiautomorphisms.

(ii) w �→ w0ww0 is an automorphism.

Proof. This follows from the length formulas in Proposition 2.3.2 and
its corollary and from the fact that if s ∈ S, then sw0 = w0s

′ for some
s′ ∈ S (a consequence of w0Sw0 = S). For instance, if w �R ws, then
w0ww0 �R w0wsw0, since ℓ(w0wsw0) = ℓ(ws) = ℓ(w) + 1 = ℓ(w0ww0) + 1
and w0wsw0 = w0ww0s

′. �

The combinatorial structure of intervals is a difficult and interesting ques-
tion for both Bruhat and weak order. We have already observed that an
interval [u, w]R is a graded poset. For weak order, there is a simple trans-
lation principle that shows that every interval is isomorphic to a lower
interval (i.e., an interval bounded below by the identity).

Proposition 3.1.6 If u ≤R w, then [u, w]R ∼= [e, u−1w]R.

Proof. We will show that the mapping x �→ ux is a poset isomorphism
[e, u−1w]R → [u, w]R. The basic properties of the length function give:

ℓ(w) = ℓ(u) + ℓ(u−1w)

(a)

≤ ℓ(u) + ℓ(x) + ℓ(x−1u−1w)
(b)

≥ ℓ(ux) + ℓ(x−1u−1w)
(c)

≥ ℓ(w).

Now,

x ≤R u−1w ⇔ equality in (a)

⇔ equality in (b) and (c)

⇔ u ≤R ux ≤R w.
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Hence, x ∈ [e, u−1w]R ⇔ ux ∈ [u, w]R, and if so, ℓ(ux) = ℓ(u) + ℓ(x). �

The Boolean embeddability of weak order (Corollary 3.1.4) has the
following consequences for interval structure.

Corollary 3.1.7 Let u ≤R w and m
def
= ℓ(u, w). Then, for 0 ≤ k ≤ m,

#{v ∈ [u, w]R : ℓ(v) = ℓ(u) + k} ≤
(

m

k

)
. �

Corollary 3.1.8 There are (up to isomorphism) only finitely many posets
of each length m ≥ 0 occurring as intervals in weak order of Coxeter
groups. �

3.2 The lattice property

An element z in a poset is said to be the meet (or, greatest lower bound) of
a subset A if (i) z ≤ y for all y ∈ A, and (ii) u ≤ y for all y ∈ A implies that
u ≤ z. The meet, if it exists, is clearly unique. It is then denoted

∧
A, or if

A = {x, y}, simply x ∧ y. A poset L for which every nonempty subset has
a meet is called a complete meet-semilattice. Such a poset has a minimum
element 0̂ =

∧
L.

Bruhat order is not a semilattice, as is clear from a glance at Figure 2.1.
It turns out, however, that weak order is. In the following, (W, S) is an
arbitrary Coxeter system.

Theorem 3.2.1 Weak order on W is a complete meet-semilattice.

Proof. Given x, y ∈ W we want to show that x ∧ y exists. This is done
by induction on ℓ(x). If ℓ(x) = 0 or there is no s ∈ S such that s ≤R x

and s ≤R y, then x ∧ y = e. So we may assume that ℓ(x) > 0 and E
def
=

[e, x]R ∩ [e, y]R 	= {e}. Pick an element z ∈ E of maximal length. We will
show that w ≤R z for all w ∈ E, implying that z = x ∧ y.

We first show that if s ∈ E ∩ S, then s ≤R z. Let z = s1 . . . sr, x =
s1 . . . srs

′
1 . . . s′p and y = s1 . . . srs

′′
1 . . . s′′q be reduced decompositions. If

s 	≤R z, then by the Exchange Property,

x = ss1 . . . srs
′
1 . . . ŝ′i . . . s′p and y = ss1 . . . srs

′′
1 . . . ŝj

′′ . . . s′′q

are reduced. So ss1 . . . sr ∈ E. However, ℓ(ss1 . . . sr) > ℓ(z), contradicting
the choice of z.

Now, let w ∈ E \ {e}. We make repeated use of Proposition 3.1.2(vi),
to which, for brevity, we here refer by (**). Let s ∈ DL(w). Then, s ∈
DL(x) ∩ DL(y), and, by what was shown above, also s ∈ DL(z). Since

ℓ(sx) < ℓ(x), by induction sx ∧ sy exists, say z′
def
= sx ∧ sy. By (**),

we have that sw ≤R z′ and sz ≤R z′. Also, since z′ ≤R sx, (**) shows
that sz′ ≤R x, and similarly sz′ ≤R y. Hence, sz′ ∈ E, implying that
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ℓ(sz′) ≤ ℓ(z). We have shown that, on the one hand, sz ≤R z′, and, on
the other, ℓ(sz) = ℓ(z)− 1 ≥ ℓ(sz′)− 1 = ℓ(z′). Hence, sz = z′. Therefore,
sw ≤R sz, which (again by (**)) implies w ≤R z, as was to be shown.

The existence of meets
∧

A for arbitrary nonempty subsets A ⊆ W
follows from the existence of pairwise meets and the descending chain con-
dition by a standard argument; namely let x0 ∈ A. If x0 ≤R y for all
y ∈ A, then

∧
A = x0. Otherwise, choose y0 ∈ A such that x0 	≤R y0 and

let x1 = x0∧y0 <R x0. If x1 ≤R y for all y ∈ A, then
∧

A = x1. Otherwise,
choose y1 ∈ A such that x1 	≤R y1 and let x2 = x1 ∧ y1 <R x1, and so
on. This creates a sequence x0, x1, x2, . . . that either terminates for some
i with

∧
A = xi, or else is strictly descending ℓ(x0) > ℓ(x1) > ℓ(x2) > · · · .

Since the latter is impossible, we are done. �

If W is infinite, then joins (least upper bounds) may fail to exist (see,
e.g., the infinite dihedral group in Figure 3.1). However, if a subset A ⊆ W
has some upper bound in weak order, then it follows from Theorem 3.2.1
that the join

∨
A exists (take the meet of the set of all upper bounds). If W

is finite, then there is the universal upper bound w0, so that both joins and
meets exist for arbitrary subsets. Thus, in the finite case, W is a lattice. In
fact, it has additional structure as a lattice.

A lattice L with bottom and top elements 0̂ and 1̂ is called an ortholattice
(see Birkhoff [52]) if there exists a map x �→ x⊥ on L such that the following
hold:

(α) x ∨ x⊥ = 1̂, x ∧ x⊥ = 0̂, for all x ∈ L.

(β) x ≤ y ⇒ x⊥ ≥ y⊥, for all x, y ∈ L.

(γ) x⊥⊥ = x, for all x ∈ L.

Corollary 3.2.2 Right order on a finite Coxeter group (W, S) together
with the translation x �→ xw0 gives W the structure of an ortholattice.

Proof. This follows from Propositions 2.3.2(iii) and 3.1.3. �

The following lemmas show some cases when join and meet can be
reasonably expressed in terms of multiplication.

Lemma 3.2.3 Let J ⊆ S. Then,
∨

J exists if and only if WJ is finite,
and if so,

∨
J = w0(J). In particular, if |WJ | = ∞, then J has no upper

bound.

Proof. If WJ is finite, then DL(w0(J)) = J shows, keeping Corollary
1.4.6 in mind, that w0(J) is an upper bound to the set J . We show that,
conversely, if J has an upper bound w, or equivalently if J ⊆ DL(w), then
WJ is finite and w0(J) ≤R w. Let Jw be the minimal representative of the
coset WJ w (see equation (2.12)), so that

w = wJ
Jw and ℓ(w) = ℓ(wJ ) + ℓ(Jw), wJ ∈ WJ . (3.3)



72 3. Weak order and reduced words

By assumption, for every s ∈ J we have

ℓ(swJ ) + ℓ(Jw) = ℓ(swJ
Jw) = ℓ(sw) < ℓ(w) = ℓ(wJ ) + ℓ(Jw).

Hence, J ⊆ DL(wJ ), which by Proposition 2.3.1(ii) implies that WJ is finite
with top element w0(J) = wJ . Equation (3.3) then shows that w0(J) ≤R

w. �

Lemma 3.2.4 Let w ∈ W , J ⊆ S with WJ finite.

(i) If w �R ws for all s ∈ J , then
∨{ws : s ∈ J} = ww0(J).

(ii) If ws �R w for all s ∈ J , then
∧{ws : s ∈ J} = ww0(J).

Proof. The conditions mean that w ∈ W J (minimal coset representatives)
and w ∈ DS

J (maximal coset representatives), respectively. Part (i) then
follows easily via Propositions 3.1.6 and 3.2.3. Part (ii) requires a few more
steps that we leave to the reader. �

The meet construction x ∧ y in right order endows the set of group
elements W with a new binary operation, different from its group multipli-
cation. We remind the reader (see, e.g., [52]) that a semilattice (L,∧) can
be characterized either as a partial order in which pairwise meets exist or,
equivalently, as an algebraic structure with a binary operation “∧” that is
commutative, associative, and idempotent. We have seen that the group
structure of a Coxeter group (W, S) determines the semilattice structure of
(W,∧). It is natural to ask: Does, conversely, the algebraic structure (W,∧)
determine the group structure? In other words, can Coxeter groups alter-
natively be thought of as algebraic systems in terms of the meet operation?
For example, say that we are given (1) the group multiplication table of W
(with the elements of S marked) and (2) the meet multiplication table of
W . Can the information in (1) be computed from the information in (2),
so that (1) and (2) provide completely equivalent information (not only up
to isomorphism)? We will show that this is true in essentially all cases of
interest.

Theorem 3.2.5 Let (W, S) be a Coxeter group. Then, the following two
conditions are equivalent:

(i) The group multiplication is uniquely determined by the (right order)
meet operation “∧.”

(ii) If ϕ : W → W is an automorphism of right order such that ϕ(s) = s
for all s ∈ S, then ϕ(w) = w for all w ∈ W .

Furthermore, both (i) and (ii) are implied by the following:

(iii) The ∞-labeled edges in W ’s Coxeter diagram are pairwise disjoint
(i.e., if m(s1, s2) = m(s′1, s

′
2) = ∞, then either {s1, s2} = {s′1, s′2} or

{s1, s2} ∩ {s′1, s′2} = ∅).
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Proof. (i) ⇔ (ii). Begin by looking at W as an abstract set. It is clear
that knowing the ∧-multiplication table on W is equivalent to knowing the
right order on W . Suppose that this information is given. The set S can be
recognized as the atoms of right order (the elements covering its bottom
element e). The pairwise joins s∨ s′ (s, s′ ∈ S) can also be recognized from
the order structure (when they exist), and we know from Lemma 3.2.3 that
s ∨ s′ = w0({s, s′}), so m(s, s′) = ℓ(s ∨ s′) can be determined. Hence, the
Coxeter matrix m of W is determined by right order.

Now, let (W ′, S) be the Coxeter group determined by m. So, we have
an isomorphism ϕ : W → W ′, which is the identity on the common subset
S. The multiplication table is known in W ′. Hence, the multiplication is
uniquely determined in W from the given data if and only if ϕ is unique.

(iii) ⇒ (ii). We will show that ϕ(w) = w for all w ∈ W by induction on
ℓ(w), the ℓ(w) = 1 case being assumed.

Suppose that u ∈ W is a minimal length exception, say ϕ(u) = v 	= u. If
u covers (at least) two elements, then since these are fixed, we would have
a contradiction to the lattice property:

u v
ϕ

Hence, we may assume that w �R u for a unique w.
Let a, b, c ∈ S be such that u = wa, v = wb and w >R wc:

u
v

w

uc

wc

a

b

c

c

uJ

uJw0(J)

Then, u <R uc due to the uniqueness of w. We may assume that m(a, c) 	=
∞; if not, then by assumption (iii), we have m(b, c) 	= ∞ and the argument
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can be pursued with v replacing u. Let J = {a, c} so that w0(J) = acaca . . .,
and decompose

u = uJ uJ , with uJ ∈ W J and uJ ∈ WJ .

We have that uJ
�R uJa, uJc, and by induction uJa and uJc are fixed

by ϕ. Since ϕ is a lattice automorphism, then also their join (by Lemma
3.2.4) uJw0(J) is fixed by ϕ. Then, u ≤R uJw0(J) implies v = ϕ(u) ≤R

ϕ(uJw0(J)) = uJw0(J). However, this would imply an equivalence of two
reduced expressions acaca . . . = bs1s2 . . . (following two chains from w to
uJw0(J) via u and via v), which is impossible by Corollary 1.4.8(ii). �

Corollary 3.2.6 If the diagram of (W, S) has pairwise disjoint ∞-labeled
edges, then the automorphism group of weak order is isomorphic to the
group of diagram automorphisms. �

That some restriction on the distribution of ∞-labeled edges is needed
in these results is shown by the universal groups. In the weak order of Un,
the segment above every atom is a complete (n − 1)-ary tree; the case of
n = 3 is shown in Figure 3.4.

Figure 3.4. Weak order of U3.

The lattice property makes it easy to determine the homotopy type of
intervals in weak order and its Möbius function µR(u, w). See Appendix
A2 for the relevant definitions.

Theorem 3.2.7 Suppose that u <R w and ℓ(u, w) ≥ 2. Then, the order
complex of the open interval (u, w)R is as follows:

(i) Homotopy equivalent to the sphere S|J|−2, if w = uw0(J) for some
J ⊆ S.

(ii) Contractible, otherwise.

Proof. By Proposition 3.1.6 we may assume that u = e. For each
x ∈ (e, w)R, let f(x) =

∨{s ∈ S : s ≤R x}. Lemma 3.2.3 shows that,
equivalently, f(x) = w0(DL(x)). Then, f is an order-preserving mapping
of (e, w)R into itself, and x ≥R f(x) = f2(x) for all x ∈ (e, w)R. Hence,
by Fact A2.3.2 and referring to order complexes, we have that (e, w)R is
homotopy equivalent to its image f((e, w)R).
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If f(w) <R w, then f((e, w)R) has a top element f(w); hence, its order
complex is a cone and thus contractible. If w = f(w) = w0(DL(w)), then
the mapping I �→ w0(I) gives an isomorphism from the poset of all proper

subsets of J
def
= DL(w) to the poset f((e, w)R). The order complex of the

latter is therefore isomorphic to the barycentric subdivision of the boundary
of a (|J | − 1)-simplex (i.e., a triangulation of the (|J | − 2)-sphere). �

Corollary 3.2.8

µR(u, w) =

{
(−1)|J| , if w = uw0(J) for some J ⊆ S;
0 , otherwise.

Proof. This follows since the Möbius function is the reduced Euler
characteristic of the order complex; see Fact A2.3.1. �

3.3 The word property

The problem of recognizing when two words in letters from the generat-
ing set S represent the same element in W (called the “word problem”)
has an algorithmic solution for any Coxeter group (W, S). In this section,
we describe an algorithm that solves the problem in theory but may be
unwieldy in practice. It is based on an important combinatorial fact that
we call the “word property.” More efficient alternative procedures exist for
dealing with the word problem, as will be discussed in Sections 3.4 and 4.3.

Let us go back to the definition of (W, S) in terms of its Coxeter matrix
m = (m(s, s′))s,s′∈S . For s, s′ ∈ S such that m(s, s′) is finite, denote by
αs,s′ the alternating word ss′ss′s . . . of length m(s, s′). Then, we have in
(W, S) the two defining types of relation:

ss = e , for all s ∈ S, (3.4)

αs,s′ = αs′,s , for all (s, s′) ∈ S2
fin. (3.5)

For instance, in H3 (the symmetry group of the icosahedron) with

diagram
a b c

5
we have the relations

aa = bb = cc = e

of the first kind, and

ababa = babab , ac = ca , bcb = cbc

of the second.
Operating on words in the free monoid S∗, let us call a nil-move the

deletion of a factor of the form ss, and a braid-move the replacement of
a factor αs,s′ by αs′,s. If a word β is changed to a word γ by either a nil-
move or a braid-move, we write β ∼ γ. For instance, the following shows a
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sequence of two nil-moves and two braid-moves in H3:

cbc acbabac ∼ cbac cbabac ∼ cb a b a bac ∼ cababa ac ∼ cababc.

It is clear that the image under the surjection (1.6) ϕ : S∗ → W is
unaffected by these kinds of move.

Although braid-moves are symmetric (the inverse of a braid-move is a
braid-move), nil-moves are not — they shorten the length of the word they
operate on and are therefore irreversible. It is a nontrivial fact, which will
now be shown, that if α, β ∈ S∗ with ϕ(α) = ϕ(β) and β is reduced, then α
can be transformed to β via some sequence of nil-moves and braid-moves.
In particular, if α and β are both reduced expressions, then braid-moves
suffice. Note that if we allowed reversible nil-moves ss ↔ ∅, then there
would be nothing to prove; the statement is then equivalent to the definition
of being a Coxeter group.

Theorem 3.3.1 (Word Property) Let (W, S) be a Coxeter group and
w ∈ W .

(i) Any expression s1s2 . . . sq for w can be transformed into a reduced
expression for w by a sequence of nil-moves and braid-moves.

(ii) Every two reduced expressions for w can be connected via a sequence
of braid-moves.

Proof. We begin by proving (ii). This will be done by induction on ℓ(w),
the result being clear if ℓ(w) ≤ 1. Assume that ℓ(w) > 1 and let

w = s s2 . . . sk = s′s′2 . . . s′k

be two reduced expressions. If s = s′, then, by induction, s2 . . . sk can be
changed into s′2 . . . s′k using braid-moves, and we are done.

So, assume that s 	= s′. We have that s, s′ ≤R w, so using the lattice
property of weak order,

ϕ(αs′,s) = ϕ(αs,s′) = w0({s, s′}) = s ∨ s′ ≤R w.

This means there exists a word β ∈ S∗ such that w = ϕ(αs,s′β) = ϕ(αs′,sβ),
and αs,s′β and αs′,sβ are reduced. Then, we have

ss2 . . . sk ∼ αs,s′β ∼ αs′,sβ ∼ s′s′2 . . . s′k,

where the first and last equivalences are given by sequences of braid-moves
(by induction, since the first letter is in each case the same) and the middle
equivalence is the braid-move αs,s′ → αs′,s. The argument is easily visu-
alized in terms of maximal chains in the weak order interval [e, w]R; see
Figure 3.5.

Next, (i) will be shown by induction on q, for all q ≥ ℓ(w). Assume
that q > ℓ(w), and let i be minimal such that si+1si+2 . . . sq is reduced.
Then, by the Exchange Property, si+1si+2 . . . sq = sisi+1 . . . ŝj . . . sq, for
some i + 1 ≤ j ≤ q, and by part (ii), this equality of reduced expressions
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e

w

w0({s, s′})

αs,s′
αs′,s

β

s

s2

s3

sk

s′

s′
2

s′
3

s′
k

Figure 3.5. Illustration to the proof of Theorem 3.3.1.

is achieved by some sequence of braid-moves. Hence, a reduction of the
length q of the given expression can be achieved by braid-moves followed
by a nil-move as follows:

s1 . . . sisi+1 . . . sq ∼ s1 . . . sisisi+1 . . . ŝj . . . sq ∼ s1 . . . ŝi . . . ŝj . . . sq.

�

The result suggests the following finite algorithm for solving the word
problem. Given a word α ∈ S∗, let RD(α) be the set of reduced descen-
dants, reachable by nil-moves and braid-moves from α. This is a finite
set, computable in a finite number of steps. Then, as shown by Theo-
rem 3.3.1, α, β ∈ S∗ represent the same group element if and only if
RD(α) ∩ RD(β) 	= ∅. Other methods for solving the word problem are
discussed in Sections 3.4 (normal form) and 4.3 (the numbers game).

Let R(w) be the set of all reduced decompositions of an element w.
Theorem 3.3.1 shows that R(w) can be thought of as the set of nodes of a
connected graph whose edges are the braid-moves. The braid-moves can be
subdivided into k-moves, for k = 2, 3, 4, . . ., according to the order of the
corresponding generating relation (ss′)k = e. For instance, the following are
examples of a 2-move: ab ↔ ba, 3-move: aba ↔ bab, 4-move: abab ↔ baba,
and so on.

If all edges except 2-moves are erased from the graph R(w), we get a
(possibly disconnected) subgraph of R(w). The connected components of
this graph are called commutation classes.
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3.4 Normal forms

When computing in a Coxeter group, whether by hand or by machine,
one faces the problem of how to efficiently represent its elements. If the
group admits a nice combinatorial description, such as those discussed in
Chapter 8, then this problem disappears. This is one of the reasons why
those Coxeter systems are particularly pleasant to work with. In general,
however, good combinatorial representations are not available.1

The most straightforward way of representing the elements of a Cox-
eter system is via a choice of “special” reduced decompositions. In general,
every group element corresponds to a very high number of reduced de-
compositions. The counting of these reduced decompositions is in itself an
interesting problem leading to some beautiful and deep combinatorial re-
sults; see Chapter 7. Among this multitude, we have to choose a specific
reduced decomposition for each element of the group, usually called its
normal form. There are, of course, several systematic ways to choose these
specific reduced decompositions, and hence there are several normal forms.

Having made a choice, one faces the problem of how to algorithmically
convert a product of generators (a word in S∗) into its normal form. A
good solution to this problem will allow us to describe multiplication in
terms of normal forms, since if we have the normal forms of two elements
u, v ∈ W , then their concatenation (as words) will not, in general, be the
normal form of uv. It will also allow us to solve word problems, since two
words in S∗ represent the same group element if and only if their normal
forms are the same.

In this section, we study what is probably the most common normal
form for the elements of a Coxeter group, namely the lexicographically first
reduced word. We show how for this choice of normal form one can rather
easily compute the normal form of uv, given those of u and v. As will
be seen, the properties of the lexicographically first normal form are not
only useful for computations but are also interesting and elegant from a
combinatorial point of view.

Let (W, S) be a Coxeter group with S = {s1, . . . , sn}. In this section,
we identify, for simplicity, si with i, for i = 1, . . . , n. In particular, we will
identify a sequence (si1 , . . . , sip

) ∈ Sp with i1 . . . ip ∈ [n]p. (To simplify
notation, we write i1 . . . ip instead of (i1, . . . , ip).) The normal form of an
element w ∈ W is minR(w), where the minimum is taken with respect to

1The so-called “numbers game” (Section 4.3) offers a general method for finding
combinatorial representatives of the group elements. However, there are certain short-
comings: (1) It is in general not at all clear which assignments of numbers to the nodes
of the Coxeter graph correspond to actual positions in the numbers game (i.e., to actual
group elements) and (2) there is in general no simple algorithmic procedure for multiply-
ing two positions in the numbers game (i.e., to compute the product of the corresponding
group elements).
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lexicographic order. Given w ∈ W , we denote by NF (w) its normal form
(so NF (w) ∈ [n]∗). Note that NF (w) depends on the choice of indexing
s1, . . . , sn for the elements of S.

As an example, let us compute the normal form of w = 21543 ∈ S5. With

the usual indexing si
def
= (i, i + 1), we have

R(w) = {1343, 1434, 3143, 3413, 3431, 4134, 4314, 4341}.

Thus, NF (w) = minR(w) = 1343.
Note that if i1 . . . ip is a normal form, then necessarily any factor

ijij+1 . . . ik, 1 ≤ j ≤ k ≤ p, is also a normal form. Also note that if
J ⊆ S, then, by Corollary 1.4.8, R(WJ ) ⊆ J∗. Hence, if w ∈ WJ , then the
normal form of w as an element of WJ coincides with its normal form as
an element of W .

We call an element w ∈ W distinguished if w = e or the normal form
of w begins with “n.” So, for example, 21543 ∈ S5 is not distinguished
since, as we have seen, NF (21543) = 1343. It is easy to characterize dis-
tinguished elements, even without knowing their normal form. Recall from
definition (2.11) the notation [n−1]W for the system of minimal right coset
representatives modulo the subgroup W[n−1] = W{s1,...,sn−1}.

Lemma 3.4.1 Let w ∈ W . Then, w is distinguished if and only if w ∈
[n−1]W .

Proof. We know from Proposition 2.4.3 that w ∈ [n−1]W if and only if no
reduced word for w begins with one of the letters s1, . . . , sn−1. However,
this is precisely what it means for w to be distinguished. �

The following result is a key to the combinatorics of normal forms.

Proposition 3.4.2 Let w ∈ W . Then, w can be uniquely written as w =
x1 · · ·xn, where xi ∈ [i−1](W[i]) for i = 1, . . . , n. Furthermore, NF (w) =
NF (x1) · · ·NF (xn).

Proof. The existence of the unique factorization w = x1 · · ·xn is a con-
sequence of Corollary 2.4.6. It remains only to prove the statement about
normal forms.

If w ∈ W[n−1], the result holds by induction, since then xn = e ∈ [n−1]W .
So, assume that w 	∈ W[n−1]. Then, sn appears in every reduced decom-
position of w, and hence n appears in the normal form of w. So, let

i1 . . . ip
def
= NF (w) and let r

def
= min{j ∈ [p] : ij = n}. Then, sir

. . . sip
is a

distinguished group element, hence (by Lemma 3.4.1) sir
. . . sip

∈ [n−1]W ,

hence sir
. . . sip

= xn and NF (xn) = ir . . . ip. Let u
def
= si1 . . . sir−1 .

Then, u = x1 . . . xn−1 ∈ W[n−1], NF (u) = i1 . . . ir−1, and, by induction,
NF (u) = NF (x1) . . . NF (xn−1). �
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We illustrate with a small example. Let w = 21543 ∈ S5 (so n = 4). Then,
since NF (w) = 1343, we deduce from the preceding proof that x4 = s4s3,
x3 = s3, x2 = e, and x1 = s1.

Example 3.4.3 For the symmetric group Sn, the factorization w =
x1x2 . . . xn of Proposition 3.4.2 amounts to a version of the sorting pro-
cedure for permutations known as “bubble sort.” Namely, written as
wx−1

n x−1
n−1 . . . x−1

1 = e, it can be interpreted as follows, keeping in mind

that xi ∈[i−1] (W[i]) here means that xi = e or xi = sisi−1 . . . si−j for
some 0 ≤ j < i. Start with the permutation w. Then, move the value “n”
by adjacent transpositions to the right until it is in the last position; this
gives the permutation wsn−jn

. . . sn−1sn = wx−1
n . Next, move the value

“n − 1” to the right until it is in the next to last position; this gives
wx−1

n sn−1−jn−1 . . . sn−2sn−1 = wx−1
n x−1

n−1. Then, continue with “n − 2,”
and so on. �

For finite groups, there is a useful way of viewing the factorization of
normal forms given by Proposition 3.4.2. The normal form forest of a finite
Coxeter group (W, S) (with a total order of the set S assumed) consists
of edge-labeled rooted trees τ1, . . . , τ|S|. The nodes of τi correspond to the

elements of the quotient [i−1](W[i]), and the edges are labeled by elements
from S in such a way that the path from the root of τi to the node w
generates the word NF (w). Then, the set of all normal forms is obtained
by concatenating such rooted paths from τ1, . . . , τ|S| (in this order).

Example 3.4.4 For instance, order the generators of the group F4 as
shown in Figure 3.6.

123 4

4

Figure 3.6. An order of the nodes of F4.

The corresponding normal form forest is shown in Figure 3.7. We see from a
glance at this forest, for example, that 13241213 is a normal form, whereas
21412141 is not. �

Proposition 3.4.2 shows that it is enough to compute the normal form of
distinguished elements, so we now concentrate on them.

Lemma 3.4.5 Let w ∈ W be distinguished and s ∈ S. Then, we have the
following:

(i) If s ∈ DR(w), then ws is distinguished.

(ii) If s 	∈ DR(w), then either ws is distinguished or there is s′ ∈ S \{sn}
such that ws = s′w.
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Figure 3.7. Normal form forest for F4.

Proof. We have that ℓ(ws) = ℓ(w) − 1 and ℓ(s′w) = ℓ(w) + 1 if s′ 	= sn.
Hence, ℓ(s′ws) = ℓ(w) > ℓ(ws) for all s′ 	= sn, which means that ws is
distinguished.

Part (ii) follows directly from Corollary 2.5.2. �

Lemma 3.4.6 Let w ∈ W be distinguished, and s ∈ S (excluding the case
w = s = sn). Then, there exists j ∈ [n− 1] such that

NF (ws) =

{
nNF (snws), if ws ∈ [n−1]W ,

jNF (w), if ws 	∈ [n−1]W .

Proof. If ws ∈ [n−1]W , then the result follows immediately from Lemma
3.4.1. If ws 	∈ [n−1]W , then, by Lemma 3.4.5, there exists s′ ∈ S\{sn} such
that ws = s′w. However, s′ ∈ W[n−1] and w ∈ [n−1]W . Hence, we conclude
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from Proposition 3.4.2 that NF (ws) = NF (s′w) = NF (s′)NF (w), as
desired. �

We can now prove the first main result of this section. In the sequel,
the notation v = v[n−1] · [n−1]v denotes the canonical factorization with

v[n−1] ∈ W[n−1] and [n−1]v ∈ [n−1]W , as in equation (2.12).

Theorem 3.4.7 Let v ∈ W and s ∈ S. Then, there exists s′ ∈ S \ {sn}
such that

NF (vs) =

⎧
⎨
⎩

NF (u), if w = s = sn,

NF (u)nNF (snws), if ws ∈ [n−1]W \ {e},
NF (us′)NF (w), if ws 	∈ [n−1]W ,

where u
def
= v[n−1] and w

def
= [n−1]v.

Proof. If ws ∈ [n−1]W , then (vs)[n−1] = u and [n−1](vs) = ws, and the

result follows from Proposition 3.4.2 and Lemma 3.4.6. If ws 	∈ [n−1]W ,
then, by Lemma 3.4.5, there exists s′ ∈ S\{sn} such that ws = s′w. Hence,
vs = uws = us′w and, therefore, (vs)[n−1] = us′ and [n−1](vs) = w, and
the result again follows from Proposition 3.4.2. �

The preceding theorem can be used to inductively compute the normal
form of any product of generators. In fact, if (si1 , . . . , sip

) ∈ Sp, then apply-

ing Theorem 3.4.7 to v
def
= si1 . . . sip−1 and s

def
= sip

expresses NF (si1 . . . sip
)

in terms of NF (u), NF (w), NF (us′), and NF (snws) (where u = v[n−1]

and w = [n−1]v). We may consider NF (v) known; say NF (v) = j1 . . . jq.
If k is minimal such that jk = n, then NF (u) = j1 . . . jk−1 and NF (w) =
jk . . . jq, by Proposition 3.4.2. Thus, what has to be computed is NF (us′)
and NF (snws). We have that NF (snw) = jk+1 . . . jq, so the computa-
tion of NF (snws) is an instance of the same problem but starting from a
shorter normal form. On the other hand, us′ can be expressed in terms of
the first n − 1 generators (since s′ 	= sn), so the computation of NF (us′)
from NF (u) = j1 . . . jk−1 takes place in the subgroup W[n−1] of smaller
rank. Thus, by double induction on rank and length, the procedure will
compute NF (vs).

Note, however, that the procedure that we have just described is as stated
not yet an algorithm for computing NF (vs). In fact, to make the procedure
entirely self-contained, one needs to be able to decide if ws ∈ [n−1]W , and
(if not) to compute s′ explicitly. Both problems can be solved for the finite
Coxeter groups by constructing and using appropriate tables, and the tables
themselves can be computed (once and for all) with “ad hoc” algorithms.
To describe those algorithms and tables would take us too far afield — we
refer the interested reader to [143, 145].

We now come to the second main result of this section.
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Theorem 3.4.8 Let v ∈ W , a1 . . . ar = NF (v) and s ∈ S. Then, we have
the following:

(i) If s ∈ DR(v), then there exists 1 ≤ j ≤ r such that NF (vs) =
a1 . . . âj . . . ar.

(ii) If s 	∈ DR(v), then there exist 0 ≤ j ≤ r and k ∈ [n] such that
NF (vs) = a1 . . . ajkaj+1 . . . ar.

Proof. We proceed by induction on n + r, the n + r ≤ 2 cases being
clear. By Proposition 3.4.2, we may write v = uw, where u ∈ W[n−1], w
is distinguished, and NF (v) = NF (u)NF (w). If w = e, then v ∈ W[n−1],
and if s 	= sn, we are done by the induction assumption, whereas if s = sn,
we have that NF (vs) = a1 . . . arn.

So, we may assume that w 	= e. Note that since w is distinguished, we

then have that DL(w) = {sn}. Let, for convenience, i1 . . . ip
def
= NF (w).

Then, i1 = n, p = ℓ(w), and

i2 . . . ip = NF (snw). (3.6)

We have to distinguish three cases.
Case 1: s ∈ DR(w). Then, by Lemma 3.4.5, ws is distinguished. The case
s = w = sn is easily taken care of, so we may assume that ws 	= e. Hence,
the normal form of ws begins with n and sn ∈ DL(ws). Therefore, we
have that ℓ(snws) = ℓ(ws) − 1 = ℓ(w) − 2 = ℓ(snw) − 1, and hence that
s ∈ DR(snw). By the induction hypothesis, applied to snw, we conclude
that NF ((snw)s) is obtained by deleting one entry in NF (snw). Hence, by

equation (3.6), NF ((snw)s) = i2 . . . îj . . . ip for some j ∈ [2, p]. On the other

hand, if nb1 . . . bp−2
def
= NF (ws), then b1 . . . bp−2 = NF (snws). Therefore,

we conclude that i2 . . . îj . . . ip = b1 . . . bp−2 and, hence, that NF (ws) =

ni2 . . . îj . . . ip. However, since ws is distinguished, we have that (vs)[n−1] =

u and [n−1](vs) = ws and, hence, that NF (vs) = NF (u)NF (ws). The
result now follows.
Case 2: s 	∈ DR(w) and ws is distinguished. Then, DL(ws) = {sn} and the
normal form of ws begins with n. Therefore, ℓ(snws) = ℓ(ws)−1 = ℓ(w) =
ℓ(snw) + 1 and, hence, s 	∈ DR(snw). By the induction hypothesis, we
conclude that NF ((snw)s) is obtained by inserting an element in NF (snw).
Hence, by (3.6), NF (snws) = i2 . . . ijkij+1 . . . ip for some k ∈ [n] and j ∈
[p]. On the other hand, if nb1 . . . bp

def
= NF (ws), then b1 . . . bp = NF (snws).

Hence, b1 . . . bp = i2 . . . ijkij+1 . . . ip and, therefore, ni2 . . . ijkij+1 . . . ip =
NF (ws). Again, since ws is distinguished, we conclude, as at the end of
Case 1, that NF (vs) = NF (u)NF (ws), and the result follows.
Case 3: s 	∈ DR(w) and ws is not distinguished. Then, by Lemma 3.4.5,
there exists s′ ∈ S \ {sn} such that ws = s′w. Hence, (vs)[n−1] = us′,
[n−1](vs) = w and, therefore, NF (vs) = NF (us′)NF (w). The theorem
follows by induction, since u ∈ W[n−1] and s′ ∈ S \ {sn}. �



84 3. Weak order and reduced words

The theorem shows an extremely nice property of the (lexicographically
first) normal form. We already know from Chapter 1 that if (a1, . . . , ar) is
a reduced decomposition of v ∈ W and s ∈ S, then the following hold:

1. If s ∈ DR(v), there exists j ∈ [r] such that (a1, . . . , aj−1, aj+1, . . . , ar)
is a reduced decomposition of vs (this follows from the Exchange
Property).

2. If s 	∈ DR(v), there exists j ∈ [0, r] and k ∈ [n] such that
(a1, . . . , aj , k, aj+1, . . . , ar) is a reduced decomposition of vs (e.g.,
take j = r and k such that sk = s).

The new content of Theorem 3.4.8 is therefore the assertion that if
(a1, . . . , ar) is the lexicographically first reduced expression for v, then j
and k can be chosen so that the above reduced expressions are again
lexicographically first.

Exercises

1. Consider the three elements x, y, and z appearing in Figure 3.3.
Exactly one of them is the product of the other two. Determine the
correct identity (among the six possible ones).

2. Let (Sn)J with |J | = n−2 be a quotient modulo a maximal parabolic
subgroup of Sn. Show that for x, y ∈ (Sn)J :

x ≤ y (Bruhat order) ⇔ x ≤L y (left weak order).

3. Suppose that W is finite. Let w ∈ W and J = S \DL(w). Show that

x ∨ w = w0 ⇔ x ≥ w0(J).

4. Suppose that W is finite and let w ∈ W . Show that {x ∈ W : x∧w =
e and x ∨ w = w0} (i.e., the set of lattice-theoretic complements of
w) forms an interval in weak order.

5. Let I, J ⊆ S and assume that WI and WJ are finite. Show that the
following are equivalent:

(a) I ⊆ J ,
(b) w0(I) ≤R w0(J),
(c) w0(I) ≤ w0(J) in Bruhat order.

6.∗ For m = 1, 2, . . ., let am be the number of posets of length m that
occur as intervals in weak order of Coxeter groups (see Corollary
3.1.8). What can be said about the sequence a1, a2, . . . ?

7. For the definition of order dimension, see Exercise 2.24. Consider here
the finite irreducible Coxeter groups (W, S) under weak order.
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(a) Show that |S| ≤ odim(W ) ≤ ℓ(w0).
(b) Show that odim(W ) = |S| in the following cases: type An, Bn,

Dn, H3, and I2(m).
(c)∗ Determine the order dimension of weak order in the remaining

open cases. Is it always true that odim(W ) = |S|?
8. Define two-sided weak order “≤LR” as the transitive closure of the

union of left and right weak order. So, u ≤LR w means that u <X1

u1 <X2 u2 <X3 · · · <Xk
w for some elements ui and some choices

Xi ∈ {L, R}. Show the following:

(a) Two-sided weak order is not a semilattice.
(b) Let u <LR w, and assume that w has a unique reduced decom-

position. Then, the order complex of the open interval (u, w)LR

is either contractible or homotopy equivalent to a sphere. In
particular, µLR(u, w) ∈ {0, +1,−1} for all u ≤LR w.

(c)∗ What can be said about general intervals (u, w)LR?

9. Let S be a finite set and m = (m(x, y))x,y∈S a Coxeter matrix.

Let P be a finite poset with bottom element 0̂, having exactly |S|
atoms. Suppose that there exists a labeling λ : Cov(P ) → S (where

Cov(P )
def
= {(x, y) ∈ P 2 : x � y}) such that the following hold:

(a) If e, f ∈ Cov(P ), e 	= f , are incident, then λ(e) 	= λ(f).
(b) If a, b, x ∈ P are such that x � a, x � b, a 	= b, then there exist

two unrefinable chains a0 � a1 � · · ·� am and b0 � b1 � · · ·� bm

such that a0 = b0 = x, a1 = a, b1 = b, am = bm, ai 	= bi if
i = 1, . . . , m− 1, where m = m(λ(x, a), λ(x, b)), and

(λ(a0, a1), . . . , λ(am−1, am)) = (λ(x, a), λ(x, b), λ(x, a), . . .),

(λ(b0, b1), . . . , λ(bm−1, bm)) = (λ(x, b), λ(x, a), λ(x, b), . . .).

Show that then P is isomorphic to (W,≤R) (weak order), where
(W, S) is the Coxeter system having Coxeter matrix m.

10. Show that the (undirected) order diagram of weak order (equivalently,
the Cayley graph) of a finite Coxeter group is Hamiltonian; that is,
it contains a cycle which visits each vertex exactly once.

11. Consider the property of an infinite Coxeter group that every
antichain in weak order is finite.

(a) Give examples of one group that has this property and one (of
rank 3) that does not.

(b)∗ Characterize the infinite groups with this property.

12. (a) Describe an algorithm, based on the numbers game (see Section
4.3), for generating the normal form forest of a finite Coxeter
group (W, S) with ordered S.
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(b) Say you want to work with elements w of bounded length
ℓ(w) ≤ m in an infinite Coxeter group. How would you mod-
ify the concept of a normal form forest, and the algorithm from
part (a) for constructing it, to suit this situation?

13. Suppose that (W, S) is an infinite Coxeter group. Its nerve is the
simplicial complex

N (W, S)
def
= {J ⊆ S : |WJ | < ∞}.

(a) Show that the order complex of W \ {e} under weak order is
homotopy equivalent to N (W, S).

(b) Show that the order complex of W \ {e} under Bruhat order is
contractible.

14. Call a chain u = x0 < x1 < · · · < xk = w in right order of a Coxeter
group (W, S) essential if k ≥ 2 and for each i = 1, . . . , k there exists
J ∈ N (W, S) such that xi = xi−1w0(J). For instance, if ℓ(u, w) ≥ 2,
then every saturated chain from u to w is essential (with |J | = 1 at
each step).
For a finite Coxeter group of rank > 1, let ess(W, S) be the minimal
length of an essential chain from the identity e to the top element w0.

(a) Show that ess(An) = n if n is even, and ess(An) = n + 1 if n is
odd.

(b) Show that ess(W, S) = 2|T |
|S| , for all other finite irreducible

Coxeter groups2.
(c) Assume that ℓ(u, w) ≥ 2. Show that the order complex of the

open interval (u, w)R has the same homotopy type as the poset
of essential chains from u to w ordered by inclusion.

15. Let α = s1 . . . sm ∈ S∗ be a word. For subsets J = {i1, . . . , ik}< ⊆
[m], let αJ denote the subword si1 . . . sik

. Let w be an element in a
Coxeter group (W, S). The subword complex ∆(α, w) is the complex
on the vertex set [m] determined by

[m] \ J is a facet of ∆(α, w) ⇔ αJ is a reduced decomposition of w.

(a) Show that ∆(α, w) is shellable.
(b) Show that ∆(α, w) is homeomorphic to either a sphere or a ball.
(c) Characterize when ∆(α, w) is homeomorphic to a sphere.

16. Let (W, S) be a Coxeter group, |S| < ∞. To simplify notation, we

write (s)
def
= S \ {s}, for s ∈ S, and V

def
=
⋃

s∈S W/W(s) for the
collection of all left cosets of all maximal parabolic subgroups.

2The quantity 2|T |/|S| is known as the Coxeter number of the group.
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The Coxeter complex ∆(W, S) is by definition the simplicial complex

on the vertex set V with facets Cw
def
= {wW(s) : s ∈ S}, for w ∈ W .

Show the following for ∆ = ∆(W, S):

(a) ∆ is a pure (|S| − 1)-dimensional complex, and it is naturally
colored by V =

⊎
Vs, with Vs = W/W(s).

(b) The mapping w �→ Cw gives a bijection W ↔ F(∆).
(c) Two facets Cw and Cw′ are adjacent if and only if w′ = ws for

some s ∈ S.
(d) ∆ is thin.
(e) Any linear extension of the weak ordering of W assigns a shelling

order to the facets Cw of ∆.
(f) The restriction map R of such a shelling sends each facet Cw to

its face of type DR(w).
(g) If W is finite, the h-vector of ∆ satisfies

h0 + h1t + · · ·+ h|S|t
|S| =

∑

w∈W

td(w),

where d(w) = |DR(w)| is the descent number of w.
(h) If W is finite, then ∆ is homeomorphic to the sphere S|S|−1.
(i) If W is infinite, then ∆ is contractible. Furthermore, W is home-

omorphic to Euclidean space R|S|−1 if and only if all maximal
parabolic subgroups are finite.

(j) For J ⊆ S, the type-selected subcomplex ∆J has the homotopy
type of a wedge of |DJ | spheres.

Notes

For the case of symmetric groups, the weak order seems to have been con-
sidered first by statisticians in the 1960s; see Lehmann [359], Savage[452],
and Yanagimoto and Okamoto [557]. For Sn, see also the book by Berge
[25].

Sections 3.1 and 3.2 are drawn from Björner [53]; these results were
published without proofs in [54]. The word property is due to Tits [537].
Section 3.4 is based on the work of du Cloux [143, 145].
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Exercise 4. For the case of symmetric groups, see Markowsky [388].
Exercise 7. See Reading [431].
Exercise 8(b). See Björner [59].
Exercise 9. See Eriksson [230].
Exercise 10. See Conway, Sloane, and Wilks [157].
Exercise 14. See Ungar [541] for part (a), Eriksson [223] for (b), and Björner

[58] for (c).
Exercise 15. See Knutson and Miller [329].
Exercise 16. See Bourbaki [79, pp. 40–44], Tits [538] and Björner [56].

Coxeter complexes (as defined in Exercise 16) come in two other guises.
On the one hand, there exists a canonical geometric realization in the space
V ∗ ∼= RS (induced by the decomposition of the Tits cone into Weyl cham-
bers, briefly described in Section 4.9), and on the other hand, there is an
axiomatic characterization (due to Tits [538]). The theory of Coxeter com-
plexes provide an alternative approach to Coxeter groups, since there is
a one-to-one correspondence between Coxeter groups and (axiomatically
defined) Coxeter complexes. They also provide a crucial stepping stone to
the theory of buildings; see the books by Brown [106], Ronan [446], and
Tits [538].



4
Roots, games, and automata

The main goal of this chapter is to obtain deeper algorithmic and structural
properties of the system of reduced words of a Coxeter group. In particu-
lar, we prove the existence of a finite state automaton that recognizes the
language of reduced words, showing that this language is regular.

The construction of automata uses the so-called “root system” of a Cox-
eter group and a partial order structure on the set of roots. These concepts
are of fundamental importance also in their own right. We begin by devel-
oping the properties of root systems that are needed. As a by-product, we
obtain the so-called “numbers game,” a handy computational device for
working with reduced decompositions.

We adhere to the following convention: Throughout this chapter, (W, S)
is a Coxeter system with S finite.

4.1 A linear representation

By a linear representation of W we understand a homomorphism ϕ : W →
GL(U), where GL(U) denotes the group of invertible linear transformations
of some vector space U into itself. For the representation that we construct
in this section, U is the real vector space RS .

We begin with a simple geometric lemma. Let m ≥ 3 be an integer, let
γ = π

m , and let k, k′ > 0 be real numbers such that

kk′ = 4 cos2 γ.
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Choose basis vectors β and β′ in the Euclidean plane E2 such that
(i) the angle between β and β′ equals γ, and
(ii) their lengths are related by

|β′| = 2 cosγ

k
|β| and |β| = 2 cos γ

k′
|β′|.

See Figure 4.1 for an illustration.

r

r′
γ

γ

β

β′

k|β′|

Figure 4.1. Illustration for Lemma 4.1.1.

Let r (resp. r′) denote orthogonal reflection of E2 in the line spanned by
β (resp. β′).

Lemma 4.1.1 The coordinates (q, q′) of a point qβ + q′β′ are transformed
as follows by the orthogonal reflections:

r′ : (q, q′) �→ (−q, q′ + kq),

r : (q, q′) �→ (q + k′q′,−q′).

Proof. We have that r(1, 0) = (1, 0) and r′(0, 1) = (0, 1), since points
on the reflecting lines remain fixed. The geometry indicated in Figure 4.1

shows that r′(1, 0) = (−1, 2|β| cos γ
|β′| ) = (−1, k). By symmetry, r(0, 1) =

(2|β′| cos γ
|β| ,−1) = (k′,−1). Thus, the stated formulas are correct for the

basis vectors and, therefore, by linearity for all vectors in E2. �

Let (W, S) be a Coxeter system given by a Coxeter matrix m. Define a
function k : S × S → R as follows. First, put

ks,s = −2 for all s ∈ S, (4.1)

and

ks,s′ = 0 if m(s, s′) = 2. (4.2)
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Then, for each ordered pair (s, s′) such that m(s, s′) ≥ 3, choose a real
number ks,s′ subject to the constraints

⎧
⎪⎨
⎪⎩

ks,s′ > 0

ks,s′ks′,s = 4 cos2 π
m(s,s′) , if m(s, s′) 	= ∞

ks,s′ks′,s ≥ 4, if m(s, s′) = ∞.

(4.3)

Thus, in relations (4.3), we have infinitely many choices available for ks,s′ ;
the condition concerns only the product ks,s′ks′,s. (The two factors in
this product can be viewed as corresponding to the two directions of the
(undirected) Coxeter graph edge s—s′.)

Let1 {α∗
s}s∈S be the canonical basis for RS , meaning that α∗

s(s
′)

def
= δs,s′ .

For each s ∈ S, define a linear transformation σ∗
s : RS → RS by

σ∗
s (p) = p + ps

∑

s′∈S

ks,s′α∗
s′ , (4.4)

where p =
∑

ps′α∗
s′ ∈ RS . Note that σ∗

s(p) differs from p only in coordinates
corresponding to nodes s′ that are neighbors of s in the Coxeter graph. More
precisely, the s′-coordinate of σ∗

s (p) is ps′ + ks,s′ps, which can be rewritten

(σ∗
s (p))s′ =

⎧
⎪⎨
⎪⎩

−ps, if s′ = s

ps′ + ks,s′ps, if m(s, s′) ≥ 3

ps′ , if m(s, s′) = 2.

(4.5)

Proposition 4.1.2 For all s, s′ ∈ S, the following hold:

(i) (σ∗
s )2 = id.

(ii) The order of σ∗
sσ∗

s′ is m(s, s′).

Proof. Part (i) and the m(s, s′) = 2 case of part (ii) are easy to see directly
from equation (4.5). So, we may assume that m(s, s′) ≥ 3.

Suppose first that m(s, s′) 	= ∞. Let p0 ∈ RS and consider the successive
images pi = σ∗

sσ∗
s′ (pi−1), i ≥ 1. The coordinate pair (pi

s, p
i
s′) determines a

vector νi = pi
sβ + pi

s′β′ in the Euclidean plane E2 considered in Figure 4.1,
where we now put m = m(s, s′), k = ks,s′ , and k′ = ks′,s.

The product of two orthogonal reflections through lines at an angle γ in
E2 equals a rotation through the angle 2γ. Hence, Lemma 4.1.1 shows, in
view of equation (4.5), that νi is obtained from νi−1 by a rotation of E2

through the angle 2π
m(s,s′) . It follows that

ν0, ν1, . . . , νm(s,s′)−1 are distinct, and νm(s,s′) = ν0, (4.6)

1The reason for using asterisks in the notation for basis vectors and other objects in
this section will become clear in Section 4.2.
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and that

ν0 + ν1 + · · ·+ νm(s,s′)−1 = 0. (4.7)

From statement (4.6) follows that p
m(s,s′)
s = p0

s and p
m(s,s′)
s′ = p0

s′ , and that
no exponent smaller than m(s, s′) has this property. Furthermore, equation

(4.7) shows that p
m(s,s′)
s′′ = p0

s′′ for all s′′ 	= s, s′, since by equation (4.4),

p
m(s,s′)
s′′ = p0

s′′ + ks,s′′

(
p0

s + p1
s + · · ·+ pm(s,s′)−1

s

)

+ ks′,s′′

(
p0

s′ + p1
s′ + · · ·+ p

m(s,s′)−1
s′

)
.

Hence, the order of σ∗
sσ∗

s′ is indeed m(s, s′).
Suppose now that m(s, s′) = ∞. Define pi as the iterated images of a

point p0 under the mapping σ∗
sσ∗

s′ , as earlier. A small computation shows
that the coordinate pairs (pi

s, p
i
s′), i ≥ 0, satisfy

{
pi+1

s = −pi
s − ks′,sp

i
s′ ,

pi+1
s′ = ks,s′pi

s + (ks,s′ks′,s − 1) pi
s′ .

Hence, for i ≥ 1,

pi+1
s′ + pi

s′ = ks,s′

(
pi

s + pi−1
s

)
+ (ks,s′ks′,s − 1)

(
pi

s′ + pi−1
s′

)

and

pi
s + pi−1

s = −ks′,sp
i−1
s′ ,

which together yield

pi+1
s′ = (ks,s′ks′,s − 2)pi

s′ − pi−1
s′ . (4.8)

Choosing p0 = α∗
s′ we have that p0

s′ = 1 and p1
s′ = ks,s′ks′,s − 1. Since

ks,s′ks′,s ≥ 4, we can from this and the recurrence relation (4.8) deduce
that

p0
s′ < p1

s′ < p2
s′ < p3

s′ < · · · .

Hence, σ∗
sσ∗

s′ is of infinite order. �

The following is an immediate consequence.

Theorem 4.1.3 Let (W, S) be a Coxeter system. Then, the mapping s �→
σ∗

s (s ∈ S) extends uniquely to a homomorphism σ∗ : W → GL(RS). �

We end this section by filling a gap left open since Section 1.1.

Proof of Proposition 1.1.1. The homomorphism σ∗ maps s and s′ to
distinct elements in GL(RS), whose product has order m(s, s′). This proves
(i) and that m(s, s′), if finite, divides the order of ss′. However, since
(ss′)m(s,s′) = e, the order of ss′ then divides m(s, s′). The m(s, s′) = ∞
case is clear. �
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4.2 The geometric representation

In this section, we continue the study of the linear representation σ∗ from
Section 4.1. Its contragredient σ, better known as “the geometric represen-
tation,” is introduced. The material provides a foundation for the rest of
the chapter.

Let V be a real vector space of dimension |S|, and let V ∗ be the space
dual to V . Choose a basis α = {αs}s∈S for V , indexed by the elements
of S, and let α∗ = {α∗

s}s∈S be the dual basis for V ∗. Via this choice we
have specific identifications V ∼= RS and V ∗ ∼= RS , and elements of V and
V ∗ can, whenever convenient, be expressed as column vectors. There is a
natural pairing

〈 p |β 〉 def
= p(β) (4.9)

for p ∈ V ∗ and β ∈ V . By definition, 〈α∗
s |αs′〉 = δs,s′ , so if p and β are

expressed as column vectors, then 〈p |β〉 = ptr β.
Choose real numbers ks,s′ for all pairs s, s′ ∈ S subject to the constraints

(4.1), (4.2), and (4.3). Define a bilinear form (· | ·) on V by prescribing its
value on basis vectors as follows:

(αs |αs′) = −ks,s′

2
, (4.10)

for all s, s′ ∈ S. This implies, among other things, that

(αs |αs) = 1, (4.11)

(αs |αs′) = 0, if m(s, s′) = 2 (4.12)

(αs |αs′) < 0, if m(s, s′) ≥ 3. (4.13)

Note that, in general, this bilinear form is not symmetric.
For each s ∈ S define a linear mapping σs : V → V by

σs(β) = β − 2(αs |β)αs. (4.14)

Clearly, σs(αs) = −αs.

Proposition 4.2.1 For all s, s′ ∈ S, the following hold:

(i) σ2
s = id.

(ii) The order of σsσs′ is m(s, s′).

Proof. Let Σs be the matrix representing σs in the α basis; that is, for all
β ∈ V ,

σs(β) = Σs β. (4.15)

Definitions (4.10) and (4.14) show that Σs = I +Ks, where I is the identity
matrix and Ks is the zero matrix with its s-th row replaced by the row
vector (ks,s′ )s′∈S.
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Now, let σ∗
s : V ∗ → V ∗ be the linear mapping defined in Section 4.1.

Definition (4.5) shows that the matrix representing σ∗
s in the α∗ basis is

I + Ktr
s ; thus,

σ∗
s(p) = Σtr

s p. (4.16)

The result therefore follows from Proposition 4.1.2. �

We draw the following immediate conclusion.

Theorem 4.2.2 The mapping s �→ σs has a unique extension to a
homomorphism σ : w �→ σw from W to GL(V ). �

The linear mapping σw : V → V is defined by σw = σs1σs2 . . . σsk
for

any expression w = s1s2 . . . sk, si ∈ S. Its action on a vector β ∈ V will be
notationally simplified to

w(β)
def
= σw(β). (4.17)

Similarly, the action of the linear mapping σ∗
w : V ∗ → V ∗ of Theorem 4.1.3

on a vector p ∈ V ∗ will be denoted

w(p)
def
= σ∗

w(p). (4.18)

The similarity of notation will not cause ambiguity, since we have the
convention that elements of V are named by Greek letters α, β, . . . and
elements of V ∗ by Roman letters p, q, . . . (except for the basis vectors α∗

s).
The representations σ : W → GL(V ) and σ∗ : W → GL(V ∗) are

contragredient in the following sense.

Proposition 4.2.3 For all w ∈ W , β ∈ V and p ∈ V ∗,

〈w(p) |β〉 = 〈p |w−1(β)〉.
Proof. Equations (4.15) and (4.16) give that

〈s(p) |β〉 =
(
Σtr

s p
)tr

β = ptrΣsβ = 〈p | s(β)〉.

The formula for ℓ(w) > 1 follows by repeated application. �

For s, s′ ∈ S and j ≥ 0, define (ss′s . . . )j to be the alternating word of
length j beginning with s. Similarly, let (. . . ss′s)j denote the alternating
word of length j ending with s. As usual, the same symbols also denote the
corresponding group element.

Lemma 4.2.4 If j < m(s, s′), then (. . . s′ss′)j(αs) = cαs + dαs′ , with
c, d ≥ 0.

Proof. Since acting on a vector by s adds a multiple of αs (equation (4.14)),
and similarly for s′, the element in question is clearly a linear combination of
αs and αs′ . Thus, all that has to be shown is that c and d are non-negative.
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We have that

c = 〈α∗
s | (. . . s′ss′)j(αs)〉 = 〈(s′ss′ . . . )j(α

∗
s) |αs〉 (4.19)

and

d = 〈α∗
s′ | (. . . s′ss′)j(αs)〉 = 〈(s′ss′ . . . )j(α

∗
s′ ) |αs〉. (4.20)

Equations (4.19) and (4.20) express c and d as the α∗
s-coordinates of

the images of α∗
s and α∗

s′ under the mapping σ∗
s′σ∗

sσ∗
s′ . . . (j factors). The

situation can, therefore, be transferred to that studied in Section 4.1.

Assume first that m(s, s′) 	= ∞. Choose basis vectors β and β′ in the
Euclidean plane E2 as in Lemma 4.1.1 and the proof of Proposition 4.1.2.
Define a linear mapping ψ : V ∗ → E2 by letting ψ(α∗

s) = β, ψ(α∗
s′) = β′

and ψ(α∗
s′′ ) = 0 for all s′′ 	∈ {s, s′}, and extending linearly. Then,

r ◦ ψ(p) = ψ ◦ σ∗
s′(p) and r′ ◦ ψ(p) = ψ ◦ σ∗

s (p)

for all p ∈ V ∗. Namely, for p = psα
∗
s + ps′α∗

s′ + · · · ,

r(ψ(p)) = r(psβ + ps′β′)

= (ps + ks′,sps′)β − ps′β′

= ψ((ps + ks′,sps′)α∗
s − ps′α∗

s′)

= ψ(σ∗
s′ (p)),

using Lemma 4.1.1 for the second equality and equation (4.5) for the fourth,
and similarly for r′(ψ(p)). Hence, we get

ψ ◦ (σ∗
s′σ∗

sσ∗
s′ . . . )j(α

∗
s) = (rr′r . . . )j(β)

and

ψ ◦ (σ∗
s′σ∗

sσ∗
s′ . . . )j(α

∗
s′) = (rr′r . . . )j(β

′).

It follows that c and d are the β-coordinates in E2 of the images of β and β′

under the mapping R = (rr′r . . . )j . Now, look at the geometric situation
of Figure 4.1 and keep in mind that the mapping rr′ is a counterclockwise

rotation of the E2 plane through the angle 2γ = 2π
m(s,s′) . Since R = (rr′)

j
2

if j is even, R = (rr′)
j−1
2 r if j is odd, and j < m(s, s′), one sees from

simple geometric considerations that R(β) and R(β′) must lie in the upper
half-plane; that is, their β-coordinates c and d must be non-negative.

Suppose next that m(s, s′) = ∞. For any point p0 ∈ V ∗ define the
iterated images pi = σ∗

s′σ∗
s (pi−1), i ≥ 1. Then, we derive as in the proof

of Proposition 4.1.2 (switching the roles of s and s′), via the recurrence
relation (4.8), that pi

s = 〈pi |αs〉 satisfies

0 ≤ p0
s ≤ p1

s ⇒ pi
s ≤ pi+1

s , for all i ≥ 0.
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We must check four cases:

p0 = α∗
s ⇒ p1

s = ks,s′ks′,s − 1 ≥ 3 > 1 = p0
s,

p0 = σ∗
s′ (α∗

s) same, since σ∗
s′ (α∗

s) = α∗
s,

p0 = α∗
s′ ⇒ p1

s = ks′,s > 0 = p0
s,

p0 = σ∗
s′ (α∗

s′) ⇒ p1
s = ks′,s(ks,s′ks′,s − 2) > ks′,s = p0

s.

It follows via equations (4.19) and (4.20) that c and d are non-negative. �

Call a vector γ =
∑

s∈S csαs ∈ V positive (and write γ > 0) if cs ≥ 0
for all s ∈ S, and negative (denoted γ < 0) if cs ≤ 0 for all s ∈ S.

Proposition 4.2.5 For all w ∈ W and s ∈ S, the following hold:

(i) ℓ(ws) > ℓ(w) implies w(αs) > 0.

(ii) ℓ(ws) < ℓ(w) implies w(αs) < 0.

Proof. We prove part (i) by induction on ℓ(w), the ℓ(w) = 0 case being
clearly true.

So, assume that ℓ(ws) > ℓ(w) > 0, and let s′ ∈ DR(w). Put J = {s, s′},
and let w = wJwJ be the canonical decomposition (see Proposition 2.4.4).
From ℓ(ws) = ℓ(w)+1 = ℓ(wJ )+ℓ(wJ)+1, we see that ℓ(wJs) = ℓ(wJ )+1,
which implies that wJ = (. . . s′ss′)j with j < m(s, s′). Hence, Lemma 4.2.4
shows that

w(αs) = wJ (. . . s′ss′)j(αs) = wJ (cαs + dαs′),

with c, d ≥ 0.
By definition, wJ satisfies ℓ(wJs) > ℓ(wJ ) and ℓ(wJs′) > ℓ(wJ ), and

ℓ(wJ ) < ℓ(w) since s′ ∈ DR(w). Hence, by induction we have that wJ (αs) >
0 and wJ (αs′ ) > 0 and, therefore,

w(αs) = c wJ (αs) + dwJ (αs′) > 0.

The second part follows easily from the first. If ℓ(ws) < ℓ(w), then
ℓ(wss) > ℓ(ws) and, hence, 0 < ws(αs) = w(−αs) = −w(αs), so
w(αs) < 0. �

Corollary 4.2.6 Let p ∈ RS
+ ⊆ V ∗, and u, v ∈ W . Then, the following

hold:

(i) DL(u) = {s ∈ S : 〈u(p) |αs〉 is negative}.
(ii) If u 	= v, then u(p) 	= v(p).

Proof. Since all coefficients of p are positive, Proposition 4.2.5 implies that
〈u(p) |αs〉 = 〈p |u−1(αs)〉 is negative if and only if ℓ(u−1s) < ℓ(u−1).

Suppose that u(p) = p. Then, by part (i), DL(u) = ∅ and, hence, u = e.
This implies part (ii). �

As an immediate consequence of Corollary 4.2.6(ii), we obtain the
following.
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Theorem 4.2.7 The homomorphisms σ : W → GL(V ) and σ∗ : W →
GL(V ∗) are injective.

The mapping σ : W → GL(V ) is called the geometric representation of
W . Note that it depends on the choice of bilinear form (· | ·), or, equivalently,
via equation (4.10), on the choice of edge weights ks,s′ . In the special case
when the bilinear form is for all s, s′ ∈ S given by

(αs |αs′) = − cos
π

m(s, s′)
, (4.21)

σ is called the standard geometric representation. In this case, the bilinear
form is symmetric, and equation (4.21) essentially (except for the value
assumed at m(s, s′) = ∞ edges) characterizes the symmetric case.

4.3 The numbers game

In this section, we present a combinatorial rendition of the contragredient
geometric representation σ∗ : W → GL(V ∗). Vectors in V ∗ are assignments
of real numbers ps to the nodes s ∈ S of the Coxeter graph, and each
such assignment is here thought of as a position in a certain “game.” The
“moves” in the game are local rearrangements of the assigned values at
a chosen node s and its neighbors, governed by the labels of the edges
surrounding s in the Coxeter graph. The point of this game is that it gives
a combinatorial model of the Coxeter group (W, S), where group elements
correspond to positions and reduced decompositions correspond to play
sequences.

Before proceeding we have to choose for each ordered pair (s, s′) such
that m(s, s′) ≥ 3 a real number ks,s′ > 0 such that

{
ks,s′ks′,s = 4 cos2 π

m(s,s′) , if m(s, s′) 	= ∞,

ks,s′ks′,s ≥ 4, if m(s, s′) = ∞.

These numbers, which we refer to as weights, remain fixed once chosen.
The edge weights can, of course, always be chosen symmetrically:

ks,s′ = ks′,s = 2 cos
π

m(s, s′)
. (4.22)

However, if m(s, s′) ∈ {3, 4, 6,∞} for all edges s—s′, the following choices,
of which the middle three are asymmetric, have the advantage that all edge
weights are integers:
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m(s, s′) ks,s′ ks′,s

3 1 1
4 2 1
6 3 1
∞ 4 1
∞ 2 2

The starting position for our game can be any distribution s �→ ps of real
numbers ps to the nodes s ∈ S of the Coxeter graph. A position is called
positive if ps > 0 for all s ∈ S. The special position with ps = 1 for all
s ∈ S is called the unit position and denoted 1.

Moves are defined as follows. A firing of node s changes a position p ∈ RS

in the following way:

• Switch sign of the value at s.

• Add ks,s′ps to the value at each neighbor s′ of s.

• Leave all other values unchanged.

Such a move will be called positive if ps > 0, and negative if ps < 0.
A positive game is one that is played with positive moves from a given
starting position, and similarly for a negative game. A play sequence is a
word s1s2 . . . sk (si ∈ S) recording a game in which s1 was fired first, then
s2, then s3, and so on. Similarly, a positive play sequence records a positive
game and a negative play sequence records a negative game.

For example, let us consider the infinite group with Coxeter graph

a

b

c
d

∞

Choose edge weights as in the above table (with kc,d = kd,c = 2). The
following is an example of a positive game (from the unit position):

1

1

1 1
c−→

2

2

−1 3
a−→

−2

4

1 3

d−→

−2

4

7 −3
c−→

5

11

−7 11 b−→

16

−11

4 11
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Thus, cadcb is a positive play sequence. Note (from the illustration) that
the play sequences cada and cadd are not positive.

Suppose a starting position p ∈ RS is given. Then, every play sequence
s1s2 . . . sk will by composition of mappings lead to some other position,
which we denote by ps1s2...sk . For instance, in the previous example (with
p = 1), we computed pcadcb = (16,−11, 4, 11). Let Pp ⊆ RS denote the set
of all positions that can be reached this way. The relevance of this is the
following.

Theorem 4.3.1 Consider play sequences starting from some positive
position p ∈ RS

+.

(i) Two play sequences s1s2 . . . sk and s′1s
′
2 . . . s′q lead to the same position

(i.e., ps1s2...sk = ps′
1s′

2...s′
q) if and only if s1s2 . . . sk = s′1s

′
2 . . . s′q as

elements of W .

(ii) The induced mapping w �→ pw is a bijection W → Pp.

(iii) DR(w) = {s ∈ S : the s-entry of position pw is negative}.

(iv) The play sequence s1s2 . . . sk is positive if and only if s1s2 . . . sk is a
reduced decomposition.

Proof. The rule for changing the “position” p to ps by firing node s coin-
cides with the mapping σ∗

s : p �→ s(p) considered in Section 4.1 (cf. equation
(4.5)). Hence, the point denoted pw here is the same as the point denoted
by w−1(p) there. This implies the “if” direction of part (i). The rest of the
theorem follows from Corollary 4.2.6. �

Let us summarize the theorem in less technical language. It states that
we should think about the positions in the numbers game (starting from
a positive position) as representing the group elements. The negative com-
ponents of a position indicate the descent set of the corresponding group
element. The set of reduced decompositions is realized as the set of positive
play sequences.

The numbers game offers an interesting alternative for computations with
Coxeter groups, since it so easily solves word problems and determines re-
ducedness. For instance, if the game is played from the unit position 1 (or
any other positive starting position) according to two words α and β in the
alphabet S, then α and β represent the same group element if and only if the
final positions are the same. Or, say that one wants to know the set R(w)
of all reduced decompositions of an element w. One can then proceed as fol-
lows. First, compute the position pw−1

, using any expression w = s1s2 . . . sk

and playing from 1 according to the play sequence sk, sk−1, . . . , s1. Then,
choosing among the negative moves available at each step, find all negative
games leading from pw−1

back to 1. These games constitute the set R(w).
If, instead, one wants to know only the lexicographically minimal element
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in R(w) (i.e., the normal form), one can play from pw−1

to 1 by firing at
each step the minimal negative node.

From a computational point of view, it is an advantage if all edge weights
ks,s′ used in the numbers game are integers. This is possible if and only if
m(s, s′) ∈ {3, 4, 6,∞} for all edges s—s′, as was already discussed.

The numbers game is related to the question of finding combinato-
rial models for Coxeter groups. For instance, for a permutation x =
x1x2 . . . xn ∈ Sn let

d(x) = (x2 − x1, x3 − x2, . . . , xn − xn−1).

A small computation, left to the reader, shows that d(x) is the position
corresponding to x in the numbers game played from the unit position 1
on the type An−1 Coxeter graph ◦−−◦−− . . . −−◦−−◦. The details of the
correspondence x �→ px = d(x) lead to the realization of An−1 as the full
permutation group Sn; see Exercise 2. For another example, see Exercise 3.

We end with a small computational example. Say we want to compute
the normal form of the permutation x = 362415 ∈ S6. Then, since x−1 =
531462 and px−1

= d(x−1) = (−2,−2, 3, 2,−4), we are led to play the
following game (at each step firing the minimal negative node):

1

1

1

1

1

11

1

11

1

1

11

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

4

4 −1

−1

−1

−2

−2−2

−2

−3

−4

−4

−4

−4

−4

−4



4.4. Roots 101

Hence, NF (362415) = 12135432.

4.4 Roots

We now return to the general setup of Section 4.2, but from this point on,
we specialize the discussion to the standard geometric representation σ and
its contragredient σ∗. Let us, for emphasis, restate this:

From here and to the end of this chapter the bilinear form (· | ·) is
defined by equation (4.21) and the corresponding edge weights by
ks,s′ = 2 cos π

m(s,s′) .

One immediate consequence of this assumption is that the W -action on V
preserves the bilinear form:

(w(β) |w(γ)) = (β | γ) (4.23)

for all w ∈ W and β, γ ∈ V . It suffices to check this for generators s ∈ S:

(s(β) | s(γ)) = (β − 2(αs |β)αs | γ − 2(αs | γ)αs) = (β | γ),

using that (αs |β) = (β |αs) and (αs |αs) = 1.
We now make the following important definition of a certain distin-

guished subset of V ∼= RS .

Definition 4.4.1 The root system of (W, S) is Φ
def
= {w(αs)}w∈W,s∈S. Its

elements are called roots. The elements of Π
def
= {αs}s∈S are the simple

roots.

Let Φ+ (respectively, Φ−) consist of those roots that have non-negative
(respectively, nonpositive) coefficients when expressed in the basis Π of
simple roots. They are called positive roots and negative roots, respectively.
Proposition 4.2.5 shows that Φ decomposes into a disjoint union

Φ = Φ+
⊎

Φ−, (4.24)

and implies the following characterization of positive roots:

w(αs) ∈ Φ+ ⇔ ℓ(ws) > ℓ(w). (4.25)

Furthermore, since s(αs) = −αs, we obtain

Φ− = −Φ+, (4.26)

and since all roots are unit vectors (due to equation (4.23)), we have that

if β, γ ∈ Φ and γ = rβ for some r ∈ R, then r ∈ {+1,−1}. (4.27)
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Example 4.4.2 It is instructive to visualize the W -action on V and its
induced root system, and to compare it to the geometry of the W -action
on V ∗, in the accessible case of rank 2.

Figure 4.2 shows the case of the Weyl group G2 = I2(6) =
a b

6
, for

which (αa |αb) = − cos π
6 . The picture of the space V indicates the six

positive roots and how they are generated by simple reflections from the
two simple roots αa and αb. The view of V ∗ shows the arrangement of six

reflecting lines, dual to the positive roots via Hα
def
= {p ∈ V ∗ : 〈p | α〉 = 0},

α ∈ Φ+.
Figure 4.3 shows the the affine group Ã1 = I2(∞) =

a b

∞
, for which

(αa |αb) = −1. The picture of V here shows the positive roots and how
they are generated by simple reflections from the two simple roots αa and
αb, whereas that of V ∗ shows the arrangement of reflecting lines Hα, dual
to the positive roots.

Notice the differences between the two cases. In the finite case, one can,
without much danger, blur the distinction between V and its dual. However,
this is not so in the infinite case, where the geometry of the W -action is
quite different for the two spaces. For instance, observe in Figure 4.3 how
both simple reflections σa and σb share the same fixed line in V , namely
the dashed diagonal. In V ∗, on the other hand, σ∗

a and σ∗
b have different

fixed lines Hαa
and Hαb

.
In the finite case, the W -action on V ∗ preserves every circle of fixed

radius centered at the origin, whereas in the infinite case, the W -action on
V ∗ preserves any line L of the form x+ y = const. > 0. The analysis of the
numbers game in the preceding section shows how to interpret the game
geometrically in V ∗-space. Namely, the starting position 1 (indicated in
Figures 4.2 and 4.3) is moved along the circle in the finite case, and along
the line L in the infinite case, according to the W -action on V ∗, and the
positions in the game are its images. �

Lemma 4.4.3 The mapping s permutes the set Φ+ � {αs}.
Proof. Let γ ∈ Φ+ � {αs}. From statement (4.27) follows that γ is not
a scalar multiple of αs. Thus, 〈α∗

s′ | γ〉 is positive for some s′ 	= s. Since
〈α∗

s′ | s(γ)〉 = 〈s(α∗
s′) | γ〉 = 〈α∗

s′ | γ〉 is positive, we conclude that s(γ) ∈ Φ+.
Also, s(γ) 	= αs since s(−αs) = αs. �

To each group element w we associate a set of positive roots as follows:

N(w)
def
= {β ∈ Φ+ : w(β) ∈ Φ−}. (4.28)

Proposition 4.4.4 For all w ∈ W ,

ℓ(w) = cardN(w).

Proof. The formula holds for ℓ(w) ≤ 1 by Lemma 4.4.3. We continue by
induction on ℓ(w).
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V

αa

αb

a(αb)

b(αa) ab(αa)

ba(αb)

π/6

Φ+

Φ−

V ∗Hαa

Hαb1

Figure 4.2. Finite case: I2(6).

V

αa

αb a(αb)

b(αa)

ab(αa)

ba(αb)

Φ+

Φ−

V ∗

Hαa

Hαb

L

1

Figure 4.3. Infinite case: I2(∞).
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Suppose that w = us > u, s ∈ S. Equation (4.25) and Lemma 4.4.3 show
for β ∈ Φ+ that

w(β) ∈ Φ− ⇔ β = αs or s(β) ∈ N(u).

Hence, by the induction assumption there are ℓ(u)+1 = ℓ(w) such elements
β ∈ Φ+. �

For every γ ∈ Φ we define an element tγ ∈ GL(V ) by

tγ(β) = β − 2(γ |β)γ, (4.29)

for all β ∈ V . This extends definition (4.14) (the case of simple roots), and,
clearly, t2γ = e and t−γ = tγ .

Let T = {wsw−1 : w ∈ W, s ∈ S} be the set of reflections of (W, S).
Letting γ = w(αs) ∈ Φ and β ∈ V , we compute

wsw−1(β) = w(w−1(β)− 2(αs |w−1(β))αs)

= β − 2(w(αs) |β)w(αs)

= tγ(β).

Hence, in the geometric representation σ(W ), we have that

tγ = wsw−1, (4.30)

for any w ∈ W and s ∈ S such that γ = w(αs). Since σ is injective,
ρ : γ �→ tγ defines a mapping

ρ : Φ+ → T, (4.31)

which is clearly surjective.
If γ and γ′ are distinct positive roots, then (since, by statement (4.27),

one is not a scalar multiple of the other) tγ 	= tγ′ . Hence, ρ is also injective,
so we may conclude the following.

Proposition 4.4.5 The mapping ρ : γ �→ tγ is a bijective correspondence
between positive roots and reflections. �

The mapping ρ immediately extends to a bijection between roots and
signed reflections, which connects the material of this section with that of
Section 1.3; see Exercise 7.

It follows readily from our earlier computations that

w(γ) = β =⇒ w tγ w−1 = tβ , (4.32)

for all w ∈ W and β, γ ∈ Φ+. Namely, letting γ = u(αs), we have

wtγw−1 = wusu−1w−1 = (wu)s(wu)−1 = tβ ,

since wu(αs) = w(γ) = β.
We know from Proposition 4.4.4 and Corollary 1.4.5 that

card{γ ∈ Φ+ : w(γ) ∈ Φ−} = ℓ(w) = card{t ∈ T : ℓ(wt) < ℓ(w)}.
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Thus, it is natural to expect that the two equicardinal sets are related
via the bijection ρ. The following proposition establishes this link, thus
generalizing equation (4.25).

Proposition 4.4.6 For all w ∈ W and γ ∈ Φ+,

w(γ) ∈ Φ− ⇔ ℓ(w tγ) < ℓ(w).

Proof. Suppose that ℓ(w tγ) < ℓ(w), and let w = s1s2 . . . sk be a reduced
expression. Then, by Corollary 1.4.4, tγ = sksk−1 . . . si . . . sk−1sk for some
i ∈ [k] and, hence, γ = sksk−1 . . . si+1(αsi

). We deduce that

w(γ) = (s1 . . . sk)(sk . . . si+1)(αsi
) = s1 . . . si−1(−αsi

) < 0,

since, by Proposition 4.2.5, s1 . . . si−1(αsi
) > 0. Hence,

{γ ∈ Φ+ : ℓ(w tγ) < ℓ(w)} ⊆ {γ ∈ Φ+ : w(γ) ∈ Φ−},
and since the two sets are of equal finite cardinality, they are in fact
identical. �

4.5 Roots and subgroups

This section is devoted to proving some algebraic and geometric re-
sults about subgroups in a Coxeter group that will later be needed for
combinatorial purposes. We begin with a couple of lemmas.

For p ∈ V ∗, let

M(p)
def
= {β ∈ Φ+ : 〈 p | β 〉 < 0}

and

C
def
= {p ∈ V ∗ : M(p) = ∅}.

Note that if p ∈ C, then 〈 p | Φ+ 〉 ⊆ R≥0 and 〈 p | Φ− 〉 ⊆ R≤0.

Recall that we have an action of W on V ∗ such that

〈 w−1(p) | β 〉 = 〈 p | w(β) 〉
for all w ∈ W , β ∈ V , and p ∈ V ∗.

Lemma 4.5.1 Let p ∈ C. Then,

Stab (p) = WJ ,

where J
def
= {s ∈ S : 〈 p | αs〉 = 0}.

Proof. If s ∈ J , then

〈s(p) | β〉 = 〈p | s(β)〉 = 〈p | β − 2(αs | β)αs〉 = 〈p | β〉
for all β ∈ V and, hence, s ∈ Stab(p). This shows that WJ ⊆ Stab(p).
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Conversely, let w ∈ Stab(p). We will show, by induction on ℓ(w), that
w ∈ WJ . This is clear if ℓ(w) = 0. So, suppose that ℓ(w) > 0 and let
s ∈ DR(w). Then, by relation (4.25), w(αs) < 0 and, hence,

0 ≤ 〈p | αs〉 = 〈w−1(p) | αs〉 = 〈p | w(αs)〉 ≤ 0,

which implies that s ∈ J . Since we have already shown that WJ ⊆ Stab(p),
we conclude that ws ∈ Stab(p). Since ℓ(ws) < ℓ(w), we have from our
induction hypothesis that ws ∈ WJ , and this concludes the proof. �

Lemma 4.5.2 Let p ∈ V ∗ be such that M(p) is finite. Then, there exists
a w ∈ W such that w(p) ∈ C.

Proof. Let p ∈ V ∗ \ C be such that 0 < |M(p)| < ∞. Then, there exists
s ∈ S such that αs ∈ M(p). However, it is clear from our definitions that

s(M(s(p))) ⊆ M(p) \ {αs}
(note that αs 	∈ M(s(p))). Hence, |M(s(p))| < |M(p)|. Continuing in this
way, we conclude that there exists a w ∈ W such that |M(w(p))| = 0. �

The next theorem is the main result of this section. It has the interest-
ing consequence that up to conjugacy there are only finitely many finite
subgroups of an infinite Coxeter group.

Theorem 4.5.3 Let H be a finite subgroup of W . Then, there exists w ∈
W and J ⊆ S such that WJ is finite and wHw−1 ⊆ WJ .

Proof. We proceed by induction on |S|, the result being clear if |S| = 1.
We may assume that |W | = ∞, otherwise there is nothing to prove.

Let

p
def
=
∑

s∈S

α∗
s and q

def
=
∑

h∈H

h(p).

Now, if β ∈ Φ+ \⋃h∈H N(h), then h(β) > 0 for all h ∈ H and, hence,

〈q | β〉 =
∑

h∈H

〈h−1(p) | β〉 =
∑

h∈H

〈p | h(β)〉 > 0. (4.33)

This shows that M(q) ⊆ ⋃h∈H N(h) and, hence, that |M(q)| < ∞. By
Lemma 4.5.2, we conclude that there exists w ∈ W such that w(q) ∈ C.
However,

wHw−1 ⊆ Stab(w(q))

(since h(q) = q for all h ∈ H). Hence, by Lemma 4.5.1,

wHw−1 ⊆ WJ ,

where J = {s ∈ S : 〈w(q) | αs〉 = 0}. However, J 	= S (or else w(q) = 0
and therefore q = 0, which contradicts equation (4.33)). Therefore, wHw−1

is a finite subgroup of a parabolic subgroup of rank < |S|, and this, by the
induction hypothesis, concludes the proof. �
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The next two results are of a technical nature. They serve to shorten
several proofs later.

Proposition 4.5.4 Let α, β ∈ Φ+.

(i) If |(α | β)| < 1, then the subgroup generated by tα and tβ is a finite
dihedral group.

(ii) If (α | β) ≤ −1, then the subgroup generated by tα and tβ is an infinite
dihedral group. Furthermore, the roots (tαtβ)n(α), for n = 0, 1, 2, . . . ,
are all positive linear combinations of α and β, and are all distinct.

Proof. Assume that |(α | β)| < 1. Let w ∈ W be such that w(β) ∈ Π.
Since (α | β) = (w(α) | w(β)), tw(α) = wtαw−1, tw(β) = wtβw−1, and
t−w(α) = tw(α), we may assume that β = αs for some s ∈ S, and α ∈ Φ+.

Let V0 be the subspace of V spanned by α and αs. Write α =
∑

r∈S arαr,

and let γ
def
= α− asαs. Then, γ 	= 0, and

{λγ + µαs : λ, µ ∈ R, λµ < 0} ∩ Φ = ∅, (4.34)

because of the decomposition (4.24). Since |(α | αs)| < 1, a simple compu-
tation shows that the restriction of the bilinear form (4.21) to V0 is positive
definite. Hence, V0 is a Euclidean plane, and we are in the situation dis-
cussed in Example 1.2.7. Namely, tαs acts on V0 as a rotation through the
origin of 2x radians, where 0 < x < π is such that cos(x) = (α | αs). If x
is not a rational multiple of π, then the roots (tαs)n(α) for n = 0, 1, 2, . . .
are dense in the unit circle, and this contradicts equation (4.34). Hence,
x = qπ for some q ∈ Q, and the subgroup D generated by tα and s acts on
V0 in the same way as a finite dihedral group.

Since V0 is Euclidean, we have that V = V ⊥
0 ⊕ V0. Furthermore, D fixes

V ⊥
0 pointwise. By Theorem 4.2.7 the geometric representation of W on V

is faithful (in other words, the only element of W that acts on V as the
identity is e). It follows that also the action of D on V0 is faithful and,
therefore, D is isomorphic to a finite dihedral group. This proves part (i).

Next, put x
def
= −(α | β) and assume that x ≥ 1. Direct computation

shows that for any λ, µ ∈ R,

tαtβ(λα + µβ) = tα(λα + µβ − 2(λα + µβ | β)β)

= tα(λα− (2xλ + µ)β)

...

= ((4x2 − 1)λ− 2xµ)α + (2xλ− µ)β.

Thus, putting (tαtβ)n(α)
def
= λnα + µnβ, we have that

{
λn+1 = (4x2 − 1)λn − 2xµn,

µn+1 = 2xλn − µn .
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We now prove for all n that

λn > µn ≥ 0. (4.35)

This is true for n = 0, since λ0 = 1 and µ0 = 0. We continue by induction

on n. Let A
def
= 4x2 − 2x− 1 and B

def
= 2x− 1. Then,

λn+1 − µn+1 = Aλn −Bµn, (4.36)

and

A ≥ B ≥ 1, since x ≥ 1 and A−B = (2x− 1)2 − 1 ≥ 0. (4.37)

The induction assumption (4.35) together with relations (4.36) and (4.37)
imply that λn+1 > µn+1. That µn+1 ≥ 0 is seen directly from relation
(4.35) and µn+1 = 2xλn − µn. This finishes the induction step.

Equation (4.35) also implies that µn+1 − µn = 2(xλn − µn) > 0. Hence,

· · · > µn+1 > µn > · · · > µ1 > µ0 = 0,

and the proof is complete. �

Proposition 4.5.5 The set

{(α | αs) : α ∈ Φ+, s ∈ S, |(α | αs)| < 1} (4.38)

is finite.

Proof. Let

Pfin
def
= {J ⊆ S : |WJ | < ∞} ,

Afin
def
=

{
(α | β) : α, β ∈ Φ, tα, tβ ∈

⋃

J∈Pfin

WJ

}
.

Clearly, Afin is a finite set. We claim that

{(α | αs) : α ∈ Φ+, s ∈ S, |(α | αs)| < 1} ⊆ Afin.

Indeed, let α ∈ Φ+ and s ∈ S be such that |(α | αs)| < 1. By Proposition
4.5.4, the subgroup D generated by tα and s is finite. Therefore, by Theorem
4.5.3, there exists a w ∈ W and a J ∈ Pfin such that wDw−1 ⊆ WJ .
However, (α | αs) = (w(α) | w(αs)) and tw(α) = wtαw−1, tw(αs) = wsw−1.
Hence, (α | αs) ∈ Afin. �

4.6 The root poset

A certain interesting partial order on the set Φ+ of positive roots plays
an important role in the sequel. In this section, we study some of its basic
properties and show that it is related to a “numbers game” dual to that of
Section 4.3.
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Definition 4.6.1 The depth of β ∈ Φ+ is

dp (β) = min {k : w(β) ∈ Φ− for some w ∈ W with ℓ(w) = k}.
Since tβ(β) ∈ Φ−, the concept of depth is well defined, and by Lemma

4.4.3, the roots of depth 1 are precisely the simple roots.
It is important to know how the depth changes when acting on a positive

root by a simple reflection. The answer is very elegant.

Lemma 4.6.2 Let s ∈ S and β ∈ Φ+ − {αs}. Then,

dp (s(β)) =

⎧
⎨
⎩

dp (β) − 1, if (β|αs) > 0,
dp (β), if (β|αs) = 0,
dp (β) + 1, if (β|αs) < 0.

Proof. If (β|αs) = 0, then s(β) = β, so trivially dp (s(β)) = dp (β).
Suppose that (β|αs) > 0. Clearly, dp (s(β)) ≥ dp (β) − 1. Hence, it will

suffice to show that dp (s(β)) < dp (β). For this, choose w ∈ W such that
w(β) ∈ Φ− and ℓ(w) = dp (β). Now, consider the two possibilities: ws < w
and ws > w.

If ws < w, we are done, since ws(s(β)) = w(β) ∈ Φ− shows that
dp (s(β)) ≤ ℓ(ws) < dp (β).

Assume that ws > w. Consider the root

γ = ws(β) = w(β − 2(β|αs)αs) = w(β) − 2(β|αs)w(αs).

By assumption, w(β) ∈ Φ− and (β|αs) > 0, and (by Proposition 4.2.5)
w(αs) ∈ Φ+. Hence, γ ∈ Φ−. Furthermore, γ 	= −αs′ for all s′ ∈ S, since
−αs′ can never be the sum of two negative roots. Now, choose s′ ∈ S such
that s′w < w. Then, s′w(s(β)) = s′(γ), and s′(γ) ∈ Φ− by Lemma 4.4.3,
since γ ∈ Φ− \ {−αs′}. Therefore, dp (s(β)) ≤ ℓ(s′w) < ℓ(w) = dp (β), as
desired.

Finally, suppose that (β|αs) < 0. Then, (s(β)|αs) = (β−2(β|αs)αs|αs) =
−(β|αs) > 0, so by the previous case dp (β) = dp (s(s(β))) = dp (s(β)) −
1. �

Using the concept of depth we can now define the root poset.

Definition 4.6.3 For β, γ ∈ Φ+, let β ≤ γ if there exist s1, s2, . . . , sk ∈ S
such that

(i) γ = sksk−1 . . . s1(β),

(ii) dp (sisi−1 . . . s1(β)) = dp (β) + i, for all 1 ≤ i ≤ k.

What we have proved so far shows that the root poset (Φ+,≤) has the
following structure. The minimal elements are the simple roots. All maxi-
mal chains in an interval [β, γ] have the same length dp (γ) − dp (β), and
all maximal chains in {β|β ≤ γ} have the same length dp (γ) − 1. Hence,
depth is a rank function. See Figures 4.4 and 4.5 for two examples of root
posets.
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Figure 4.4. Root poset of A4.
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Figure 4.5. Root poset of eA2.

Root posets have a natural edge labeling by elements of S. Namely, for
every covering β � γ, there is a unique s ∈ S such that s(β) = γ, which
provides the label λ(β, γ) = s. The labels are indicated in the figures.

Let s ∈ S and suppose that β =
∑

s′∈S bs′αs′ . We have from equations
(4.10) and (4.14) that

s(β) = β +

(
∑

s′∈S

ks,s′bs′

)
αs,

which if we define

Bs
def
= −bs +

∑

s′: s′−−s

ks,s′bs′ (4.39)
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can be written

s(β) = β + (Bs − bs)αs. (4.40)

The sum in the definition of Bs is over all neighbors s′ of s in the Coxeter
diagram. We then get the following criterion for moving up or down along
an s-labeled edge in the root poset.

Lemma 4.6.4 s(β) > β ⇔ Bs > bs.

Proof. It is clear from our definitions that Bs − bs = −2(αs|β). Now use
Lemma 4.6.2. �

This lemma has the following useful consequence.

Corollary 4.6.5 Let β =
∑

s∈S bsαs and γ =
∑

s∈S csαs, β, γ ∈ Φ+. If
β ≤ γ, then bs ≤ cs for all s ∈ S. �

Note, for example, from Figure 4.5, that the converse of this corollary is
not true.

Lemma 4.6.4 gives a simple algorithmic procedure for generating the
edge-labeled root poset. Namely, start with the roots of depth 1, (i.e., the
unit basis vectors {αs|s ∈ S}). Recursively, assume that we have con-
structed the edge-labeled root poset up to (and including) the roots of
depth j. Then, for each root β of depth j and each s ∈ S such that no s-
labeled edge leads down from β, compute the quantity Bs defined by (4.39);
that is, compute the ks,s′ -weighted sum of β’s coordinates at all neighbors
of s in the Coxeter diagram minus its coordinate bs at s. If Bs > bs, let γ
be the vector that you get by replacing bs by Bs as the s-coordinate of β.
Then, γ is a root of depth j + 1 and (β, γ) is an s-labeled edge. If Bs = bs,
then do nothing (Bs < bs cannot occur, since then an s-labeled edge would
lead down from β to a root of depth j − 1). After performing this for all
pairs β and s (of the specified kinds), the root poset up to depth j + 1 will
be constructed.

The algorithm described in the preceding paragraph can be thought of
as a “dual numbers game.” Namely, positive roots β =

∑
s∈S bsαs are as-

signments of numbers bs to the nodes s of the Coxeter diagram, or “dual
positions.” It is allowed to move from one such position to another by “fir-
ing” the node s, which replaces the number bs attached to s by the number
Bs. By only allowing firings that increase the number at the fired node we
create the “legal” games. These correspond to unrefinable ascending chains
in the root poset. Playing legal games from the starting positions with “1”
on one node and “0” on all the others, all positive roots will be generated.

Thus, an appealing picture emerges. The dual numbers game — mod-
eling the root poset (Φ+,≤) — takes place in the space V , whereas the
numbers game — a combinatorial model of the Coxeter group W and its
right weak order — lives in the dual space V ∗. See Figures 4.2 and 4.3 for
an illustration. The Coxeter graph itself is the game board for both games,
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the positions are assignments of numbers to its vertices, and the moves in
both cases are certain firings of the vertices involving only numbers at the
fired node and its neighbors in the diagram. The two kinds of firing, both
given by simple combinatorial rules, are dual in the sense of Proposition
4.2.3.

Every position pw of the numbers game (i.e., each group element w ∈ W )
assigns a number 〈pw|β〉 to each root β ∈ Φ. (Note that if pw =

∑
psα

∗
s

and β =
∑

bsαs, then 〈pw|β〉 =
∑

psbs.) We know from Proposition 4.4.6
that the negative such numbers occurring at positive roots indicate the
reflection descent set TR(w). What happens with the distribution of such
numbers when we pass from w to ws? Since

〈pws|β〉 = 〈s(pw)|β〉 = 〈pw|s(β)〉, (4.41)

we see that ws assigns to β the same number that w assigns to s(β). Recall
that s permutes the set Φ+ \ {αs}. More precisely, it switches the positive
roots connected by s-labeled edges in the root poset, and the remaining
ones are fixed points. In summary, we have proved the following.

Proposition 4.6.6 Define ϕw : Φ+ → R by ϕw(β) = 〈pw|β〉 and let s ∈ S.
Then, the distribution ϕws of values to the positive roots differs from the
distribution ϕw as follows:

(i) The value at αs changes sign.

(ii) The values are interchanged between pairs β −−s(β) connected by
s-labeled edges in the root poset.

(iii) The values of all remaining roots are unchanged.

Example 4.6.7 Let w = 52314 and ws = 53214. The corresponding po-
sitions are (by the rule of successive differences explained at the end of
Section 4.3): pw = (−3, 1,−2, 3) and pws = (−2,−1,−1, 3). The values as-
signed to the positive roots (see Figure 4.4) are shown in Figure 4.6, where
the s-labeled edges are solid and all other root poset edges are dashed. �

−1

−4 2

−2 −1 1

−3 1 −2 3

−1

−4 1

−3 −2 2

−2 −1 −1 3

Figure 4.6. Illustration for Example 4.6.7.
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4.7 Small roots

The crucial tool for the construction of finite state automata in the next
section is a remarkable subset of the positive roots of W , which includes
the simple roots. In this section, we define and study this subset.

Let Σ be the smallest subset of Φ+ such that the following hold:

(i) Π = {αs : s ∈ S} ⊆ Σ.

(ii) If α ∈ Σ, s ∈ S and −1 < (α|αs) < 0, then s(α) ∈ Σ.

We call Σ the set of small roots of (W, S).

Note that α and s(α) are equal except in the s-th coordinate where they
differ by −2(α|αs). Thus, the definition of small roots can be rephrased:

All simple roots are small, and if α is small and the difference
in the s-th coordinate between α and s(α) is positive and < 2,
then s(α) is also small.

This is the reason for the terminology “small.” In other words, the small
roots are the ones that can be reached from the simple roots by successive
“small changes,” moving up along saturated chains in the root poset.

Let us call a covering edge β � γ in the root poset short if |(β|αs)| < 1,
where s ∈ S is such that s(β) = γ, and long otherwise. Since (γ|αs) =
−(β|αs), the characterization of a short edge takes the same form in terms
of the pair (γ, s). Small roots are then characterized by the property:

A root is small if and only if it is reachable from a simple root
along an up-directed path of short edges.

Referring to Figures 4.4 and 4.5, we see that all positive roots of the
finite group A4 are small and that if (W, S) is a Coxeter system of type Ã2,
then Σ = {α1, α2, α3, α1 + α2, α2 +α3, α1 + α3}. It is a general property of
finite groups that all positive roots are small; see Exercise 19.

Figure 4.7 shows the root poset up to depth 3 of the infinite group

a b c
∞

, previously discussed in Example 1.2.9. Long edges are dashed.

The separating set of long edges above the bottom four roots shows that
Σ = {α1, α2, α3, α1 + α2}.

We have seen two examples of infinite groups for which the set of small
roots is finite. It is a surprising fact that this is always the case, as we now
proceed to prove.

The following lemma tells us that all edges down from a small root are
necessarily short.

Lemma 4.7.1 Let α ∈ Σ and s ∈ S, α 	= αs. Then, (α|αs) < 1.

Proof. We proceed by induction on dp (α), the result being clear if dp (α)
= 1.
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Figure 4.7. Bottom part of root poset of the group a b c
∞

.

Suppose dp (α) ≥ 2. Since α ∈ Σ, there is β ∈ Σ and r ∈ S such that
β � α, α = r(β) and −1 < (β | αr) < 0. If s = r, we are done, so suppose
that s 	= r. If β = αs then the result is easy to check. If β 	= αs then, using
our induction hypothesis, we have that

(α | αs) = (r(β) | αs)

= (β − 2(β | αr)αr | αs)

= (β | αs)− 2(β | αr)(αr | αs)

≤ (β | αs) < 1,

as desired. �

Given α ∈ Σ, we let

N (α)
def
= {s ∈ S : |(α|αs)| < 1}.

Lemma 4.7.2 Let β, γ ∈ Σ be such that β�γ in the root poset, dp (β) ≥ 2.
Then, N (β) ⊇ N (γ).

Proof. Let s ∈ S \ N (β). Then, we have from Lemma 4.7.1 that (β|αs) ≤
−1. On the other hand, since γ = r(β) for some r ∈ S and γ > β, we
conclude from Lemma 4.7.1 (applied to γ) and Lemma 4.6.2 that −1 <
(β|αr) < 0. Hence, r 	= s, and

(γ|αs) = (r(β)|αs)

= (β − 2(β|αr)αr|αs)

= (β|αs)− 2(β|αr)(αr |αs)

≤ (β|αs).

Therefore, (γ|αs) ≤ −1 and, hence, s 	∈ N (γ). �

We can now prove the main result of this section. It is a fundamental
fact.

Theorem 4.7.3 |Σ| < ∞.
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Proof. Suppose that |Σ| = ∞. Since there are only finitely many elements
in the root poset of any given depth, we conclude that there are small
roots of arbitrarily large depth. For each small root α, we have (by the
definition of Σ) a saturated chain in the root poset, entirely contained in
Σ, from some simple root to α. Hence, there are saturated chains (in the
root poset) consisting entirely of small roots, of arbitrarily great length.

By Proposition 4.5.5, there are only finitely many pairs (J, v), with J ⊆ S
and v ∈ RJ , such that there exists a γ ∈ Σ with N (γ) = J and ((γ |
αs))s∈J = v. Let C be a saturated chain in Σ\Π of length greater than the
number of such pairs. Taking a suitable segment of C, we conclude that
there exists a saturated chain γj �γj+1� · · ·�γk, such that N (γj) = N (γk)
and

(γj |αs) = (γk|αs) (4.42)

for all s ∈ N (γk), with dp (γi) = i for i = j, . . . , k.

Let, for brevity, N def
= N (γk). Let si ∈ S be such that si(γi) = γi+1 for

i = j, . . . , k − 1. It follows from Lemma 4.7.2 that sj , sj+1, . . . , sk−1 ∈ N .

Let γj−1
def
= sk−1(γj). By equation (4.42), we have that

(γj−1 |αs) = (sk−1(γj) |αs)

= (γj | sk−1(αs))

= (γj |αs − 2(αsk−1
|αs)αsk−1

)

= (γk |αs − 2(αsk−1
|αs)αsk−1

)

= (γk | sk−1(αs))

= (sk−1(γk) |αs)

= (γk−1 |αs) (4.43)

for all s ∈ N . In particular, since γk−1 < γk, equation (4.43) implies by
Lemma 4.6.2 that γj−1 � γj .

Hence, we have obtained a saturated chain of roots γj−1 �γj � · · ·�γk−1

such that

(γj−1 | αs) = (γk−1 | αs)

for all s ∈ N , and sk−1(γj−1) = γj , si(γi) = γi+1 for i = j, . . . , k − 2.
Continuing in this way, we construct a saturated chain

γk � γk−1 � · · ·� γj � γj−1 � · · ·� γ2 � γ1

in the root poset, with γ1 a simple root, and

(γ1 | αs) = (γk−j+1 | αs) (4.44)

for all s ∈ N .
Let r ∈ S be such that γ1 = αr. If r ∈ N , then from equation (4.44) we

have that

(γk−j+1 | αr) = (γ1 | αr) = 1,
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whereas, on the other hand,

|(γk−j+1 | αr)| < 1

since N (γk−j+1) = N . A contradiction!
Thus, assume that r 	∈ N . Let j ≤ i ≤ k − 1 be such that si(γk−j) =

γk−j+1. Then, r 	= si and we conclude from equation (4.44) that

0 ≥ (γ1 | αsi
) = (γk−j+1 | αsi

) > 0,

thus again reaching a contradiction. �

We close this section by giving a useful and interesting characterization of
small roots. Let β, γ ∈ Φ+. We say that β dominates γ, denoted β dom γ,
if w(β) < 0 implies w(γ) < 0 for all w ∈ W . This relation is clearly
transitive. Note that if β dom γ, then dp (β) ≥ dp (γ). Also, if β dom γ,
then w(β) dom w(γ) for all w ∈ W such that w(γ) ∈ Φ+.

Lemma 4.7.4 Let β ∈ Φ+ and s ∈ S. Then, β dominates αs if and only
if (β | αs) ≥ 1.

Proof. We may clearly assume that β 	= αs and, hence, that s(β) ∈ Φ+.
Suppose that β dominates αs and that (β | αs) < 1. Since β dominates αs

and tβ(β) = −β < 0, there follows that tβ(αs) = αs − 2(αs | β)β ∈ Φ−

and, therefore,

(αs | β) > 0. (4.45)

So we conclude that |(αs | β)| < 1. By Proposition 4.5.4, this implies that
the subgroup D generated by s and tβ is a finite dihedral group and that
tβs acts as a rotation of finite order on the subspace of V spanned by β and
αs. However, it is not hard to see that this implies that there exists w ∈ D
such that w(β) < 0 but w(αs) > 0, and this contradicts our hypothesis.

Conversely, suppose that (β | αs) ≥ 1. Then,

(s(β) | β) = (β − 2(αs | β)αs | β) = 1− 2(αs | β)2 ≤ −1.

By Proposition 4.5.4, this implies that there are infinitely many positive
roots of the form

λβ + µs(β) (4.46)

with λ, µ > 0. Now, let w ∈ W be such that w(β) < 0. If w(αs) > 0, then
we conclude that

w(s(β)) = w(β − 2(αs | β)αs) = w(β) − 2(αs | β)w(αs) < 0,

and, hence, that all the positive roots of the form (4.46) are also in N(w),
which contradicts Proposition 4.4.4. Hence, w(αs) < 0, showing that β
dominates αs, as desired. �

A positive root α ∈ Φ+ is said to be humble if α dominates no positive
root except itself. All simple roots are clearly humble. The preceding lemma
has the following useful consequence.
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Lemma 4.7.5 Let β, α ∈ Φ+ be such that β � α in the root poset. Then,
we have that the following hold:

(i) If β � α is long, then α is not humble.

(ii) If β � α is short, then α is humble if and only if β is humble.

Proof. Let s ∈ S be such that α = s(β).
Assume that (i) holds. Then, (α | αs) ≥ 1 and, hence, α dominates αs

by Lemma 4.7.4. So α is not humble.
Assume now that (ii) holds. Then, 0 > (β | αs) > −1. Let γ ∈ Φ+\{β} be

such that β dom γ. Then, by Lemma 4.7.4 , γ 	= αs. Hence, s(β) dom s(γ)
and s(γ) ∈ Φ+ \ {s(β)}. So β is humble if α is humble. For the converse
statement a similar argument holds. �

We can now prove the promised characterization of small roots.

Theorem 4.7.6 Let α ∈ Φ+. Then, α ∈ Σ if and only if α is humble.

Proof. Assume that α ∈ Σ. Then, by definition, there is a saturated chain
in the root poset, consisting entirely of short edges, from some simple root
to α. However, simple roots are humble, so α is humble by part (ii) of
Lemma 4.7.5.

Conversely, suppose that α is humble and let α1 � α2 � · · ·� αp = α be
a saturated chain in the root poset from some simple root α1 to α. By part
(i) of Lemma 4.7.5, the edge αp−1 � αp is short and, hence, by part (ii),
αp−1 is humble. Continuing in this way, we conclude that all edges α1 �α2,
α2 �α3, . . . , αp−1 �αp are short and, hence, that αp = α ∈ Σ, as desired. �

As an immediate consequence, we obtain the following fact.

Corollary 4.7.7 Σ is an order ideal in the root poset.

Proof. Let α ∈ Σ and β ∈ Φ+ be such that β � α. By Theorem 4.7.6, α
is humble, and, hence, by Lemma 4.7.5, β � α is short and β is humble.
Hence, by Theorem 4.7.6, β ∈ Σ. �

4.8 The language of reduced words is regular

Consider the set R(Ã1) of all reduced words of the infinite group Ã1. If the
two Coxeter generators are a and b, then

R(Ã1) = {ababa . . . , babab . . .}
(i.e., the set of alternating words of all lengths, including the empty word).
A compact way of describing this set is via the labeled directed graph in
Figure 4.8.
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start

a

a

b

b

Figure 4.8. An automaton for R( eA1).

Namely, the words in R(Ã1) correspond to the finite directed paths ema-
nating from the start node, for which the edge labels are read in sequence
as we travel along the path (see Figure 4.9).
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c

c

c

c
c

c

Figure 4.9. An automaton for R( eA2).

Is there such a finite representation for the set R(W, S) of reduced words
for every infinite Coxeter group? The surprising answer is yes, as will be
shown in this section. (Remember our standing assumption in this chapter
that S is finite.) The general idea should be clear from this example. Here
is a quick review of some definitions.

A formal language (or just language) L is a subset of the set A∗ of words
in a given finite alphabet A. A finite state automaton (or just automaton)
is a finite directed graph, with one distinguished node labeled “start” and
every edge labeled by an element of A. We say that a word w ∈ L is accepted
by the automaton A if the sequence of edge labels along some directed path
from the start node equals w, otherwise w is rejected.

The language L is recognized by the automaton A if the words of L
are precisely those that are accepted by A. A language is regular if it is
recognized by some finite state automaton. An example of a language that
is not regular is {anbn : n ≥ 0}.
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In this section, we reach one of the main goals of this chapter. Namely,
we construct, for each Coxeter system (W, S), a finite state automaton that
recognizes the language R(W, S) of reduced words, thus showing that this
language is regular.

Notice that if the group W is finite, then such an automaton is given by
the order diagram of the right weak order of W . In fact, for any Coxeter
group (W, S) (finite or infinite), we may take W as the set of nodes of an
automaton, with e as the start node. For each w ∈ W and s ∈ S, we then
put a directed edge labeled by s from w to ws if s 	∈ DR(w). It is clear
that this automaton (the right weak order diagram) recognizes the reduced
expressions of W — this bijection between reduced words and chains in
weak order was already used several times in Chapter 3. If the group is
infinite, however, this automaton is also infinite.

We begin the general construction with a technical lemma.

Lemma 4.8.1 Let α ∈ Σ, s ∈ S and w ∈ W be such that s(α) ∈ Φ+ \ Σ
and s 	∈ DR(w). Then, ws(α) > 0.

Proof. Since ws > w, we have that w(αs) > 0 and, hence, ws(αs) < 0.
Suppose that ws(α) < 0. Since α ∈ Σ but s(α) 	∈ Σ, and Σ is an order
ideal in the root poset, we have that (α|αs) ≤ −1. Hence, by Proposition
4.5.4, the roots (tαs)n(α), for n = 0, 1, 2, . . ., are all non-negative linear
combinations of α and αs and are all distinct. Hence, ws((tαs)n(α)) < 0
for all n = 0, 1, 2, . . ., which contradicts Proposition 4.4.4. �

Define the small descent set of w ∈ W by

DΣ(w)
def
= {α ∈ Σ : w(α) < 0}.

These sets have two crucial properties: (1) There are finitely many of them
(by Theorem 4.7.3) and (2) if w < ws and we know DΣ(w), then with no
further information we can compute DΣ(ws), as we now show.

Proposition 4.8.2 Let w ∈ W and s 	∈ DR(w). Then,

DΣ(ws) = {αs} ∪
(
{s(β) : β ∈ DΣ(w)} ∩ Σ

)
.

Proof. Let α ∈ DΣ(ws). Then, ws(α) < 0 and, hence, by Lemma 4.8.1,
s(α) 	∈ Φ+ \ Σ. Therefore, either s(α) ∈ Φ−, which implies α = αs, or
s(α) ∈ Σ, which implies that s(α) ∈ DΣ(w). This shows that DΣ(ws) ⊆
{αs} ∪ (s(DΣ(w)) ∩ Σ). The opposite inclusion is obvious. �

It is now easy to deduce the main result of this section.

Theorem 4.8.3 The language of reduced expressions is regular.

Proof. We construct a finite state automaton for the language of reduced
expressions as follows. Take

S def
= {DΣ(w) : w ∈ W}



120 4. Roots, games, and automata

as the set of nodes of the automaton, with DΣ(e) (= ∅) as the start node.
The set S is finite by Theorem 4.7.3.

For each D ∈ S and s ∈ S such that αs 	∈ D, we put a labeled directed
edge

D
s−→ {αs} ∪

(
s(D) ∩ Σ

)
.

Note that {αs} ∪ (s(D) ∩ Σ) ∈ S if D ∈ S and αs 	∈ D, by Proposition
4.8.2. It is clear from Proposition 4.8.2 that this automaton recognizes the
language of reduced expressions of (W, S). �

The finite state automaton for the language of reduced words of (W, S)
constructed in the proof of Theorem 4.8.3 will henceforth be referred to as
the canonical automaton. It is by no means necessarily optimal in terms of
size, although it turns out to have minimal size, for example, for the Ãn

groups.
Note that using TR(w) in place of DΣ(w) in the proof of Theorem 4.8.3

also yields an automaton recognizing the language of reduced expressions,
since TR(ws) = {s} ∪ s(TR(w))s if w ∈ W and s 	∈ DR(w). However, this
automaton is finite if and only if W is finite. In fact, this is precisely the
“weak order automaton” already considered earlier in this section.

On the other hand, using DR(w) in place of DΣ(w) does give a finite
number of nodes, but the same construction would have been impossible
since DR(ws) does not depend only on DR(w) and s (if w ∈ W and s 	∈
DR(w)).

Example 4.8.4 To illustrate the general construction of a finite state au-
tomaton in the proof, we end this section with an example. Namely, we
construct the canonical automaton for the group a b c

∞
.

The first step is to determine the set of small roots and the edge-labeled
order ideal of the root poset that they determine. This task was achieved
in Figure 4.7, from which we extract the simplified picture (Figure 4.10) of
the edge-labeled order ideal.

100 010 001

110

a bb c

c

Figure 4.10. Edge-labeled order ideal of small roots in
a b c

∞
.
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Figure 4.10 contains all the information we need for the construction of the
automaton. The nodes of the automaton will be denoted by symbols such
as

++ −

−

Referring to the relative positions of the four small roots in Figure 4.10,
this symbolizes the node DΣ(w) = {110, 010}, or, equivalently, the node
DΣ(w) for any w ∈ W such that

w(110) < 0, w(100) > 0, w(010) < 0, w(001) > 0.

Of the 16 possible symbols, the ones that actually occur as nodes in the
automaton (there are 8 of them) can be generated from the start node
(the one with four +), in parallel with generating the labeled edges of the
automaton. Namely, from a given node DΣ(w), there is one outgoing edge
for each s ∈ S such that w(αs) > 0 (i.e., for each position marked with
+ in the bottom row of our symbol). Such an s-marked edge leads to the
node DΣ(ws), the distribution of + and - signs in whose symbol can be
determined by Proposition 4.8.2.

At this point, it is convenient to keep the rule given in Proposition 4.6.6
in mind. It says that the distribution of + and - signs in the node symbol
will change only (1) by switching from + to - at the simple root αs and
(2) by exchanging the values at the two ends of each s-labeled edge in
the root poset. There is only one catch: What if such an edge is a long
edge leading from an element u ∈ Σ to some v /∈ Σ? Then, from knowing
DΣ(w) we do not know the sign at v that will be traded to become the sign
at u. However, actually we do! Lemma 4.8.1 comes to our rescue. It says
that in this situation, the value at v is necessarily a +. The following edge
illustrates this combinatorial rule:

++

+

+−− −

−b

The automaton is constructed from Figure 4.10 by repeated application
of this edge- and node-forming rule. Figure 4.11 shows the result. �

4.9 Complement: Counting reduced words and
small roots

Theorem 4.8.3 has a purely enumerative corollary. For a Coxeter system
(W, S), let rk denote the number of reduced words of length k, for k ≥ 0.
Equivalently, rk is the number of weak order saturated chains of length k
starting from e. So, for example, r0 = 1, r1 = |S|, and r2 = |S|(|S| − 1).
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start

Figure 4.11. Canonical automaton for
a b c

∞
.

Let

R(W,S)(q)
def
=
∑

k≥0

rkqk.

Theorem 4.9.1 The formal power series R(W,S)(q) is rational.

Proof. We have that rk equals the number of directed paths of length k
in the automaton from the start node to any node in S. Since |S| < ∞ the
result follows via the well-known “Transfer Matrix Method”; see Corollary
A4.1.3. �

The following are some examples of initial segments of such formal power
series (where (3,∞) =

a b c

∞
):

R eA1
(q) = 1 + 2q + 2q2 + 2q3 + 2q4 + 2q5 + 2q6 + 2q7 + 2q8 + · · · ,

R eA2
(q) = 1 + 3q + 6q2 + 12q3 + 18q4 + 30q5 + 42q6 + 66q7 + 90q8 + · · · ,

R(3, ∞)(q) = 1 + 3q + 6q2 + 10q3 + 16q4 + 24q5 + 38q6 + 60q7 + 92q8 + · · · ,

and here are the rational expressions:

R eA1
(q) =

1 + q

1 − q
,

R eA2
(q) =

(1 + 2q)(1 + q2)

(1 − q)(1 − 2q2)
,

R(3, ∞)(q) =
(1 + q)(1 + 2q + 3q2 + 2q3 + 2q4 + q6)

1 − q2 − 2q3 − q6
.
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Not much is known about the enumeration of reduced words. In the case
of finite Coxeter groups, this topic has been studied mainly for the sym-
metric groups; see Section 7.4. For infinite groups, we know of no general
results beyond Theorem 4.9.1. Rational expressions for the seriesR(W,S)(q),
in the case of infinite groups of rank 3, have been computed by Avasjö [15].
Unfortunately, the results do not seem to suggest any general pattern.

As has been shown, the counting of reduced words in (W, S) has close ties
to the structure of the recognizing finite state automaton. Thus, it becomes
of interest to adress the question: How large is the canonical automaton?
This means to try to determine or estimate the number |Σ| of small roots
and then to try to determine or estimate how many of the 2|Σ| potential
nodes actually occur in the canonical automaton.

Surprisingly, these questions have exact answers for the class of affine
Coxeter groups. The explanation goes via details of the geometric repre-
sentation that lie just a bit beyond the scope of this book. We will sketch
the connection and state the results. For more details about the geometric
picture, see, for example, [306, Section 5.13].

Let (W, S) be a Coxeter group. To each positive root β ∈ Φ+ is associated
a hyperplane

Hβ
def
= {p ∈ V ∗ : 〈p | β〉 = 0}

in V ∗, with its two half-spaces H+
β = {p ∈ V ∗ : 〈p | β〉 > 0} and

H−
β = −H+

β . The closure C of the open simplicial cone C = ∩s∈S H+
αs

is a

fundamental domain for the action of W on the Tits cone U = ∪w∈W w(C).
If all the hyperplanes Hβ (β ∈ Φ+) are removed from U , what remains is a
collection of pairwise disjoint open simplicial cones w(C), called chambers
(or Weyl chambers), in bijection with W via w �→ w(C).

We say that a chamber w(C) is beneath the hyperplane Hβ if it is con-
tained in H+

β (i.e., it lies on the same side of Hβ as the fundamental chamber
C), otherwise it is beyond Hβ. A crucial observation is that w(C) is beneath
Hβ if and only if w(β) > 0.

Interpreting positive roots β as hyperplanes Hβ, we may consider the
arrangement of small hyperplanes

AΣ
def
= {Hβ : β ∈ Σ}.

In terms of this arrangement, the geometric meaning of the small descent
set of w is this: DΣ(w) is the set of small hyperplanes separating w(C)
from C. Hence, DΣ(w) = DΣ(w′) if and only if w(C) and w′(C) are con-
tained in the same connected component of U \AΣ (the complement of the
arrangement AΣ in the Tits cone U). From this, we get the following.
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Lemma 4.9.2 The number of nodes of the canonical automaton equals the
number of connected regions of U \ AΣ.

What is the geometric meaning of saying that a hyperplane Hβ is small?
By Theorem 4.7.6, we know that this means that β dominates no positive
root α other than itself; that is, for all α ∈ Φ+ \ {β}, there is some w ∈ W
such that w(α) > 0 and w(β) < 0. In other words, we have the following.

Lemma 4.9.3 A hyperplane Hβ is small if and only if for every other
hyperplane Hα, there is some chamber w(C) that is beneath Hα and beyond
Hβ.

Informally speaking, the lemma says that a hyperplane is small if it
lies “close” to the fundamental chamber, so that it has sufficiently many
chambers on the “beyond” side.

Now, we specialize the discussion to the case of an affine group (W, S),
where it is possible to be much more precise. In this case, we pass from the
geometric description used so far to the realization as an affine reflection
group of a crystallographic root system in a space of dimension |S|−1, ob-
tained by intersecting with an affine hyperplane E in V ∗. See [306, Chapter
4] for details about such affine reflection groups and [306, Section 6.5] for
the transition.

After the transition, the arrangement A = {Hβ ∩ E : β ∈ Σ} of affine
hyperplanes decomposes into parallelism classes, one for each positive root
of the associated finite Weyl group W . For each such class, consider the
two adjacent hyperplanes between which the fundamental chamber C ∩ E
is sandwiched. It is geometrically clear from Lemma 4.9.3 that these two
hyperplanes are small and that no other hyperplane in the class is small.
Hence, we have proved the first part of the following theorem.

Theorem 4.9.4 Let (W, S) be an affine Weyl group, with corresponding
finite Weyl group W . Let t be the number of reflections of W . Then, we
have the following:

(i) |Σ| = 2t.

(ii) The number of connected regions of U \ AΣ is
(

2t
|S|−1 + 1

)|S|−1

.

The second part of the theorem is due to Shi [456], who introduced and
studied arrangements of small hyperplanes in the affine case. In fact, in
that case, these arrangements are usually known as Shi arrangements.

Since the number t of reflections is known for all finite Weyl groups (see
Appendix A1) we can deduce from Theorem 4.9.4 and Lemma 4.9.2 the
following explicit information in the case of affine irreducible groups. Here,
N stands for the number of nodes of the canonical automaton.
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Group |Σ| N

Ãn n(n + 1) (n + 2)n

B̃n, C̃n 2n2 (2n + 1)n

D̃n 2n(n− 1) (2n− 1)n

Ẽ6 72 136

Ẽ7 126 197

Ẽ8 240 318

F̃4 48 134

G̃2 12 72

As was mentioned, the canonical automaton is not necessarily minimal.
Eriksson [223] shows that for type Ãn, it is minimal, but for type C̃n, it is
not. In any case, the gathered information gives the following upper bound
in the affine case, for fixed d = |S|:

N ≤ |Σ|d−1

(d− 1)d−1
+ O(|Σ|d−2). (4.47)

What about the general case? We do not know of any estimates of the
number of small roots, but in terms of this number |Σ|, there is the following
bound:

N ≤ 2
|Σ|d−1

(d− 1)!
+ O(|Σ|d−2

). (4.48)

This follows from the formula 2
∑d−1

i=0

(
h−1

i

)
for the number of connected

components in the complement of a generic arrangement of h hyperplanes
in Rd, together with the fact that the number of components is maximized
by the generic case.

Exercises

1. The following problem was given at the International Olympiad of
Mathematics in 1986:
Five integers with positive sum are arranged on a circle. The following
game is played. If there is at least one negative number, the player
may pick one of them, add it to its neighbors, and reverse its sign.
The game terminates when all the numbers are nonnegative. Prove
that this game must always terminate.

(a) Find an elementary proof.
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(b) Analyze the situation in terms of the numbers game and prove
the following stronger conclusion: The game will terminate in the
same number of steps and in the same final position no matter
how it is played.

2. Prove that the group An−1 is finite and isomorphic to Sn using the
numbers game.

3. Let x = [x1, . . . , xn], xi ∈ [±n], be an element of the group SB
n in

window notation; see Section 8.1 for the definitions. Show that

d(x) = (x1, x2 − x1, x3 − x2, . . . , xn − xn−1)

is the position corresponding to x in the numbers game played from
the unit position 1 on the type Bn Coxeter graph (with a suitable
choice of edge weights).

4. Let p ∈ P be a position in the numbers game (played from a positive
starting position). Show that all entries of p are nonzero.

5. Show that for an affine Coxeter group there exists a vector γ =∑
csαs, with cs > 0 for all s ∈ S, such that 〈pw|γ〉 takes the same

value for all positions pw of the numbers game.
[Hint: See [306, Section 6.5].]

6. In the situation of Lemma 4.2.4, what are the precise conditions for
which c > 0? Same question for d > 0.

7. Define R = T × {+1,−1} and πw : R → R as in Section 1.3, and let
Φ be the root system of (W, S). Define a map φ : R → Φ by

(t, +1) �→ γ ∈ Φ+ such that tγ = t,

(t,−1) �→ γ ∈ Φ− such that tγ = t.

(a) Show that φ is bijective.
(b) Show that

φ(πw(t, ε)) = w(φ(t, ε))

for all (t, ε) ∈ R and w ∈ W .
(c) Using this, show that Propositions 4.4.4 and 4.4.6 can be de-

duced from the results of Section 1.4 (assuming that these
propositions were not used for part (b)).

8. Let ( · | · ) be the standard symmetric bilinear form (4.21).

(a) Show that for rank 2 Coxeter groups ( · | · ) is either positive
definite or positive semidefinite.

For a rank 3 Coxeter system having S = {s1, s2, s3} and

(p, q, r) = (m(s1, s2), m(s1, s3), m(s2, s3)),
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let d be the quantity

d
def
=

1

p
+

1

q
+

1

r
.

(b) Show that ( · | · )

• is positive definite if and only if d > 1,

• is positive semidefinite but degenerate if and only if d = 1,

• has signature (2, 1) (i.e., its associated symmetric matrix
has one negative eigenvalue and two positive eigenvalues) if
d < 1.

[Hint: It helps to break up the analysis into two cases: the case
where one of p, q, and r is 2, so that the Coxeter diagram con-
tains no cycle, and the other case where the Coxeter diagram is
a triangle.]

(c) Explictly write down all the possible values (p, q, r) in the
positive definite and semidefinite (d ≥ 1) cases.

(d) Show that in the cases with d > 1, one has |W | = 4
d−1 .

9. The reason for specializing to the case of a symmetric bilinear form
in Section 4.4 is that important properties of root systems would
otherwise not be true. For example, consider the Coxeter system A2

on generators s and s′ and with edge weights ks,s′ = 2 and ks′,s = 1
2 .

Extending the definitions of Section 4.4, show that this example has
six “positive roots,” namely αs = (1, 0), s′(αs) = (1, 1

2 ), ss′(αs) =
(0, 1

2 ), αs′ = (0, 1), s(αs′) = (2, 1), and s′s(αs′ ) = (2, 0). Then, find
counterexamples showing that the generalizations of equation (4.27),
Lemma 4.4.3, and Proposition 4.4.4 are false.

10. Let (W, S) be finite and irreducible. Consider the standard geometric
representation σ : W → RS and let α(y) = −y be the antipodal map
on RS . Show that the following are equivalent:

(a) w0xw0 = x for all x ∈ W .
(b) σw0 = α.
(c) α ∈ σ(W ).
(d) All exponents of W are odd.

Conclude that x �→ w0xw0 is not the identity mapping if and only if
W is one of An (n ≥ 2), Dn (n odd), E6, or I2(m) (m odd).

[Hint: The implications (b) ⇔ (c) and (b) ⇒ (a) are easy to see,
but (a) ⇒ (b) requires a small geometric argument. For (c) ⇔ (d),
see “Corollaire 3” on p. 123 of [79]. The argument is concluded by
referring to a table of exponents; see, for example, Appendix A1.]

11. (a) Prove the statements made about rank 2 groups in Example
4.4.2.
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(b) Show that in the standard geometric representation of Ã2 in V ∼=
R3 there are only three planes left fixed by its reflections, with
infinitely many roots (pointing in different directions) associated
with each such plane.

12. Let (W, S) be a finite Coxeter system and Φ ⊂ V its root system. Let
Γ2(V ) be the set of 2-dimensional subspaces of V and define

g(Φ)
def
= |{U ∈ Γ2(V ) : |U ∩ Φ| ≥ 5}|.

Show the following:

(a) If W is of type An, then g(Φ) =
(
n+1

3

)
.

(b) If W is of type Bn (n ≥ 2), then g(Φ) = n(n−1)(4n−5)
6 .

(c) If W is of type Dn (n ≥ 4), then g(Φ) = 4 (n
3 ).

13. Let (W, S) be a finite Coxeter system, and consider the geometric

representation of (W, S). For α ∈ Φ, let Hα
def
= {p ∈ V ∗ : 〈p | α〉 = 0}

be the hyperplane orthogonal to α. Clearly, the complement in V ∗

of the hyperplane arrangement
⋃

α∈Π Hα has 2|Π| connected com-
ponents. Each such connected component C is a union of a finite
number (call it s(C)) of Weyl chambers (i.e., connected components
of V ∗ \ (

⋃
α∈Φ Hα)). The Springer number of (W, S) is

Spr(W, S)
def
= maxC{s(C)},

where C runs over all the connected components of V ∗ \ (
⋃

α∈Π Hα).
Show that

Spr(W, S) = maxJ⊆S{|DJ |}.
In particular, show the following:

(a) If (W, S) is a dihedral group, then Spr(W, S) = |W |
2 − 1.

(b) If (W, S) has rank 3, then Spr(W, S) = |W |
4 − 1.

(c) If (W, S) is of type An, then Spr(W, S) equals the number of
alternating permutations of Sn+1 (i.e., |{σ ∈ Sn+1 : σ(1) <
σ(2) > σ(3) < · · · }|).

(d) If (W, S) is of type Bn, then

Spr(W, S) = |{σ ∈ SB
n : 0 < σ(1) > σ(2) < σ(3) > · · · }|

(notation as in Section 8.1).
(e) If (W, S) is of type Dn, then

Spr(W, S) = |{σ ∈ SD
n : −σ(2) < σ(1) < σ(2) > σ(3) < · · · }|

(notation as in Section 8.2).

14. Construct the root posets of B2 and B3.
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15. Is the root poset (Φ+,≤), with a bottom element appended, a meet-
semilattice?

16. Show that the set

{(α | β) : α, β ∈ Φ+, |(α | β)| < 1}
is finite.

17. Let u ∈ W , u2 = e. Show that there exists J ⊆ S and w ∈ W such
that u = ww0(J)w−1.
[Hint: Use Theorem 4.5.3 together with [79, Exc. 17b, p. 225].]

18. Can Lemma 4.7.2 be extended to dp (β) = 1 ?

19. Let (W, S) be a finite Coxeter system. Show that all positive roots
are small.

20. Let (W, S) be a universal Coxeter system (see Example 1.2.2).

(a) Show that Σ = {αs : s ∈ S}.
(b) Construct a finite state automaton for reduced words in this

group.

21. Given (i1, . . . , ip) ∈ Np, let

{z1, . . . , zt}<
def
= {j ∈ [2, p− 1] : ij−1 = ij+1}.

(a) Show that (i1, . . . , ip) ∈ [3]p, with ik 	= ik+1, is a reduced de-

composition of some element of Ã2 if and only if zj − zj−1 is
even for j = 2, . . . , t.

(b) Show that the statement in part (a) is false for Ãn, n ≥ 3.
(c) Use part (a) to construct a finite state automaton that recognizes

the language of reduced expressions of Ã2, and compare it with
the canonical automaton.

(d) Deduce the rational expression for R eA2
(q) given on page 122.

22. Deduce the rational expression for R(3,∞)(q) given on page 122.
[Hint: Use Fact A4.1.2 together with Figure 4.11.]

23. (a) Show the following:

R eA3
(q) = 1 + 4q + 12q2 + 32q3 + 80q4 + 184q5

+ 416q6 + 864q7 + · · · ,

R eA4
(q) = 1 + 5q + 20q2 + 70q3 + 230q4 + 700q5

+ 2080q6 + 5910q7 + · · · .

(b)∗ Determine the rational expressions for R eAn
(q), n ≥ 3.

24. Let (W, S) be a Coxeter group with S finite.
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(a) Construct a finite state automaton that recognizes the language
of lexicographically minimal reduced words with respect to some
total ordering of S (or, equivalently, the set of normal forms).

(b) Deduce that the formal power series W (q) =
∑

w∈W qℓ(w) is
rational.

Notes

Basic references for the geometric representation are the books by Bourbaki
[79, Ch. 5] and Humphreys [306, Ch. 5]; for root systems, see also Deodhar’s
paper [179].

As is shown in the proof of Theorem 4.3.1, the numbers game is mathe-
matically just a particular choice of a generic orbit for the contragredient
of the geometric representation of a Coxeter group. From this point of
view, the content of Section 4.3 is quite special. The point is, however, the
recognition that “playing” in this simple way with numbers on the nodes
of a Coxeter graph can be a useful way to perform computations. The
numbers game first appeared, in a somewhat restricted version related to
Kac-Moody Lie algebras, in the work of Mozes [400]. The general version
given here is due to Eriksson [227].

Theorem 4.5.3 appears as an exercise in Bourbaki [79], and Proposition
4.5.4 appears in Dyer’s paper [200] (see also [104]).

The root poset was introduced independently by Brink and Howlett [104]
and by H. and K. Eriksson [223, 227]. Most of the results in Section 4.6
appear in these sources. Small roots were introduced in [223] and humble
roots (not by this name) in [104]. Our treatment in Section 4.7 borrows
ideas from both [104] and [223] in about equal measure.

The existence of a finite state automaton that recognizes the language
of normal forms is an important problem in the computational theory of
finitely generated groups. In the case of Coxeter groups, the first complete
proof was given by Brink and Howlett [104]. Via an earlier paper of Davis
and Shapiro [171], the result of [104] implies regularity also for the language
of reduced words. Other sources for this result include the theses of Eriksson
[223] and Headley [290]. Various aspects of automata for Coxeter group
computations are discussed in [103, 117, 118, 119].

Sections 4.8 and 4.9 are based mainly on [223].

Exercises 8 and 17. See Bourbaki [79].
Exercise 12. See Shi [463].
Exercise 13. See Arnol’d [11].
Exercises 16 and 24(a). See Brink and Howlett [104].
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Kazhdan-Lusztig and R-polynomials

In their fundamental paper [322], Kazhdan and Lusztig defined, for every
Coxeter group W , a family of polynomials with integer coefficients, indexed
by pairs of elements of W . These polynomials, which have become known
as the Kazhdan-Lusztig polynomials of W , are intimately related to the
Bruhat order of W and to the algebraic geometry and topology of Schu-
bert varieties. They have also proven to be of fundamental importance in
representation theory. In order to prove the existence of these polynomi-
als, Kazhdan and Lusztig used another family of polynomials that arises
from the multiplicative structure of the Hecke algebra associated to W .
These auxiliary polynomials are known as the R-polynomials of W . Their
importance stems mainly from the fact that knowing them is equivalent to
knowing the Kazhdan-Lusztig polynomials.

In this chapter, we examine, from a combinatorial point of view, the
R-polynomials and Kazhdan-Lusztig polynomials of a Coxeter group. We
describe two combinatorial interpretations of the R-polynomials (one in
terms of subexpressions of reduced decompositions and one in terms of cer-
tain paths in the Bruhat graph) and a nonrecursive combinatorial formula
for the Kazhdan-Lusztig polynomials.

5.1 Introduction and review

In this section, we review a few basic facts about Kazhdan-Lusztig and R-
polynomials that we need as a starting point. Their proofs can all be found
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in Chapter 7 of [306], and more precise references are given after each one
of them. Throughout this chapter, let (W, S) be a Coxeter system.

Kazhdan-Lusztig and R-polynomials can be defined in several equivalent
ways. We choose here the one that is best suited for our purposes. This
involves defining first the R-polynomials and then using these to define
the Kazhdan-Lusztig polynomials. In both cases, we have a “Theorem-
Definition.”

Theorem 5.1.1 There is a unique family of polynomials {Ru,v(q)}u,v∈W ⊆
Z[q] satisfying the following conditions:

(i) Ru,v(q) = 0, if u 	≤ v.

(ii) Ru,v(q) = 1, if u = v.

(iii) If s ∈ DR(v), then

Ru,v(q) =

{
Rus,vs(q), if s ∈ DR(u),
qRus,vs(q) + (q − 1)Ru,vs(q), if s 	∈ DR(u).

(5.1)

The uniqueness part of this theorem is trivial. What is not obvious is
the existence. This follows from the invertibility of certain basis elements
of the Hecke algebra H of W and is proved in §§7.4 and 7.5 of [306]. The
polynomials whose existence and uniqueness are guaranteed by Theorem
5.1.1 are called the R-polynomials of (W, S).

Theorem 5.1.1 can be used to compute the polynomials {Ru,v(q)}u,v∈W

by induction on ℓ(v). In fact, if v 	= e, it is possible to find some s ∈ DR(v),
and then since ℓ(vs) < ℓ(v) , we may assume by induction that we have
already computed all of the R-polynomials appearing on the right-hand
side of equation (5.1). Thus, we may use part (iii) of Theorem 5.1.1 as a
recurrence relation for the computation of the R-polynomials, using parts
(i) and (ii) as “initial conditions.”

Example 5.1.2 Suppose that we want to compute R123,321(q) in S3.
Choosing s = (1, 2) ∈ DR(321), we have from part (iii) of Theorem 5.1.1
that

R123,321(q) = q R213,231(q) + (q − 1)R123,231(q).

Now, choosing s = (2, 3) ∈ DR(231), we obtain that

R213,231(q) = q R231,213(q) + (q − 1)R213,213(q) = q − 1,

and

R123,231(q) = q R132,213(q) + (q − 1)R123,213(q)

= (q − 1)R123,213(q),

by Theorem 5.1.1. Finally, choosing s = (1, 2) ∈ DR(213), we get that

R123,213(q) = q R213,123(q) + (q − 1)R123,123(q) = q − 1,
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again by Theorem 5.1.1. Therefore, we conclude that

R123,321(q) = q (q − 1) + (q − 1)3 = q3 − 2q2 + 2q − 1.

�

In the same way, the reader is encouraged to compute as an exercise that

R123,132(q) = R123,213(q) = q − 1

and

R123,312(q) = R123,231(q) = q2 − 2q + 1.

It may then come as a relief to learn that there are simpler and faster ways
to compute the R-polynomials of a Coxeter group.

Theorem 5.1.1 can also be used to prove, by induction on ℓ(v), some
simple basic properties of the R-polynomials.

Proposition 5.1.3 Let u, v ∈ W , u ≤ v. Then, Ru,v(q) is a monic
polynomial of degree ℓ(u, v) and with constant term (−1)ℓ(u,v).

Proof. All three statements are true if ℓ(v) = 0 (i.e., if v = e) by part (ii)
of Theorem 5.1.1. So let ℓ(v) > 0 and assume by induction that they hold
whenever the second indexing element has length < ℓ(v). Let s ∈ DR(v).
If s ∈ DR(u), then by part (iii) of Theorem 5.1.1, we have that

Ru,v(q) = Rus,vs(q),

and the result holds by induction since ℓ(us, vs) = ℓ(u, v) in this case. If
s 	∈ DR(u), then we have that

Ru,v(q) = qRus,vs(q) + (q − 1)Ru,vs(q),

and the result again holds since ℓ(us, vs) = ℓ(u, v) − 2 and ℓ(u, vs) =
ℓ(u, v) − 1 (note that it could happen that us 	≤ vs and, hence, that
Rus,vs(q) = 0, but this does not affect our conclusion). Thus, the result
holds for Ru,v(q) in either case, and this concludes the induction step. �

In a similar way, other basic properties of the R-polynomials can be
proved; see Exercises 1, 2, and 3.

We now come to the definition of the Kazhdan-Lusztig polynomials. As
mentioned above, this is again a “Theorem-Definition.”

Theorem 5.1.4 There is a unique family of polynomials {Pu,v(q)}u,v∈W ⊆
Z[q] satisfying the following conditions:

(i) Pu,v(q) = 0, if u 	≤ v.

(ii) Pu,v(q) = 1, if u = v.

(iii) deg(Pu,v(q)) ≤ 1
2 (ℓ(u, v)− 1), if u < v.
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(iv)

qℓ(u,v) Pu,v

(
1

q

)
=
∑

a∈[u,v]

Ru,a(q)Pa,v(q), if u ≤ v.

Once again, the uniqueness part is easy. A proof of Theorem 5.1.4 appears
in §§7.9, 7.10, and 7.11 of [306]. The polynomials {Pu,v(q)}u,v∈W whose
existence and uniqueness are guaranteed by the previous theorem are called
the Kazhdan-Lusztig polynomials of (W, S).

Theorem 5.1.4 can be used to prove some simple basic properties of the
Kazhdan-Lusztig polynomials.

Proposition 5.1.5 Let u, v ∈ W , u ≤ v. Then, Pu,v(0) = 1.

Proof. We proceed by induction on ℓ(u, v), the result being true by part
(ii) of Theorem 5.1.4 if ℓ(u, v) = 0. So let ℓ(u, v) > 0. Then, we conclude
from parts (iii) and (iv) of Theorem 5.1.4 that

0 =
∑

a∈[u,v]

Ru,a(0)Pa,v(0).

Using Proposition 5.1.3 and the induction hypothesis, we may rewrite this
as

Pu,v(0) = −
∑

u<a≤v

(−1)ℓ(u,a).

Now, using Corollary 2.7.10, we conclude from this that

Pu,v(0) = −
∑

u<a≤v

µ(u, a) = µ(u, u) = 1,

as desired. �

The preceding proof already shows that the Kazhdan-Lusztig polynomi-
als are considerably more subtle than the R-polynomials. In fact, whereas
for the latter ones we have been able to deduce in a fairly straightforward
way their degree, leading term, and constant term, for the Kazhdan-Lusztig
polynomials we have had to use a more substantial result (the computa-
tion of the Möbius function of Bruhat order) just to compute their constant
term. In fact, at present, there are no simple formulas known for computing
the leading term and degree of Kazhdan-Lusztig polynomials.

Once the R-polynomials have been computed, then Theorem 5.1.4 can
be used to recursively compute the polynomials {Pu,v(q)}u,v∈W , by induc-
tion on ℓ(u, v). In fact, by induction we may assume that we have already
computed the polynomials Pa,v(q) for all a ∈ [u, v], a 	= u. This, by part
(iv) of Theorem 5.1.4, means that we can compute

qℓ(u,v) Pu,v

(
1

q

)
− Pu,v(q) (5.2)
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(recall that Ru,u(q) = 1 by part (ii) of Theorem 5.1.1). However, by part
(iii) of Theorem 5.1.4, the coefficient of qi in the polynomial (5.2) is the
same as the coefficient of qi in −Pu,v(q) for all i = 0, . . . ,

⌊
1
2 (ℓ(u, v)− 1)

⌋

(we assume that u < v for otherwise we already know Pu,v(q) by parts
(i) and (ii) of Theorem 5.1.4) and thus we can compute Pu,v(q) from the
polynomial (5.2). (The reader will notice that the reasoning that we have
just explained proves the uniqueness part of Theorem 5.1.4).

Example 5.1.6 Let us compute P123,321(q) in S3. From part (iv), we
deduce that

q3 P123,321(q
−1)− P123,321(q) = R123,213(q)P213,321(q)

+ R123,132(q)P132,321(q)

+ R123,231(q)P231,321(q)

+ R123,312(q)P312,321(q)

+ R123,321(q)P321,321(q).

However, by parts (ii) and (iii) of Theorem 5.1.4 and Proposition 5.1.5, we
know that Pu,321(q) = 1 for all u ∈ S3 \ {123}. Hence, we obtain that

q3 P123,321(q
−1)− P123,321(q) = R123,213(q) + R123,132(q) + R123,231(q)

+ R123,312(q) + R123,321(q).

Assuming, as we are, that we have already computed the R-polynomials,
we then get

q3 P123,321(q
−1)− P123,321(q) = (q − 1) + (q − 1) + (q − 1)2

+ (q − 1)2 + (q3 − 2q2 + 2q − 1)

= q3 − 1.

Now, since 1
2 (ℓ(321)− ℓ(123)− 1) = 1, we deduce from this, by part (iii) of

Theorem 5.1.4, that

P123,321(q) = 1 .

�

As a further (although quite a bit longer) example, the reader may want
to verify that

P2134,4231(q) = P1324,3412(q) = 1 + q.

We conclude this review section by recalling a few more fundamental
properties of the Kazhdan-Lusztig polynomials. Although they are not
needed in the text of this chapter, they are used in some of the exercises,
as well as in Chapter 6.

For u, w ∈ W , u ≤ w, we let

µ(u, w)
def
=

{
[q

1
2 (ℓ(u,w)−1)](Pu,w(q)), if ℓ(u, w) is odd,

0, otherwise.
(5.3)
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We use here “µ” to distinguish this function from the Möbius function “µ”
encountered in Section 2.7 and elsewhere.

Theorem 5.1.7 Let u, v ∈ W , u ≤ v, and s ∈ DR(v). Then,

Pu,v(q) = q1−cPus,vs(q) + qcPu,vs(q)−
∑

{z: s∈DR(z)}

q
ℓ(z,v)

2 µ(z, vs)Pu,z(q)

(5.4)
where c = 1 if s ∈ DR(u), and c = 0 otherwise.

A proof of this result can be found in [306, §7.11]. Two simple but important
consequences of Theorem 5.1.7 are the following (see [306, Theorem 7.9,
part (b), and Corollary 7.14]).

Proposition 5.1.8 Let u, v ∈ W , u ≤ v. If s ∈ DR(v), then

Pu,v(q) = Pus,v(q).

Proof. Applying Theorem 5.1.7 first to the pair (u, v), and then to (us, v),
one sees that the right-hand side of equation (5.4) does not change, except
that Pu,z(q) gets replaced by Pus,z(q). However, these two polynomials are
by induction equal, since s ∈ DR(z) and ℓ(z) ≤ ℓ(vs) < ℓ(v). The result
follows. �

So, for example, P2147563,6157243(q) = P1245736,6157243(q). It also follows
that

Pu,w0(q) = 1,

for all u ∈ W , if W is finite and w0 is its longest element.

Proposition 5.1.9 Let z, w ∈ W , z ≤ w, be such that µ(z, w) 	= 0 and
ℓ(z, w) > 1. Then, DR(z) ⊇ DR(w).

Proof. Let s ∈ DR(w) and suppose that s 	∈ DR(z). Then, from
Proposition 5.1.8 we conclude that Pz,w(q) = Pzs,w(q). Hence,

µ(z, w) = [q
1
2 (ℓ(z,w)−1)](Pz,w) = [q

1
2 (ℓ(z,w)−1)](Pzs,w) = 0

by part (iii) of Theorem 5.1.4, since deg(Pzs,w) ≤ 1
2 (ℓ(zs, w) − 1) =

1
2 (ℓ(z, w)− 2). This contradiction shows that s ∈ DR(z). �

5.2 Reflection orderings

Reflection orderings play an important role in the combinatorics of the
Kazhdan-Lusztig and R-polynomials, as well as in other parts of the the-
ory of Coxeter groups. Although many of the results in this chapter depend
on reflection orderings, not all do (for example, Theorems 5.3.7 and 5.5.2
do not). In this section, we define reflection orderings and derive those
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properties that we need. We refer the reader to Sections 4.2 and 4.4 for
the notation that we use for root systems and the standard geometric
representation.

A total ordering < on Φ+ is a reflection ordering if for all α, β ∈ Φ+ and
λ, µ ∈ R>0, such that λα + µβ ∈ Φ+, we have that either

α<λα + µβ<β

or

β<λα + µβ<α.

For example, if W = S4 with its standard root system, then it is easy to
check that

α1<α1 + α2<α1 + α2 + α3<α2<α2 + α3<α3 (5.5)

is a reflection ordering.
It is not obvious that reflection orderings always exist.

Proposition 5.2.1 There exists a reflection ordering on Φ+.

Proof. Fix an indexing (i.e., a total ordering) of the elements of S, say
S = {s1, . . . , sn}. Let

U def
=

{
n∑

i=1

csi
αsi

:

n∑

i=1

csi
= 1

}
.

Note that if α ∈ Φ+, then there is a unique λα ∈ R>0 such that
λαα ∈ U . For α, β ∈ Φ+, define α<β to mean that λαα <lex λββ.
Here, <lex denotes the total ordering of V obtained by comparing coor-
dinates lexicographically; that is,

∑n
i=1 csi

αsi
<
∑n

i=1 bsi
αsi

if and only if
(cs1 , . . . , csn

) < (bs1 , . . . , bsn
) lexicographically.

Now, if α, β ∈ Φ+ and a, b ∈ R>0 are such that α<β and aα + bβ ∈ Φ+,
then λaα+bβ(aα+bβ) = c(λαα)+(1−c)(λββ) for some 0 < c < 1. However,
this, since λαα <lex λββ, implies that λαα <lex λaα+bβ(aα+ bβ) <lex λββ,
as desired. �

There is one property of reflection orderings that is crucial for our
purposes. To state and prove it, we need first the following preliminary
observation.

Proposition 5.2.2 Let < be a reflection ordering, s ∈ S, and β ∈ Φ+ \
{αs}. Then, β<αs if and only if s(β)<αs.

Proof. We may assume that s(β) 	= β and, hence, that (β |αs) 	= 0. If
(αs |β) < 0, then since s(β) = β − 2(αs |β)αs, there follows from the
definition of reflection ordering that s(β) lies between αs and β, and the
result follows in this case.

Similarly, if (αs |β) > 0, then β lies between s(β) and αs, and the result
again follows. �
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Let < be a reflection ordering, and s ∈ S. We define a total ordering <s

on Φ+ as follows. For β, γ ∈ Φ+, we set β<sγ if and only if either one of
the following (mutually exclusive) conditions apply:

(i) β, γ<αs and β<γ,

(ii) β, γ > αs and s(β)<s(γ),

(iii) β < αs < γ,

(iv) γ = αs.

We call <s the upper s-conjugate of <. Note that the definition of <s is
consistent by Proposition 5.2.2.

Similarly, we define the lower s-conjugate of <, denoted <s, by letting
β<sγ if and only if either one of the following conditions is satisfied:

(i’) β, γ<αs and s(β)<s(γ),

(ii’) β, γ > αs and β<γ,

(iii’) β < αs < γ,

(iv’) β = αs.

For example, if < is the reflection ordering of S4 given in (5.5), and s =
(2, 3), then

α1<
sα1 + α2<

sα1 + α2 + α3<
sα3<

sα2 + α3<
sα2.

Note that αs is the maximum (respectively, minimum) element of <s

(respectively, <s). If we think of the elements of Φ+ as arranged on an
infinite line so that α<β if and only if α is to the left of β, then <s is
obtained from < by applying s to the roots to the right of αs, and then
moving αs to “+∞.” Similarly, <s is obtained from < by applying s to the
roots to the left of αs and then moving αs to “−∞.” Note that

(<s)
s = <s (5.6)

for any s ∈ S and reflection ordering <.
We can now state and prove the main result of this section.

Proposition 5.2.3 Let < be a reflection ordering, and s ∈ S. Then, <s

and <s are also reflection orderings.

Proof. We show that <s is a reflection ordering, the proof for <s being
entirely similar.

Let α, β ∈ Φ+ and a, b ∈ R>0 be such that aα + bβ ∈ Φ+. Suppose that
α<β. Then,

α<aα + bβ<β. (5.7)

We will show that either

α<saα + bβ<sβ (5.8)
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or

β<saα + bβ<sα. (5.9)

Note first that if β = αs then, by relation (5.7) and the definition of <s,
relation (5.8) follows immediately. If α = αs, then we have that

s(β) =
1

b
(−aαs + bs(β)) +

a

b
αs

and −aαs +bs(β) = s(aαs +bβ) ∈ Φ+. Since < is a reflection ordering, this
implies, by relation (5.7) and Proposition 5.2.2, that αs<s(β)<s(aαs +bβ),
which in turn implies relation (5.9). We may therefore assume that α, β 	=
αs.

We now have four cases to consider:

(1) β<αs: Then the result follows immediately from relation (5.7) and
the definition of <s.

(2) aα + bβ<αs<β: Then, by relation (5.7), α<aα + bβ<αs<β and
relation (5.8) follows.

(3) α<αs<aα+ bβ: Then, from Proposition 5.2.2, relation (5.7), and the
definition of reflection ordering, there follows that

s(α)<as(α) + bs(β)<s(β)

(note that s(α), s(β), s(aα + bβ) ∈ Φ+). On the other hand,
αs<as(α) + bs(β) by Proposition 5.2.2, so

α<αs<s(aα + bβ)<s(β),

and relation (5.8) again follows.

(4) αs<α: Then, by the definition of reflection ordering, we have that
either

s(α)<s(aα + bβ)<s(β)

or

s(β)<s(aα + bβ)<s(α),

so again either relation (5.8) or (5.9) follows. �

Let < be a reflection ordering on Φ+. Since there is a canonical bijection
between Φ+ and T (see Proposition 4.4.5), we will from now on equivalently
consider < as a total ordering on T .
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5.3 R-polynomials

In this section, we give two combinatorial interpretations for the R-
polynomials of a Coxeter system: one in terms of certain paths in the Bruhat
graph, and one in terms of reduced decompositions and subexpressions.

The reader may be surprised at the term “combinatorial interpretation”
since even the simplest examples computed in Section 5.1 show that the
R-polynomials do not have non-negative coefficients. The explanation lies
in the following consequence of Theorem 5.1.1.

Proposition 5.3.1 Let u, v ∈ W . Then, there exists a unique polynomial
R̃u,v(q) ∈ N[q] such that

Ru,v(q) = q
ℓ(u,v)

2 R̃u,v(q
1
2 − q−

1
2 ). (5.10)

Proof. The result is trivially true if u 	≤ v, so we may assume that u ≤ v.
If f, g ∈ R[q] are such that

f(q
1
2 − q−

1
2 ) = g(q

1
2 − q−

1
2 )

for all q ∈ R+, then, since limq→+∞(q
1
2−q−

1
2 ) = +∞, limq→0+(q

1
2−q−

1
2 ) =

−∞, and q
1
2 − q−

1
2 is a continuous function for q > 0, we conclude that f

and g are identical as polynomials. This proves the uniqueness statement.
To prove the existence, we proceed by induction on ℓ(v), the existence

being clear if v = e by Theorem 5.1.1. So, let u, v ∈ W , u ≤ v, be such that
ℓ(v) > 0 and choose s ∈ DR(v). If s ∈ DR(u), then by Theorem 5.1.1 and
our induction hypothesis, we conclude that

Ru,v(q) = Rus,vs(q) = q
ℓ(us,vs)

2 R̃us,vs(q
1
2 − q−

1
2 )

and the result follows since ℓ(us, vs) = ℓ(u, v) in this case. If s 	∈ DR(u),
then we conclude in a similar way that

Ru,v(q) = qRus,vs(q) + (q − 1)Ru,vs(q)

= q1+ ℓ(us,vs)
2 R̃us,vs(q

1
2 − q−

1
2 ) + (q − 1)q

ℓ(u,vs)
2 R̃u,vs(q

1
2 − q−

1
2 )

= q
ℓ(u,v)

2 (R̃us,vs(q
1
2 − q−

1
2 ) + (q

1
2 − q−

1
2 )R̃u,vs(q

1
2 − q−

1
2 ))

since ℓ(us, vs) = ℓ(u, v)− 2 = ℓ(u, vs)− 1 in this case, and the result again
follows. �

For example, from the computations done in connection with Example
5.1.2, we conclude that

R̃123,123(q) = 1,

R̃123,213(q) = R̃123,132(q) = q,

R̃123,312(q) = R̃123,231(q) = q2,

R̃123,321(q) = q3 + q.
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The crucial advantage of the R̃-polynomials over the R-polynomials is
that they have non-negative integer coefficients. The combinatorial inter-
pretations that we derive in this section are all for the coefficients of the
R̃-polynomials.

From Proposition 5.3.1, Theorem 5.1.1, and Proposition 5.1.3, we
conclude the following.

Proposition 5.3.2 Let u, v ∈ W , u ≤ v. Then, R̃u,v(q) is a monic
polynomial of degree ℓ(u, v). Furthermore, if s ∈ DR(v), then

R̃u,v(q) =

{
R̃us,vs(q), if s ∈ DR(u),

R̃us,vs(q) + qR̃u,vs(q), if s 	∈ DR(u). �

Note that Ru,v(0) = (−1)ℓ(u,v) is automatically encoded in formula
(5.10), by the preceding proposition. Some other basic properties of the

R̃-polynomials are given in Exercises 5 and 6.
The following property of the Bruhat graph is used repeatedly in what

follows.

Lemma 5.3.3 Let u, v ∈ W be such that u → v, and s ∈ S \ {u−1 v}.
Then, us → vs.

Proof. Since vs = us(sts) (if v = ut, t ∈ T ), it suffices to show that
ℓ(us) < ℓ(vs). This is clear if ℓ(u, v) ≥ 3. If ℓ(u, v) = 1, it follows from
Proposition 2.2.7. �

We begin with the interpretation of R̃-polynomials in terms of Bruhat
paths. For this, we need to introduce some notation. Given a path ∆ =
(a0, . . . , ar) in the Bruhat graph and a reflection ordering < on Φ+ (hence,
on T ), we let

E(∆)
def
= {a−1

i−1ai : i = 1, . . . , r} ⊆ T

and

D(∆; <)
def
= {i ∈ [r − 1] : a−1

i−1ai > a−1
i ai+1}.

We call E(∆) the edge set of ∆, and D(∆; <) its descent set with respect
to < . For convenience, we define an element R< in the incidence algebra
I(W, <) of W , partially ordered by Bruhat order, by letting

R<(u, v)
def
=

∑

{∆∈B(u,v): D(∆,<)=∅}

qℓ(∆) (5.11)

for all u, v ∈ W , u ≤ v. Here, B(u, v) denotes the set of all the directed
paths, in the Bruhat graph of W , from u to v.

Theorem 5.3.4 Let < be a reflection ordering, and u, v ∈ W , u ≤ v.
Then,

R̃u,v(q) = R<(u, v).
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Proof. We proceed by induction on ℓ(v), the result being clearly true if
ℓ(v) = 0. Let v ∈ W be such that ℓ(v) > 0 and choose s ∈ DR(v). Let

f(x, y)
def
=

∑

∆∈Bs(x,y)

qℓ(∆) (5.12)

and

g(x, y)
def
=

∑

∆∈B′
s(x,y)

qℓ(∆)

for all x, y ∈ W , where

Bs(x, y)
def
= {∆ ∈ B(x, y) : D(∆, <) = ∅, s ≤ E(∆)} (5.13)

and

B′
s(x, y)

def
= {∆ ∈ B(x, y) : D(∆, <s) = ∅, s ≤ E(∆)}.

(Note that f and g depend on s and on <, although, for simplicity, we omit
this dependence from the notation.)

We claim that

f(x, v) =

{
g(xs, vs), if s ∈ DR(x),
g(xs, vs) + q g(x, vs), if s 	∈ DR(x)

(5.14)

and

g(x, v) =

{
f(xs, vs) + q(g(x, vs) − f(x, vs)), if s ∈ DR(x),
f(xs, vs) + q g(x, vs), if s 	∈ DR(x)

(5.15)

for all x ∈ W . We prove two of these equations (namely equations (5.15)),
the proof of the other two (equations (5.14)) being entirely similar (in fact,
slightly simpler).

Suppose that s ∈ DR(x). Let ∆ = (a0, . . . , ar) ∈ B′
s(x, v). If s ∈

E(∆), then necessarily s = a−1
r−1ar (since D(∆, <s) = ∅). Hence, ∆′ def

=
(a0, . . . , ar−1) is a Bruhat path from x to vs such that s < E(∆′), and
D(∆′, <s) = ∅, so ∆′ ∈ B′

s(x, vs). Furthermore, every path in B′
s(x, vs)

does not contain s in its edge set and, hence, arises in this way from a path
∆ ∈ B′

s(x, v) such that s ∈ E(∆). Hence,
∑

{∆∈B′
s(x,v): s∈E(∆)}

qℓ(∆) = q g(x, vs). (5.16)

If ∆ ∈ B′
s(x, v) is such that s 	∈ E(∆), then, by Lemma 5.3.3 and the

definition of <s, ∆s
def
= (a0s, . . . , ars) ∈ Bs(xs, vs). Furthermore, every

path in Bs(xs, vs) that does not contain s in its edge set arises in this way
from a path ∆ ∈ B′

s(x, v) such that s 	∈ E(∆). Therefore,
∑

{∆∈B′
s(x,v): s�∈E(∆)}

qℓ(∆) = f(xs, vs)−
∑

{∆∈Bs(xs,vs): s∈E(∆)}

qℓ(∆). (5.17)
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Moreover, if ∆ = (b0, . . . , bi) ∈ Bs(xs, vs) is such that s ∈ E(∆), then nec-

essarily s = b−1
0 b1. Hence, ∆′′ def

= (b1, . . . , bi) is a Bruhat path in Bs(x, vs).
Furthermore, every path in Bs(x, vs) does not contain s in its edge set (since
s ∈ DR(x)) and therefore arises in this way from a path ∆ ∈ Bs(xs, vs)
such that s ∈ E(∆). This shows that

∑

{∆∈Bs(xs,vs): s∈E(∆)}

qℓ(∆) = qf(x, vs),

and this, together with equations (5.16) and (5.17), gives the first equation
in (5.15).

Suppose now that s 	∈ DR(x). Let ∆ = (a0, . . . , ar) ∈ B′
s(x, v). If s ∈

E(∆), then necessarily s = a−1
r−1ar and, hence, ∆′ def

= (a0, . . . , ar−1) ∈
B′

s(x, vs) and s 	∈ E(∆′). Furthermore, every path Γ ∈ B′
s(x, vs) does not

contain s in its edge set (because s 	∈ DR(vs)) and so arises in this way.
Therefore,

∑

{∆∈B′
s(x,v): s∈E(∆)}

qℓ(∆) = q g(x, vs). (5.18)

If ∆ ∈ B′
s(x, v) is such that s 	∈ E(∆), then, by Lemma 5.3.3 and the

definition of <s, ∆s ∈ Bs(xs, vs). Furthermore, every path in Bs(xs, vs)
does not contain s in its edge set (since s ∈ DR(xs)) and, hence, arises in
this way. Therefore,

∑

{∆∈B′
s(x,v): s�∈E(∆)}

qℓ(∆) = f(xs, vs),

and this, together with equation (5.18), implies the second equation in
(5.15).

Now, let

h(x, y)
def
=

∑

{∆∈B(x,y): D(∆,<)=∅, E(∆)<s}

qℓ(∆)

for all x, y ∈ W . Then, we clearly have that

R< = hf and R<s = hg (5.19)

in the incidence algebra I(W,≤), since {∆ ∈ B(x, y) : D(∆, <) =
∅, E(∆)<s} = {∆ ∈ B(x, y) : D(∆, <s) = ∅, E(∆)<s}.

We now claim that f(x, v) = g(x, v) for all x ≤ v. In fact, by equations
(5.19) and our induction hypothesis,

f(a, vs) = (h−1 R<)(a, vs) = (h−1 R<s)(a, vs) = g(a, vs) (5.20)

for all a ≤ vs, and the claim follows from equations (5.14) and (5.15).
Therefore, by equations (5.19),

R<(u, v) = R<s(u, v) . (5.21)
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However, equation (5.21) holds for any reflection ordering <. Hence, in
particular, we obtain from equations (5.21) and (5.6) that

R<s
(u, v) = R<s(u, v) = R<(u, v) . (5.22)

Now notice that by equations (5.12) and (5.13) and definition (5.11), for
the reflection ordering <s,

f(x, y) = R<s
(x, y)

for all x, y ∈ W , x ≤ y (recall that f depends on the choice of a reflection
ordering). Hence, by equations (5.14) and (5.20),

R<s
(x, v) =

{
R<s

(xs, vs), if s ∈ DR(x),
R<s

(xs, vs) + qR<s
(x, vs), if s 	∈ DR(x)

for all x ∈ W . However this, by Proposition 5.3.2 and our induction hypoth-
esis, implies that R<s

(u, v) = R̃u,v(q) which, by equation (5.22), concludes
the induction step and, hence, the proof. �

Example 5.3.5 Consider the two permutations u = 1234 and 4312 of S4,
and choose the reflection ordering

(1, 2)< (1, 3)< (1, 4)< (2, 3)< (2, 4)< (3, 4).

Then, B(u, v) is the labeled directed graph depicted in Figure 5.1, and

{∆ ∈ B(u, v) : D(∆, <) = ∅} = {(1234, 2134, 4132, 4312),

(1234, 3214, 4213, 4312),

(1234, 2134, 3124, 4123, 4213, 4312)}.

Therefore, R̃u,v(q) = q5 + 2q3. �

Note that it is a consequence of Theorem 5.3.4 that the polynomial
R̃u,v(q) contains only odd powers of q or only even powers of q, depending
on the parity of ℓ(u, v).

We now study the second combinatorial interpretation for the R̃-
polynomials, which is in terms of reduced decompositions and certain
subexpressions. Although it can be deduced from Theorem 5.3.4, we present
here a self-contained proof, both because it is interesting in its own right
and because it does not require reflection orderings. The remainder of this
section is not needed in the rest of this chapter, except in some of the
exercises.

Let ξ
def
= (s1, . . . , sr) ∈ Sr. A subexpression of ξ is a sequence (a1, . . . , ar)

∈ (S ∪ {e})r such that ai ∈ {si, e} for i = 1, . . . , r (clearly, there are 2r

such subexpressions). We let

‖ (a1, . . . , ar) ‖def
= |{i ∈ [r] : ai = si}| .
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Figure 5.1. The directed graph B(1234, 4312).

A subexpression (a1, . . . , ar) is distinguished if

sj 	∈ DR(a1 · · · aj−1)

for all 2 ≤ j ≤ r such that aj = e. In particular, (e, . . . , e, si, . . . , sr) is
always a distinguished subexpression of (s1, . . . , sr), for i = 1, . . . , r + 1.
We denote by

D(s1, . . . , sr)

the set of all distinguished subexpressions of (s1, . . . , sr) ∈ Sr.
For example, let W = S5, si = (i, i + 1) for i = 1, . . . , 4, and ξ =

(s3, s2, s1, s2, s4). Then,

D(ξ) = {(3,−,−,−,−), (−,−, 1,−,−), (−,−,−, 2,−), (−,−,−,−, 4),

(3,−, 1,−,−), (3,−,−, 2,−), (3,−,−,−, 4), (3, 2, 1,−,−),

(3, 2,−, 2,−), (3,−, 1, 2,−), (3,−,−, 2, 4), (−, 2, 1, 2,−),

(−, 2, 1,−, 4), (−, 2,−, 2, 4), (−,−, 1, 2, 4), (−, 2, 1, 2, 4),

(3,−, 1, 2, 4), (3, 2,−, 2, 4), (3, 2, 1,−, 4), (3, 2, 1, 2,−),

(3, 2, 1, 2, 4), (−,−,−,−,−), (−, 2, 1,−,−), (−, 2,−, 2,−),

(−,−, 1, 2,−), (−,−, 1,−, 4), (−,−,−, 2, 4), (3,−, 1,−, 4)},
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where, for notational simplicity, we identify “si” with “i” and write “−”
instead of “e.”

The combinatorics of distinguished subexpressions is important for the
understanding of the R-polynomials. The following result lists two simple
properties of distinguished subexpressions. They both follow trivially from
the definitions. Given u ∈ W and ξ ∈ Sr, we let

D(ξ)u
def
= {(a1, . . . , ar) ∈ D(ξ) : a1 · · · ar = u}.

Proposition 5.3.6 Let ξ
def
= (s1, . . . , sr) ∈ Sr. Then, we have the

following:

(i) If (a1, . . . , ar) ∈ D(ξ)u, then (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)uar
.

(ii) If (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)u, then (a1, . . . , ar−1, sr) ∈
D(ξ)usr

. �

We are now ready to state and prove the second main result of this
section.

Theorem 5.3.7 Let u, v ∈ W , u ≤ v, and (s1, . . . , sr) ∈ Sr be a reduced
decomposition of v. Then,

R̃u,v(q) =
∑

ξ∈D(s1,...,sr)u

qℓ(v)−‖ξ‖.

Proof. We proceed by induction on ℓ(v), the result being clear if ℓ(v) = 0.

So assume r ≥ 1 and let, for convenience, s
def
= sr and ρ

def
= (s1, . . . , sr). We

distinguish two cases.

Case 1: s ∈ DR(u). Define a map

ϕ : D(ρ)u → D(s1, . . . , sr−1)us

by letting

ϕ((a1, . . . , ar))
def
= (a1, . . . , ar−1)

for (a1, . . . , ar) ∈ D(ρ)u. We claim that ϕ is a bijection and that

‖ ϕ(ξ) ‖=‖ ξ ‖ −1

for all ξ ∈ D(ρ)u. In fact, if (a1, . . . , ar) ∈ D(ρ)u, then ar = sr (for if ar = e,
then u = a1 . . . ar−1 and sr 	∈ DR(a1 . . . ar−1), which is a contradiction)
and, hence, (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)us. This shows that ϕ(D(ρ)u) ⊆
D(s1, . . . , sr−1)us, that ϕ is injective, and that ‖ ϕ(ξ) ‖=‖ ξ ‖ −1 for all ξ ∈
D(ρ)u. Also, if (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)us, then (a1, . . . , ar−1, s) ∈
D(ρ)u and, hence, ϕ is surjective.
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Therefore, by Proposition 5.3.2 and our induction hypothesis,
∑

ξ∈D(ρ)u

qℓ(v)−‖ξ‖ =
∑

η∈D(s1,...,sr−1)us

qℓ(v)−‖η‖−1

= R̃us,vs(q)

= R̃u,v(q),

as desired.

Case 2: s 	∈ DR(u). Let

D(ρ)+u
def
= {(a1, . . . , ar) ∈ D(ρ)u : ar = sr}

and

D(ρ)−u
def
= {(a1, . . . , ar) ∈ D(ρ)u : ar = e} .

Define a map

ϕ : D(ρ)u → D(s1, . . . , sr−1)u ∪ D(s1, . . . , sr−1)us

by letting

ϕ((a1, . . . , ar))
def
= (a1, . . . , ar−1)

for (a1, . . . , ar) ∈ D(ρ)u. We claim that ϕ is a bijection, ϕ(D(ρ)−u ) =
D(s1, . . . , sr−1)u, ϕ(D(ρ)+u ) = D(s1, . . . , sr−1)us, and ‖ ϕ(ξ) ‖=‖ ξ ‖ if
ξ ∈ D(ρ)−u , whereas ‖ ϕ(ξ) ‖=‖ ξ ‖ −1 if ξ ∈ D(ρ)+u . All of these properties
are obvious (by Proposition 5.3.6), except for the surjectivity of ϕ. How-
ever, if (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)u, then (a1, . . . , ar−1, e) ∈ D(ρ)−u
(because sr 	∈ DR(u)), whereas if (a1, . . . , ar−1) ∈ D(s1, . . . , sr−1)us, then
(a1, . . . , ar−1, s) ∈ D(ρ)+u . This proves the surjectivity.

Therefore, by Proposition 5.3.2 and our induction hypothesis,
∑

ξ∈D(ρ)u

qℓ(v)−‖ξ‖ =
∑

η∈D(s1,...,sr−1)u

qℓ(v)−‖η‖ +
∑

η∈D(s1,...,sr−1)us

qℓ(vs)−||η||

= qR̃u,vs(q) + R̃us,vs(q)

= R̃u,v(q),

as desired. �

Example 5.3.8 Let W = S4, u = 1234, v = 4321 and take (1, 2, 1, 3, 2, 1)
as a reduced decomposition for v. Then,

D((1, 2, 1, 3, 2, 1))u = {(−,−,−,−,−,−), (1,−, 1,−,−,−),

(−, 2,−,−, 2,−), (−,−, 1,−,−, 1),

(1, 2,−,−, 2, 1)}
and, hence,

R̃1234,4321(q) = q6 + 3q4 + q2.
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Consequently,

R1234,4321(q) = q6 − 3q5 + 4q4 − 4q3 + 4q2 − 3q + 1.

�

Since distinguished subexpressions play such a fundamental role in
the combinatorics of the R-polynomials, it is useful to have a different
characterization of this concept.

Proposition 5.3.9 Let (s1, . . . , sr) ∈ Sr be a reduced decomposition and
(a1, . . . , ar) be a subexpression of (s1, . . . , sr). Then, the following are
equivalent:

(i) (a1, . . . , ar) ∈ D(s1, . . . , sr).

(ii) a1 · · · aj−1sj · · · sr ≥ a1 · · ·ajsj+1 · · · sr, for j = 2, . . . , r.

Proof. Let (a1, . . . , ar) ∈ D(s1, . . . , sr) and 2 ≤ j ≤ r. If aj = sj ,then
(ii) clearly holds, so assume that aj = e. Then, since (a1, . . . , ar) ∈
D(s1, . . . , sr), we have that sj 	∈ DR(a1 · · · aj−1). On the other hand,
sj 	∈ DL(sj+1 · · · sr) (since sj · · · sr is a reduced expression). Therefore,
by Lemma 2.2.10, (a1 · · · aj−1)(sj+1 · · · sr) ≤ (a1 · · · aj−1)sj(sj+1 · · · sr),
which proves (ii).

Conversely, suppose that (a1, . . . , ar) satisfies (ii) and 2 ≤ j ≤ r is
such that aj = e. We claim that then sj 	∈ DR(a1 · · · aj−1). In fact,
if sj 	∈ DR(a1 · · · aj−1sj), then, since sj 	∈ DL(sj+1 · · · sr), we conclude
from Lemma 2.2.10 that (a1 · · · aj−1sj)(sj+1 · · · sr) ≤ (a1 · · · aj−1sj)sj

(sj+1 · · · sr) = a1 · · · ajsj+1 · · · sr, and this, by (ii), implies that sj = e,
which is a contradiction. �

Intuitively, Proposition 5.3.9 states that we obtain all possible distin-
guished subexpressions of a reduced expression by deleting elements in
it, from left to right, so that each deletion moves the resulting prod-
uct down in Bruhat order. For example, the distinguished subexpression
(1, 2,−, 3,−,−, −, 3, 2, 1) of (1, 2, 1, 3, 2, 1, 4, 3, 2, 1) in S5 corresponds to
the sequence of deletions

(1, 2, 1, 3, 2, 1, 4, 3, 2, 1)

(1, 2,−, 3, 2, 1, 4, 3, 2, 1)

(1, 2,−, 3,−, 1, 4, 3, 2, 1)

(1, 2,−, 3,−,−, 4, 3, 2, 1)

(1, 2,−, 3,−,−,−, 3, 2, 1)

In Section 2.7, we associated with every maximal chain m : v = x0�x1�

· · · � xk = u in Bruhat order a string of integers λ(m) = (λ1, λ2, . . . , λk).
The λi’s are induced from a given reduced expression for v; namely they
record the positions of successively deleted generators. The labeling rule
given in Section 2.7 can be directly generalized from maximal chains in
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Bruhat order to paths v = x0 ← x1 ← · · · ← xj = u in the Bruhat graph.
By the preceding paragraph, distinguished subexpressions correspond to
increasingly labeled such paths.

Both Theorems 5.3.4 and 5.3.7 can be used to obtain some rather non-
trivial properties of the R-polynomials. See, for example, Exercises 4, 5, 6,
10, 18, 35, and 36.

5.4 Lattice paths

In this section, we define and study a family of polynomials, indexed
by sequences of positive integers, which plays an important role in the
combinatorics of the Kazhdan-Lusztig polynomials. These polynomials are
independent of W and are defined in terms of lattice paths.

Recall that a composition of n (n ∈ P) is a sequence (α1, . . . , αs) (for
some s ∈ P) of positive integers such that α1 + · · ·+αs = n. When writing
compositions, we will sometimes omit the parentheses (i.e., we will write
α1, . . . , αs instead of (α1, . . . , αs)). For n ∈ P, we let Cn be the set of all

compositions of n and C
def
=
⋃

n≥1 Cn. Given β ∈ C, we denote by ℓ(β) the
number of parts of β, and by βi, for i = 1, . . . , ℓ(β), the i-th part of β (so
that β = (β1, β2, . . . , βℓ(β))). Furthermore, we let

|β| def
=

ℓ(β)∑

i=1

βi,

β
def
= (β2, β3, . . . , βℓ(β)) (if ℓ(β) ≥ 2),

β∗ def
= (βℓ(β), . . . , β2, β1),

T (β)
def
= {βr, βr + βr−1, . . . , βr + · · ·+ β2}, where r

def
= ℓ(β).

Given (α1, ..., αs), (β1, ..., βt) ∈ Cn, we say that (α1, ..., αs) refines
(β1, ..., βt) if there exist 1 ≤ i1 < i2 < · · · < it−1 ≤ s such that
∑ik

j=ik−1+1 αj = βk for k = 1, . . . , t (where i0
def
= 0, it

def
= s). We then

write (α1, ..., αs) " (β1, ..., βt). It is easy to see that the map α �→ T (α) is
an isomorphism from (Cn,") to the Boolean algebra of subsets of [n− 1],
ordered by reverse inclusion.

Let a, b ∈ Z, a ≤ b. By a lattice path on [a, b] we mean a function
Γ : [a, b] → Z such that Γ(a) = 0 and

|Γ(i + 1)− Γ(i)| = 1
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for all i ∈ [a, b− 1]. Given such a lattice path Γ, we let

N(Γ)
def
= {i ∈ [a + 1, b− 1] : Γ(i) < 0},

d+(Γ)
def
= |{i ∈ [a, b− 1] : Γ(i + 1)− Γ(i) = 1}|,

ℓ(Γ)
def
= b− a,

Γ≥0
def
= ℓ(Γ)− 1− |N(Γ)|.

We call N(Γ) the negative set of Γ and ℓ(Γ) the length of Γ. Note that
b 	∈ N(Γ) and that

d+(Γ) =
Γ(b) + b− a

2
. (5.23)

For example, if Γ is the lattice path illustrated in Figure 5.2, then N(Γ) =
{3, 4, 5}, d+(Γ) = 2, ℓ(Γ) = 6, and Γ≥0 = 2.

Figure 5.2. A lattice path on [0, 6].

For n ∈ P, we denote by L(n) the set of all the lattice paths on [0, n].
Given S ⊆ [n− 1], we let

H(S, n)
def
= {Γ ∈ L(n) : N(Γ) ⊇ S}

and

E(S, n)
def
= {Γ ∈ L(n) : N(Γ) = S}.

For example, the four lattice paths in E({5}, 6) are illustrated in Figure
5.3.

For α ∈ C, we define two polynomials Ψα(q), Υα(q) ∈ Z[q] by letting

Ψα(q) = (−1)|α|
∑

Γ∈H(T (α),|α|)

(−q)d+(Γ) (5.24)

and

Υα(q) = (−1)|α|−ℓ(α)
∑

Γ∈E(T (α),|α|)

(−q)d+(Γ).
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For example, let α = (1, 5). Then, E({5}, 6) consists of the four lattice
paths illustrated in Figure 5.3 and, hence, Υ1,5(−q) = 2q2 + 2q3.

Figure 5.3. The four lattice paths in E({5}, 6).

Note that the definitions imply that

Ψβ(q) =
∑

α�β

(−1)ℓ(α)Υα(q).

Hence, by the Principle of Inclusion-Exclusion,

Υβ(q) =
∑

α�β

(−1)ℓ(α)Ψα(q). (5.25)

For j ∈ Q, we define an operator Lj : R[q] → R[q] by letting

Lj

⎛
⎝∑

i≥0

aiq
i

⎞
⎠ def

=
∑

0≤i≤j

aiq
i.

Note that Lj is linear and idempotent, and that Lj = L⌊j⌋ for all j ∈ Q.
Although the polynomials Ψβ(q) have several interesting properties (see,

for example, Exercises 28 through 34), we only need here the following
recurrence relation.

Proposition 5.4.1 Let α ∈ C. Then,

Ψα(q) = (q − 1)α1L |α|−1
2

(Ψα(q)) (5.26)

if ℓ(α) ≥ 2, and

Ψα(q) = (q − 1)|α| (5.27)

if ℓ(α) = 1.

Proof. If ℓ(α) = 1, then T (α) = ∅ and equation (5.27) follows immediately
from equation (5.24). So assume ℓ(α) ≥ 2 and let Γ ∈ H(T (α), |α|). Then,
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Γ|[0,|α|]
∈ H(T (α), |α|) and Γ(|α|) < 0. Conversely, if Γ′ ∈ H(T (α), |α|) and

Γ′(|α|) < 0, then extending Γ′ to [0, |α|] by adding any α1 steps yields 2α1

different lattice paths in H(T (α), |α|). Therefore,

∑

Γ∈H(T (α),|α|)

qd+(Γ) = (1 + q)α1

∑

{Γ′∈H(T (α),|α|): Γ′(|α|)<0}

qd+(Γ′)

= (1 + q)α1L |α|−1
2

⎛
⎝ ∑

Γ∈H(T (α),|α|)

qd+(Γ)

⎞
⎠ ,

by equation (5.23), and equation (5.26) follows immediately from equation
(5.24). �

The preceding result makes it easy to compute the polynomials Ψα(q)
(a similar recursion exists also for the polynomials Υβ(q); see Exercise 28).
For example,

Ψ1,5(q) = (q − 1)L 5−1
2

(Ψ5(q))

= (q − 1)L2((q − 1)5)

= −10q3 + 15q2 − 6q + 1.

5.5 Kazhdan-Lusztig polynomials

As we have seen in Section 5.1, once the R-polynomials have been com-
puted, then one can use Theorem 5.1.4 to compute the Kazhdan-Lusztig
polynomials. This, however, is a recursive procedure, as is the one based
on Theorem 5.1.7. In this section, we derive a nonrecursive formula for the
computation of the Kazhdan-Lusztig polynomials.

Our first step is that of “solving” the recurrence relation given in part (iv)
of Theorem 5.1.4. More precisely, we wish to find a nonrecursive formula
for Pu,v(q) in terms of the R-polynomials. To do this, it is convenient to
introduce the following concept. Given a chain a0 < a1 < · · · < ai in W ,
we define

Ra0,...,ai
(q)

def
= Ra0,a1(q)L d−1

2
(Ra1,...,ai

(q)) (5.28)

(where d
def
= ℓ(a1, ai)) if i ≥ 2, and

Ra0,...,ai
(q)

def
= Ra0,a1(q) (5.29)

if i = 1.
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Example 5.5.1 In W = S4, we have that

R2134,2431,4321(q) = R2134,2431(q)L 2−1
2

(R2431,4321(q))

= (q3 − 2q2 + 2q − 1)L 1
2
((q − 1)2)

= q3 − 2q2 + 2q − 1

and, hence,

R1234,2134,2431,4321(q) = R1234,2134(q)L 5−1
2

(R2134,2431,4321(q))

= (q − 1)L2(q
3 − 2q2 + 2q − 1)

= −2q3 + 4q2 − 3q + 1.

�

The polynomial Ra0,...,ai
(q) just defined is called the R-polynomial of

the chain a0 < a1 < · · · < ai. This terminology is consistent with the one
introduced in Section 5.1 since the R-polynomial of a chain of size two
coincides with the usual R-polynomial of the two elements in increasing
order. Note that although definition (5.28) is recursive, it can be formulated
in an entirely explicit way (see Exercises 21 and 22) so that one can compute
the R-polynomial of a given chain without having to compute that of any
other chain.

The R-polynomial of a chain is important in the nonrecursive computa-
tion of the Kazhdan-Lusztig polynomials. Recall that a chain from u to v
is a chain whose first element is u and whose last element is v.

Theorem 5.5.2 Let u, v ∈ W , u < v. Then,

Pu,v(q)− qℓ(u,v)Pu,v

(
1

q

)
=

∑

C∈C(u,v)

(−1)ℓ(C)RC(q),

where C(u, v) is the set of all the chains from u to v.

Proof. We prove the result by induction on ℓ(u, v). If ℓ(u, v) = 1, then

∑

C∈C(u,v)

(−1)ℓ(C)RC(q) = −Ru,v(q) = 1− q = Pu,v(q)− qPu,v

(
1

q

)
.

Now, let u < v be such that ℓ(u, v) ≥ 2. Then, from Theorem 5.1.4,
definitions (5.28) and (5.29), and our induction hypothesis, we have that
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qℓ(u,v)Pu,v

(
1

q

)
− Pu,v(q)

= Ru,v(q) +
∑

u<a<v

Ru,a(q)L ℓ(a,v)−1
2

⎛
⎝ ∑

C∈C(a,v)

(−1)ℓ(C)RC(q)

⎞
⎠

= Ru,v(q) +
∑

u<a<v

∑

C∈C(a,v)

(−1)ℓ(C)Ru,a(q)L ℓ(a,v)−1
2

(RC(q))

= Ru,v(q) +
∑

u<a<v

∑

C∈C(a,v)

(−1)ℓ(C)Ru,C(q)

= Ru,v(q) +
∑

{C′∈C(u,v): ℓ(C′)≥2}

(−1)ℓ(C′)−1RC′(q)

= −
∑

C′∈C(u,v)

(−1)ℓ(C′)RC′(q),

as desired. �

As an immediate consequence, we derive the following.

Corollary 5.5.3 Let u, v ∈ W , u < v. Then,

Pu,v(q) = L ℓ(u,v)−1
2

⎛
⎝ ∑

C∈C(u,v)

(−1)ℓ(C)RC(q)

⎞
⎠ . �

Now that we have a nonrecursive formula for the Kazhdan-Lusztig poly-
nomials in terms of the R-polynomials, the strategy is that of using one of
the combinatorial interpretations obtained in Section 5.3 and “transfering”
it to the Kazhdan-Lusztig polynomials using Theorem 5.5.2. We will do
this using the one in terms of Bruhat paths (Theorem 5.3.4). Another non-
recursive formula (involving multichains, instead of chains) for computing
the Kazhdan-Lusztig polynomials in terms of the R-polynomials is given
in Exercise 25.

To state and prove the results that follow, it is convenient to introduce
some notation. Given u, v ∈ W , and k ∈ N, we denote by Bk(u, v) the set of
all Bruhat paths from u to v of length k, so that B(u, v) =

⋃
k≥0 Bk(u, v).

Let ∆ be a Bruhat path and < be a reflection ordering. We define the
descent composition of ∆ with respect to < to be the unique composition
C(∆, <) ∈ C such that |C(∆, <)| = ℓ(∆) and

T (C(∆, <)∗) = D(∆, <).

In other words, if ∆ has length i (say) and C(∆, <) = (b1, . . . , bj), then b1+
· · ·+bj = i and the descent set of ∆ with respect to < is {b1, b1+b2, . . . , b1+
· · ·+ bj−1}. For example, if ∆ = (2147563, 2147653, 6147253, 6157243) and
< is the reflection ordering used in Figure 5.1, then C(∆; <) = (1, 2).
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For u, v ∈ W , and α ∈ C, we let

cα(u, v)
def
= |{∆ ∈ B|α|(u, v) : C(∆, <) # α}| (5.30)

and

bα(u, v)
def
= |{∆ ∈ B|α|(u, v) : C(∆, <) = α}|. (5.31)

Note that these definitions imply that

cα(u, v) =
∑

β�α

bβ(u, v) (5.32)

for all u, v ∈ W and α ∈ C, and that

cα(u, v) = bα(u, v) = |{∆ ∈ B|α|(u, v) : D(∆, <) = ∅}| (5.33)

if l(α) = 1.
From now on and until the end of this section, we fix once and for all a

reflection ordering <.

Proposition 5.5.4 Let u, v ∈ W , u ≤ v, and α1, . . . , αr ∈ P, r ≥ 2. Then,

cα1,...,αr
(u, v) =

∑

u≤a≤v

cα1,...,αr−1(u, a)cαr
(a, v) .

Proof. Let ∆
def
= (a0, . . . , aβr

) ∈ B(u, v) be such that D(∆, <) ⊆ {β1, . . . ,

βr−1}, where βi
def
= α1 + · · · + αi, for i = 1, . . . , r. Then, clearly, u ≤

aβr−1 ≤ v, ∆′ def
= (a0, . . . , aβr−1) ∈ B(u, aβr−1), ∆′′ def

= (aβr−1 , . . . , aα) ∈
B(aβr−1 , v), D(∆′, <) ⊆ {β1, . . . , βr−2}, and D(∆′′, <) = ∅. It is easy to
see that this correspondence ∆ ↔ (∆′, ∆′′) is a bijection, and the result
follows from definition (5.30). �

The following result is crucial for the proof of the main theorem of this
section.

Proposition 5.5.5 Let u, v ∈ W , u ≤ v, and α ∈ C. Then,

cα(u, v) =
∑

(a0,...,ar)∈Cr(u,v)

r∏

j=1

[qαj ](R̃aj−1,aj
),

where Cr(u, v) denotes the set of all chains of length r from u to v and

r
def
= ℓ(α).

Proof. We proceed by induction on r ∈ P. If r = 1 then, by equation (5.33)
and Theorem 5.3.4, we have that

cα1(u, v) = [qα1 ](R̃u,v), (5.34)
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as desired. If r ≥ 2, then we have from Proposition 5.5.4, equation (5.34),
and our induction hypothesis that

cα1,...,αr
(u, v) =

∑

u≤a≤v

cαr
(a, v)cα1,...,αr−1(u, a)

=
∑

u≤a≤v

[qαr ](R̃a,v)
∑

(a0,...,ar−1)∈Cr−1(u,a)

r−1∏

j=1

[qαj ](R̃aj−1,aj
)

=
∑

u≤a<v

∑

(a0,...,ar−1)∈Cr−1(u,a)

[qαr ](R̃a,v)
r−1∏

j=1

[qαj ](R̃aj−1,aj
)

and the thesis follows. �

The next result extends Proposition 5.3.1 to the R-polynomial of a chain.

Proposition 5.5.6 Let a0 < a1 < · · · < ai be a chain in W . Then,

Ra0,...,ai
(q) =

∑

α∈Pi

q
ℓ(a0,ai)−|α|

2 Ψα(q)

i∏

r=1

[qαr ](R̃ar−1,ar
). (5.35)

Proof. If i = 1, then equation (5.35) follows from equations (5.27), (5.29)
and (5.10). We now proceed by induction on i ∈ P. Since i ≥ 2, we have
from definition (5.28) and our induction hypothesis that

Ra0,...,ai
(q)

= Ra0,a1(q)L d−1
2

(Ra1,...,ai
(q))

=
∑

α0>0

q
ℓ(a0,a1)−α0

2 Ψα0(q) [qα0 ](R̃a0,a1)L d−1
2

(Ra1,...,ai
(q))

=
∑

α0>0

∑

α∈Pi−1

q
ℓ(a0,a1)−α0

2

i−1∏

r=0

[qαr ](R̃ar ,ar+1)Ψα0(q)L d−1
2

(q
d−|α|

2 Ψα(q))

=
∑

α0>0

∑

α∈Pi−1

q
ℓ(a0,ai)−α0−|α|

2

i∏

r=1

[qαr−1 ](R̃ar−1,ar
)Ψα0(q)L |α|−1

2

(Ψα(q)),

where d
def
= ℓ(a1, ai). Hence, equation (5.35) follows from equations (5.26)

and (5.27). �

We can now state and prove the main result of this section, namely a
nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials.

Theorem 5.5.7 Let < be a reflection ordering, u, v ∈ W , u < v. Then,

Pu,v(q)− qℓ(u,v) Pu,v

(
1

q

)
=

∑

∆∈B(u,v)

q
ℓ(u,v)−ℓ(∆)

2 ΥC(∆,<)(q). (5.36)
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Proof. From Theorem 5.5.2 and Propositions 5.5.5 and 5.5.6 we have that

Pu,v(q)− qℓ(u,v)Pu,v

(
1

q

)
=

∑

C∈C(u,v)

(−1)ℓ(C)RC(q)

=
∑

α∈C

(−1)ℓ(α) q
ℓ(u,v)−|α|

2 Ψα(q) cα(u, v).

On the other hand, from equations (5.32) and (5.25), we have that

∑

α∈Cn

(−1)ℓ(α) Ψα(q) cα(u, v) =
∑

α∈Cn

(−1)ℓ(α) Ψα(q)
∑

β�α

bβ(u, v)

=
∑

β∈Cn

bβ(u, v)
∑

α�β

(−1)ℓ(α)Ψα(q)

=
∑

β∈Cn

bβ(u, v)Υβ(q)

for all n ∈ P. Therefore we conclude that

Pu,v(q)− qℓ(u,v)Pu,v

(
1

q

)
=
∑

β∈C

q
ℓ(u,v)−|β|

2 Υβ(q) bβ(u, v),

which, by definition (5.31), is equivalent to equation (5.36). �

The preceding result shows that the Kazhdan-Lusztig polynomials can
be computed in a way similar to that given in Theorem 5.3.4 for the
R-polynomials, and it also makes clear why they are considerably more
difficult to compute. In fact, by Theorem 5.3.4, to compute Ru,v(q), we
just have to consider the Bruhat paths from u to v that have an empty
descent set with respect to a given reflection order. To compute Pu,v(q),
by Theorem 5.5.7, we have to consider all of the Bruhat paths from u to
v, and for each such path, we have to know the descent set with respect
to the given reflection order. In Theorem 5.5.7, we also have to know the
polynomials Υβ(q) studied in the previous section. This, however, is not a
big problem since these polynomials are defined explicitly as counting cer-
tain lattice paths, can be computed through simple recursions, and admit
explicit formulas in terms of Catalan numbers (see Exercises 28, 30, and
31).

Example 5.5.8 Let u = 2147563 and v = 6157243. Considering all of the
directed paths from 2147563 to 6157243 in Figure 5.1 (there are 62 of them)
and computing the descent composition of each one, we obtain that
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P2147563,6157243(q)− q5P2147563,6157243(q
−1)

= q(2Υ3 + 3Υ2,1 + 3Υ1,2 + 2Υ1,1,1)

+ q0(Υ5 + 2Υ4,1 + 4Υ3,2 + 4Υ2,3 + 2Υ1,4 + 3Υ3,1,1

+ 4Υ1,3,1 + 3Υ1,1,3 + 6Υ2,2,1 + 4Υ2,1,2 + 6Υ1,2,2 + 2Υ2,1,1,1

+ 4Υ1,2,1,1 + 4Υ1,1,2,1 + 2Υ1,1,1,2 + Υ1,1,1,1,1)

= q[2(−q3 + 2q2 − q) + 3(−q2 + q) + 3(0) + 2(1− q)]

+ q0[(−q5 + 4q4 − 5q3 + 2q2) + 2(−q4 + 2q3 − q2) + 4(0)

+ 4(q3 − q2) + 2(0) + 3(0) + 4(0) + 3(q2 − q) + 6(−q3 + q2) + 4(0)

+ 6(0) + 2(q3 − q2) + 4(0) + 4(−q2 + q) + 2(0) + (2q2 − 3q + 1)]

= 1− q5.

�

Theorem 5.5.7 has the following immediate consequence. Given n ∈ Z

and A ⊆ Z, we let n−A
def
= {n− a : a ∈ A}.

Corollary 5.5.9 Let < be a reflection ordering, u, v ∈ W , u < v. Then,

Pu,v(q) =
∑

(Γ,∆)

(−1)Γ≥0+d+(Γ)q
ℓ(u,v)+Γ(ℓ(Γ))

2 ,

where the sum is over all pairs (Γ, ∆) such that Γ is a lattice path, ∆ ∈
B(u, v), ℓ(Γ) = ℓ(∆), N(Γ) = ℓ(∆)−D(∆, <), and Γ(ℓ(Γ)) < 0. �

Theorems 5.5.2 and 5.5.7 can be used to deduce some rather nontrivial
properties of the Kazhdan-Lusztig polynomials; see Exercises 12, 13, and
9.

5.6 Complement: Special matchings

Recall that a matching of a graph G = (V, E) is an involution M : V → V
such that {v, M(v)} ∈ E for all v ∈ V . (Here we assume that G has no
loops or multiple edges.)

Let P be a graded partially ordered set. A matching M of the Hasse
diagram of P is a special matching if, for all x, y ∈ P such that M(x) 	= y,
we have that

x � y ⇒ M(x) ≤ M(y).

Note that this implies, in particular, that if x � y and M(x) � x, then
M(y) � y and M(y) � M(x) and, dually, that if x � y and M(y) � y, then
M(x) � x and M(x) � M(y).

The motivation for this definition is given by the next result.
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Proposition 5.6.1 Let (W, S) be a Coxeter system, u, v ∈ W , u ≤ v, and
s ∈ D(v) \D(u). Let

M(x)
def
= xs

for all x ∈ [u, v]. Then, M is a special matching of [u, v].

Proof. This follows immediately from the definition of a special matching
and the Lifting Property. �

Corollary 5.6.2 Every lower Bruhat interval [e, v] has a special matching.

There is, of course, a left version of Proposition 5.6.1. Note that the
converse is not true. Namely there are special matchings of Bruhat in-
tervals which are not given by right or left multiplication by a simple
reflection. For example, let (W, S) be a Coxeter system such that |S| ≥ 3
and there are a, b, c ∈ S such that m(a, b), m(b, c) ≥ 3. Then, M =
{{e, b}, {a, ab}, {c, bc}, {ac, abc}} is a special matching of [e, abc].

It is a surprising fact that Kazhdan-Lusztig and R-polynomials can be
computed using only special matchings. This can be done by a recursive
procedure based on the following result, which was first proved in [99] for
the symmetric group and then in [100] for the general case.

Theorem 5.6.3 Let (W, S) be a Coxeter system, v ∈ W , and let M be a
special matching of [e, v]. Then,

Ru,v(q) = qcRM(u),M(v)(q) + (qc − 1)Ru,M(v)(q)

for all u ≤ v, where c
def
= 1 if M(u) � u and c

def
= 0 otherwise.

Thus, despite the fact that by definition the R-polynomials, and hence
the Kazhdan-Lusztig polynomials, depend heavily on descent sets, they can
in fact be computed only in terms of the abstract poset structure of a lower
interval. We illustrate this process on an example.

Example 5.6.4 Let P = [e, v] be the lower Bruhat interval whose Hasse
diagram is depicted in Figure 5.4. The elements of P are labeled with the
integers from 1 to 18. In order to use Theorem 5.6.3, we need to find a
special matching M of P .

Suppose M(1) = 2. We have two possible choices for M(3), namely 7
and 8, and two for M(4), namely 5 and 6. Suppose we choose M(3) = 7
and M(4) = 5. These choices force

M = {{1, 2}, {3, 7}, {4, 5}, {6, 11}, {8, 10},
{9, 12}, {13, 15}, {14, 16}, {17, 18}}.
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1

2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17

18

Figure 5.4. A lower Bruhat interval.

Applying Theorem 5.6.3, we obtain that1

R1,18 = q RM(1),M(18) + (q − 1)R1,M(18) = qR2,17 + (q − 1)R1,17.

We therefore need to compute the polynomials Ru,17 for all u ≤
17. Since M does not restrict to a special matching of [1, 17] (=
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17}), we need to repeat the above pro-
cedure to find a special matching, N , of [1, 17].

Suppose that N(1) = 2. This forces N(3) ∈ {7, 8} and N(4) ∈ {5, 6}.
Suppose we choose N(3) = 7 and N(4) = 6. Then, our choices force

N = {{1, 2}, {3, 7}, {4, 6}, {5, 11}, {8, 10}, {9, 14}, {13, 17}}.

Applying Theorem 5.6.3, we get2

R1,17 = q R2,13 + (q − 1)R1,13,

R2,17 = R1,13.

1As well as R2,18 = R1,17, R3,18 = qR7,17+(q−1)R3,17 , R4,18 = qR5,17+(q−1)R4,17 ,
R5,18 = R4,17, R6,18 = qR11,17 + (q − 1)R6,17, R7,18 = R3,17, R8,18 = qR10,17 + (q
−1)R8,17, R9,18 = qR12,17 + (q − 1)R9,17 = (q − 1)R9,17 , and similarly R10,18 = R8,17,
R11,18 = R6,17, R12,18 = R9,17, R13,18 = (q − 1)R13,17 , R14,18 = (q − 1)R14,17 ,
R15,18 = R13,17, R16,18 = R14,17, R17,18 = (q − 1)R17,17.

2As well as R3,17 = (q − 1)R3,13, R4,17 = (q − 1)R4,13, R5,17 = (q − 1)R5,13, R6,17

= R4,13, R7,17 = R3,13, R8,17 = (q − 1)R8,13, R9,17 = (q − 1)R9,13 , R10,17 = R8,13,
R11,17 = R5,13, R13,17 = (q − 1)R13,13 , R14,17 = R9,13.
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We now need to compute the polynomials Ru,13 for all u ∈ [1, 13] (=
{1, 2, 3, 4, 5, 8, 9, 13}). The poset [1, 13] is a 3-crown, so Ru,13 = (q−1)l(u,13)

for all u ≤ 13 (see Exercise 5). However, since no outside result is needed
by the procedure suggested by Theorem 5.6.3, and for completeness, we
conclude the example using only special matchings.

We now need a special matching, L, of [1, 13]. If L(1) = 4, then this
forces L = {{1, 4}, {2, 5}, {3, 9}, {8, 13}}. So by Theorem 5.6.3, we get3

R1,13 = (q − 1)R1,8,

R2,13 = (q − 1)R2,8.

A special matching of [1, 8] (= {1, 2, 3, 8}) is given by {{1, 2}, {3, 8}}, and
from Theorem 5.6.3 we get4

R1,8 = (q − 1)R1,3,

R2,8 = R1,3.

Finally, {{1, 3}} is a special matching of [1, 3] (= {1, 3}) and so, again by
Theorem 5.6.3, we obtain R1,3 = (q − 1)R1,1.

Putting all these relations together, we get

R1,18 = q R2,17 + (q − 1)R1,17

= q R1,13 + (q − 1)(q R2,13 + (q − 1)R1,13)

= q(q − 1)R1,8 + q(q − 1)2R2,8 + (q − 1)3R1,8

= q(q − 1)2R1,3 + q(q − 1)2R1,3 + (q − 1)4R1,3

= 2q(q − 1)3 + (q − 1)5,

and similarly for all the other polynomials Ru,18. Clearly, in the same way
(and in fact without much additional effort since we already have a special
matching of [e, w] for all w ∈ P ) we may compute all the polynomials Rx,y

for x, y ∈ P , x ≤ y.
The computation of the Kazhdan-Lusztig polynomials Px,y for x, y ∈ P ,

x ≤ y, now proceeds using Theorem 5.1.4 and induction on ℓ(x, y), as
explained in Section 5.1. �

As a matter of fact, essentially all of the results presented in this chapter
can be generalized using special matchings, as shown in [100].

Surprising as this result is, even more may be true. In fact, there is
a tantalizing conjecture regarding the Kazhdan-Lusztig polynomials, the
so-called combinatorial invariance conjecture. This conjecture, made by
Lusztig [364] and independently by Dyer [200], states that if W1 and W2

are two Coxeter groups, u, v ∈ W1, x, y ∈ W2, and the two Bruhat intervals

3As well as R3,13 = (q − 1)R3,8, R4,13 = R1,8, R5,13 = R2,8, R8,13 = (q − 1)R8,8,
R9,13 = R3,8.

4As well as R3,8 = (q − 1)R3,3.
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[u, v] and [x, y] are isomorphic as posets, then Pu,v(q) = Px,y(q). In other
words, the Kazhdan-Lusztig polynomial of u, v supposedly depends only
on the unlabeled abstract poset [u, v]. This conjecture is known to be true
if [u, v] is a lattice (see Exercise 36) and holds for intervals of rank ≤ 4 (see
Exercises 5 and 6).

Note that, by Theorem 5.1.4, the combinatorial invariance conjecture is
equivalent to the analogous statement for the R-polynomials. Thus, The-
orem 5.6.3 implies that the conjecture holds also for the case that both u
and x are the identity.

In connection with the combinatorial invariance conjecture, it is worth
noting that the relation u → v is known to depend only on the poset [u, v],
as shown by Dyer [203]. Regarding single coefficients, the combinatorial
invariance conjecture is open even for the coefficient of q. Some further
special cases are treated in Exercises 9, 23, and 35.

Exercises

In Exercises 1-14, let u, v ∈ W and u ≤ v.

1. Show that

(−q)ℓ(u,v)Ru,v

(
1

q

)
= Ru,v(q) .

2. Suppose u < v. Show that Ru,v(1) = 0.

3. Suppose ℓ(u, v) ≤ 2. Show that Ru,v(q) = (q − 1)ℓ(u,v).

4. Suppose that ℓ(u, v) = 3. Show that

Ru,v(q) =

{
q3 − 2q2 + 2q − 1, if [u, v] is a 2-crown,
(q − 1)3, otherwise.

5. (a) Show that if u < v, then R̃u,v(0) = 0.
(b) Show that if ℓ(u, v) ≤ 3, then

R̃u,v(q) =

{
q3 + q, if [u, v] is a 2-crown,

qℓ(u,v), otherwise.

6. Show that if ℓ(u, v) = 4, then we have the following:

(a)

R̃u,v(q) = q4 +
B2(u, v)

2
q2 ,

where B2(u, v) is the number of paths of length 2 from u to v in
the Bruhat graph of W .

(b) B2(u, v) ≤ 4.
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(c) B2(u, v) equals the number of subintervals of [u, v] isomorphic
to 2-crowns.

7. (a) Show that if ℓ(u, v) ≤ 2, then Pu,v(q) = 1.
(b) Show that if ℓ(u, v) = 3, then

Pu,v(q) =

{
1, if [u, v] is a 2-crown,
1 + (a(u, v)− 3)q, otherwise,

where a(u, v) denotes the number of atoms of [u, v].

8. Suppose that ℓ(u, v) = 4. Show that

Pu,v(q) = 1 + (c(u, v) +
B2(u, v)

2
− 4)q ,

where c(u, v) is the number of coatoms in [u, v] and B2(u, v) is as in
Exercise 6.

9. Let a(u, v), c(u, v) have the same meaning as in Exercises 7 and 8.

(a) Show that (−1)ℓ(v)−1[q](Re,v) = a(e, v).
(b) Show that [q](Pe,v) = c(e, v)− a(e, v).
(c) Show that

[q](Pu,v) = (−1)ℓ(u,v) [q](Ru,v) + c(u, v).

(d) Show that

[q](Pu,v) = −
∑

{x,y∈[u,v]: ℓ(x,v)≥3}

[q](Rx,y).

(e) Show that

[q2](Pu,v) = −
∑

{x,y∈[u,v]: ℓ(x,v)≥5}

([q2](Rx,y)+ [q](Rx,y)[q](Py,v)).

(f) Show that

[q]

⎛
⎝ ∑

x,y∈[u,v]

Rx,y

⎞
⎠ = (−1)ℓ(u,v)−1[q](Ru,v).

Conclude from this that [q](
∑

x,y∈[u,v] Rx,y) ≥ 0.

10. (a) Prove that Ru,v(q) = Ru−1,v−1(q).
(b) Show, using Theorem 5.1.1, that if W is finite and w0 is its

longest element, then Ru,v(q) = Rw0v,w0u(q) = Rvw0,uw0(q) for
all u, v ∈ W .

(c) Give a direct proof of (b) using the combinatorial interpretations
for the R-polynomials described in Theorems 5.3.4 and 5.3.7.
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11. Show that
∑

w∈[u,v]

(−1)ℓ(u,w)Ru,w(q)Rw,v(q) = δu,v.

12. Show that Pu,v(q) = Pu−1,v−1(q).

13. Let W be a finite Coxeter group with longest element w0.

(a) Show that
∑

a∈[u,v]

(−1)ℓ(u,a)Pu,a(q)Pw0v,w0a(q) = δu,v.

(b) Deduce from part (a) that µ̄(u, v) = µ̄(w0v, w0u).
(c) Show that Pu,v(q) = Pw0uw0,w0vw0(q).

14. (a) Show that
∑

x∈[y,v] Ry,x(q) = qℓ(y,v) for all y ∈ [u, v] if and only

if Py,v(q) = 1 for all y ∈ [u, v].
(b) Show that if Px,y(q) = 1 for all x, y ∈ [u, v], x ≤ y, then

Rx,y(q) = (−1)ℓ(x,y)
∑

a∈[x,y](−q)ℓ(x,a) for all x, y ∈ [u, v].

(c) Use part (a) to show that the converse of the statement in part
(b) also holds.

15. Compute R124356,564312(q). Conclude that it is not true that the
coefficients of the R-polynomials alternate in sign.

16. For v ∈ W , let

Fv(q)
def
=
∑

u≤v

qℓ(u)Pu,v(q).

Show that qℓ(v)Fv

(
1
q

)
= Fv(q).

17. Show that
∑

u≤v(−1)ℓ(u)Pu,v(q) = 0 for all v ∈ W \ {e}.

18. Let u ∈ W . Show that if Re,u(q) = (q−1)ℓ(u), then [e, u] is isomorphic
to a Boolean algebra.

19. Let (W, S) be a Coxeter system of rank n, S = {s1, . . . , sn}, and
σ ∈ Sn. Show that there exists a reflection order < on T such that

sσ(1) < sσ(2) < · · · < sσ(n).

20. Let W be a finite Coxeter group and let w0 be its longest element.
Let < be a total order on T . Suppose that T = {t1, . . . , tN} with
t1 < t2 < · · · < tN . Show that the following conditions are equivalent:

(i) < is a reflection order.
(ii) There exists a reduced decomposition s1 . . . sN = w0 such that

ti = sN . . . si+1sisi+1 . . . sN

for i = 1, . . . , N .
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21. Let k ∈ Z and a0 < a1 < · · · < ai be a chain in W . Show that

[qk](Ra0,...,ai
) =
∑

α

i∏

r=1

[qαr ](Rar−1,ar
)

where the sum is over all α = (α1, . . . , αi) ∈ Ni such that α1 + · · ·+
αi = k, αr ≤ ℓ(ar−1, ar) for r = 1, . . . , i, and αr+1 + · · · + αi ≤
1
2 (ℓ(ar, ai)− 1) for r = 1, . . . , i− 1.

22. Let a0 < a1 < · · · < ai be a chain in W and k ∈ Z. Show that

[qk](Ra0,...,ai
) = (−1)ℓ(a0,ai)

∑

α

i∏

r=1

[qαr ](Rar−1,ar
) (5.37)

where the sum is over all α = (α1, . . . , αi) ∈ Ni such that α1 + · · ·+
αi = ℓ(a0, ai)− k, αr ≤ ℓ(ar−1, ar) for r = 1, . . . , i, and αr+1 + · · ·+
αi ≥ 1

2 (ℓ(ar, ai) + 1) for r = 1, . . . , i− 1.
Note that this formula is simpler than the one in Exercise 21 if k >
1
2ℓ(a0, ai).

23. Let u, v ∈ Sn, u ≤ v.

(a) Show that if u → v, then Ru,v(q) = (q−1)(q2−q+1)
1
2 (ℓ(u,v)−1).

(b) Is the statement in part (a) true if W 	= Sn?
(c) Show that if DR(v), DR(u) ⊇ [2, n− 2], then there exists a ∈ N

such that

Ru,v(q) = (q − 1)a(q2 − q + 1)
1
2 (ℓ(u,v)−a).

(d) Is the converse of the statement in part (a) true?

24. Let u, v ∈ Sn, u ≤ v, be such that DR(v) ⊇ [2, n− 2]. Show that

Pu,v(q) =

{
1 + qv(1)−v(n), if u(n) > v(1) ≥ v(n) > u(1),
1, otherwise.

25. For j ∈ Q, define an operator Uj : R[q] → R[q] by letting

Uj

⎛
⎝∑

i≥0

aiq
i

⎞
⎠ def

=
∑

i≥j

aiq
i.

Given a multichain a0 ≤ a1 ≤ · · · ≤ ar+1 (r ∈ N) in W , define a
polynomial Ra0,a1,...,ar+1(q) inductively as follows:

Ra0,a1,...,ar+1(q)
def
= Ra0,a1(q)U d+1

2

(
qdRa1,...,ar+1

(
1

q

))

(where d
def
= ℓ(a1, ar+1)) if r ∈ P, and

Ra0,a1,...,ar+1(q)
def
= (−1)ℓ(a0,a1)Ra0,a1(q)
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if r = 0. Ra0,a1,...,ar+1(q) is called the R-polynomial of the multichain
a0 ≤ a1 ≤ · · · ≤ ar+1.

(a) Show that if r ∈ P and a0 ≤ a1 ≤ · · · ≤ ar+1 is a multichain in W
such thatRa0,...,ar+1 	= 0, then ℓ(ar, ar+1) ≥ 1, and ℓ(ai, ai+1) ≥
2 for i = 1, . . . , r − 1. In particular, ℓ(a1, ar+1) ≥ 2r − 1.

(b) Prove that if u, v ∈ W , then

Pu,v(q) =
∑

C∈M(u,v)

RC(q),

where M(u, v) denotes the set of all multichains from u to v.

26. For n ∈ P, consider the q-analog Fn(q) of the Fibonacci number Fn

defined by

Fn(q)
def
= Fn−1(q) + qFn−2(q),

where Fn(q)
def
= 0 if n < 0 and F0(q)

def
= 1. It is easy to verify that for

n ≥ 0,

Fn(q) =

⌊n/2⌋∑

i=0

(
n− i

i

)
qi.

(a) Let n ≥ 3. Show that Pe, 3 4...n 1 2(q) = Fn−2(q).
(b) Let n ≥ 5. Show that Pe, 3 4...n−2 n n−1 1 2(q) = Fn−3(q).

27. (a) Let 3 ≤ e1 < e2 < · · · < ea ≤ n − 1 be integers (so, n ≥ 4 and
a ∈ [n− 3]). Furthermore, define u, v ∈ Sn in complete notation
by

u
def
= 1 e1 . . . ea f1 . . . fn−3−a 2 n,

v
def
= e1 . . . ea n f1 . . . fn−3−a 1 2

where {fn−3−a, . . . , f2, f1}<
def
= [n− 3] \ {e1, . . . , ea}.

Show that

Pu,v(q) = 1 +

a∑

i=1

qei−i−1.

(b) Conclude from part (a) that given P ∈ N[q] such that P (0) = 1,
there exist n ∈ P and u, v ∈ Sn such that P (q) = Pu,v(q).

28. Let β ∈ C (in this and the following exercises, we use the notation
introduced in Section 5.4). Show that

Υβ(q) = (q − 1)U |β|−1
2

(Υβ(1)(q))

if β1 ≥ 2,

Υβ(q) = (1 − q)L |β|−2
2

(Υβ(q))

if β1 = 1 and ℓ(β) ≥ 2, and Υ1(q) = 1− q .
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29. Let β ∈ C and β̃ ∈ C be the unique composition such that |β̃| = |β|
and T (β̃) = [|β| − 1] \ T (β). Show that

−q|β|Υβ

(
1

q

)
= Υ(eβ,1)(q).

In particular, −qnΥn(1/q) = Υ(1n+1)(q) for n ∈ P.

30. (a) Let β ∈ C, ℓ(β) ≥ 2. Show that there exist A, B ∈ Z such that

Υβ(q) =

{
Aq

|β|−β1+1

2 Υβ1−1(q), if β1 ≥ 2,

Bq
|β|− eβ1

2 Υ
(1

eβ1)
(q), if β1 = 1.

(b) Compute A and B explicitly as a product of Catalan numbers.

31. Exercises 29 and 30 reduce the problem of computing any Υ-
polynomial to that of computing Υn(q) for n ∈ P. These polynomials,
in turn, can be computed in a completely explicit way. For n ∈ P, let

Bn(q)
def
=

n∑

i=0

(
2n

n− i

)
2i + 1

1 + n + i
qn+i.

Show that

Υ2n(q) = −Bn(−q)

and

Υ2n+1(q) = (1− q)Bn(−q).

32. Characterize the β ∈ C such that Υβ(q) 	= 0.

33. A polynomial
∑d

i=0 ai xi is called log-concave if a2
i ≥ ai−1ai+1 for

i = 1, . . . , d − 1. Let β ∈ C be such that Υβ(q) 	= 0. Show the
following:

(a) (−1)|β|−ℓ(β) Υβ(−q) is a log-concave polynomial.

(b) The maximum power of q that divides Υβ(q) is
⌊
|β|−eβ1+1

2

⌋
.

(c) deg(Υβ) = β1+ max
(⌊

|β|−1
2

⌋
, 0
)
.

34. Let β ∈ C be such that ℓ(β), ℓ(β̃) ≥ 2 (where β̃ has the same meaning
as in Exercise 29) and Υβ 	= 0. Show that Υeβ = 0. Show that the
converse statement does not hold.

35. (a) Show that if u, v ∈ W , u ≤ v, then

d

dq
(Ru,v(q))|q=1 =

{
1, if u → v,
0, otherwise.
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(b) Use part (a) to show that if u, v ∈ W , u ≤ v, then

d

dq

(
qℓ(u,v) Pu,v

(
1

q2

))∣∣∣∣
q=1

=
∑

{x∈[u,v]: u→x}

Px,v(1).

(c) For u, v ∈ W , u ≤ v, define the defect of the interval [u, v] by

df (u, v)
def
= |{x ∈ [u, v] : u → x}| − ℓ(u, v).

Use part (b) to show that if Px,v(q) = 1 for all x ∈ [u, v], then
df (x, v) = 0 for all x ∈ [u, v].

(d) Does the converse of the statement in part (c) also hold?

36. Let u, v ∈ W , u ≤ v.

(a) Show that if [qi](R̃u,v) 	= 0 for some i < ℓ(u, v), then

[qi+2](R̃u,v) 	= 0.
(b) Use part (a) to show that Ru,v(q) = (q − 1)ℓ(u,v) if and only if

[q](Ru,v) = (−1)ℓ(u,v)(−ℓ(u, v)).
(c) Show that if ℓ(u, v) = 3, then u → v if and only if [u, v] is a

2-crown.
(d) Use parts (a) and (c) to show that Ru,v(q) = (q− 1)ℓ(u,v) if and

only if [u, v] does not contain any 2-crown as a subinterval.
(e) Deduce from part (d) that if [u, v] is isomorphic to a Boolean

algebra, then Pu,v(q) = 1.

37. Let (W, S) be a universal Coxeter system (see Example 1.2.2). Show
that Pu,v(q) ∈ N[q] for all u, v ∈ W .

38. Show that [q](Pu,v) ≥ 0 for all u, v ∈ W .

39. A permutation u ∈ Sn is said to be 3412-avoiding if there are no
1 ≤ i1 < i2 < i3 < i4 ≤ n such that u(i3) < u(i4) < u(i1) < u(i2). A
permutation v ∈ Sn is called bigrassmannian if |DR(v)| = |DL(v)| =
1. It is easy to see that v is bigrassmannian if and only if there exist
0 ≤ a < b < c ≤ n such that

v = 1 . . . a b + 1 . . . c a + 1 . . . b c + 1 . . . n.

For u ∈ Sn let

bg (u)
def
= {v ∈ Sn : v is bigrassmannian, v ≤ u}.

For v ∈ bg (u), v = 1 . . . a b + 1 . . . c a + 1 . . . b c + 1 . . . n for some
0 ≤ a < b < c ≤ n, define the distance, denoted d(v, u), from v to u
to be

max{i ∈ N : 1 . . . a− i b + 1 . . . c + i a− i + 1 . . . b c+ i + 1 . . . n ≤ u}.
Suppose u avoids 3412, u 	= w0. Associate a tree to uw0 as follows.
Let I = (i1, . . . , in) be the inversion table of uw0 and let λ(u) be its
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nondecreasing rearrangement. Associate to λ(u) a word in the two-
letter alphabet {(, )} by associating a “(” (respectively, “)”) to each
vertical step (respectively, horizontal step) as you follow the boundary
of the diagram of λ(u) from southwest to northeast. Then, associate
to this word a rooted tree T (u) by “matching the parentheses” in this
word (i.e., each vertex of the tree, except the root, corresponds to a
matching pair (. . .) and a vertex is a descendant of another if and
only if its pair is enclosed by the other pair). Note that the leaves of
the tree correspond to the corners of the partition and, therefore, to
the nonzero values of I(uw0).
For example, if uw0 = 15764238 then I = (0, 3, 4, 3, 2, 0, 0, 0) and
hence λ(u) = (2, 3, 3, 4). The word associated to λ(u) is therefore
(()())() and the rooted tree associated to this word is

(a) Show that the map z �→ z(i) − i, where i is the unique (right)
descent of z, is a bijection between the maximal elements z of
bg (uw0) and the nonzero values of I(uw0) and, hence, the leafs
of T (u).

(b) Given v ∈ Sn, v ≤ u, label each leaf of T (u) by d(z, vw0), where
z is the maximal element of bg (uw0) corresponding to the leaf
under the bijection in part (a). Let E(u) be the set of edges of
T (u) and call a map f : E(u) → N v-admissible if the following
hold:

(i) f weakly increases along any path from the root.

(ii) The value of f at any leaf edge does not exceed the label of
the leaf.

Given such an f let |f | def
=
∑

x∈E(u) f(x). Show that

Pv,u(q) =
∑

f

q|f |,

where f : E(u) → N runs over all v-admissible functions.
(c) Deduce from part (b) that if u ∈ Sn is 3412-avoiding and 4231-

avoiding, then Pv,u(q) = 1 for all v ≤ u.
(d) Show that the converse of the statement in part (c) also holds.
(e) Let u ∈ Sn be such that DR(u) ⊆ {1, n − 1}. Use part (b) to

show that, for any v ≤ u,

Pv,u(q) = (1 + q)r,

where r
def
=
∣∣∣
{
j ∈ [u(n) + 1, u(1)− 2] :

∑j
i=1 v(i) =

(
j+1
2

)}∣∣∣.
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(f) Deduce from part (e) that Pe,(1,n)(q) = (1 + q)n−3 for all n ≥ 3.
(g) Let Vn be the number of 3412-avoiding permutations of Sn. Show

that limn→∞
Vn

n! = 0.

Notes

The R-polynomials and Kazhdan-Lusztig polynomials were introduced by
Kazhdan and Lusztig in [322] and all the results in Section 5.1 appear there,
although some of them not explicitly. Reflection orderings appear in Bour-
baki [79] for finite Coxeter systems (under the name of normal orderings)
and were first introduced by Dyer [205] for general Coxeter systems. All
of the results in Section 5.2 are due to Dyer and appear in [205], although
usually with different proofs.

Theorem 5.3.4 appeared in Dyer [200] and then in [205], whereas The-
orem 5.3.7 is due to Deodhar [180]. The polynomials in Section 5.4 were
introduced by Brenti [92] and Proposition 5.4.1 appears there. The R-
polynomial of a chain was also introduced in [92], and all of the results in
Section 5.5 appear there, except for Proposition 5.5.5, which is from Brenti
[89].

Exercises 9, 21, 22, 30, and 31. See Brenti [92]. The polynomials Bn(q)
in Exercise 31 are closely related to ballot problems (see, e.g., [9], [237,
§III.1, p. 21], [268, §5.3)]).

Exercises 11 and 13. See Kazhdan and Lusztig [322].
Exercise 14. See Kazhdan and Lusztig [322] and Brenti [87].
Exercise 15. See Boe [69].
Exercise 20. See Dyer [205].
Exercise 23. See Brenti [88] and Shapiro, Shapiro, and Vainshtein [454].
Exercise 24. See Shapiro, Shapiro, and Vainshtein [454].
Exercises 25 and 36. See Brenti [87].
Exercise 26. See Brenti and Simion [102].
Exercise 27. See Polo [421] and Caselli [113].
Exercise 37. See Dyer [201].
Exercise 38. See Dyer [210] and Tagawa [523].

Exercise 16. See Kazhdan and Lusztig [322]. It can be shown [323] that if
W is a Weyl group, the polynomial Fv(q) is the Poincaré polynomial for
the intersection homology of the Schubert variety Xv associated to v. So
the result stated in Exercise 16 is, for Weyl groups, a special case of the
general topological fact that (middle perversity) intersection homology
satisfies Poincaré duality.
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Exercises 35 and 39. See Carrell [109] for Exercise 35, and for Exercise 39
see Lakshmibai and Sandhya [337], Lascoux [341], and Shapiro, Shapiro,
and Vainshtein [454]. These two exercises have strong connections to the
geometry of Schubert varieties. In fact, the equivalent conditions in parts
(c) and (d) of Exercise 39 are themselves equivalent to the smoothness of
Xu [337]. Similarly, if W is a Weyl group, then the conditions in part (c)
of Exercise 35 are equivalent and are themselves equivalent, in the case
that u = e, to the statement that the Schubert variety Xv is rationally
smooth [109]. For Schubert varieties in type A, smoothness and rational
smoothness are equivalent (see Deodhar [181]), so all of the preceding
conditions are equivalent. In general, however, rational smoothness is a
weaker statement than smoothness. For a comprehensive discussion of
these issues, see Billey and Lakshmibai [47].

In addition to their connection to the geometry of Schubert varieties,
the Kazhdan-Lusztig polynomials also encode a good deal of topological
information. In fact, it is known (see [323]) that if W is a Weyl group,
then the coefficients of the Kazhdan-Lusztig polynomial Pu,v(q) equal the
dimensions of the local intersection homology spaces of the Schubert vari-
ety Xv at a point lying on the Schubert cell indexed by u. Thus, Theorem
5.6.3 has the surprising geometrical consequence that these dimensions de-
pend only on the inclusion relation between the Schubert subvarieties of
Xv. The Kazhdan-Lusztig polynomials also play an important role in the
representation theory of semisimple algebraic groups (see, e.g., Andersen
[8] and the references cited there) and Hecke algebras, which is also the
original reason for their introduction in [322].

Aside from their importance in the fields just mentioned, there are
purely combinatorial reasons that make the Kazhdan-Lusztig polynomi-
als interesting objects to study. Perhaps the main one is the non-negativity
conjecture [322], which simply says that all Kazhdan-Lusztig polynomials
have non-negative coefficients. This conjecture has been proved in the case
that W is a finite or affine Weyl group using the topological interpretation
of the polynomials and also for the other finite Coxeter groups by computer
verification. It has also been proved for the universal Coxeter systems (see
Exercise 37). Since the constant term of the Kazhdan-Lusztig polynomials
is 1, the first nontrivial coefficient is the one of the q-term, and this has
been proved to be indeed always non-negative (see Exercise 38).

In fact, much more than non-negativity could conceivably be true since
for the finite and affine Weyl groups, a monotonicity result holds that
trivially implies the non-negativity. Namely Braden and MacPherson [83]
have shown that for these groups it is true that if u, v, w ∈ W and u ≤
v ≤ w, then Pu,w(q) − Pv,w(q) ∈ N[q]. In other words, if the second index
of a Kazhdan-Lusztig polynomial is fixed, and the first one moves down in
Bruhat order, then all the coefficients of the polynomial weakly increase.
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It is worth noting that this monotonicity property always holds for the
R̃-polynomials [89].

If the coefficients of Kazhdan-Lusztig polynomials are indeed always
non-negative, then a natural problem is that of finding a combinatorial
interpretation for them, meaning a set of combinatorial objects whose num-
ber equals the given coefficient. Even in the simplest nontrivial case, that
of the symmetric group, this seems to be an extremely hard problem, and
only some partial results are known (see Exercises 24, 26, 27, and 39).

It is known that any polynomial with non-negative integer coefficients
and constant term equal to 1 is the Kazhdan-Lusztig polynomial of some
pair of permutations. This has been proved geometrically by Polo [421] and
combinatorially by Caselli [113] (see Exercise 27).



6
Kazhdan-Lusztig representations

This chapter concerns the so-called “left cell” representations of Coxeter
groups, introduced by Kazhdan and Lusztig in [322]. (Actually, what they
constructed are representations of Hecke algebras, and we are here talk-
ing of the q = 1 specializations.) This class of representations admits an
encoding into the language of labeled graphs, and the whole theory has a
strongly combinatorial flavor. For example, the “Kazhdan-Lusztig graph”

23

13

14

24

encodes the irreducible representation of the symmetric group S5 indexed
by the partition (3, 2). From the information given by this graph, there is
an algorithm for writing down the integral matrix representing any given
element of S5.

One of the most remarkable features of Kazhdan and Lusztig’s construc-
tion, from a combinatorial point of view, is that for symmetric groups, it
produces the irreducible representations. This fact is treated rather briefly
in their article, and it is one of the main purposes of this chapter to work it
out in detail. It will appear that this construction of the irreducible repre-
sentations of Sn is in very close contact with the combinatorics of tableaux,
in fact more so than the classical approaches. In particular, it fits hand-
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in-glove with the Robinson-Schensted correspondence and gives a more
general meaning to the related tableau combinatorics. The combinatorial
background is reviewed in Appendix A3.

6.1 Review of background material

To get started, we need to summarize some algebraic background material.
A thorough account of this is given in Chapter 7 of Humphreys’ book [306].

Let H = H(W, S) be the Hecke algebra of a Coxeter group (W, S)

over the ring Z[q
1
2 , q−

1
2 ]. This algebra has a linear basis {Tw}w∈W and

its multiplication is determined by
{

TsTw = qTsw + (q − 1)Tw, if sw < w, s ∈ S,
TwTu = Twu, if ℓ(w) + ℓ(u) = ℓ(wu).

In particular, if w = s1s2 . . . sk is a reduced decomposition, then Tw =
Ts1Ts2 . . . Tsk

. Note that if q
1
2 = 1, as will be assumed from Section 6.3 on,

then H specializes to the group algebra Z[W ].
The multiplication rule shows that the special basis elements Ts, for

s ∈ S, are invertible: T−1
s = (q−1 − 1)Te + q−1Ts. Consequently, all basis

elements Tw are invertible in H, namely

T−1
w−1 = q−ℓ(w)

∑

y≤w

(−1)ℓ(y,w)Ry,w(q)Ty,

where Ry,w(q) ∈ Z[q] are the R-polynomials treated in Chapter 5.
There is an involution (ring homomorphism of order 2) of H defined by

∑

w∈W

pw(q
1
2 )Tw

def
=
∑

w∈W

pw(q−
1
2 )T−1

w−1 ,

where pw(q
1
2 ) are Laurent polynomials in q

1
2 . Furthermore, there is a basis

{Cw}w∈W for H defined by

Cw = q
ℓ(w)

2

∑

y≤w

(−1)ℓ(y,w)q−ℓ(y)Py,w(q−1)Ty, (6.1)

where Py,w ∈ Z[q] are the Kazhdan-Lusztig polynomials discussed in the
previous chapter. This basis satisfies

Cw = Cw, for all w ∈ W (6.2)

and this relation is, in fact, equivalent to the recursion in part (iv) of
Theorem-Definition 5.1.4.

Recall definition (5.3): µ(y, w) = [q
1
2 (ℓ(y,w)−1)]Py,w for y < w. If y > w,

let µ(y, w) = µ(w, y), and let

E
def
=
{
{x, y} ∈

(
W
2

)
: x < y or x > y and µ(x, y) 	= 0

}
. (6.3)
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The following multiplication rule in H (see [322, p. 171], or [306, p. 166])
is basic to this chapter:

TsCw =

{ −Cw, if sw < w,

qCw + q
1
2 Csw + q

1
2

∑
µ(x, w)Cx, if sw > w,

(6.4)

where the sum is taken over all x < w such that {x, w} ∈ E and sx < x. It
implies [306, p. 167] the following useful fact, already stated in Proposition
5.1.8 (x, y ∈ W and s ∈ S):

x < y and sy < y ⇒ Px,y = Psx,y. (6.5)

In this chapter, we use some basic facts and concepts from the repre-
sentation theory of finite groups. This material will not be summarized,
we refer to the texts of Lederman [358] or Sagan [450] (or any other book
on the elements of representation theory). All representations will be over
the complex numbers C, and we do not distinguish notationally between
representations and their characters.

6.2 Kazhdan-Lusztig graphs and cells

Let (W, S) be a Coxeter system. We define a graph with vertices labeled
by subsets of S and edges labeled by nonzero integers as follows.

Definition 6.2.1 The (left) Kazhdan-Lusztig graph Γ(W,S) = (W, E) (or
K-L graph, for short) has for nodes the elements w ∈ W , labeled by DL(w),
and for edges, it has the pairs {x, y} ∈ E defined in definition (6.3), labeled
by µ(x, y).

Figure 6.1 shows to the left the Bruhat order on S3 (left descents are
underlined), and to the right its K-L graph. All µ-labels are here equal to
1 and not marked in the picture, and in the vertex labels, we abbreviate
1 = (1, 2), 2 = (2, 3).

1 2 3

1 3 2 2 1 3

2 3 1 3 1 2

3 2 1

∅

2 1

1 2

12

Figure 6.1. Bruhat order and K-L graph of S3.

The K-L graph of S4 (without labels) is the Hasse diagram of Bruhat
order (see Figure 2.4) with two additional edges: 1324 — 3412 and 2143 —
4231, corresponding to the two length 3 intervals with Py,w(q) = 1 + q.
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Here are a few immediate observations.

Lemma 6.2.2 Let x, y ∈ W , x < y. Then, the following hold:

(i) If {x, y} ∈ E, then ℓ(x, y) = ℓ(y)− ℓ(x) is odd.

(ii) If ℓ(x, y) = 1, then {x, y} ∈ E and µ(x, y) = 1.

(iii) If ℓ(x, y) > 1 and there exists s ∈ S such that sy < y and sx > x,
then {x, y} 	∈ E.

Proof. The first two statements follow directly from the definitions. For
the third, note that Px,y = Psx,y by implication (6.5), so the degree of Px,y

is too small. [Remark: This is a restatement of Proposition 5.1.9.] �

Part (ii) of the lemma shows that all Bruhat edges (by which we mean
coverings in Bruhat order) are edges of the K-L graph with label = 1. The
remaining “non-Bruhat edges” of the K-L graph and their labels are con-
siderably more difficult to determine. Finding them requires computation
of the degree, and if maximal also of the leading coefficient, of the Kazhdan-
Lusztig polynomials of all odd-length Bruhat intervals. (This task is not
known to be computationally easier than the computation of the full K-L
polynomials of all intervals of the group.)

It is useful for later developments to introduce a directed version of the
K-L graph, with unlabeled vertices but with doubly-labeled edges. Thus,
there will be two labels s ∈ S and µ ∈ Z \ {0} on each edge, and we can
think of s as a “color” and µ as a “weight.”

Definition 6.2.3 The (left) colored Kazhdan-Lusztig graph is the directed

graph Γ̃(W,S) = (W, A) whose set A of labeled edges x
µ−→
s

y are of the

following two types (x, y ∈ W ):

(i) x 	= y, {x, y} ∈ E, s ∈ DL(x) \DL(y), and µ = µ(x, y).

(ii) x = y, s ∈ S, and µ =

{
1, if s 	∈ DL(x),
−1, if s ∈ DL(x).

Hence, there are two kinds of edge; the first type are directed versions of
some of the edges of Γ(W,S) and the second type are loops (one for each
s ∈ S) attached to every node.

As an example, we show in Figure 6.2 the colored K-L graph of S3. It
should be compared to Figure 6.1. The color of edges are indicated by solid
or dashed lines, and only edge weights µ 	= 1 are marked.

It is clear that Γ(W,S) determines Γ̃(W,S), but not conversely. Some edges
(those with DL(x) = DL(y)) are irretrievably lost. The K-L graph Γ(W,S)

is a more compact way to encode the information, but the colored version
Γ̃(W,S) is more useful for our developments. Note that Γ̃(W,S) can have
multiple (parallel or antiparallel) edges between a given pair of nodes. In
such cases, these edges always have distinct labels. The down-directed edges
in Γ̃(W,S) are easy to characterize — they are the left weak order coverings:
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s1

s2

−1−1

−1 −1

−1−1

Figure 6.2. The colored K-L graph of S3.

Lemma 6.2.4 Suppose that ℓ(x) > ℓ(y). Then, x → y is an edge in Γ̃(W,S)

if and only if x �L y.

Proof. If x = sy, then clearly x → y is an s-labeled edge in Γ̃(W,S). The
converse follows from Lemma 6.2.2(iii). �

The following concepts are basic to this chapter.

Definition 6.2.5 Let x, y ∈ W . We say the following:

(i) x "L y if there exists a directed path in Γ̃(W,S) from x to y.

(ii) The relation “"L” is called the left preorder on W .

(iii) x ∼L y if x "L y and y "L x.

(iv) The relation “∼L” is called the left equivalence relation on W .

(v) An equivalence class of (W, S) under ∼L is called a left cell.

We can consider the induced subgraphs of Γ(W,S) and Γ̃(W,S) on each left
cell C, and in fact from now on, we will usually think of left cells as the
induced graphs ΓC and Γ̃C . [Remark: In graph-theoretic terminology, the

left cells are the strongly connected components of Γ̃(W,S).]

For example, C = {24135, 25134, 34125, 35124, 45123} is a left cell in S5

(the reason for this will be easily understood from the results in Section
6.5). Figure 6.3(a) shows Bruhat order of this set and Figure 6.3(b) shows
the graph ΓC (there is a non-Bruhat edge because P24135,45123(q) = 1 + q;
the edge labels µ = 1 are not marked).

Figure 6.4 shows the colored K-L graph Γ̃C , with all loops removed and
edge weights µ = 1 not marked.

Definition 6.2.6 Given two left cells C and C′, we say that C "L C′ if
x "L y for some (equivalently, all) x ∈ C, y ∈ C′.
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2 4 1 3 5

2 5 1 3 4 3 4 1 2 5

3 5 1 2 4

4 5 1 2 3

13

14 2

24

3

(a) (b)

Figure 6.3. A left cell and its K-L graph ΓC.

1

1

1

2

2

2 3

3

3

4

4

4

Figure 6.4. The colored K-L graph eΓC (without loops).

Note that this is a partial order on the set of all left cells of W .
For example, the left cells of S3 are {123}, {321}, {132, 231}, {312, 213}.

One sees from Figure 6.1 or Figure 6.2 that their left partial order is given
by

{321} "L {132, 231} "L {123},
{321} "L {312, 213} "L {123}.

There is, of course, a “right” version of everything that we have done so
far, and we will use it in the sequel. From now on, we drop the word “left”
everywhere, unless there is risk of confusion.

Proposition 6.2.7 If x "L y, then DR(x) ⊇ DR(y). Consequently, if
x ∼L y, then DR(x) = DR(y).

Proof. We may assume that x
µ−→
s

y is an edge in Γ̃(W,S). There are two

cases to consider:

(i) y < x. Then, x = sy, by Lemma 6.2.4, and hence DR(y) ⊆ DR(x).

(ii) y > x. Assume that there exists an s′ ∈ DR(y) \ DR(x). Then,

x
k−→
s′

y would be an edge in the right colored K-L graph for some
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k, which implies by the “right” version of the above that y = xs and,
hence, DL(x) ⊆ DL(y). However, this contradicts our hypothesis that
x−→

s
y is an edge in the left colored K-L graph. �

As a consequence, we conclude that the (right) descent set DR(C) of a
left cell C is well defined by

DR(C)
def
= DR(x), for any x ∈ C.

Now, suppose that (W, S) is finite. Then, translation by the top element
w0 induces various symmetries of K-L graphs and of the left partial order
on cells.

Proposition 6.2.8 If x
µ
−− y is an edge in Γ(W,S), then also w0x

µ
−− w0y,

xw0

µ
−− yw0, and w0xw0

µ
−− w0yw0 are edges (all with the same label).

Proof. This follows from Corollary 2.3.3 and Exercise 5.13. �

Although the labels of edges of Γ(W,S) are preserved under these maps,
the labels of vertices, of course, change.

Proposition 6.2.9 If x
µ−→
s

y, x 	= y, is a directed edge in Γ̃(W,S), then so

also are the following:

(i) w0y
µ−→

w0sw0

w0x.

(ii) yw0
µ−→
s

xw0.

(iii) w0xw0
µ−→

w0sw0

w0yw0.

Furthermore, if x
µ−→
s

x is a loop, then so is xw0
−µ−→
s

xw0.

Proof. Immediate from Exercise 2.10 and the preceding proposition. �

It follows from these facts that for each left cell C also w0C, Cw0 and
w0Cw0 are left cells and that they all are isomorphic as edge-labeled graphs.

Corollary 6.2.10 ΓC
∼= Γw0C

∼= ΓCw0
∼= Γw0Cw0 . �

The vertex labels, however, change according to Exercise 2.10. Similarly,
the colored graphs Γ̃C , Γ̃w0C , Γ̃Cw0 , Γ̃w0Cw0 are isomorphic as edge-labeled
directed graphs, except for a permutation of the set S of “edge colors.”

It also follows that the x �→ w0x and x �→ xw0 maps induce fixed-
point-free involutions on the set of left cells, which reverse the "L and "R

orders. Similarly, x �→ w0xw0 induces an involution on the left cells, which
preserves these orders.
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6.3 Left cell representations

It is now necessary to briefly return to the Hecke algebra setup reviewed
in Section 6.1, but we immediately specialize the discussion, namely

Assume from now on that q
1
2 = 1 and that (W, S) is finite.

The first assumption implies that the Hecke algebra specializes to the group
algebra of W : H(W, S) ∼= Z[W ]. Also, the involution on H becomes the
identity, since T−1

w = Tw−1 in Z[W ]. Finally, the multiplication formula
(6.4) can now be more succinctly written as

TsCw =
∑

x

µ(x, w)Cx, (6.6)

with summation over all x ∈ W having an s-colored arrow to w in Γ̃(W,S).
The simple form of this rule is the motivation behind the definition of the
colored graph Γ̃(W,S).

The (left) regular representation of W is the mapping RegW : W →
EndZ(H) defined by

RegW (w) : D �→ TwD

for all D ∈ H. Our first goal is to express the regular representation in the
Kazhdan-Lusztig basis {Cx}x∈W .

Let A(w) = (ax,y(w))x,y∈W be the matrix of RegW (w) with respect to
the Kazhdan-Lusztig basis (so that TwCy =

∑
x∈W ax,y(w)Cx).

Lemma 6.3.1 If w = s1 . . . sk (with si ∈ S), then

ax,y(w) =
∑

µ(x0, x1)µ(x1, x2) . . . µ(xk−1, xk),

where the sum is over all paths x = x0−→
s1

x1−→
s2

· · ·−→
sk

xk = y in Γ̃(W,S).

Proof. Equation (6.6) can be restated as

ax,y(s) =

{
µ(x, y), if (x−→

s
y) ∈ A,

0, otherwise.
(6.7)

Now use the fact that A(w) = A(s1) · · ·A(sk). �

Lemma 6.3.2 Let C1, . . . , Ck be the left cells of W , labeled so that if Ci "L

Cj, then i < j. Arrange the columns and rows of A(w) cellwise in this order.
Then, A(w) has upper-triangular block form.

Proof. This is clear from Lemma 6.3.1, the definition of left cells, and the
definition of "L for left cells. �

The block form of A(w) is indicated in the following diagram:
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C1 C2 C3 Ck

C1 AC1(w) ∗ ∗ ∗ ∗

C2 0 AC2(w) ∗ ∗ ∗

C3 0 0 AC3(w) ∗ ∗

0 0 0
. . . ∗

Ck 0 0 0 0 ACk(w)

For each left cell C and w ∈ W , let

AC(w) = (ax,y(w))x,y∈C

be the diagonal-block submatrix. It is clear from the form of the A(w)
matrices that AC(u)AC(v) = AC(uv) for all u, v ∈ W ; hence, they give a
representation.

Definition 6.3.3 The representation of W given by (AC(w))w∈W is the
Kazhdan-Lusztig representation KLC determined by the left cell C.

From now on, we consider all representations to be over the field C of
complex numbers.

Proposition 6.3.4 Let (W, S) be a finite Coxeter system. Then,

RegW
∼=
⊕

C

KLC,

where C runs over all the left cells of W .

Proof. This is an immediate consequence of Lemma 6.3.2 and Maschke’s
theorem (see, e.g., [358, p. 21]). �

The Kazhdan-Lusztig representations are, in general, reducible. For ex-
ample, let W = B2 (the dihedral group of order 8) and S = {a, b}. Then,
the left cells are {a, ba, aba}, {b, ab, bab}, {abab}, and {e}; but B2 has five
irreducible representations, four of degree 1 and one of degree 2. Hence,
the K-L representations corresponding to the two left cells of size 3 must
be reducible.

The same pattern holds for all dihedral groups; namely I2(m) has two
irreducible representations of degree 1 if m is odd and four such if m is even,
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and all remaining irreducibles are of degree 2 (see, e.g.,[358, pp. 65-66]).
However, I2(m) always has exactly four left cells, see Exercise 1.

It is easy to see that {e} and {w0} are left (and right) cells and that they
give the trivial representation

KL{e} = 1 (6.8)

and the alternating representation

KL{w0} = ε, (6.9)

defined by ε(w) = (−1)ℓ(w) (cf. Lemma 1.4.1). We will frequently write εw

instead of ε(w).
The w0-induced symmetries have the following effect on Kazhdan-Lusztig

representations.

Proposition 6.3.5 Let C be a left cell. Then, the following hold:

(i) KLCw0
∼= ε KLC.

(ii) KLw0C
∼= εKLC.

(iii) KLw0Cw0
∼= KLC.

Proof. We begin with part (i). The key fact is that Γ̃Cw0 is obtained from Γ̃C

by reversing the direction of all arrows, keeping their color s and weight µ,
except that the ±1 weights on loops are switched (cf. Proposition 6.2.9(ii)).
This implies on the character level that

KLCw0(x) = εx KLC(x−1),

for all x ∈ W ; namely the trace of ACw0(x) is the sum of the weights of all

directed circuits in Γ̃Cw0 beginning and ending in some y ∈ Cw0 and whose
color sequence is (s1, s2, . . . , sk) for some fixed expression x = s1s2 . . . sk.

Similarly, KLC(x−1) is the sum of the weights of directed circuits in Γ̃C

whose color sequence is (sk, sk−1, . . . , s1). By the previous remark, these
quantities are equal, except possibly for the sign. Whether the sign will
change depends on the distribution of the number of (+1)-labeled and

(−1)-labeled loops traversed. However, since Γ̃(W,S) without its loops is a
bipartite graph (edges connect elements of even length with elements of odd
length), and hence every circuit with its loops removed is of even length,
a change of sign will take place for each individual path if and only if k is
odd (i.e., if εx = −1).

Now use that

KLC(x−1) = KLC(x) = KLC(x),

where the last equality is true because the matrices, and hence character
values, are real. Consequently, the characters agree, and part (i) is proved.

For part (iii), one observes (using Proposition 6.2.9(iii)) that Γ̃w0Cw0

is obtained from Γ̃C by applying the operator x �→ w0xw0 to all nodes
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and all edge colors, keeping the edge weights µ. Therefore, the directed
(s1, s2, . . . , sk)-colored circuits based at y ∈ C are in bijection with the
(w0s1w0, w0s2w0, . . . , w0skw0)-colored circuits based at w0yw0 ∈ w0Cw0,
and this bijection preserves weight. Hence, the trace of AC(x) equals that
of Aw0Cw0(w0xw0), implying (since characters are class functions)

KLC(x) = KLw0Cw0(w0xw0) = KLw0Cw0(x).

Part (ii) is implied by parts (i) and (iii) jointly, since w0C = w0(Cw0)w0.
�

In the sequel, for any representation χ of a parabolic subgroup WJ we
introduce the following simplified notation for the induced representation
of W :

IndS
J [χ]

def
= IndW

WJ
[χ].

We need only the most basic facts about induced representations, as can
be found, for example, in [358, Section 3.1]. In particular, the character
formula

IndS
J [χ](w) =

1

|WJ |
∑

y∈W

χ̇(y−1wy) (6.10)

is useful. Here, w ∈ W , and χ̇(u) is declared equal to χ(u) if u ∈ WJ and
equal to zero otherwise.

For any subset A ⊆ W , define two elements TA and TA of H ∼= Z[W ] by

TA =
∑

w∈A

Tw and TA =
∑

w∈A

εwTw. (6.11)

Let A1, A2, . . . , Ak be the left cosets of WJ (for some J ⊆ S). Then, W
acts via left multiplication x : TA �→ xTA on the submodule 〈TA1 , . . . , TAk

〉,
permuting its basis elements. This representation, the “left coset action,”
coincides with the induced representation IndW

WJ
[1].

Similarly, W acts via x : TA �→ εxxTA on the submodule HJ =
〈TA1 , . . . , TAk

〉 by permuting and sign-changing its basis elements. This
“signed left coset action” is in the same way identified with the rep-
resentation IndS

J [ε] ∼= ε·IndS
J [1]. This is all easily seen from formula

(6.10).
For example, let W = S3, S = {a, b} and J = {b}. Then, TA1 = Te−Tb,

TA2 = Tab − Ta, and TA3 = Tba − Taba. Two examples of the action of W
on HJ expressed in this basis are

ab �−→

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ , aba �−→

⎛
⎝

0 0 −1
0 −1 0
−1 0 0

⎞
⎠ .
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The remainder of this section is devoted to showing how the in-
duced representations IndS

J [1] and IndS
J [ε] are related to Kazhdan-Lusztig

representations. We first need some preparatory lemmas.

Lemma 6.3.6 Let y ∈ DS
J and x ≤ y. Then, the following hold:

(i) a ≤ y, for all a ∈ xWJ . In particular, [e, y] is a union of left cosets
of WJ .

(ii) Pa,y(q) = Px,y(q), for all a ∈ xWJ .

Proof. Use that the upper projection P
J

: W → DS
J is order-preserving

(Exercise 2.16). Then, a ≤ P
J
(a) = P

J
(x) ≤ P

J
(y) = y, for all a ∈ xWJ .

For part (ii), let z = P
J
(x) = P

J
(a). Then x < xs1 < xs1s2 < · · · <

xs1s2 . . . sk = z with all si ∈ J , and J ⊆ DR(z). Hence, Px,y(q) = Pz,y(q)
follows by repeated use of property (6.5). Similarly, Pa,y(q) = Pz,y(q). �

Lemma 6.3.7 (i) If y ∈ DS
J , then Cy ∈ HJ .

(ii) {Cy}y∈DS
J

is a basis for HJ .

Proof. Since q = 1, we have from equation (6.1) that Cy =
∑

x∈[e,y] εxεyPx,y(1)Tx.

Now, [e, y] is a (disjoint) union of left cosets of WJ , say A1, . . . , Ar.
Therefore, by Lemma 6.3.6,

Cy = εy

r∑

i=1

PAi,y(1)
∑

x∈Ai

εxTx

= εy

r∑

i=1

PAi,y(1)TAi
∈ HJ , (6.12)

where PAi,y(1) denotes the common value of Px,y(1) for x ∈ Ai.
For part (ii), the relation (6.12) is invertible over Z, since it is triangular

with 1s on the diagonal with respect to any ordering {y1, . . . , yr} of DS
J such

that if yi < yj , then i < j. (Note here that the index sets can be considered
to be the same, since DS

J consists precisely of the maximal elements of
A1, . . . , Ar.) �

We are now ready to state the promised result on induced characters.
The two sums run over left cells C.

Theorem 6.3.8 Let J ⊆ S. Then,

IndS
J [1] ∼=

⊕

DR(C)⊇J

ε KLC
∼=

⊕

DR(C)⊆S\J

KLC.

Proof. The map C �→ w0C is a bijection between those left cells whose
right descent set contains J and those whose right descent set is contained
in S \ J . Hence, the second equivalence is directly implied by Proposition
6.3.5(ii).
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We will prove the first equivalence, namely

IndS
J [ε] ∼=

⊕

DR(C)⊇J

KLC,

by expressing the action of W on HJ in the {Cy}y∈DS
J

basis. The argument
runs parallel to that by which Proposition 6.3.4 is obtained from Lemma
6.3.2. Therefore, we will only sketch it, leaving the details to the reader.

Order the cells C satisfying DR(C) ⊇ J by a linear extension of the left
order "L of cells. Write the matrices of the IndS

J [ε] representation in the
{Cy}y∈DS

J
basis with rows and columns ordered cellwise, according to the

chosen linear ordering of cells. Then, as in the proof of Proposition 6.3.4, the
matrices assume upper-triangular block form. Thus, IndS

J [ε] decomposes as
claimed. �

Note that for J = ∅, the theorem specializes to Proposition 6.3.4, and
for J = S, it specializes to formulas (6.8) and (6.9). [Remark: The smaller
sums ⊕DR(C)=JKLC arise as homology representations from W ’s action on
the type-selected subcomplexes of its Coxeter complex; see Exercise 12(c).]

6.4 Knuth paths

Here and in the next two sections, the discussion is specialized to the sym-
metric groups. The main goal is the proof in the following section that the
Kazhdan-Lusztig construction gives the irreducible representations for Sn.
In preparation for that, we need to work out some of the connections be-
tween edges in K-L graphs and (dual) Knuth equivalence. We will assume
familiarity with the material on tableaux reviewed in Appendix A3.

Let W = Sn with the standard Coxeter generators si = (i, i + 1), i =
1, . . . , n−1. Let x, y ∈ Sn and 1 < i < n. The following defines a refinement
of elementary Knuth equivalence:

x
i≈
K

y
def⇐⇒ x ≈

K
y and xj = yj if |j − i| ≥ 2. (6.13)

This means that x and y differ by a Knuth relation, bac = bca or acb = cab
for a < b < c, occurring in positions i− 1, i and i + 1. We call this a Knuth

step of type i. For example, 4735162
4≈
K

4731562.

Lemma 6.4.1 Let x, y ∈ Sn, ℓ(x) < ℓ(y), and 1 < i < n. Then, the
following are equivalent:

(i) x
i≈
K

y.

(ii) xs < x < xs′ = y < ys, with {s, s′} = {si−1, si}; see Figure 6.5(a).

(iii) There exist antiparallel edges between x and y, colored by si−1 and
si, in the right colored K-L graph of Sn; see Figure 6.5(b).
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x

y

s

s

s′

x

y

ss′

(a) (b)

Figure 6.5. Illustration for Lemma 6.4.1.

Proof. We leave the verification to the reader. Lemma 6.2.4 is of use for
showing (iii) ⇒ (ii). �

Dualizing by the left-right symmetry and dropping the reference to
position i we deduce the following.

Lemma 6.4.2 Let x, y ∈ Sn, ℓ(x) < ℓ(y). Then, the following are
equivalent:

(i) x ≈
dK

y.

(ii) sx < x < s′x = y < sy, for some s, s′ ∈ S.

(iii) There exist antiparallel edges between x and y in the left colored K-L

graph Γ̃Sn
. �

In particular, it follows that dual Knuth equivalence implies left equivalence
in the sense of Kazhdan and Lusztig.

Corollary 6.4.3 x ∼
dK

y implies x∼
L

y. �

The relation x
i≈
K

y has the following influence on the right tableaux

(recording tableaux) under the Robinson-Schensted correspondence.

Lemma 6.4.4 Let x, y ∈ Sn and suppose that x
i≈
K

y. Then, the following

hold:

(i) Q(x) and Q(y) differ by a transposition si−1 or si.

(ii) Q(x) uniquely determines Q(y).

Before embarking on the proof, let us have a look at a small example.

Let x = 4735162 and y = 4731562. Then, x
4≈
K

y and

Q(x) =

1 2 6

3 4

5 7

Q(y) =

1 2 6

3 5

4 7
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These tableaux differ by the transposition s4 = (4, 5). Note that s3 = (3, 4)
is illegal in both tableaux, so knowing that i = 4, one sees that either
tableau uniquely determines the other.

Proof. Since x
i≈
K

y and using that x and Q(x) have the same descent sets,

we see that |D(Q(x)) ∩ {i− 1, i}| = 1, and similarly for y. This shows that
(i) implies (ii).

To prove (i), we have to distinguish two cases.
Case 1: y = xsi. This means that we have a Knuth relation of the form
bac = bca. Let P (x1x2 . . . xj) denote the left tableau obtained after in-
sertion of the first j entries. Then, P (x1 . . . xj) = P (y1 . . . yj) for j =
1, . . . , i−1, and also (since x ≈

K
y implies P (x) = P (y)) for j = i+1, . . . , n.

Hence, by the formation rule for right tableaux, Q(x) and Q(y) differ by
the transposition si.
Case 2: y = xsi−1. Then, the Knuth relation is acb = cab. If the “bumping
paths” of the insertion of a in P (x1 . . . xi−2) and of the insertion of c in
P (x1 . . . xi−2) intersect in some row, then clearly i−1 is in the same position
in Q(x) as in Q(y). So reasoning as in Case 1, we conclude that Q(x) and
Q(y) differ by the transposition si. If the “bumping paths” of a and c do
not intersect, then the insertions of a and c commute and, hence, Q(x) and
Q(y) differ by the transposition si−1. �

Corollary 6.4.5 Let x, y ∈ Sn. If there exists a labeled Knuth path

x
i1≈
K

x1
i2≈
K

x2
i3≈
K
· · · ik≈

K
xk = y,

then Q(x) uniquely determines Q(y). �

For 1 < i < n, define

DESR(i)
def
= {x ∈ Sn : |DR(x) ∩ {i− 1, i}| = 1}. (6.14)

Note the following equivalent characterizations:

DESR(i) = {x ∈ Sn : x
i≈
K

y for some y ∈ Sn}
= {x ∈ Sn : xi−1xixi+1 is not monotone}.

Definition 6.4.6 If x ∈ DESR(i), then we denote by x∗ (or by x∗i) the

unique permutation such that x∗ i≈
K

x.

This defines an involution of the set DESR(i) with the following important
property for the K-L graph.

Lemma 6.4.7 (Edge Transport) Suppose x, y ∈ DESR(i) and {x, y} is
an edge in ΓSn

. Then, {x∗, y∗} is also an edge in ΓSn
and µ(x∗, y∗) =

µ(x, y).
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Proof. We omit the proof, which amounts to somewhat tedious case-by-
case checking. See Exercise 5 or [322, pp. 175–176]. �

Corollary 6.4.8 If x ∈ DESR(i) and x∼
L

y, then y ∈ DESR(i) and

x∗∼
L

y∗.

Proof. Since x∼
L

y, we have that DR(x) = DR(y) by Proposition 6.2.7

and, hence, that y ∈ DESR(i). Also, we have a circular path

x → x1 → · · · → y → y1 → · · · → x

in Γ̃Sn
. All elements of this path are left equivalent and, hence, by what we

have just shown, all of these elements are in DESR(i). Hence, by Lemma
6.4.7, there is a corresponding circular path x∗—x∗

1— · · · — y∗— y∗
1—

· · · — x∗ in the (undirected) K-L graph ΓSn
. However, x

i≈
K

x∗ implies that

P (x) = P (x∗), and hence DL(x) = D(P (x)) = D(P (x∗)) = DL(x∗), and
similarly for all xi and yj . So there is also a directed path

x∗ → x∗
1 → · · · → y∗ → y∗

1 → · · · → x∗

in Γ̃Sn
. Hence, x∗∼

L
y∗. �

6.5 Kazhdan-Lusztig representations for Sn

Let us begin by summarizing some basic facts about the irreducible rep-
resentations of the symmetric group Sn. As earlier all representations are
over C. Proofs and further discussion of the classical theory can be found
in the books by James [314], James and Kerber [315], or Sagan [450].

The following is a list of the facts that we need:

(1) The irreducible representations ρλ are naturally indexed by partitions
λ ⊢ n.

(2) The dimension of ρλ is fλ def
= #SY Tλ.

(3) Young’s rule: IndS
J [1] ∼=

⊕
λ⊢n #{T ∈ SY Tλ : D(T ) ⊆ S \ J} ρλ.

The word “natural” is used in fact (1) for the following reason. Since the
conjugacy classes of Sn are in bijection with the partitions of n via cycle
decomposition, it is a consequence of general theory that the irreducible
representations are equinumerous with the partitions of n. However, this
does not lead to any particular favored way of matching these objects.
There are several classical constructions of irreducible representations of
Sn, due to Frobenius, Schur, Young, Specht, and others, and they all turn
out to produce the same matching of representations to partitions. Thus,
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it seems motivated to talk about the existence of a canonical “natural”
indexing of these representations by partitions.

The key fact of the three mentioned ones is Young’s rule; namely, setting
J = ∅, it specializes to RegSn

∼=
⊕

λ fλρλ, which implies fact (2). The
numbers Kλ,J = #{T ∈ SY Tλ : D(T ) ⊆ S−J} are called Kostka numbers.
Subsets J corresponding to partitions can be chosen so that the Kostka
matrix (Kλ,J) is upper-triangular with ones on the diagonal. Hence, the
relation stated in fact (3) is invertible and determines ρλ as a function of
the characters IndS

J [1]. This can be taken as a definition of the “natural”
labeling of irreducible representations by partitions.

We now return to Kazhdan-Lusztig representations and show that for
Sn, each left cell can be associated with a partition in such a way that
the corresponding representation is the irreducible one belonging to that
partition. The construction proceeds in close contact with the Robinson-
Schensted correspondence.

Theorem 6.5.1 For each left cell C in Sn there exists a tableau T such
that C = {x ∈ Sn : Q(x) = T }.

Proof. The theorem says that the left cells are the dual Knuth classes. We
already know from Corollary 6.4.3 that Q(x) = Q(y) implies that x∼

L
y, so

it remains to prove the converse. In graph-theoretic language, it is to be
shown that a strongly connected component of Γ̃Sn

is actually connected
already by sequences of antiparallel edges. To have some idea of what kind
of situation we must deal with, we suggest taking a look at Figure 6.4.

Suppose that x∼
L

y. The first observation to be made is that the Knuth

classes of x and of y produce the same collections of right descent sets:

{DR(z) : z∼
K

x} = {DR(z) : z∼
K

y}. (6.15)

This is seen as follows. Let x
i1≈
K

x1
i2≈
K

x2
i3≈
K
· · ·

ij≈
K

xj be a Knuth path. Since

x ∈ DESR(i1) and x∼
L

y, then (by Corollary 6.4.8) y ∈ DESR(i1) and

x1 = x∗i1 ∼
L

y∗i1 . Continuing in this way, we see that there exists a unique

Knuth path y = y0
i1≈
K

y1
i2≈
K

y2
i3≈
K
· · ·

ij≈
K

yj, where yl
def
= y

∗il

l−1. Furthermore,

xl ∼
L

yl, for all l ∈ [j]. Hence, by Proposition 6.2.7, DR(xj) = DR(yj), which

proves the claim.
Let A be the lexicographically last set of {DR(z) : z∼

K
x}, and choose xA

such that xA∼
K

x and DR(xA) = A. We claim that

Q(xA) is a row superstandard tableau and xA is uniquely
determined.
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To prove this, let λ = shape(P (x)). We have, using Fact A3.4.1, that
{DR(z) : z∼

K
x} = {D(T ) : T ∈ SY Tλ}. Clearly, the lexicographically

last set in the family {D(T ) : T ∈ SY Tλ} is that of the row superstandard
tableau of shape λ, and having lexicographically last descent set within
SY Tλ characterizes this tableau.

Now, let

x
i1≈
K

x1
i2≈
K

x2
i3≈
K
· · · ik≈

K
xA (6.16)

be a Knuth path. Arguing as in the proof of equation (6.15), we see that
there is a unique Knuth path

y
i1≈
K

y1
i2≈
K

y2
i3≈
K
· · · ik≈

K
yA, (6.17)

with DR(yA) = DR(xA) = A. Then, equation (6.15) and the claim imply
that Q(yA) = Q(xA) is the same superstandard tableau. Hence, Corollary
6.4.5 applied to paths (6.16) and (6.17) shows that Q(x) = Q(y). �

The preceding result implies that we can associate a partition called
shape with each left cell by setting

shape(C)
def
= shape(Q(x)), for any x ∈ C. (6.18)

Theorem 6.5.2 If C1 and C2 are left cells of the same shape, then ΓC1
∼=

ΓC2 (as labeled graphs).

Proof. Suppose that Ci = {x ∈ Sn : Q(x) = Qi}, for i = 1, 2, where
Q1 and Q2 are two tableaux of equal shape. We will show that the map
(P, Q1) �→ (P, Q2) induces an isomorphism ΓC1

∼= ΓC2 . Permutations are
here denoted by the corresponding pair of tableaux under the Robinson-
Schensted correspondence x ↔ (P, Q). It is immediately clear that the
map is a bijection of the vertices, and vertex labels are preserved since
DL(x) = D(P (x)). We must show that also edges and their labels are
preserved.

Suppose that (P1, Q1) — (P2, Q1) is an edge in ΓC1 with label µ. Since
(P1, Q1) and (P1, Q2) have the same left tableau, we can connect them with
a Knuth path:

(P1, Q1)
i1≈
K

(P1, Q
(1))

i2≈
K

(P1, Q
(2))

i3≈
K
· · · ik≈

K
(P1, Q2).

Since (P1, Q1) and (P2, Q1) have the same right descent set and (P1, Q1) ∈
DESR(i1), it follows from the Edge Transport Lemma 6.4.7 that (P1, Q

(1))
— (P2, Q1)

∗i1 is an edge in ΓSn
with label µ. However, (P2, Q1)

∗i1 =
(P2, Q

(1)), as can be seen from Lemma 6.4.4. The argument can now be re-
peated, and after k steps, we reach the conclusion that (P1, Q2) — (P2, Q2)
is an edge in ΓC2 with label µ. �
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By the preceding, it is well defined to associate K-L graphs Γλ and Γ̃λ

to a partition λ and, hence, also to associate a K-L representation KLλ,
by taking any left cell C of shape λ and defining

Γλ
def
= ΓC , Γ̃λ

def
= Γ̃C , KLλ

def
= KLC. (6.19)

We have finally reached the main conclusion: that the Kazhdan-Lusztig
representations for Sn are the irreducible ones and that the supporting
combinatorics induces the correct labeling by partitions.

Theorem 6.5.3 KLλ
∼= ρλ, for all λ ⊢ n.

Proof. It follows from Theorems 6.3.8, 6.5.1, and 6.5.2 that

IndS
J [1] =

⊕

λ⊢n

#{Q ∈ SY Tλ : D(Q) ⊆ S \ J}KLλ.

Hence, Young’s rule implies the conclusion. �

6.6 Left cells for Sn

The Kazhdan-Lusztig cells provide a very compact graphical language for
writing down the irreducible representations of Sn. Integer matrices rep-
resenting the adjacent transpositions are read off directly from the graph,
and matrices for general group elements are obtained from them via multi-
plication, using reduced decompositions. The rule for producing the matrix
A(si) representing the adjacent transposition si = (i, i+1) is given by equa-
tion (6.7), which can be restated as follows. Let x1, . . . , xg be the nodes of
the K-L graph. Then, the (j, k)-entry of A(si) is

aj,k(si) =

⎧
⎪⎪⎨
⎪⎪⎩

+1, if j = k and i /∈ DL(xk),
−1, if j = k and i ∈ DL(xk),
µ(xj , xk), if {xj , xk} ∈ E, i ∈ DL(xj) \DL(xk),
0, otherwise.

(6.20)

For instance, take the K-L graph of shape (3, 2), obtained from Figure
6.3; it is also displayed in the introduction to this chapter. With rows and
columns ordered (in terms of the labels of the nodes) 24, 14, 3, 2, 13, we
obtain

s1 �−→

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 −1

⎞
⎟⎟⎟⎟⎠

.

To construct the K-L graph of shape λ, we know from the previous section
that we can take as vertex set {x ∈ Sn : Q(x) = T }, for any tableau
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T of shape λ. However, there is a canonical choice, namely the reading
tableau Tλ (defined in Appendix A3.5). With this choice, the vertices of Γλ

become the reading words wT , that is, in essence the tableaux T of shape
λ themselves.

For instance, we can now think of the K-L graph Γ(3,2) constructed in
Figure 6.3 entirely in terms of tableaux; see Figure 6.6.
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Figure 6.6. The K-L graph Γ(3,2).

The vertex labels are easily read off from the tableaux, since DL(wT ) =
D(T ); these elements are in shaded cells in Figure 6.6. So, a partial con-
struction of Γλ can, in general, readily be done by purely combinatorial
means, giving the labeled vertices (tableaux of shape λ and their descent
sets) and the labeled Bruhat edges (with labels equal to 1). The non-Bruhat
edges of length 3 (labeled by 1) can also be given a combinatorial descrip-
tion; see Exercise 2.29. The problem with the whole construction, from a
practical point of view, is how to decide the general non-Bruhat edges
and their labels. For this — at the present state of knowledge — the
Kazhdan-Lusztig polynomials (or at least their leading coefficient) have
to be computed. It is an open problem to describe the non-Bruhat edges
(of length ≥ 5) and their labels in terms of tableaux.

A combinatorial description is possible for the special case of hook shapes
(i.e., partitions λ = (n − k, 1k)). This is because such graphs Γλ have no
non-Bruhat edges. Recall from Section 2.4 that we denote by L(k, m− k)
the poset of k-element subsets of [m] ordered componentwise; see, e.g.,
Figure 2.7.

Proposition 6.6.1 Suppose λ = (n−k, 1k). Then, Γλ is isomorphic (as a
labeled graph) to the Hasse diagram of the poset L(k, n− 1− k). The label
of a node equals the corresponding set.
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Proof. The reading words of hook shape tableaux are {x ∈ Sn : DR(x) =
[k]}. These words are determined by the initial substring x1 > x2 > · · · >
xk > xk+1 = 1. Hence, we get an identification x ↔ {xk − 1, xk−1 −
1, . . . , x1 − 1} between nodes of Γ(n−k,1k) and k-element subsets of [n− 1],
and one easily sees that DL(x) = {xk−1, xk−1−1, . . . , x1−1}. The Bruhat
order relations are, because of Proposition 2.4.8, the same as the ordering
of k-sets in L(k, n− 1− k).

It remains only to prove that there are no non-Bruhat edges. Let x = wT1

and y = wT2 be the reading words of two tableaux T1 and T2 of shape λ,
and assume that x < y. Let j be the largest entry which is differently placed
in T1 and in T2. Then, because of the interpretation of x < y given earlier,
we have that y−1(j) < k + 1 < x−1(j) and also that x−1(j − 1) < x−1(j),
and y−1(j) < y−1(j− 1). Hence, sj−1 has the property that sj−1y < y and
sj−1x > x, and it follows from Lemma 6.2.2(iii) that {x, y} is an edge only
if ℓ(x, y) = 1. �

For example, Figure 2.7 can now, via the isomorphism, be interpreted as
showing the K-L graph Γ(4,1,1,1).

A combinatorial description of K-L graphs is also known for two-row
or two-column shapes; see [325] and [347]. These, together with the hook
shapes, are, as far as we know, the only classes of partitions for which an
entirely combinatorial construction of K-L graphs is known.

The K-L graphs Γλ are easy to construct by hand calculation for λ ⊢
n ≤ 6. For example, the graphs Γλ for all non-hook partitions λ ⊢ 6 are
shown in Figure 6.7 (for each pair of conjugate shapes λ and λ′, only one
is displayed — for reasons that will be explained by the next theorem). An
alternative rendition of the graph in Figure 6.7(c), viewing it embedded in
Bruhat order, is shown in Figure 6.8.

A glance at these small examples suggests that each K-L graph has a
nontrivial symmetry of order 2. (Also, Proposition 6.6.1 supports this ob-
servation.) The vertex labels change according to a rule that is easy to guess
from the examples. It is a remarkable fact that this symmetry of K-L graphs
is induced by the tableau operation of evacuation (explained in Appendix
A3.8). The graphs in Figure 6.7 are drawn so that the evacuation-induced
involution coincides with the obvious reflection symmetry in a vertical axis.
Furthermore, the tableau operation of transposition (Appendix A3.9) also
has meaning for K-L graphs, as we now show.

Theorem 6.6.2 Fix λ ⊢ n and identify the nodes of Γλ with SY Tλ.

(i) Evacuation P �→ e(P ) induces an order 2 automorphism of Γλ as an
edge-labeled graph. The change of vertex labels is D(e(P )) = {n− i :
i ∈ D(P )}.

(ii) Transposition P → P ′ induces an isomorphism Γλ
∼= Γλ′ as edge-

labeled graphs. The vertex labels are related by D(P ′) = [n − 1] \
D(P ).
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(a) λ =
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Figure 6.7. The K-L graphs Γλ for non-hook shapes λ ⊢ 6.

Proof. Part (i): Fix a right tableau Q so that our left cell C of shape λ
is realized as C = {x ∈ Sn : x ↔ (P, Q), P ∈ SY Tλ}. Let CE = {x ∈
Sn : x ↔ (P, e(Q)), P ∈ SY Tλ}. The mapping α : x �−→ w0xw0, or in
terms of Robinson-Schensted (Fact A3.9.1) α : (P, Q) �−→ (e(P ), e(Q)),
induces an isomorphism α : ΓC −→ ΓCE as edge-labeled graphs (Corollary
6.2.10). On the other hand, we know from the proof of Theorem 6.5.2 that
β : (R, e(Q)) �−→ (R, Q) induces isomorphism β : ΓCE −→ ΓC . Hence,
β ◦ α : (P, Q) �−→ (e(P ), Q) gives an isomorphism ΓC −→ ΓC as claimed.
Finally, D(e(P )) = DL(w0xw0) = w0DL(x)w0.

Part (ii): The mapping γ : x �−→ xw0, or equivalently (by Fact A3.9.1)
γ : (P, Q) �−→ (P ′, e(Q′)), gives an isomorphism of left cells by Corollary
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3 2 5 1 4 6

3 2 6 1 4 5 4 2 5 1 3 6

4 2 6 1 3 5
4 3 5 1 2 6 5 2 4 1 3 6

4 3 6 1 2 5 5 2 6 1 3 4 5 3 4 1 2 6 6 2 4 1 3 5

5 3 6 1 2 4 6 3 4 1 2 5 6 2 5 1 3 4

5 4 6 1 2 3 6 3 5 1 2 4

6 4 5 1 2 3

Figure 6.8. Bruhat order version of graph in Figure 6.7(c).

6.2.10. Since shape(e(Q′)) = λ′, this is an isomorphism γ : Γλ −→ Γλ′

given by P �→ P ′, as claimed. That D(P ) and D(P ′) are complementary
sets is immediately clear. �

As one more illustration, we show in Figure 6.9 the evacuation-induced
involution on the K-L graph of Figure 6.6.

23

13

14

24

Figure 6.9. Involution on Γ(3,2).

We have seen that, on the one hand, there is a partial order “"L” of
left cells (Definition 6.2.6) and, on the other hand, there is a bijective
correspondence between left cells and standard Young tableaux. Hence,
there is an induced partial order on SY Tn, the set of all standard Young
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tableaux of order n. We call this the K-L order of SY Tn. Figure 6.10 shows
SY T4 under K-L order.
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Figure 6.10. The K-L order of SYT4.

It follows from the remarks made after Corollary 6.2.10 and the discus-
sion in this section that mapping each tableau to its transpose (x �→ w0x)
will give an antiautomorphism of the K-L order on SY Tn. It also follows
that evacuation of tableaux (x �→ w0xw0) will give an automorphism of or-
der 2. Another combinatorial property is that tableaux of the same shape
form an antichain; see Exercise 10.

6.7 Complement: W -graphs

We now return to the setting of a general Coxeter group (W, S) for one final
remark. Namely we want to point out that from a combinatorial point of
view, Kazhdan-Lusztig representations can be thought of as sophisticated
“number-firing games.” To see this, we will introduce the general notion of
a W -graph with its induced representation, of which both K-L represen-
tations and the numbers game of Section 4.3 are special cases. What we
present is the q = 1 version of a construction for Hecke algebras of Kazhdan
and Lusztig [322].

Let (W, S) be a Coxeter system and R a commutative ring.

Definition 6.7.1 A W -graph Γ = (V, E) is an undirected graph such that
the following hold:
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(i) The nodes are labeled by subsets of S (denote the label of x ∈ V by
Ix ⊆ S), and the edges {x, y} have two labels kx,y, ky,x ∈ R − {0},
one for each direction.

(ii) If y ∈ V and s 	∈ Iy, then there are at most finitely many neighbors
x of y such that s ∈ Ix.

(iii) Let M be the free R-module generated by V . For each s ∈ S, define
τs : M → M by

τs(y) =

{ −y, if s ∈ Iy,
y +
∑

{x,y}∈E, s∈Ix
kx,yx, if s 	∈ Iy,

for all y ∈ V , and extend linearly to all of M . We demand that

τsτs′τs · · ·︸ ︷︷ ︸
m(s,s′) factors

= τs′τsτs′ · · ·︸ ︷︷ ︸
m(s,s′) factors

for all (s, s′) ∈ S2
fin.

Note that τ2
s is the identity mapping for all s ∈ S (this is immediate from

the definition). Hence, s �→ τs ∈ EndR(M) extends to a homomorphism
W → EndR(M). In particular, we see that every W -graph with C-labeled
edges determines a complex representation of W .

The action of a W -graph representation can be thought of combinatori-
ally as a number-firing game as follows. Call a vertex y s-labeled if s ∈ Iy .
The elements of M are distributions of ring elements to the nodes of Γ,
and a “firing of type s” changes the sign at all s-labeled nodes, whereas at
all other nodes y, we add the kx,y-weighted sum of all s-labeled neighbors
x.

We have encountered two examples of W -graphs:

1. K-L graphs of left cells. Here, a vertex x ∈ C is labeled by DL(x)

and an edge {x, y}, x < y, by kx,y = ky,x = [q
1
2 (ℓ(x,y)−1)](Px,y). It

was shown in Section 6.3 via a suitable interpretation in the Hecke
algebra that this is a W -graph.

2. Edge-weighted Coxeter diagrams. Let Γ = (S, E) be the Coxeter
diagram of (W, S). Let Is = {s} for all nodes s ∈ S, and for each
edge {s, s′} ∈ E, let ks,s′ and ks′,s be positive real numbers satisfying
conditions (4.3). Then, as shown by Proposition 4.1.2, Γ is a W -graph.
The induced representation is that of the numbers game (i.e., the
contragredient of the geometric representation), discussed in Sections
4.1 and 4.2.
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Exercises

1. Show that the dihedral group I2(m) has four left cells if m 	= ∞ and
three left cells if m = ∞.

2. Prove statements (6.8) and (6.9).

3. Prove Lemma 6.4.1.

4. (a) Inverting the relationship (6.13), describe combinatorially what
is a “dual Knuth step of type j.”

(b) For 1 < j < n, define DESL(j) = {x ∈ Sn : |DL(x) ∩ {i −
1, i}| = 1} and show that for x ∈ DESL(j), there is a unique

permutation ∗j x such that ∗j x
j≈

dK
x.

(c) Show that if x ∈ DESR(i) ∩ DESL(j), then ∗j (x∗i) = (∗j x)∗i

(Knuth steps and dual Knuth steps commute).

5. Prove the Edge Transport Lemma 6.4.7.
[Hint: The case that x−1y ∈ 〈si−1, si〉 is easy to handle. The case
x−1y /∈ 〈si−1, si〉 requires more work. Divide it into two subcases
depending on whether x−1x∗ = y−1y∗ or not. Both subcases re-
quire some special properties of Kazhdan-Lusztig polynomials, such
as equation (6.5) and Theorem 5.1.7.]

6. Show that every left cell in Sn contains a unique involution.

7.∗ Given x, y ∈ Sn, characterize x "L y combinatorially in terms
of Q(x) and Q(y) (so that x∼

L
y ⇒ Q(x) = Q(y) is a direct

consequence).

8.∗ Characterize combinatorially the K-L order of standard Young
tableaux of order n. [Remark: Another partial order on SY Tn is
defined in Exercise 2.36.]

9. Show that the Coxeter diagram of Sn, viewed as a W -graph (Example
2 of Section 6.7 with all ks,s′ = 1), is isomorphic to the K-L graph
Γλ for a certain shape λ ⊢ n. Which shape?

10. Lusztig shows in [367] and [370] that for finite and affine Weyl groups
there exists a function a : W → N, defined in terms of multiplication
in the Hecke algebra, with the following properties (among others):

(i) x "L y ⇒ a(x) ≥ a(y).

(ii) x "L y and a(x) = a(y) ⇒ x∼
L

y.

(iii) a(x) = a(x−1).

(iv) a(x) = min{ℓ(y)− 2 degPe,y(q) : y∼
L

x}, and this minimum

is achieved at a unique involution y0 in the left cell.
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(a) Deduce the following combinatorial description of a(x) for
the case W = Sn from these properties: If shape(Q(x)′) =

(λ1, . . . , λk), then a(x) =
∑k

i=1

(
λi

2

)
.

(b) Show that all tableaux of the same shape form an antichain in
the K-L order of SY Tn.

(c)∗ Deduce properties (i)-(iv) for Sn, taking the formula for a in
part (a) as a definition.

11. The notions of right (colored) K-L graph and right preorder “"R” can
be defined as in Section 6.2 by switching left to right wherever it mat-
ters. Superimposing the left and right colored K-L graphs of (W, S),

we get a directed graph Γ̃LR
(W,S) whose strongly connected components

are called the two-sided cells of W .

(a) Show that the a-function is constant on every two-sided cell of
a Weyl group (using the facts quoted in Exercise 10).

(b) Show that the two-sided cells in Sn are of the form Gλ
def
= {x ∈

Sn : shape(P (x)) = λ}. Thus, two-sided cells are matched to
partitions λ ⊢ n by the Robinson-Schensted correspondence.

(c) A partial order is induced on the set of two-sided cells by the

directed graph Γ̃LR
(W,S), just as Γ̃(W,S) induces an ordering of left

cells (cf. Definitions 6.2.5 and 6.2.6). Show that for the case of
Sn,

Gλ ≤ Gµ if and only if λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi,

for all i = 1, . . . , n.

12. Let (W, S) be a finite Coxeter system and denote by ∆ its Coxeter
complex ∆(W, S) (cf. Exercise 3.16). The group W acts on the type-
selected subcomplex ∆J , for each J ⊆ S, and this induces an action
on the simplicial homology group H̃|J|−1(∆J ; C). (Recall from Exer-
cise 3.16(j) that all other homology groups of ∆J vanish.) Call this
complex representation βJ .
Prove the following about such homology representations:

(a) βJ is a character of degree |DJ |.
(b) βJ =

∑
I⊆J(−1)|J\I| IndS

S\I [1].

[Hint: Identify IndS
S\I [1] as the permutation character of W ’s

action on the set {F ∈ ∆ : τ(F ) = I}. Then use the Hopf trace
formula.]

(c) βJ =
∑

DR(C)=J KLC.

(d) βS equals the alternating character ε.
(e) There is a duality βJ = εβS\J .
(f) For I, J ⊆ S,

(βI , βJ) = card{w ∈ W : DL(w) = I, DR(w) = J}.
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(g) For the symmetric group Sn the multiplicity of the irreducible
character ρλ in βJ equals the number of standard Young
tableaux of shape λ and with descent set J ;

(h)∗ Can every homology representation βJ be realized by matrices
with {0, +1,−1}-entries?

Notes

This chapter is rather narrowly focused on the symmetric group. The gen-
eral theory is developed only as far as needed for understanding the case of
Sn. All of the main results are due to Kazhdan and Lusztig [322], although
few of the combinatorial details concerning Sn are explicitly stated in their
article.

The chapter is a slightly expanded version of lectures given by one of
us in 1985 [57], a summary of which appeared in Garsia and McLarnan’s
article [254]. Other articles contributing to a combinatorial understanding
of Kazhdan-Lusztig representations for Sn are those of Kerov [325] and
Lascoux and Schützenberger [347].

The reader unfamiliar with the basics of Hecke algebras is advised to
study Chapter 7 of Humphreys’ book [306]. See also the articles of Curtis
[168] and Lehrer [362] for more information about Hecke algebras.

There is a huge literature on left cells and W -graphs containing many
results of combinatorial interest. Section 7.15 of Humphreys’ book [306]
gives some references; additional ones can be found in our Bibliography.
Let us just mention the work of Shi [455] on left cells in the affine group

Ãn, which has similarities with the case of An treated here.

Exercise 5. See Kazhdan and Lusztig [322, pp. 175–176].
Exercises 10 and 11. See Lusztig [367, 370].
Exercise 12. See Björner [56], Bromwich [105], Solomon [481], and Stan-

ley [492]. The decomposition of the homology representation into K-L
representations in part (c) has been generalized and further studied by
Mathas [389, 390, 391].



7
Enumeration

Enumeration is an important part of combinatorics, so it should not come
as a surprise that a book on combinatorics of Coxeter groups gives special
attention to such questions. In this chapter, we look at some of the basic
enumerative aspects of Coxeter groups.

We begin by considering the natural problems of enumerating a Cox-
eter group by length, and jointly by length and descent number. We then
treat the problem of counting the number of reduced decompositions of an
element of a Coxeter group. This turns out to be a difficult and deep prob-
lem. We treat only type A and let this case illustrate the basic ideas and
methods. This requires a detailed analysis of the combinatorics of tableaux,
beyond that reviewed in Appendix A3, and leads to the main results that re-
duced decompositions of a permutation can be encoded by pairs of tableaux
and can be enumerated by certain symmetric functions.

7.1 Poincaré series

In this section, we look at the oldest and most basic enumerative problem
concerning a Coxeter group, namely that of enumerating it by length.

For A ⊆ W , we let

A(q)
def
=
∑

w∈A

qℓ(w),

and call A(q) the Poincaré series (or Poincaré polynomial, if |A| < ∞) of
A.
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Our aim in this section is to compute W (q) for any Coxeter group W .
First, notice that it is enough to do this for irreducible Coxeter systems.
In fact, we have the following result, which is a simple consequence of the
definitions.

Lemma 7.1.1 Suppose that W = W1×W2× · · · ×Wk, where W1, . . . , Wk

are irreducible Coxeter systems. Then,

W (q) =
k∏

i=1

Wi(q).

�

Therefore, for the rest of this section we assume that (W, S) is an irreducible
Coxeter system.

Lemma 7.1.1 shows that W (q) factors if (W, S) is reducible. However,
there are many nontrivial factorizations of W (q) also if W is irreducible.

Lemma 7.1.2 Let J ⊆ S. Then,

W (q) = W J(q)WJ (q).

Proof. This is an immediate consequence of Proposition 2.4.4. �

Lemma 7.1.2 reduces the problem of computing W (q) to that of com-
puting WJ (q) and W J(q) for some proper subset J of S. However, whereas
WJ is again a Coxeter system (and we can therefore assume that we have
already computed WJ (q) by induction), W J is not. We are therefore faced
with the problem of computing W J(q) for some J ⊂ S (J 	= ∅). This prob-
lem (in fact, a slightly more general one) can be solved inductively by using
one of the cornerstones of enumerative combinatorics, namely the Principle
of Inclusion-Exclusion.

Recall that we use the notation

DJ
I

def
= {w ∈ W : I ⊆ DR(w) ⊆ J}

for I, J ⊆ S. Furthermore, we write DI = DI
I and have that

W J = DS\J
∅ . (7.1)

Proposition 7.1.3 Let I ⊆ J ⊆ S. Then,

DJ
I (q) =

∑

J\I⊆K⊆J

(−1)|J\K|WS\K(q).

Proof. It is clear from the definitions and equation (7.1) that

WS\K(q) =
∑

L⊆K

DL(q)

for all K ⊆ S. Hence,
∑

J\I⊆K⊆J

(−1)|J\K|WS\K(q) =
∑

L⊆J

DL(q)
∑

(J\I)∪L⊆K⊆J

(−1)|J\K|. (7.2)
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However, by the Principle of Inclusion-Exclusion,

∑

(J\I)∪L⊆K⊆J

(−1)|J\K| =

{
1, if (J \ I) ∪ L = J ,
0, otherwise.

Therefore, we conclude from equation (7.2) that
∑

J\I⊆K⊆J

(−1)|J\K|WS\K(q) =
∑

I⊆L⊆J

DL(q) = DJ
I (q).

�

It is now easy to obtain the first main result of this section.

Corollary 7.1.4 We have the following:

(i) If W is finite, then

∑

K⊆S

(−1)|K|

WK(q)
=

qℓ(w0)

W (q)
. (7.3)

(ii) If W is infinite, then

∑

K⊆S

(−1)|K|

WK(q)
= 0. (7.4)

Proof. Part (i) follows immediately by taking I = J = S in Proposition
7.1.3 and using Lemma 7.1.2. Part (ii) follows similarly using Proposition
2.3.1. �

Corollary 7.1.4 allows the recursive computation of W (q) for any Coxeter
system (W, S). In fact, both equations (7.3) and (7.4) express W (q) in terms
of WK(q) for K ⊂ S.

For example, suppose that (W, S) is the Coxeter system having Coxeter
matrix

⎛
⎝

1 3 4
3 1 3
4 3 1

⎞
⎠ .

Then, we have that

1− 1

W1(q)
− 1

W2(q)
− 1

W3(q)
+

1

W13(q)
+

1

W23(q)
+

1

W12(q)
=

1

W (q)

(where we use the shorthand notation Wab...c(q) instead of W{a,b,...,c}(q)).
It is obvious that Wi(q) = 1+ q for i = 1, 2, 3 and that W12(q) = W23(q) =
1 + 2q + 2q2 + q3 (this can also be computed by applying Corollary 7.1.4,
of course). To compute W13(q), we may use Corollary 7.1.4 again to obtain

q4 − 1

W13(q)
= 1− 1

W1(q)
− 1

W3(q)
= 1− 1

1 + q
− 1

1 + q
=

q − 1

(1 + q)
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Hence, we conclude that

1

W (q)
= 1− 3

1 + q
+

2

(1 + q)(1 + q + q2)
+

1

(1 + q)(1 + q + q2 + q3)

=
1− q2 − q3 − q4 + q6

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
.

Corollary 7.1.4 solves completely the problem that was posed at the
beginning of this section, and one might expect that nothing more could
possibly be said. This, however, is a superficial view. In fact, computing
W (q) for several finite Coxeter systems (W, S), one sees that W (q) al-
ways factors into a product of polynomials whose coefficients are all equal
to 1. In looking for a general explanation to this phenomenon, one first
observes that this is always true if W is of type A. In fact, it follows eas-
ily from Propositions 1.5.2 and 1.5.4 and classical results of enumerative
combinatorics (see, e.g., [497, Corollary 1.3.10]) that

W (q) =

n∏

i=1

(1 + q + q2 + · · ·+ qi) (7.5)

if W is of type An

Is something similar to equation (7.5) true in general? Surprisingly, the
answer is yes. Define

[i]q
def
= 1 + q + q2 + · · ·+ qi−1

for i ≥ 1. This is the q-analog of the number i.

Theorem 7.1.5 Let (W, S) be a finite irreducible Coxeter system, and

n
def
= |S|. Then, there exist positive integers e1, . . . , en such that

W (q) =

n∏

i=1

[ei + 1]q. (7.6)

In particular, |W | =∏n
i=1(ei + 1) and |T | = ℓ(w0) =

∑n
i=1 ei.

The integers e1, . . . , en appearing in equation (7.6) are called the exponents
of (W, S). A table of the exponents of all the finite irreducible Coxeter
systems is given in Appendix A1.

Theorem 7.1.5 can be proved in several ways. One way is to first prove
it for the infinite families of finite irreducible Coxeter systems (i.e., types
A, B, and D). This can be done in a way that is absolutely analogous to
the type A case discussed above. Namely one uses the combinatorial de-
scriptions of the Coxeter groups of types B and D as signed permutations
and even signed permutations and of their length functions as counting
certain inversions of these permutations (see Sections 8.1 and 8.2 for de-
tails). Then, formula (7.6) can be proved in essentially the same way as the
classical one (equation (7.5)). One then verifies Theorem 7.1.5 for the other
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finite irreducible Coxeter systems directly using Corollary 7.1.4, which can
be done even by hand. This proof is not entirely satisfactory because it
is a case-by-case proof. A more elegant and uniform proof can be given
algebraically using the invariant theory of finite reflection groups. For this
proof, we refer the reader to the excellent exposition in [306, §3.15].

There is, however, a third way of proving Theorem 7.1.5 that is both
combinatorial and (to a large extent) uniform. This is through the theory
of normal forms developed in Section 3.4. This theory allows, through the
use of a uniform algorithm (i.e., the same algorithm works for all finite
Coxeter groups), the construction of a rooted labeled tree that encodes the
normal forms of the elements of W J , where J is a maximal proper subset
of S. Namely each path from the root of the tree corresponds to a normal
form of an element of W J and, hence, to a unique element of W J ; see, for
instance, Example 3.4.4. Thus, W J(q) is nothing but the rank generating
function of the corresponding tree (seen as a graded poset). This, as has
been remarked at the beginning of this section, is enough to compute W (q)
inductively.

Example 7.1.6 We illustrate this procedure with an example. Let (W, S)
be a Coxeter system of type F4, and suppose that S = {s1, . . . , s4} and
the si’s are numbered as in Figure 3.6 (i.e., so that (s1, s2)

4 = e and s3

commutes with s1). Let J = S \ {s4}. Then, the normal form algorithm
produces the labeled tree τ4 in Figure 3.7. Thus,

W J(q) = 1 + q + q2 + q3 + 2(q4 + · · ·+ q11) + q12 + q13 + q14 + q15.

We then have to compute WJ (q). However,

WJ (q) = W{s1,s2}(q)(WJ ){s1,s2}(q),

and the normal forms of the elements of (WJ ){s1,s2} are encoded by the
tree τ3 in Figure 3.7. Hence,

(WJ ){s1,s2}(q) = 1 + q + · · ·+ q5,

and, similarly,

(W{s1,s2})
{s1}(q) = 1 + q + q2 + q3.

Since, obviously, W{s1}(q) = 1 + q, we conclude that

W (q) = [2]q[4]q[6]q(1 + q4)[12]q

= [2]q[6]q[8]q[12]q.

�

This example should be sufficient for the reader to carry out the compu-
tation of all the other cases by herself. Note that, for the infinite families,
one seemingly has to compute infinitely many trees of normal forms. This,
however, is only an optical illusion since the trees that encode the nor-
mal forms of (An)S\{sn}, (Bn)S\{sn−1}, and (Dn)S\{sn−1} (indexing as in
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Appendix A1) are all extremely easy to describe for any n (in fact, even
without the normal form algorithm; see Sections 8.1 and 8.2).

We now have a completely explicit description of the Poincaré polyno-
mials of the finite Coxeter systems. Can something as explicit be said for
the infinite ones also? In general, this is too much to expect. However, it
is a remarkable fact that the Poincaré series of any Coxeter system can be
computed in a nonrecursive and explicit way in terms of those of the finite
ones.

For the remainder of this section, we assume that W is infinite. The
nerve of (W, S) is

N (W, S)
def
= {J ⊆ S : |WJ | < ∞}.

In other words, it is the collection of all the subsets of S whose correspond-
ing parabolic subgroup is finite. Note that N (W, S) is a simplicial complex.
Now, consider N (W, S)∪{S} as a partially ordered set under set inclusion,
and let µN denote the Möbius function of N (W, S) ∪ {S}.
Proposition 7.1.7 Let (W, S) be an infinite Coxeter system. Then,

1

W (q)
= −

∑

K∈N

µN (K, S)

WK(q)
.

Proof. Let, for brevity, N def
= N (W, S). Let I ⊆ S, I 	∈ N . Then, |WI | = ∞

and, hence, we conclude from Corollary 7.1.4 that

∑

K⊆I

(−1)|K|

WK(q)
= 0.

Therefore,

∑

I �∈N

∑

K⊆I

(−1)|I\K|

WK(q)
= 0

and, hence,
∑

K⊆S

1

WK(q)

∑

I⊇K; I �∈N

(−1)|I\K| = 0. (7.7)

However, it follows from the Principle of Inclusion-Exclusion and the
definition of the Möbius function that, if K ⊂ S,

∑

I⊇K; I �∈N

(−1)|I\K| = −
∑

I⊇K; I∈N

(−1)|I\K| =

{
µN (K, S), if K ∈ N ,
0, if K 	∈ N ,

so the result follows from equation (7.7). �

Proposition 7.1.7 provides a usually much faster way of computing W (q)
than part (ii) of Corollary 7.1.4. For example, let Un be the universal
Coxeter group on n generators (see Example 1.2.2). Then, the nerve of
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(Un, S) consists of just the subsets of S of size ≤ 1 and we conclude from
Proposition 7.1.7 that

−1

Un(q)
=

n− 1

1
+ n

(−1)

1 + q
=
−1 + (n− 1)q

1 + q
.

Although this result can be obtained also by a direct enumerative argument,
this is a particularly quick derivation of it.

Because the Poincaré polynomials of the finite Coxeter groups factor
nicely in terms of exponents as in Theorem 7.1.5, it is possible to rephrase
Proposition 7.1.7 in a somewhat more concise form. Let R(q) be the least
common multiple of the polynomials {WJ(q)}J∈N . By Theorem 7.1.5, it is
clear that R(q) factors as a product of polynomials of the form [e + 1]q. In
fact, a polynomial [e+1]q is a factor of R(q) if and only if e is an exponent
of some WJ for J ∈ N . We then have the following result.

Corollary 7.1.8 Let (W, S) be an infinite Coxeter system. Then,

W (q) =
R(q)

−µN (∅, S)R(q) + P (q)
(7.8)

for some P (q) ∈ Z[q] such that deg(P ) < deg(R). �

It should be noted that R(q) and P (q) may very well have common
factors, so that the expression in equation (7.8) is not, in general, in low-
est terms. However, Corollary 7.1.8 (and Proposition 7.1.7) do show that
one may write down explicitly W (q) in terms of the (known) exponents of
the finite parabolic subgroups of W , and the combinatorially computable
Möbius function.

Example 7.1.9 We illustrate the difference, from a computational point
of view, between Proposition 7.1.7 and Corollary 7.1.8 with an example. Let
W = Ã2. Then, the nerve of (W, S) consists of all the proper subsets of S.
So, N ∪{S} is a Boolean algebra of rank 3 and we obtain from Proposition
7.1.7 that

−1

Ã2(q)
=

−1

1
+ 3

1

A1(q)
− 3

1

A2(q)

=
−1

1
+

3

[2]q
− 3

[2]q[3]q

=
(q − 1)(1− q2)

[2]q[3]q
. (7.9)

On the other hand, R(q) = [2]q[3]q and so from Corollary 7.1.8, we obtain
that

Ã2(q) =
[2]q[3]q

a + bq + cq2 + dq3

for some a, b, c, d ∈ Z. It is therefore enough to compute four terms of
Ã2(q). However, it is easy to see (using, e.g., the numbers game) that
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Ã2(q) = 1 + 3q + 6q2 + 9q3 + · · · (see also Figure 8.8 in Section 8.3). So,
we obtain that a = 1, 3a+ b = 2, 6a+3b+ c = 2, 9a +6b+3c + d = 1 and,
hence, that

a + bq + cq2 + dq3 = 1− q − q2 + q3 = (1− q)(1 − q2).

�

The elegant formula (7.9) is not a coincidence, but a general fact that
holds for all the affine Coxeter groups.

Theorem 7.1.10 Let (W, S) be an affine Coxeter system, and let e1, . . . , en

be the exponents of the corresponding finite group. Then,

W (q) =

n∏

i=1

[ei + 1]q
1− qei

.

Theorem 7.1.10 is due to Bott and a proof of it can be found in [78] or
[295]. A combinatorial proof of Theorem 7.1.10 is possible for the excep-

tional groups by proceeding as we did for Ã2 in Example 7.1.9. This is not
very illuminating, but works. For the infinite families Ãn, B̃n, C̃n, and D̃n,
one is reduced, by Lemma 7.1.2 and Theorem 7.1.5, to showing that

W J(q) =
n∏

i=1

1

1− qei

for J ⊆ S such that WJ is the corresponding finite group. This has been
proved, using the combinatorial descriptions discussed in Chapter 8 and
bijections with appropriate sets of partitions in [224].

7.2 Descents and length generating functions

Without any doubt, the most fundamental statistic on an element v of a
Coxeter group, after its length ℓ(v), is its descent number

d(v) = |{t ∈ S : ℓ(vt) < ℓ(v)}|.
(Note that the length is also a kind of “descent number” since ℓ(v) = |{t ∈
T : ℓ(vt) < ℓ(v)}|.) It is therefore natural to define, for any Coxeter system
(W, S), the bivariate generating function

W (t; q)
def
=
∑

v∈W

td(v)qℓ(v).

Note that W (t; q) is a well-defined formal power series in Z[[t, q]] since
|{v ∈ W : d(v) = i, ℓ(v) = j}| ≤ |{v ∈ W : ℓ(v) = j}| < ∞ for any
i, j ∈ N. However, W (t; 1) is not an element of Z[[t]] unless W is finite,
because d(v) ≤ |S| for all v ∈ W . We call W (t; 1) (when W is finite) the
Eulerian polynomial of W .
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For example, it is easy to compute that

A2(t; q) = 1 + 2tq + 2tq2 + t2q3,

B2(t; q) = 1 + 2tq + 2tq2 + 2tq3 + t2q4,

and similarly for the other dihedral groups.
Our main aim in this section is to obtain a simple recursive rule for

computing the generating function W (t; q) for any Coxeter group W . This
is surprisingly easy to do if one has the right idea.

Theorem 7.2.1

W (t; q) =
∑

J⊆S

t|J|(1− t)|S\J| W (q)

WS\J (q)
. (7.10)

Proof. The key idea is to write the monomial td(v) in a clever way, namely

td(v) =
∑

D(v)⊆J⊆S

t|J|(1− t)|S\J|.

The result now follows very easily. Indeed, we have that

W (t; q) =
∑

v∈W

td(v)qℓ(v)

=
∑

v∈W

qℓ(v)
∑

D(v)⊆J⊆S

t|J|(1− t)|S\J|

=
∑

J⊆S

t|J|(1 − t)|S\J|
∑

{v∈W :D(v)⊆J}

qℓ(v)

However, {v ∈ W : D(v) ⊆ J} = WS\J , so equation (7.10) follows from
Lemma 7.1.2. �

The preceding theorem reduces the computation of W (t; q) to that of
W (q). This generating function, in turn, can be computed using any of the
techniques explained in the previous section.

We illustrate Theorem 7.2.1 with an example. Let (W, S) be the Coxeter
system considered after Corollary 7.1.4. Then, using Theorem 7.2.1 and the
computations already carried out, we get

W (t; q) = W (q)(1 − t)3
[

1

W (q)
+

t

(1− t)

(
1

W12(q)
+

1

W13(q)
+

1

W23(q)

)

+
t2

(1 − t)2

(
1

W1(q)
+

1

W2(q)
+

1

W3(q)

)
+

t3

(1− t)3

]

= 1 +
−q(3q5 − 3q3 − 5q2 − 6q − 3)

1− q2 − q3 − q4 + q6
t

+
q3(3q3 + 3q2 + 3q + 2)

1− q2 − q3 − q4 + q6
t2.
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The preceding example makes it clear that, in general, the following
holds.

Corollary 7.2.2 W (t; q) ∈ Z(q)[t]. �

Although Theorem 7.2.1 gives a very explicit way of computing W (t; q)
for any Coxeter group W , there are sometimes better ways of computing
W (t; q) if W is a member of certain infinite families of Coxeter groups.
For example, using Theorem 7.2.1 to compute Sn(t; q) yields explicit
polynomials but they do not factor in any nice way. However, an appro-
priate generating function for the Sn(t; q) has a very elegant and simple
expression. In fact, it is a well-known result of Stanley [490] that

∑

n≥0

Sn(t; q)
xn

[n]q!
=

(1− t)exp(x(1 − t); q)

1− texp(x(1 − t); q)
(7.11)

in (Z(q)[t])[[x]], where

exp (x; q)
def
=
∑

n≥0

xn

[n]q!
(7.12)

(and where we use the convention that S0(t; q)
def
= S1(t; q)

def
= 1).

We now present a vast generalization of this result, which, as a special
case, allows us to derive the analogs of Stanley’s result for Bn(t; q) and
Dn(t; q), among others.

Let (W, S) be a Coxeter system and r ∈ S. Let B
def
= {s ∈ S : m(s, r) ≥

3} and choose (once and for all) a partition of B into two blocks, B1

and B2. For n ∈ N, let (W (n), (S \ {r}) ∪ {s0, . . . , sn}) be the Coxeter
system whose Coxeter graph is obtained from that of (W, S) in the following
way. We replace the vertex r by the path shown in Figure 7.1 and then
connect s0 to all the vertices in B1 and sn to all the vertices in B2 so that
m(s0, b) = m(r, b) for all b ∈ B1 and m(sn, b) = m(r, b) for all b ∈ B2 (the
vertices s1, . . . , sn−1 are, therefore, not connected to any vertices in S \{r}.

s0 s1 s2 sn−1 sn

Figure 7.1. Replace r by this path.

For example, if the Coxeter graph of (W, S) is the one shown in Figure
7.2 and B1 = {a1}, B2 = {a2, a3}, then the Coxeter graph of (W (4), (S \
{r}) ∪ {s0, . . . , s4}) is the one shown in Figure 7.3. Note that W (0) = W .

The motivation for this construction is that many important infinite fam-
ilies of Coxeter groups are obtained in this way, starting from a very simple
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a1 a2

a3

r
34

6

Figure 7.2. The Coxeter graph of (W,S).

a1 a2

a3

s0

s1

s2

s3
s4

3

4

6

Figure 7.3. The Coxeter graph of (W (4), (S \ {r}) ∪ {s0, . . . , s4}).

(W, S). For example, An = (A1)
(n−1), Bn = (B2)

(n−2), Dn = (D4)
(n−4),

Ãn = (Ã2)
(n−2), etc. (for appropriate choices of r ∈ S and blocks B1, B2).

Our aim is to compute a generating function for the rational functions
W (n)(t; q), n ∈ N, assuming that we know W (t; q) (= W (0)(t; q)). Since
[n]q! = Sn(q) for n ≥ 1, Stanley’s result suggests that one should consider
the generating function

∑

n≥0

W (n)(t; q)
xn

W (n)(q)
.

For J ⊆ S \ {r} and a, b, n ∈ N, we let, for brevity,

[WJ ]
(n) def

= (W (n))J∪{s0,...,sn} (7.13)

and

[WJ ]
(a,b) def

= (W (a+b))J∪{s0,...,bsa,...,sa+b} (7.14)

(sa omitted), and we write

expWJ
(x; q)

def
=
∑

n≥0

xn

[WJ ](n)(q)
(7.15)
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and

dexWJ
(x; q) =

∑

a,b∈N

xa+b

[WJ ](a,b)(q)
. (7.16)

We adopt the convention that W∅ = {e} (the Coxeter group with S = ∅,
having empty Coxeter graph). Note that from definitions (7.13) and (7.14),
we deduce that

[W∅]
(n) = An+1 (7.17)

and

[W∅]
(a,b) = Aa × Ab. (7.18)

We can now state and prove the following far-reaching generalization of
(7.11).

Theorem 7.2.3

∑

n≥0

W (n)(t; q)

W (n)(q)
xn =

∑

J⊆S\{r}

t|S\J|−1(1− t)|J|+1

(
expWJ

(x(1 − t); q) +
t dexWJ

(x(1 − t); q)

1− t exp(x(1 − t); q)

)
. (7.19)

Proof. Let, for brevity, S(n) def
= (S \ {r}) ∪ {s0, . . . , sn}. From Theorem

7.2.1, we obtain that

W (n)(t; q)

W (n)(q)
= (1− t)|S|+n

∑

M⊆S(n)

(
t

1− t

)|M|
1

(W (n))S(n)\M (q)
.

Now, note that any M ⊆ S(n) can be written uniquely as M = J ∪ K,
where J ⊆ S \ {r}, K ⊆ {s0, . . . , sn} and J ∩K = ∅. Therefore,

∑

n≥0

W (n)(t; q)

W (n)(q)
xn =

∑

J⊆S\{r}

t|J|(1− t)|S\J|

∑

n≥0

∑

K⊆{s0,...,sn}

t|K|xn(1− t)n−|K|

(W (n))S(n)\(J∪K)(q)
. (7.20)

Observe that

(W (n))S(n)\(J∪K)
∼= [WS\{J∪{r}}]

(a0,ak) × Sa1 × · · · × Sak−1
,

where a0, ak ∈ N, a1, . . . , ak−1 ∈ P are uniquely determined by the condi-

tion that K = {sa0 , sa0+a1 , sa0+a1+a2 , . . . , sa0+···+ak−1
} and

∑k
i=0 ai = n.

It is clear that, for each k ≥ 1, this correspondence K �→ (a0, . . . , ak)
is a bijection between subsets of {s0, . . . , sn} of size k and sequences

(a0, . . . , ak) ∈ Nk+1 such that a1, . . . , ak−1 > 0 and
∑k

i=0 ai = n. Hence,
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we may write

∑

n≥0

∑

K⊆{s0,...,sn}

(
t

1− t

)|K|
(x(1 − t))n

(W (n))S(n)\(J∪K)(q)
= A + B,

where

A =
∑

n≥0

(x(1 − t))n

(W (n))S(n)\J (q)

=
∑

n≥0

(x(1 − t))n

[WS\{J∪{r}}](n)(q)

= expWS\{J∪{r}}
(x(1 − t); q)

and

B =
∑

k≥1

(
t

1− t

)k

∑

a0,ak≥0

∑

(a1,...,ak−1)∈Pk−1

(x(1 − t))
P

k
i=0 ai

[WS\(J∪{r}](a0,ak)(q)
∏k−1

i=1 Sai
(q)

=
∑

k≥1

(
t

1− t

)k

dexWS\(J∪{r})
(x(1 − t); q)

∑

(a1,...,ak−1)∈Pk−1

k−1∏

i=1

(x(1 − t))ai

[ai]q!

= dexWS\(J∪{r})
(x(1 − t); q)

∑

k≥1

(
t

1− t

)k

(exp(x(1 − t); q)− 1)k−1

=
t dexWS\(J∪{r})

(x(1 − t); q)

1− texp(x(1 − t); q)
.

The result then follows from equation (7.20). �

To appreciate the power and beauty of Theorem 7.2.3, it is useful to
consider some examples. Let W = A1 (the simplest possible Coxeter group).
Then, S = {r} and, hence, there is only one summand appearing in the
right-hand side of equation (7.19), namely the one corresponding to J = ∅.
We therefore obtain that
∑

n≥0

(A1)
(n)(t; q)

(A1)(n)(q)
xn = (1−t)

(
expW∅

(x(1 − t); q) +
t dexW∅

(x(1 − t); q)

1− t exp(x(1 − t); q)

)
.

(7.21)
Since W∅ = {e}, we have from definition (7.15) and equation (7.17) that

expW∅
(x; q) =

∑

n≥0

xn

An+1(q)
=
∑

n≥0

xn

[n + 2]q!
=

1

x2
(exp(x; q) − 1− x),
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and from equations (7.16) and (7.18) that

dexW∅
(x; q) =

∑

a,b≥0

xa+b

(Aa ×Ab)(q)
=
∑

a,b≥0

xa+b

[a + 1]q![b + 1]q!

=

⎛
⎝∑

a≥0

xa

[a + 1]q!

⎞
⎠

2

=

(
1

x
(exp(x; q)− 1)

)2

.

Substituting these into equation (7.21) we obtain, after routine algebra,

∑

n≥0

Sn+2(t; q)
xn

Sn+2(q)
=

1

x2

(
(1 + tx) exp(x(1 − t); q)− (1 + x)

1− t exp(x(1 − t); q)

)
.

(7.22)
However,

∑

n≥0

Sn(t; q)
xn

Sn(q)
= 1 + x +

∑

n≥2

Sn(t; q)
xn

Sn(q)

and comparing this with equation (7.22) yields equation (7.11).
In a similar way, one can compute analogs of equation (7.11) for the

series Bn, Dn, Ãn, B̃n, C̃n, and D̃n (see Exercises 5, 6, 7, and 8).

7.3 Dual equivalence and promotion

In this and the next section, we tackle the problem of enumerating the
reduced decompositions of an element of a Coxeter group of type A. As
mentioned in the introduction to the chapter, this depends on a detailed
analysis of the combinatorics of tableaux. In this section, we carry out this
analysis. We assume that the reader is throughly familiar with the contents
of Appendix A3.

Let P and Q be two skew tableaux such that the shape of Q extends the
shape of P . Then, the cells of Q, taken in the order given by the entries of
Q, define a sequence of (forward) slides for P . We then denote by jQ(P ) the
tableau obtained by applying this sequence of slides to P , and by vQ(P ), we
denote the tableau formed by the cells vacated during the construction of
jQ(P ), which records the order in which these cells were vacated. Similarly,
P determines a sequence of (backward) slides for Q and we denote by jP (Q)
and vP (Q) the corresponding tableaux. It is immediate from the definitions
that

jvQ(P )(jQ(P )) = P

and

jvP (Q)(j
P (Q)) = Q.
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Let T be a tableau, t
def
= |T |, and i ∈ [t− 1]. We define a new tableau ri(T )

as follows. If i and i + 1 are in different rows and columns in T , then ri(T )

is obtained from T by exchanging i and i + 1. Otherwise ri(T )
def
= T . We

also define T|+i
to be the tableau obtained by adding i to all the entries of

T , and T (i) to be the tableau consisting of the i smallest entries of T . It is
clear from the definitions that if |i− j| > 1 (i, j ∈ [t− 1]), then

rirj(T ) = rjri(T ). (7.23)

The following identity is routine to check, but extremely useful.

Lemma 7.3.1 Let T be a tableau, t
def
= |T |. Then,

r1r2 . . . rt−1(T ) = vQ(T (t− 1)) ∪ jQ(T (t− 1))|+1
,

where Q is the tableau consisting of the (unique) cell of T having entry t. �

As a consequence of the previous lemma, we obtain the following important
fact.

Lemma 7.3.2 Let P and Q be two tableaux such that sh(Q) extends sh(P ).
Then,

jP (Q) = vQ(P ) and vP (Q) = jQ(P ).

Proof. Let p = |P | and q = |Q|. We may clearly assume (by adding p to
all the entries of Q) that P ∪ Q is standard. By repeated application of
Lemma 7.3.1, we have that

vQ(i)(P ) ∪ jQ(i)(P ) |+i ∪(Q \Q(i))

= (riri+1 . . . ri+p−1)(ri−1ri . . . ri+p−2) · · · (r1r2 . . . rp)(P ∪Q)
(7.24)

for i = 1, . . . , q. Hence,

vQ(P ) ∪ jQ(P ) |+q = rqrq+1 . . . rp+q−1

rq−1rq . . . rp+q−2

...

r1r2 . . . rp(P ∪Q).

Similarly,

jP (Q) |−p ∪vP (Q) |+q = rqrq−1 . . . r1

rq+1rq . . . r2

...

rp+q−1rp+q−2 . . . rp(P ∪Q),

so the result follows from equation (7.23). �

Recall (see Appendix A3.10) that given two skew tableaux S and T , we
write S ≈ T to mean that S and T are dual equivalent.
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Proposition 7.3.3 Let S, T , and X be tableaux such that S ≈ T and
sh(S) extends sh(X). Then,

jS(X) = jT (X)

and

vS(X) ≈ vT (X).

Proof. It follows imediately from the definition of dual equivalence that,
with our hypotheses,

vX(S) = vX(T ) and jX(S) ≈ jX(T ).

So, the result follows from Lemma 7.3.2. �

We now define the crucial concept of this section. Let T be a skew tableau
with n cells. We define a new tableau p(T ) as follows. Delete entry n from
T and perform a forward slide into the cell that contained entry n. Now
put 0 in the cell vacated by this forward slide, and finally add 1 to all the
entries. We call p the promotion step. Note that, by Lemma 7.3.1, we have
that

p(T ) = r1r2 . . . rn−1(T ). (7.25)

For example, if

T =

1 3 6

2 4 7

5

(7.26)

then

p(T ) =

2 4 7

1 3 5

6

Note that T and p(T ) have the same shape and that p is an invertible
operation. Given T as above, the tableau pn(T ) is called the total promotion
of T . For example, if T is the tableau (7.26), then its total promotion is

p7(T ) =

1 3 4

2 5 6

7

We encourage the reader to verify, as a further example, that if

T =

1 2 3

4 6

5
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then p6(T ) is the transpose of T .
We now come to another crucial definition. A skew shape λ\µ is called a

brick if for all tableaux S and T of shape λ\µ, we have that S ≈ T implies
e∗(S) ≈ e∗(T ). (Recall that e∗ is the antievacuation operator defined in
Appendix A3.8). Otherwise, we call λ \ µ a stone. For example, the skew
shape in Figure 7.4 is a brick (since there is only one tableau of this shape).

Figure 7.4. A brick.

Figure 7.5. A brick.

Figure 7.6. A stone.

Less trivially, the skew shape in Figure 7.5 is also a brick. In fact, there
are only two possible tableaux S and T of this shape, namely

S =
2

1 3
and T =

1

2 3

and, by Fact A3.10.3, they are dual equivalent. However, a simple
computation shows that

e∗(S) = T and e∗(T ) = S,

so e∗(S) ≈ e∗(T ). As a final example, the skew shape in Figure 7.6 is a
stone. In fact, if

S =
1 2

3
and T =

1 3

2

then S ≈ T (by Fact A3.10.3), but

e∗(S) =
2 3

1
and e∗(T ) =

1 3

2

which are not dual equivalent, again by Fact A3.10.3.
Dually, we define a skew shape λ \µ to be an antibrick if for all tableaux

S and T of shape λ \µ we have that S ≈ T implies e(S) ≈ e(T ). Clearly, a



218 7. Enumeration

shape is an antibrick if and only if its dual shape is a brick. Note that, by
equation (7.25) and the definitions of e∗ and e,

e∗(T ) = (rn−1)(rn−2rn−1) · · · (r2r3 . . . rn−1)(r1r2 . . . rn−1)(T ) (7.27)

and

e(T ) = (r1)(r2r1) · · · (rn−2 . . . r2r1)(rn−1 . . . r2r1)(T ) (7.28)

for any tableau T having n cells.
It is easy to classify which miniature shapes are bricks.

Proposition 7.3.4 Let λ \ µ be a miniature shape. Then, λ \ µ is a brick
if and only if, as a partially ordered set, λ \ µ is isomorphic to one of the
posets in Figure 7.7. In particular, λ \ µ is a brick if and only if it is an
antibrick.

P1 P2 P3 P4

Figure 7.7. The poset isomorphism classes of miniature bricks.

Proof. We have already seen, in the examples following the definition of a
brick, that the result holds if λ \µ is isomorphic to P1 or P4. Similarly, one
can check it for P2 and P3. If λ\µ is not isomorphic to one of the posets in
Figure 7.7, then it must necessarily be isomorphic to the disjoint union of
two chains. Hence, λ \ µ is equivalent (with respect to antievacuation) to
either (3, 1) \ (1) or (3, 2) \ (2) or their transposes. We have already shown
that (3, 1) \ (1) is a stone, and the verification for the others is entirely
similar. �

We now come to the main result of this section. Recall that a staircase
is a partition of the form δn

def
= (n, n− 1, . . . , 3, 2, 1) for some n ∈ P. Let λ

be a staircase and S and T be two elementary dual equivalent tableaux of
shape λ. For example, suppose

S =

1 3 6

2 4

5

and T =

1 2 6

3 4

5

(7.29)
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Applying the promotion operator p to S and T , we then obtain

p(S) =

1 2 4

3 5

6

and p(T ) =

1 2 3

4 5

6

(7.30)

and these two tableaux are still elementary dual equivalent. Note, however,
that this does not go on forever. In fact, continuing, we obtain

p2(S) =

1 3 5

2 6

4

, p2(T ) =

1 3 4

2 6

5

p3(S) =

1 2 6

3 4

5

, p3(T ) =

1 2 5

3 4

6

p4(S) =

1 2 3

4 5

6

, p4(T ) =

1 3 6

2 5

4

(7.31)

and these last two are not elementary dual equivalent. However, if we
continue again, we obtain that

p5(S) =

1 3 4

2 6

5

, p5(T ) =

1 2 4

3 6

5

(7.32)

which are elementary dual equivalent.
Staircases are important exactly because they interact well with the pro-

motion operator and dual equivalence. The following shows that the above
example is typical and is the main result of this section.

Theorem 7.3.5 Let S and T be two elementary dual equivalent tableaux
of staircase shape, with n cells. Let {j, j+1, j+2} be the entries of S and T
involved in an elementary dual equivalence. Then, if −t 	≡ j, j+1 (mod n),
pt(S) is elementary dual equivalent to pt(T ) and the entries involved in the
elementary dual equivalence are {j + t, j + t + 1, j + t + 2} (mod n).

Proof. If t = 1 and j+2 < n, or if t = −1 and j > 1, then the result is clear
from the definitions of dual equivalence and elementary dual equivalence.
Thus, the result holds for any interval of allowed values of t if it holds
for one element of the interval. However, the allowed values of t fall into
intervals of size n−2 separated by “gaps” of size 2. So, we only have to show
that if the result holds for the values of t in one of these intervals, then it
also holds for those in the next interval, and for those in the previous one.
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We will show this for the next interval, the reasoning for the previous one
being entirely analogous. Thus, what we have to show is that if j = n− 2,
then p3(S) is elementary dual equivalent to p3(T ) and the entries involved
in the dual equivalence are {1, 2, 3}.

Let S = X∪YS and T = X∪YT , where YS and YT are the final segments
of S and T , respectively, that contain the entries {n− 2, n− 1, n}. Let us
compute p3(S). From equations (7.25) and (7.23), we have that

p3(S) = (r1r2 . . . rn−1)(r1r2 . . . rn−1)(r1r2 . . . rn−1)(S)

= (r1r2r1)(r3 . . . rn−1)(r2 . . . rn−2)(r1 . . . rn−3)(rn−1rn−2rn−1)(S).

However, it follows from equation (7.27) that

(rn−1rn−2rn−1)(S) = (rn−1rn−2rn−1)(X ∪ YS)

= X ∪ (rn−1rn−2rn−1)(YS)

= X ∪ e∗(YS).

Hence, from equation (7.24), we conclude that

p3(S) = (r1r2r1)(ve∗(YS)(X) ∪ je∗(YS)(X)|+3
)

= (r1r2r1)(ve∗(YS)(X)) ∪ je∗(YS)(X))|+3

= e(ve∗(YS)(X)) ∪ je∗(YS)(X)|+3
, (7.33)

by equation (7.28), and similarly for p3(T ).
Now, since YS and YT are miniature final segments of S and T , which

are of staircase shape, their shape is a brick by Proposition 7.3.4. Hence,
by the definition of a brick, e∗(YS) ≈ e∗(YT ). This, by Proposition 7.3.3,
implies that je∗(YS)(X) = je∗(YT )(X) and ve∗(YS)(X) ≈ ve∗(YT )(X). How-
ever, ve∗(YS)(X) and ve∗(YT )(X) are miniature initial segments of tableaux
of staircase shape, and so, by Proposition 7.3.4, their shape is an antib-
rick. By the definition of an antibrick, this implies that e(ve∗(YS)(X)) ≈
e(ve∗(YT )(X)) and this, by equation (7.33), implies that p3(S) and p3(T ) are
elementary dual equivalent, and the entries involved in the dual equivalence
are {1, 2, 3}. �

We illustrate the construction used in the proof of Theorem 7.3.5 with
an example. Suppose T is the tableau given in (7.29). Then,

YT =

6

4

5

and, hence,

e∗(YT ) =

1

3

2
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and the computation of je∗(YT )(X) gives the sequence of tableaux

X =

1 2

3 →
1 2

3 →
1 2

3

→
2

1

3

Therefore,

je∗(YT )(X) =

2

1

3

and ve∗(YT )(X) =
1 3

2
.

Computing e(ve∗(YT )(X)), we get the sequence of tableaux

1 3

2
→ 2 3 → 3

and, therefore,

e(ve∗(YT )(X)) =
1 2

3
.

Hence,

e(ve∗(YT )(X)) ∪ je∗(YT )(X) |+3 =

1 2 5

3 4

6

which agrees with our computations in (7.31).
Note that, in the statement of Theorem 7.3.5, j is not uniquely deter-

mined by S and T . For example, if S and T are as in equation (7.29), then
there are two elementary dual equivalences relating S and T , namely the
one involving entries {1, 2, 3} and the one involving {2, 3, 4}. In this case
we can apply Theorem 7.3.5 twice and obtain the stronger conclusion that
pt(S) ≈ pt(T ) for all t 	≡ 4 (mod 6).

We will use Theorem 7.3.5 over and over again. For the moment, here is
an interesting and useful immediate consequence of it.

Corollary 7.3.6 Let T be a tableau of staircase shape, with n cells. Then,

pn(T ) = T ′.

Proof. Let S be a tableau that is elementary dual equivalent to T . Let
{j, j + 1, j + 2} be the entries involved in an elementary dual equivalence
of S and T . By Theorem 7.3.5 we then conclude that pn(T ) is elementary
dual equivalent to pn(S) and {j, j + 1, j + 2} are the entries involved in
this elementary dual equivalence. Therefore, pn(S) = S′ if and only if
pn(T ) = T ′. However, all tableaux of staircase shape are dual equivalent
by Fact A3.10.1 and, hence, are connected by a chain of elementary dual
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equivalences by Fact A3.10.4. Therefore, the result will be proved if we can
find one tableau T0 of the same shape as T such that pn(T0) = T ′

0. This
is easy to accomplish, for example, taking T0 to be the row superstandard
tableau. �

7.4 Counting reduced decompositions in Sn

Although the reader can hardly be expected to be aware of this at the
present point, the tableaux studied in the previous section are closely re-
lated to reduced decompositions of the Coxeter group of type A. This is
explained in the present section.

Let T be a tableau of shape δn \ µ, with N cells. Assign label i to
the i-th lower right corner cell of δn (counting from the bottom), for
i = 1, . . . , n. The promotion sequence of T is the doubly-infinite sequence

p̄(T )
def
= (. . . , r−2, r−1, r0, r1, r2, . . .), where rk is the label of the corner cell

occupied by the largest entry (namely N) of pN−k(T ), for k ∈ Z. We also

let p̂(T )
def
= (r1, . . . , rN ) and call this the short promotion sequence of T .

Note that if we perform promotion (and inverse promotion) on T without
adding (subtracting) 1, then every integer k ∈ Z will at some point be the
greatest entry in the tableau and will then occupy a corner cell of sh(T ),
and rk is then the label of this corner cell. Also note that if µ = ∅, then, by
Corollary 7.3.6, p̄(T ) = (. . . , r−1, r0, r1, . . .) is periodic of period 2N and
rN+k = N + 1− rk for all k ∈ Z. We let

P(δn)
def
= {p̂(S) : S is a tableau of shape δn}.

As an example, let us find the short promotion sequence of the tableau
S given in (7.29). Then, from (7.30), (7.31), and (7.32), we conclude that

p̂(S) = (2, 1, 3, 2, 1, 3) (7.34)

and, hence,

p̄(S) = (. . . 2, 3, 1, 2, 3, 1, 2, 1, 3, 2, 1, 3, 2, 3, 1, 2, 3, 1, . . .).

Another important property of the short promotion sequence that is
convenient to note right away is that if p̂(T ) = (r1, . . . , rN ), then for any
k ∈ [N ], (rk, . . . , rN ) is the short promotion sequence of the final segment of
T containing the entries {k, . . . , N}. Therefore, in particular, (rk, . . . , rN )
depends only on this final segment. For example, if

X =

3 6

4

5
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then X is a final segment of S and

p̂(X) = (3, 2, 1, 3).

Before we go on, we need to verify the following simple but crucial
property of the staircase shape.

Proposition 7.4.1 Let T be a tableau of staircase shape and U be a
miniature final segment of T . Then, U is uniquely determined by p̂(U).

Proof. Since U is a final segment of a tableau of staircase shape, its shape
must be isomorphic (as a poset) to either P2 or P3 (see Figure 7.7). Suppose
it is P2. Then, U is one of the two tableaux shown in Figure 7.8.

n− 2 n− 1

n

,

n− 2 n

n− 1

Figure 7.8. U is one of these two tableaux.

In the first case, we have that p̂(U) = (i, i + 1, i) for some i ∈ [n − 1],
whereas in the second, p̂(U) = (j + 1, j, j + 1) for some j ∈ [n− 1].

The case P3 is similar. �

For example, let T be a tableau of shape (4, 3, 2, 1) and U be a final
segment of T such that p̂(U) = (2, 1, 4). Then, we can immediately conclude
that U is the final segment in Figure 7.9. On the other hand, if p̂(U) =
(3, 2, 3), then U must necessarily be the final segment in Figure 7.10.

10

8

9

Figure 7.9. The only final segment of T such that bp(U) = (2, 1, 4).

The next result is “almost” a restatement of Theorem 7.3.5.

Theorem 7.4.2 Let S and T be two elementary dual equivalent tableaux
of staircase shape, and let {j, j + 1, j + 2} be the entries involved in an ele-
mentary dual equivalence. Then, p̂(S) and p̂(T ) differ at most in positions
j, j + 1, and j + 2. Furthermore, given j, p̂(S) is uniquely determined by
p̂(T ).
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8 10

9

Figure 7.10. The only final segment of T such that bp(U) = (3, 2, 3).

Proof. The statements before “Furthermore” follow directly from Theorem

7.3.5. Now, let S1
def
= pN−j−2(S) and T1

def
= pN−j−2(T ). Then, by Theorem

7.3.5, S1 is elementary dual equivalent to T1, and the entries involved in
the elementary dual equivalence are {N−2, N−1, N}. Let U (respectively,
V ) be the final segment containing these entries in S1 (respectively, T1).
Then, p̂(T ) determines p̂(V ) (the entries in positions j, j + 1, and j + 2
of p̂(T )), which determines V (by Proposition 7.4.1), which determines U
(by Fact A3.10.3), which determines p̂(U), which determines the entries of
p̂(S) in positions j, j + 1, and j + 2, which determines p̂(S) since the rest
of it coincides with p̂(T ). �

For instance, let S and T be the tableaux given in (7.29), and j = 2.
Then, p̂(T ) = (2, 3, 1, 2, 1, 3), so p̂(V ) = (3, 1, 2). As seen above, this implies
that V is the final segment in Figure 7.11; hence, U is the final segment in
Figure 7.12, and, therefore, p̂(U) = (1, 3, 2). So, p̂(S) = (2, 1, 3, 2, 1, 3), in
accordance with equation (7.34).

4

6

5

Figure 7.11. The final segment V .

5

6

4

Figure 7.12. The final segment U .

We now come to the crucial definition of this section. Given X ∈ [n]k for
some k ∈ P, we denote by p̂−1(X) the set of all tableaux U such that sh(U)
is a final segment of δn, and p̂(U) = X . So, for example, by Proposition
7.4.1, if X ∈ [n]3, then |p̂−1(X)| ≤ 1.
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Let k ∈ P and X, Y ∈ [n]k. The pair {X, Y } is called a staircase relation
(or an s-relation, for short) if the following two conditions are satisfied:

(i) There is a shape-preserving bijection φ : p̂−1(X) → p̂−1(Y ).

(ii) For any U ∈ p̂−1(X) there exists a tableau T such that sh(U) extends
sh(T ), sh(T ) ⊆ δn, T ∪ U ≈ T ∪ φ(U), and

p̂(T ∪ U) = WX, p̂(T ∪ φ(U)) = WY

for some sequence W .

In part (i) of the definition, “shape-preserving” means that for U ∈ p̂−1(X),
U and φ(U) have the same shape (not just isomorphic as posets). So, for
example, the tableaux in Figure 7.13 do not have the same shape (in fact,
the first one has shape (4, 3, 2, 1) \ (2, 2, 2, 1), whereas the second one has
shape (4, 3, 2, 1) \ (4, 3)).

8 10

9

8 10

9

Figure 7.13. These tableaux do not have the same shape.

We illustrate the definition with some examples. Let i ∈ [n − 1]; then,
{(i+1, i, i+1), (i, i+1, i)} is an s-relation. In fact, we know from Proposition
7.4.1 that p̂−1((i + 1, i, i + 1)) equals

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n− 2 n

n− 1

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and p̂−1((i, i + 1, i)) equals
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n− 2 n− 1

n

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(where both tableaux have shape δn \ (n, n − 1, . . . , i + 2, i − 1, i − 1,
i − 1, . . . , 2, 1)), so part (i) of the definition is clearly satisfied. Part (ii)
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can be easily satisfied by taking T = ∅, since

n− 2 n− 1

n

≈
n− 2 n

n− 1

As a further example, let i, j ∈ [n], i + 1 < j. Then, {(i, j), (j, i)} is an
s-relation. In fact, it is clear that p̂−1((i, j)) equals

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n

n− 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

and p̂−1((j, i)) equals
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n− 1

n

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(where both tableaux have shape δn \ (n, . . . , j + 1, j − 1, j − 1, . . . , i + 1,
i− 1, i− 1, . . . , 2, 1)), so part (i) of the definition is again clearly satisfied.
For part (ii), take T to be the tableau consisting of the corner cell of δn

labeled by i + 1 filled by the entry N − 2. Then, if U ∈ p̂−1((i, j)), sh(U)
extends sh(T ), and T ∪ U ≈ T ∪ φ(U) by Fact A3.10.3. Furthermore, it is
clear that p̂(T ∪U) = (i + 1, i, j) and p̂(T ∪φ(U)) = (i + 1, j, i), so part (ii)
of the definition is also satisfied.

The examples just given can be generalized, leading to the following
result.

Proposition 7.4.3 Let µ be a miniature final segment of δn, and let U ≈
V be two tableaux of shape µ. Then, {p̂(U), p̂(V )} is an s-relation, and any
two elements of P(δn) are related by a chain of s-relations of this form.

Proof. The fact that {p̂(U), p̂(V )} is an s-relation follows in exactly the
same way as in the next to last example. Now, if S and T are two elemen-
tary dual equivalent tableaux of shape δn then by Theorem 7.4.2 (and its
proof), p̂(S) and p̂(T ) differ by an s-relation of the form {p̂(U), p̂(V )}, as in
the statement of the proposition. However, by Facts A3.10.1 and A3.10.4,
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all tableaux of shape δn are connected by a sequence of elementary dual
equivalences, so the proof is complete. �

It is natural and useful, at this point, to understand completely the s-
relations given by Proposition 7.4.3. A miniature final segment of δn is
either of the form

where the corner cells are labeled by i and i + 1 for some i ∈ [n− 1], or of
the form

(7.35)

where all of the cells are corner cells and are labeled by i, j, and k for
some 1 ≤ i < j < k ≤ n. In the first case, we have already seen that
{(i, i + 1, i), (i + 1, i, i + 1)} is the corresponding s-relation. In the second
case, there are six possible final segments of shape (7.35) (one for each
permutation of {N, N−1, N−2}) and we know from Fact A3.10.3 that they
split into the four dual equivalence classes shown in Figure 7.14. The last
two classes give trivial s-relations. The first two classes give the s-relations
{(j, i, k), (j, k, i)} and {(k, i, j), (i, k, j)}. We may therefore restate the last
proposition in the following more explicit way.

Proposition 7.4.4 Every two elements of P(δn) are related by a chain of
s-relations of the form {(a, a + 1, a), (a + 1, a, a + 1)}, {(j, k, i), (j, i, k)},
and {(k, i, j), (i, k, j)} for 1 ≤ i < j < k ≤ n and a ∈ [n− 1]. �

The importance of s-relations comes from the following result.

Proposition 7.4.5 Let {X, Y } be an s-relation. Then, |p̂−1(AXB)| =
|p̂−1(AY B)| whenever AXB, AY B ∈ [n]N . In particular, AXB ∈ P(δn) if
and only if AY B ∈ P(δn).

Proof. We may clearly assume that p̂−1(AXB) 	= ∅ (say). We construct
a map ψ : p̂−1(AXB) → p̂−1(AY B) as follows. Let S ∈ p̂−1(AXB), and
let U be the final segment of p|B|(S) occupied by the entries {N − |X | +
1, . . . , N − 1, N}. Then, U ∈ p̂−1(X). Now, replace U in p|B|(S) by φ(U)
(where φ is the bijection that exists by part (i) of the definition of s-relation)
and apply p−|B|. This is ψ(S).

By the definition of s-relation, we know that T ∪U ≈ T ∪φ(U) for some
tableau T and p̂(T ∪ U) = WX , p̂(T ∪ φ(U)) = WY for some sequence
W . We may assume that sh(T ∪ U) = δn. Let V be the initial segment of
p|B|(S) (and hence also of p|S|(ψ(S))) consisting of the entries {1, 2, . . . ,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

n− 2

n− 1
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n− 1
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n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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n− 2

⎫
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⎧
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n
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 7.14. Four dual equivalence classes.
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n − |X |}. By Facts A3.10.1 and A3.10.4, V and T are related by a chain
of elementary dual equivalences. This chain transforms p|B|(S) = V ∪ U
into T ∪ U , and p|B|(ψ(S)) = V ∪ φ(U) into T ∪ φ(U). This, by Theorem
7.4.2, implies that p̂(V ∪U) and p̂(T ∪U) (= WX) differ only in their first
n−|X | entries. Therefore, p̂(V ∪U) = ZX for some sequence Z, and (again
by Theorem 7.4.2) Z depends only on W (and the chain of elementary
dual equivalences). Since the same chain of elementary dual equivalences
transforms V ∪ φ(U) into T ∪ φ(U), this shows that p̂(V ∪ φ(U)) = ZY .
Therefore,

p̂(p|B|(ψ(S))) = ZY

and p̂(p|B|(S)) = ZX and this, since p̂(S) = AXB, implies that p̂(ψ(S)) =
AY B by Corollary 7.3.6. This shows that ψ(p̂−1(AXB)) ⊆ p̂−1(AY B).
The fact that ψ is a bijection is clear, �

We are now in a position to prove the first main result of this section.

Theorem 7.4.6 Let T be a tableau of shape δn. Then, T is uniquely
determined by p̂(T ). Equivalently, |p̂−1(X)| = 1 for all X ∈ P(δn).

Proof. It follows immediately from Propositions 7.4.4 and 7.4.5 that

|p̂−1(X)| = |p̂−1(Y )|
for all X, Y ∈ P(δn). To conclude the proof, we therefore just have to show
that there is at least one element X0 ∈ P(δn) such that |p̂−1(X0)| = 1, and
this is easy to do (take, e.g., X0 = (1, 2, 1, 3, 2, 1, . . . , n, n− 1, . . . , 2, 1)). �

The above result shows that the map p̂ is a bijection from the set of
tableaux of shape δn to P(δn). Note that, in principle, we know the set
P(δn) explicitly because we know that we can generate it by starting with
a single element of it (say X0) and applying recursively s-relations. Sounds
familiar? Yes, it is not a coincidence. Recall that for w ∈ W , we denote by
R(w) the set of all the reduced decompositions of w.

Theorem 7.4.7 The map p̂ is a bijection between the set of all tableaux
of shape δn and R(w0), where w0 denotes the longest element of Sn+1.

Proof. By the preceding remarks, it is enough to show that

P(δn) = R(w0)

(where we identify, as done in Section 3.4, a sequence (i1, . . . , ik) ∈ [n]k

with (si1 , . . . , sik
) ∈ Sk and si = (i, i + 1) for i = 1, . . . , n).

Let X ∈ P(δn). Then, by Proposition 7.4.4, X is related to X0 by a
sequence of s-relations of the form given in the statement of Proposition
7.4.4. However, all of these relations are also Coxeter relations in Sn+1.
Hence, since X0 ∈ R(w0), we conclude that X ∈ R(w0). This shows that
P(δn) ⊆ R(w0).
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Conversely, let Y ∈ R(w0). Then, by Theorem 3.3.1, Y is related to
X0 by a sequence of braid-moves. However, all of these braid-moves are
also s-relations, as we have seen in the examples preceding Proposition
7.4.3, so Y is connected to X0 by a sequence of s-relations and this, by
Proposition 7.4.5, implies that Y ∈ P(δn) since X0 ∈ P(δn). This proves
that R(w0) ⊆ P(δn) and concludes the proof. �

As an immediate consequence of the above theorem we obtain the follow-
ing result, which was, historically, the empirical observation that started
most of the enumerative research on reduced decompositions.

Corollary 7.4.8

|R(w0)| =
(
n+1

2

)
!

1n3n−15n−2 · · · (2n− 1)
.

Proof. This follows immediately from Theorem 7.4.7 and the well-known
“hook length formula” (see, e.g., [498, Corollary 7.21.6]). �

At this point, the reader may very well feel puzzled, or distressed. Have
we built a whole theory just to compute the number of reduced decompo-
sitions of one element (and a very special one, besides) of Sn+1? Indeed,
the answer is no. Using this theory, we can enumerate, with a little further
work, the reduced decompositions of any element of Sn+1.

Proposition 7.4.9 Let T be a tableau of shape δn, p̂(T ) = (r1, . . . , rN ),
and k ∈ [N ]. Then, the initial segment of T consisting of the cells of T
containing the entries {1, . . . , k} is uniquely determined by (r1, . . . , rk).

Proof. Let, for brevity, A
def
= (r1, . . . , rk), and write p̂(T ) = AB. Let S

be a tableau of shape δn such that p̂(S) = AC for some C. We wish to
prove that the initial segments of S and T formed by the cells containing
the entries {1, . . . , k} coincide. By Theorem 7.4.7, AB and AC are reduced
decompositions of w0. Hence, B and C are reduced decompositions of some
element w ∈ Sn+1. Therefore, by Theorem 3.3.1, we may assume that B
and C differ by a braid-move.

Suppose that B and C differ by a braid-move of the form (a, a + 1, a) ↔
(a+1, a, a+1) for some a ∈ [n−1]. Then, p̂(S) and p̂(T ) differ by the same
relation, which is an s-relation. However, for an s-relation of this form, we
have (see the first example following the definition of an s-relation) that
U ≈ φ(U), where we use the same notation as in the proof of Proposition
7.4.5. This, by the proof of Proposition 7.4.5, implies that S and T differ
only by an elementary dual equivalence on the segment involving {k +
1, . . . , N}, so the result holds in this case.

Suppose that B and C differ by a braid-move of the form (a, b) ↔ (b, a)
for some a, b ∈ [n] with |a− b| > 1. Then, reasoning as in the previous case
(namely keeping in mind the example given before Proposition 7.4.3 and
the proof of Proposition 7.4.5), we conclude that S is obtained from T by
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applying pt for some t (necessarily ≤ n − k − 2), switching N and N − 1
(which will be in the corner cells labeled by a and b) and then applying
p−t. This whole process does not change the initial segment containing the
entries {1, . . . , k}, so we are done. �

The preceding result is the crucial step needed to extend Theorem 7.4.7
to other elements of Sn+1. In fact, it allows us to define p̂−1 in R(w) for
any w ∈ Sn+1.

Let w ∈ Sn+1, X ∈ R(w), and E ∈ R(w−1w0). Then, by Proposition
3.1.2, ℓ(w)+ℓ(w−1w0) = ℓ(w0) and, hence, XE is a reduced decomposition
of w0. We then define θ(X) to be the initial segment, in p̂−1 (XE), con-
taining the entries {1, . . . , |X |}. This is well defined by Proposition 7.4.9.
Note that θ(X) is a tableau of normal shape, contained in δn.

Proposition 7.4.10 Let w ∈ Sn+1 and let T be a tableau with sh(T ) ⊆ δn.
Then,

|{X ∈ R(w) : θ(X) = T }|
depends only on sh(T ).

Proof. Fix E ∈ R(w−1w0). Note that X ∈ R(w) if and only if XE ∈
R(w0).

Let X ∈ R(w) be such that θ(X) = T . Let U be the final segment
of p̂−1(XE) containing the entries {|X | + 1, . . . , N}. Then, p̂(U) = E,
p̂−1(XE) = T ∪ U , and, therefore, sh(U) = δn\ sh(T ).

Conversely, if U is a tableau of shape δn\ sh(T ) such that p̂(U) = E,
then

p̂(T ∪ U|+|T |
) = XE

for some X ∈ [n]|T |. Thus, by Theorem 7.4.7, X ∈ R(w) and, by definition,
θ(X) = T .

It is clear that this correspondence X ↔ U is a bijection. Hence,

|{X ∈ R(w) : θ(X) = T }| = |{U : sh(U) = δn \ sh(T ) , p̂(U) = E}|,
(7.36)

which implies the result. �

Since the numbers in equation (7.36) do not depend on T and E but
only on sh(T ) and w, we define, for any partition λ, and any w ∈ Sn+1,

aλ(w)
def
= |{X ∈ R(w) : θ(X) = T }|, (7.37)

where T is any tableau of shape λ. Equivalently,

aλ(w) = |{U : sh(U) = δn \ λ, p̂(U) = E}|,
where E is any reduced decomposition of w−1w0. (For an alternative com-
binatorial interpretation of aλ(w), see Exercise 21.) Note that aλ(w) = 0
unless |λ| = ℓ(w).
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The following is the promised generalization of Corollary 7.4.8, and the
main result of this section. Recall that fλ denotes the number of standard
Young tableaux of shape λ. As was mentioned in the proof of Corollary
7.4.8, there is an effective procedure for explicitly computing the numbers
fλ, known as the “hook length formula” (see [498, Corollary 7.21.6]).

Theorem 7.4.11 Let w ∈ Sn+1. Then,

|R(w)| =
∑

λ

aλ(w)fλ,

where λ runs over all partitions of ℓ(w) contained in δn.

Proof. By Proposition 7.4.10, we have that

|R(w)| =
∑

T

|{X ∈ R(w) : θ(X) = T }|

=
∑

λ

∑

{T : sh(T )=λ}

|{X ∈ R(w) : θ(X) = T }|

=
∑

λ

aλ(w)fλ,

where T runs over all tableaux of normal shape contained in δn, and the
result follows. �

An interesting and natural problem now is that of describing explicitly
the map p̂−1 from reduced decompositions to tableaux. This turns out to be
related to some surprising variations of the Robinson-Schensted algorithm
(see Exercise 21).

Another (even more natural) problem is that of extending the main
results of this section to other Coxeter groups. This is a huge problem
that hides some deep combinatorics. Note that the mere statement that
|R(w)| =∑λ aλfλ for some aλ ∈ N is certainly true for any w ∈ W in any
group W , since any non-negative integer can be expressed in this format.
What one really wants is a combinatorial interpretation for the aλ’s that
gives some insight. It turns out that what we have done in this section can
be carried over, with some technical complications but with essentially the
same ideas, concepts, and techniques, to the Coxeter groups of types B and
D (see [284] and [44]).

7.5 Stanley symmetric functions

As mentioned in Section 7.2, generating functions often provide an elegant
and compact way of encoding enumerative results. In this section, we con-
sider a multivariable generating function for the reduced decompositions of
the elements of the symmetric groups. We prove the remarkable fact that
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this generating function is always symmetric, and we compute its expan-
sion in terms of Schur functions. We assume that the reader is familiar with
the contents of Appendix A4.

Recall that we write S = {s1, . . . , sn}, where si = (i, i + 1), i = 1, . . . , n,
and that

D(si1 , . . . , sip
)

def
= {j ∈ [p− 1] : ij > ij+1}

for (si1 , . . . , sip
) ∈ Sp.

Lemma 7.5.1 Let w ∈ Sn+1 and X ∈ R(w). Then,

D(θ(X)) = D(X).

Proof. It is a routine case-by-case exercise to verify, using equation (7.25),
that if T is a tableau and k, k + 1 are entries of T , k + 1 < |T |, then
k ∈ D(T ) if and only if k ∈ D(p(T )), where in the promotion tableau p(T )
we do not renormalize the entries.

Now, fix E ∈ R(w−1w0), so that XE ∈ R(w0), and let T
def
= p̂−1(XE).

Then, by definition, θ(X) is the initial segment of T containing the entries
{1, 2, . . . , |X |}. Therefore, if k ∈ [|X | − 1], then k ∈ D(θ(X)) if and only
if k ∈ D(pn−k−1(T )). However, in pN−k−1(T ) (recall that here we do not
renormalize the entries when performing p), the entry k + 1, and hence
necessarily also k, occupy corner cells of δn. Furthermore, since p̂(T ) = XE,
k + 1 occupies the corner cell labeled by Xk+1 (the (k + 1)-st entry of X),
and k occupies the one labeled by Xk. Hence, k ∈ D(θ(X)) if and only if
Xk > Xk+1, as desired. �

Let w ∈ Sn+1, and p
def
= ℓ(w). Let x

def
= (x1, x2, . . .) be a sequence of

independent indeterminates. The Stanley symmetric function of w is

Fw(x)
def
=

∑

E∈R(w)

QD(E),p(x).

For example, if n = 2 and w = 321, then R(w) = {(s1, s2, s1), (s2, s1, s2)}
and, hence,

F321(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x3 + x1x

2
2 + 2x1x2x3 + x2x

2
3 + x1x

2
3

(where Fw(x1, . . . , xr)
def
= Fw(x1, . . . , xr , 0, 0, . . .)).

Theorem 7.5.2 Let w ∈ Sn+1. Then, Fw(x) is a symmetric function and

Fw(x) =
∑

λ⊢ℓ(w)

aλ(w)sλ(x), (7.38)

where aλ(w) has the same meaning as in Theorem 7.4.11.
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Proof. From our definitions and Lemma 7.5.1, we have that

Fw(x) =
∑

E∈R(w)

QD(E),p(x)

=
∑

T

∑

{E∈R(w): θ(E)=T}

QD(E),p(x)

=
∑

T

ash(T )(w)QD(T ),p(x)

=
∑

λ⊆δn

aλ(w)
∑

{T : sh(T )=λ}

QD(T ),|λ|(x),

where p = ℓ(w) and T runs over all tableaux of shape contained in δn.
Thus, the result follows from Fact A4.2.2. �

The symmetric functions Fw(x) were first defined by Stanley in [493] ex-
actly for the purpose of enumerating the reduced decompositions of the
elements of Sn+1. In fact, it is possible to prove Corollary 7.4.8 using
just these symmetric functions (i.e., without using the theory developed
in Sections 7.3 and 7.4; see [493]).

Note that taking the coefficient of x1x2 . . . xℓ(w) on both sides of equa-
tion (7.38) yields Theorem 7.4.11. However, it is not at all clear, from the
definition of Fw(x), why the coefficients aλ(w) are ≥ 0. Once this fact
is known, then standard results from the theory of symmetric functions
(see, e.g., [498, §7.18]) imply that there exists a representation Fw of Sℓ(w)

whose character corresponds to Fw(x) under the characteristic map and
that the integers aλ(w) give the multiplicity of the irreducible representa-
tion of Sℓ(w) indexed by λ in Fw. Such representations have been explicitly
constructed by Kraśkiewicz, see [331].

The symmetric function Fw(x) is also intimately related to the Schubert
polynomial of w. The topic of Schubert polynomials is vast and is not
treated here. We refer the reader to the excellent expositions in [381] and
[248] and the references cited there.

Exercises

1. Let J ⊆ S be such that |WJ | = ∞. Show that

∑

K⊆J

(−1)|K|

WS\K(q)
= 0.

2. Let, for w ∈ W ,

aℓ(w)
def
= min{k ∈ N : w = ti1 · · · tik

, for some ti1 , . . . , tik
∈ T }.
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We call aℓ(w) the absolute length of w. Clearly, aℓ(w) = 1 if and only
if w ∈ T . For a finite Coxeter system (W, S), show that

∑

w∈W

taℓ(w) =

n∏

i=1

(1 + eit),

where e1, . . . , en are the exponents of W .

3. Let S = K1 ∪ K2 ∪ · · · ∪ Kk be the partition of S induced by the
conjugacy relation (see Exercise 1.16). Define ℓi(w), 1 ≤ i ≤ k, to be
the number of letters from Ki in any reduced expression of w ∈ W ,
and define

W (x1, . . . , xk) =
∑

w∈W

x
ℓ1(w)
1 · · ·xℓk(w)

k .

(a) Show that ℓi(w) is well defined.
(b) For W of type Bn, let K1 = {s0} and K2 = {s1, . . . , sn−1}.

Show that

W (x1, x2) =

n−1∏

i=0

(1 + x1x
i
2)(1 + x2 + · · ·+ xi

2).

4. In this and the next four exercises, we use the following notation. For

a sequence of Coxeter groups W def
= {Wn}n=0,1,2,... , we let

expW(x; q)
def
=
∑

n≥0

xn

Wn(q)
.

This extends definition (7.12) of exp(x; q). Use the q-binomial
theorem (see Appendix A4.1) to show that

exp(x; q) =
∏

i≥0

(1− x(1 − q)qi)−1

expB(x; q) =
∏

i≥0

(1− x(1 − q)q2i)−1

x2expD(x; q) = expB(x; q) +
∏

i≥0

(1− x(1 − q)q2i+1)−1 − 2− x

exp eB(x; q) = exp eC(x; q) =
−q

[2]q
+

xq4

[2]q[4]q
+
∏

i≥0

(
1− x(1− q)q2i+1

1− x(1− q)q2i

)

x4exp eD(x; q) =
∏

i≥0

(
1− x(1− q)q2i+1

1− x(1− q)q2i

)

= +
∏

i≥0

(
1− x(1 − q)q2i

1− x(1 − q)q2i+1

)
−

3∑

i=0

ci(q)x
i

for some ci(q) ∈ Z(q).
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Here, B = {Bn}n=0,1,2,..., D = {Dn+2}n=0,1,2,..., C̃ = {C̃n}n=0,1,2,...,

B̃ = {B̃n}n=0,1,2,..., and D̃ = {D̃n+4}n=0,1,2,.... (We use the conven-

tions that B0 = 〈e〉, B1 = C̃0 = B̃0 = A1, C̃1 = B̃1 = B2, B̃2 = C̃2,
D2 = A1 ×A1, and D3 = A3.)

5. Let (W r,s, {s1, s2, s3}) be the Coxeter system having Coxeter matrix
⎛
⎝

1 r 2
r 1 s
2 s 1

⎞
⎠

(r, s ≥ 3). Choose v = s2, B1 = {s1}, and B2 = {s3}.
(a) Use Theorem 7.2.3 to show that

∑

n≥0

(W r,s)(n−3)(t; q)xn

(W r,s)(n−3)(q)
= expWr,s(x(1 − t); q)

+
tx(1 − t) expWr(x(1 − t); q) expWs(x(1 − t); q)

1− t exp(x(1 − t); q)
,

where Wr,s def
= {(W r,s)(n−3)}n=0,1,2,... and Wr = Wr,3 (we use

the conventions that (W r,s)(−3) def
= 〈e〉, (W r,s)(−2) def

= A1, and

(W r,s)(−1) def
= I2(r)).

(b) Deduce from part (a) that

∑

n≥0

Bn(t; q)xn

Bn(q)
=

(1− t)expB(x(1 − t); q)

1− t exp(x(1 − t); q)
.

(c) Deduce from part (a) that

1

1− t

∑

n≥0

C̃n(t; q)xn

C̃n(q)
= exp eC(x(1− t); q)+

t expB(x(1 − t); q)2

1− texp(x(1 − t); q)
.

6. Deduce from Theorem 7.2.3 that

2tx +
∑

n≥2

Dn(t; q)xn

Dn(q)

=
x2(1− t)3expD(x(1 − t); q) + t(2− tx)(exp(x(1 − t); q)− 1)

1− texp(x(1 − t); q)
.

7. (a) Use Theorem 7.2.3 to find a formula for

∑

n≥3

B̃n(t; q)xn

B̃n(q)

in terms of exp eB(x(1− t); q), expB(x(1− t); q), expD(x(1− t); q),
and exp(x(1 − t); q).
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(b) Use Theorem 7.2.3 to find a formula for the generating function

∑

n≥4

D̃n(t; q)xn

D̃n(q)

in terms of exp eD(x(1 − t); q), expD(x(1 − t); q), and
exp(x(1 − t); q).

8. (a) Let

exp eA(x; q)
def
=
∑

n≥1

xn

Ãn−1(q)

(where we use the convention that Ã0 = 〈e〉). Show that

exp eA(x; q) = x
∂

∂x
log(exp(x; q)).

(b) Deduce from Theorem 7.2.3 and part (a) that

∑

n≥1

Ãn−1(t; q)

1− qn
xn =

exp eA

(
x 1−t

1−q ; q
)

1− t exp
(
x 1−t

1−q ; q
) .

9. Let (W, S) be an infinite Coxeter system of rank 3. (Equivalently, the
quantity d defined in Exercise 4.8 satisfies d ≤ 1.) Show that

W (q) = W (q−1),

as rational functions in Z(q).

10. Let (W, S) be a finite irreducible Coxeter system.

(a) Identify a subset J ⊂ {s1, . . . , sn} with the sequence (n1, . . . , nk)
such that S \ J = {sn1 , sn1+n2 , . . . , sn1+...+nk−1

} and n1 + · · ·+
nk = n+1 (so k = n− |J |+1). Show that if (W, {s1, . . . , sn}) is
of type An, with the generators indexed in the usual way, then

W J (−1) =

( ⌊
n+1

2

⌋
⌊

n1

2

⌋
, . . . ,

⌊
nk

2

⌋
)

if
⌊

n+1
2

⌋
=
⌊

n1

2

⌋
+ · · ·+

⌊
nk

2

⌋
, and

W J (−1) = 0

otherwise.
(b) Show that if (W, S) is of type Bn, then W J(−1) = 0 for all

J ⊂ S.
(c) Show that if (W, S) is of type Dn (S indexed as in Appendix

A1), then

W J (−1) =

{
2, if n is odd and J = S \ {sn−1},
0, otherwise
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for all J ⊂ S.
(d) Deduce from the preceding parts that W J(−1) = 0 for all J ⊂ S

if and only if every exponent of W is odd.
(e) Is there a uniform (i.e., not case by case) proof of part (d)?

11. Given a finite Coxeter group W , let W (t; 1) be the Eulerian
polynomial of W defined in Section 7.2.

(a) Show that

Sn(t; 1) = (1 + (n− 1)t)Sn−1(t; 1) + (t− t2)
d

dt
(Sn−1(t; 1))

for n ∈ P, where S0(t; 1)
def
= 1.

(b) Deduce from part (a) that

∑

i≥0

(i + 1)nti =
Sn(t; 1)

(1− t)n+1

as a formal power series in Z[[t]].
(c) Deduce from part (a) that Sn(t; 1) has only real zeros.
(d) Show that

Bn(t; 1) = (1 + (2n− 1)t)Bn−1(t; 1) + 2(t− t2)
d

dt
(Bn−1(t; 1))

for n ∈ P, where B0(t; 1)
def
= 1.

(e) Deduce from part (d) that

∑

i≥0

(2i + 1)nti =
Bn(t; 1)

(1− t)n+1

as a formal power series in Z[[t]].
(f) Deduce from part (d) that the polynomial Bn(t; 1) has only real

zeros.
(g) For n ∈ P, show that

Dn(t; 1) = Bn(t; 1)− n t2n−1Sn−1(t; 1).

(h) Show that the polynomial W (t; 1) has only real zeros if W is of
type E6, E7, E8, F4, H3, and H4.

(i)∗ Is it true that the polynomial Dn(t; 1) has only real zeros?

12. Consider the symmetric group Sn.

(a) Show that

∑

(a1,a2,...)∈R(w0)

(x+a1)(x+a2) · · · =
(

n

2

)
!
∏

1≤i<j≤n

2x + i + j − 1

i + j − 1
.
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(b) Deduce that

∑

(a1,a2,...)∈R(w0)

a1a2 · · ·a(n
2)

=

(
n

2

)
!

[For instance (n = 3), 1 · 2 · 1 + 2 · 1 · 2 = 6.]
(c) Deduce the formula for |R(w0)| in Corollary 7.4.8.

13. Let S = {s1, s2, . . . , sn−1} be the set of adjacent transpositions
si = (i, i + 1) in Sn. Suppose I ⊆ J ⊆ S, and say that J =
{si1 , si2 , . . . , sij

}, where 1 ≤ i1 < i2 < · · · < ij ≤ n− 1.
Show that

DJ
I (q) = [n]! det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[i1]!

1
[i2]!

1
[i3]! · · · 1

[n]!

∗ 1
[i2−i1]!

1
[i3−i1]! · · · 1

[n−i1]!

0 ∗ 1
[i3−i2]! · · · 1

[n−i2]!

0 0 ∗ · · · 1
[n−i3]!

...
...

...
...

0 0 0 · · · 1
[n−ij ]!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the subdiagonal element ∗ in the p-th column equals 1 if sip
∈ I,

and is 0 otherwise. Here, [n]!
def
= [n][n − 1] · · · [2][1] and [k] = [k]q

def
=

1 + q + q2 + · · ·+ qk−1.

14.∗ Is it true for every finite irreducible Coxeter group (W, S), and every
I ⊆ J ⊆ S, that the polynomial DJ

I (q) is unimodal?
[Remark: This was proven for I = ∅ and essentially all cases in [491].]

15. Let T be a tableau with n cells. Show that

pn(T ) = e(e∗(T )).

16. A (rookwise) connected skew partition is a generalized staircase if
every miniature final, and initial, segment of it is a brick. For example,
(3, 1) is not a generalized staircase, whereas a staircase (as the name
implies) is also a generalized staircase.
Let λ \ µ be a (rookwise) connected skew partition. Show that λ \ µ
is a generalized staircase if and only if it is either a staircase, an
antistaircase, or a rectangle.

17. Let T be a tableau of generalized staircase shape, with n cells. Show
that

pn(T ) =

{
T, if sh(T ) is a rectangle,
T ′, otherwise.

18. Let λ \ µ be a connected skew partition such that p|λ\µ|(T ) = T for
all tableaux T of shape λ \ µ. Show that then λ \ µ is a rectangle.

19. Show that Fw(x) = Fw−1(x), for all w ∈ Sn.
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20. Let Nn = H0(Sn, S) be the generic Hecke algebra of the symmetric
group Sn (as defined in [306, §7.1]), specialized by setting parameters
as = bs = 0 for all s ∈ S = {s1. . . . , sn−1}. Let {Tw}w∈Sn

denote

its canonical basis, and write, for convenience, Ti
def
= Tsi

, for i =
1, . . . , n − 1. The algebra Nn is called the NilCoxeter algebra of Sn.
It has generators T1, . . . , Tn−1 and relations

⎧
⎪⎨
⎪⎩

T 2
i = 0, if i = 1, . . . , n− 1,

TiTj = TjTi, if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, if i = 1, . . . , n− 2.

(a) Show that if r, n ∈ P and r ≥
(
n
2

)
, then

∑

w∈Sn

Fw(x1, . . . , xr)Tw = A(x1) · · ·A(xr)

in Nn ⊗Z Z[x1, . . . , xr], where

A(xi)
def
= (Te + xiT1) · · · (Te + xiTn−2)(Te + xiTn−1)

for i = 1, . . . , r.
(b) Show that

A(xi)A(xj) = A(xj)A(xi)

for i, j ∈ [r].
(c) Deduce from parts (a) and (b) that Fw(x1, . . . , xr) is a

symmetric polynomial in x1, . . . , xr.

21. Let R def
=
⋃

n≥1R(Sn). We say that a (not necessarily standard)
tableau T is an A-tableau if ρ(T ) ∈ R (where ρ(T ) denotes the reading
word of T (see Appendix A3.5) and we identify i with (i, i + 1) for
i = 1, 2, . . .). Let T be an A-tableau, R1, . . . , Rs be its rows, and
i ∈ P. We define a new tableau, denoted “T ← i,” as follows. If R1i is
weakly increasing, then we add i at the end of R1 and the algorithm
stops. If R1i is not weakly increasing, then we proceed according to
the following steps:

(1) If R1 contains the subword i, i + 1, then we set b1 = i + 1.
(2) If R1 does not contain i, i + 1, then we let b1 be the smallest

number (in R1) that is strictly larger than i, and we substitute
b1 by i.

At this point we repeat the above algorithm with “R2” in place of
“R1,” and “b1” in place of “i,” and so on until the algorithm stops.
The result is a tableau that we denote “T ← i.” For example, if

T =

1 2 3

3 4

4 6
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and i = 1, then

T ← 1 =

1 2 3

2 4

3 6

4

Now, let w = (i1, . . . , ip) ∈ R. Define a sequence of tableaux
T1, . . . , Tp inductively by letting

{
T1

def
= i1,

Tj
def
= Tj−1 ← ij, for j = 2, . . . , p.

We then define

PA(w)
def
= Tp

and QA(w) to be the standard tableau corresponding to the sequence

sh(T1) ⊆ sh(T2) ⊆ · · · ⊆ sh(Tp).

For example, if w = (1, 2, 3, 1, 4, 3) ∈ R(S5), then

PA(w) =
1 2 3 4

2 4

and

QA(w) =
1 2 3 5

4 6

We now define an equivalence relation on the set R as follows. Let
∼AK be the equivalence relation generated by the relations

(y, x, z) ∼AK (y, z, x)

for x < y < z,

(z, x, y) ∼AK (x, z, y)

for x < y < z, and

(x + 1, x, x + 1) ∼AK (x, x + 1, x)

(note that these are exactly the s-relations of Proposition 7.4.4). In
other words, we say that u is elementary AK-equivalent to w if and
only if w can be obtained from u by changing a factor in u of length
3 according to one of the above rules. We then say that u is AK-
equivalent to w (written u ∼AK w) if there is a sequence of elementary
AK-equivalences that transforms u to w. Note that if u ∼AK w, then
u and w are reduced decompositions of the same element.

(a) Let T be a tableau. Show that PA(ρ(T )) = T .



242 7. Enumeration

(b) Let w ∈ R be an increasing word (so PA(w) has only one row)
and i ∈ P be such that wi ∈ R. Show that wi ∼AK ρ (PA(w) ←
i).

(c) Deduce from part (b) that if w ∈ R, then w ∼AK ρ(PA(w)).
(d) Use part (c) to show that if w ∈ R, then PA(w) is an A-tableau.
(e) Show that if w, u ∈ R, then w ∼AK u if and only if PA(w) =

PA(u).
(f) Show that the map w �→ (PA(w), QA(w)) is a bijection between

R and pairs (P, Q) such that P is an A-tableau, and Q is a
standard tableau of the same shape as P . Deduce that for any
w and any partition λ, aλ(w) equals the number of tableaux P
of shape λ such that ρ(P ) is a reduced decomposition of w. (The
integer aλ(w) is defined by (7.37).)

(g) Show that the map w �→ QA(w) is a bijection between R(w0)
(where w0 denotes the longest element of Sn+1) and the set of
all standard tableaux of shape δn.

(h) Show that the map in part (g) is the inverse of the map p̂
considered in Theorem 7.4.7.

(i) Show that if w ∈ R, then D(w) = D(QA(w)).

Notes

Corollary 7.1.4 is due to Steinberg [501]. Theorem 7.1.5 was first proved
by Chevalley [133] for Weyl groups and then by Solomon [480] for finite
Coxeter groups. Proposition 7.1.7 appears in Charney and Davis’ article
[125].

As mentioned in the text, Theorem 7.1.10 is due to Bott [77]. Combi-

natorial proofs have been given by Björner and Brenti in type Ã [62], by

Bousquet-Mélou and Eriksson [80] in type C̃, and by H. and K. Eriksson
for the other types [224].

All the results in Section 7.2 are due to Reiner and appear in [439]. The
material in Sections 7.3 and 7.4 appears in Haiman’s article [284]. The
symmetric functions of Section 7.5 were introduced by Stanley in [493];
again, our treatment follows [284].

Exercise 2. See Lehrer [361], Barcelo and Goupil [18], and Dyer [211].
Exercises 5, 6, and 7. See Reiner [439].
Exercise 9. See Charney and Davis [125], and Serre [453].
Exercise 10. See Tan [531].
Exercise 11. See Brenti [86].
Exercise 12. See Fomin and Kirillov [246] and Macdonald [381].
Exercise 13. See Björner and Wachs [67] and Stanley [490].
Exercises 15, 16, 17, and 18. See Haiman [284].
Exercise 20. See Fomin and Stanley [247].
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Exercise 21. See Edelman and Greene [218].

Except for the classical topic of Poincaré series, most other results on
Coxeter groups of an enumerative nature are very recent. The symmetric
group has many beautiful enumerative properties, some of which have been
known since the 1800s, and a recent trend has been to see to what extent
these carry over to other (especially finite) Coxeter groups. Sections 7.1 and
7.2 contain good examples of this concerning length and descent number.
Many other statistics on the symmetric group have been and are currently
investigated, such as the major index, excedances, and cycle number, to
cite only the most common ones. Analogs of these for other Coxeter groups
have been found in some cases and are being looked for in others. The
reader can see, for example, the articles of Adin, Brenti, and Roichman [1],
Billey and Lam [48], Brenti [86], Clarke and Foata [140, 141, 142], Foata
and Han [243], Ram [429], Reiner [433, 434, 435, 436, 437, 440], Reiner and
Ziegler [443], and Steingrimsson [502], for work of this nature, where also
other classical combinatorial concepts, such as partially ordered sets and
tableaux, are seen as the type A case of more general ones.

Exercise 11 has connections to the geometry of certain toric varieties. In
fact, it is known (see Exercise 3.16) that the Eulerian polynomial W (t; 1)
is also the generating function of the h-vector of the Coxeter complex asso-
ciated to (W, S). Since this Coxeter complex is isomorphic to the boundary
complex of a simplicial convex polytope (see, e.g., [64, Proposition 2.3.9]),
there follows from standard results in the theory of toric varieties (see, e.g.,
[404, Chapter 2]) that this h-vector equals the sequence of even-dimensional
Betti numbers of certain toric projective varieties associated to the poly-
tope and that W (t2; 1) is the Poincaré polynomial of these varieties. It has
been conjectured [86, Conjecture 5.2] that W (t; 1) has only real zeros for
any finite Coxeter system, and this has been verified in almost all cases;
see Exercise 11. For more details on the toric varieties associated to the
Eulerian polynomials W (t; 1), the reader can consult Stembridge [503, 504]
and Dolgachev and Lunts [191], and the references cited there.

Most of the studies on the enumeration of reduced decompositions in fi-
nite Coxeter groups have their origin in Stanley’s work [493]. In it, Stanley
introduced the generating functions Fw(x), proved that they are symmetric,
and used them to prove Corollary 7.4.8 (which he had conjectured himself
in a previous unpublished note). This corollary had meanwhile been inde-
pendently proved by Lascoux and Schützenberger in [349] (in response to
Stanley’s conjecture) using totally different techniques. From these early
works, the subject has blossomed. In [349], and independently in articles
by Edelman and Greene [217, 218], bijective proofs are given for Corollary
7.4.8. These bijections (some of which are treated in Section 7.4 and in Ex-
ercise 21) give much greater insight into the original conjecture and enable
one to prove further results (such as Theorem 7.4.11), which Stanley had
been unable to obtain with his symmetric function techniques.
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In [493], Stanley also had some conjectures on the corresponding prob-
lems in type B, including an analog of Corollary 7.4.8. These conjectures
inspired more work, and the cited bijections were generalized to type B by
Kraśkiewicz [330] and independently by Haiman [284], and then to type
D by Haiman [284], Lam [339], and Billey and Haiman [44]. In these last
two works, generalizations of the Stanley symmetric functions (sometimes
called “stable Schubert polynomials”) are defined and studied also for types
B and D. Another approach that has recently been followed is that of find-
ing special classes of elements whose number of reduced decompositions
admits a nice representation. We refer the reader to the articles of Fan and
Stembridge [235, 236, 505, 506, 508] for work in this direction.



8
Combinatorial Descriptions

This chapter has a different flavor from the earlier ones and is intended more
as a source of reference than for sequential reading. We take a detailed look
at certain concrete combinatorial descriptions of the Coxeter groups of type
B, D, Ã, B̃, C̃, and D̃ (as defined in Appendix A1). For each one of these
families, we describe in terms of permutations the group, a set of Coxeter
generators, length, descent sets, parabolic subgroups, quotients, minimal
coset representatives, reflections, Bruhat graph, and (in most cases) Bruhat
order. The corresponding descriptions for Coxeter groups of type A are
given in Sections 1.5, 2.1, 2.4, and 2.6. Some other cases appear among the
exercises.

Throughout this chapter, we use the notation for permutations intro-
duced in Appendix A3.1.

8.1 Type B

Let SB
n be the group of all bijections w of the set [±n] in itself such that

w(−a) = −w(a)

for all a ∈ [±n], with composition as group operation. If w ∈ SB
n , then we

write w = [a1, . . . , an] to mean that w(i) = ai for i = 1, . . . , n, and call this
the window notation of w. Because of this notation, the group SB

n is often
called the group of all “signed permutations” of [n].

Since the elements of SB
n are permutations of [±n], we can also write them

in disjoint cycle form and in complete notation (as elements of S([±n])).
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For example, if v = [−3, 5, 1,−7, 2, 8,−6,−4], then we also write

v = 4 6 − 8 − 2 7 − 1 − 5 3 − 3 5 1 − 7 2 8 − 6 − 4

and v = (−3,−1, 3, 1)(5, 2)(8,−4, 7,−6,−8, 4,−7, 6) (−5,−2). We multiply
elements of SB

n “from the right.” For example, if w = [−2, 1, 4, 5,−3, 6]
and v = [3,−6, 2, 4,−5,−1], then w−1 = [2,−1,−5, 3, 4, 6], v w =
[6, 3, 4,−5,−2,−1], and w v = [4,−6, 1, 5, 3, 2]. We identify Sn as a
subgroup of SB

n in the natural way.
As a set of generators for SB

n we take SB = {sB
1 , . . . , sB

n−1, s
B
0 }, where

sB
i = [1, . . . , i− 1, i + 1, i, i + 2, . . . , n]

for i ∈ [n− 1], and

sB
0 = [−1, 2, . . . , n].

Note that multiplying an element w ∈ SB
n on the right by sB

i (respectively,
sB
0 ) has the effect of exchanging the values in position i and i + 1 (respec-

tively, changing the sign of the value in position 1) in the window notation
of w, for i = 1, . . . , n − 1. On the other hand, the same operation has the
effect of exchanging the values in positions i and i + 1 as well as those in
positions −i and −i − 1 (respectively, exchanging the values in positions
1 and −1) in the complete notation of w. This makes it clear that SB

generates SB
n .

Figure 8.1 illustrates the action of sB
0 . Here and elsewhere in this chapter,

we write the minus sign under an integer, for ease of notation. For the rest
of this section, if there is no danger of confusion, we simply write “S”
instead of “SB” and “si” instead of “sB

i ,” for i = 0, . . . , n− 1.

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

Figure 8.1. Diagram of sB
0 ∈ SB

5 and its action on SB
5 .
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As in the case of Sn, the first step is that of obtaining an explicit combi-
natorial description of the length function ℓB of SB

n with respect to S. For
v ∈ SB

n , we let

invB(v)
def
= inv (v(1), . . . , v(n)) + neg (v(1), . . . , v(n))

+ nsp (v(1), . . . , v(n)). (8.1)

For example, if v = [−3, 2, 7,−1,−6, 5,−4], then invB(v) = 12+4+10 = 26.
Note that invB(v) can be interpreted combinatorially also as counting

certain inversions in the complete notation of v. More precisely, we have
that

invB(v) = |{(i, j) ∈ [n]× [n] : i < j, v(i) > v(j)}|
+ |{(i, j) ∈ [n]× [n] : i ≤ j, v(−i) > v(j)}|. (8.2)

For this reason, we call the inversions counted by the right-hand side of
equation (8.2) B-inversions. If v ∈ SB

n , it is not hard to see that

neg (v(1), . . . , v(n)) + nsp (v(1), . . . , v(n)) = −
∑

{j∈[n]: v(j)<0}

v(j) (8.3)

and that invB(v) = inv (v) if and only if v ∈ Sn.

Proposition 8.1.1 Let v ∈ SB
n . Then,

ℓB(v) = invB(v) . (8.4)

Proof. We prove first that

invB (v) ≤ ℓB(v) (8.5)

for all v ∈ SB
n . Let v ∈ SB

n . It is easy to see that inv ((vs0)(1), . . . , (vs0)(n))
= inv (v(1), . . . , v(n)) − v(1) + sgn (v(1)), and it therefore follows from
definition (8.1) that

invB (v s0) = invB (v) + sgn (v(1)) . (8.6)

On the other hand, for i ∈ [n− 1] we clearly have that

invB (v si) =

{
invB (v) + 1 , if v(i) < v(i + 1),
invB (v)− 1 , if v(i) > v(i + 1).

(8.7)

Since invB (e) = ℓB(e) = 0, equations (8.6) and (8.7) prove inequality (8.5),
as claimed.

We now prove equation (8.4) by induction on invB (v). If invB (v) = 0,
then v = [1, 2, . . . , n] = e and equation (8.4) clearly holds. So, let t ∈ N

and v ∈ SB
n be such that invB (v) = t + 1. Then, v 	= e and, hence, there

exists s ∈ S such that invB (v s) = t (otherwise equations (8.6) and (8.7)
would imply that 0 < v(1) < v(2) < · · · < v(n) and hence that v = e).
This, by the induction hypothesis, implies that ℓB(v s) = t and hence that
ℓB(v) ≤ t + 1. Therefore, ℓB(v) ≤ invB (v) and this, by inequality (8.5),
concludes the induction step. �
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As a consequence of Proposition 8.1.1 we obtain the following simple
description of the (right) descent set of an element of SB

n .

Proposition 8.1.2 Let v ∈ SB
n . Then,

DR(v) = {si ∈ S : v(i) > v(i + 1)}, (8.8)

where v(0)
def
= 0.

Proof. By Proposition 8.1.1, we have that

DR(v) = {s ∈ S : invB (v s) < invB (v)},
so equation (8.8) follows from equations (8.6) and (8.7). �

For example, if v = [−1,−3, 4,−2, 7,−5,−6], then DR(v) = {s0, s1, s3, s5,
s6}.
Proposition 8.1.3 (SB

n , SB) is a Coxeter system of type Bn.

Proof. We proceed exactly as in the proof of Proposition 1.5.4. Let
i, i1, . . . , ip ∈ [0, n− 1] be such that

ℓB(si1 . . . sip
si) < ℓB(si1 . . . sip

),

and w
def
= si1 . . . sip

. If i ∈ [n− 1], then, by Proposition 8.1.2, the reasoning
goes exactly as in the proof of Proposition 1.5.4, except that ij 	= 0 since a+

b 	= 0. If i = 0, then, by Proposition 8.1.2, a < 0, where a
def
= w(1). Hence, a

appears in the left half of the complete notation of the identity, but in the
right half of the complete notation of w. Hence, there is a j ∈ [p] such that
a is in the left half of the complete notation of si1 . . . sij−1 but in the right
one of that of si1 . . . sij

. Hence, the complete notations of si1 . . . sip
and of

si1 . . . ŝij
. . . sip

are equal except that a and −a are interchanged and this,
by the definitions of w and a, implies that si1 . . . sip

si = si1 . . . ŝij
. . . sip

,
as desired. �

An alternative way of proving the above proposition is given in
Exercise 1.

As was done for Sn, we now give simple combinatorial descriptions of the
quotients and parabolic subgroups of SB

n . Again, for notational simplicity,
we treat only the case when |J | = |S| − 1. The proof of the next result is
clear.

Proposition 8.1.4 Let i ∈ [0, n− 1] and J
def
= S \ {si}. Then,

(SB
n )J = Stab ([i + 1, n])

and

(SB
n )J = {v ∈ SB

n : 0 < v(1) < · · · < v(i), v(i + 1) < · · · < v(n)}.
�
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The reader should have no trouble formulating the preceding result in the
general case. For example, if n = 6 and J = {s0, s2, s3, s5}, then (SB

n )J =
{v ∈ SB

6 : 0 < v(1), v(2) < v(3) < v(4), v(5) < v(6)}.
Also for SB

n , there is a simple combinatorial rule for computing uJ given
u ∈ SB

n and J ⊆ S, which, again, we describe only in the case that |J | =

|S| − 1. Namely, if i ∈ [0, n − 1] and J
def
= S \ {si}, then the window

notation of uJ is obtained from that of u by rearranging the elements of
{u(i + 1), . . . , u(n)} in increasing order and then rearranging the elements
of {|u(1)|, . . . , |u(i)|} in increasing order. For example, suppose n = 9,
J = {s1, s3, s4, s5, s6, s8}, and u = [−9, 3, 1,−5,−6, 8, 2,−4, 7]. Then, uJ is
obtained by rearranging {−9, 3}, {1,−5,−6, 8, 2}, and {−4, 7} in increasing
order; hence, uJ = [−9, 3,−6,−5, 1, 2, 8,−4,7]. On the other hand, if J =
{s0, s1, s2, s4, s5, s6, s8}, then uJ = [1, 3, 9,−6,−5, 2, 8,−4, 7].

It is easy to describe the set of reflections of SB
n .

Proposition 8.1.5 The set of reflections of SB
n is

{(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n}
⋃
{(i,−i) : i ∈ [n]}.

In particular, SB
n has n2 reflections.

Proof. Let w ∈ SB
n and i ∈ [n− 1]. Then, one computes that

wsiw
−1 = (w(i), w(i + 1))(−w(i),−w(i + 1)). (8.9)

Similarly,

ws0w
−1 = (w(1),−w(1)).

Since w is an arbitrary element of SB
n , there follows that w(i) and w(i + 1)

can be any two elements of [±n] that have different absolute value, whereas
w(1) can be any element of [±n]. �

Proposition 8.1.5 enables us to derive a description of the Bruhat graph
of SB

n .

Proposition 8.1.6 Let u, v ∈ SB
n . Then, the following are equivalent:

(i) u → v.

(ii) There exist i, j ∈ [±n], i < j, such that u(i) < u(j) and either
v = u(i, j)(−i,−j) (if |i| 	= |j|) or v = u(i, j) (if |i| = |j|).

Proof. By the definition of the Bruhat graph and Proposition 8.1.5, we
only have to check that, given i, j, u, and v as in (ii), invB(v) > invB(u) if
and only if u(i) < u(j).

If j = −i (note that this implies that i < 0), then the complete notation
of v is obtained from that of u by exchanging the values u(i) and u(−i). If
u(i) < 0, then u(i) < u(−i), and it is easy to see from equation (8.1) that
invB(u) < invB(v). If u(i) > 0, then, by the same reasoning (interchanging
the roles of u and v), we conclude that invB(u) > invB(v).
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Figure 8.2. Diagram of the reflection (−4, 1)(−1, 4) ∈ SB
5 and its action on SB

5 .

If j 	= −i then the complete notation of v is obtained from that of u
by exchanging u(i) and u(j) as well as u(−i) and u(−j). Suppose u(i) <
u(j). The result is clear if ij > 0. If ij < 0, then, since u(i, j)(−i,−j) =
u(i,−i)(−j, i)(−i, j)(i,−i), the result follows from the two previous cases.
Similarly, invB(v) < invB(u) if u(i) > u(j). �

The preceding result implies, in particular, that if u, v ∈ Sn =
Stab([n]) ⊆ SB

n , then u → v in Sn if and only if u → v in SB
n . Thus,

the Bruhat graph of Sn is the directed subgraph induced by that of SB
n on

Sn. Figure 8.3 shows the Bruhat order and the Bruhat graph of SB
2 . The

reader should compare this picture to the diagram of Bruhat order of B2

shown in Figure 2.1.

1 2

1 2 2 1

2 1 2 1

2 1 1 2

1 2

1 2

1 2 2 1

2 1 2 1

2 1 1 2

1 2

Figure 8.3. Bruhat order and Bruhat graph of SB
2 .
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Proposition 8.1.6 also gives a description of the Bruhat order on SB
n and

shows, in particular, that if u, v ∈ SB
n and u ≤ v in SB

n , then u ≤ v in (the
Bruhat order of) S([±n]). We now show that the converse is also true.

For v ∈ SB
n , let

v[i, j]
def
= |{a ∈ [−n, n] : a ≤ i, v(a) ≥ j}| (8.10)

for i, j ∈ [−n, n], where v(0)
def
= 0. Note that identity (2.5) continues to

hold if x ∈ SB
n and k, i, j, l ∈ [±n], k ≤ i, j ≤ l.

The next simple identity will be used in the proof of Theorem 8.1.8.

Proposition 8.1.7 Let v ∈ SB
n . Then,

v[−i− 1,−j + 1]− v[i, j] = j − i− 1,

for all i ∈ [−n, n− 1], j ∈ [−n + 1, n].

Proof. There are several cases to consider. Since they are all similar, we
treat only one of them. Suppose that i, j > 0. Then we have that

v[−i− 1,−j + 1]− v[i, j] = |{a < −i : −j < v(a) < j}|
− |{a ∈ [±i] : v(a) ≥ j}|

= j − 1− |{a ∈ [−i,−1] : −j < v(a) < j}|
− (i− |{a ∈ [±i] : 0 < v(a) < j}|)

= j − i− 1.

�

We can now prove the analog of Theorem 2.1.5 for the Bruhat order on
SB

n .

Theorem 8.1.8 Let u, v ∈ SB
n . Then, the following are equivalent:

(i) u ≤ v.

(ii) u[i, j] ≤ v[i, j], for all i, j ∈ [−n, n].

Proof. Suppose that (i) holds. We may assume that u → v in SB
n . By

Proposition 8.1.6, this implies that there are a, b ∈ [±n], a < b, such that
u(a) < u(b) and either v = u(a,−a) (if b = |a|) or v = u(a, b)(−a,−b) (if
b 	= |a|). Therefore, we conclude from (8.10) that

v[i, j] =

{
u[i, j] + 1, if (i, j) ∈ [a,−a− 1]× [u(a) + 1,−u(a)],
u[i, j], otherwise,

(8.11)

if v = u(a,−a), and

v[i, j] =

⎧
⎨
⎩

u[i, j] + 2, if (i, j) ∈ A ∩B,
u[i, j] + 1, if (i, j) ∈ A∆B,
u[i, j], otherwise,

(8.12)

if v = u(a, b)(−a,−b), where A = [a, b − 1] × [u(a) + 1, u(b)] and B =
[−b,−a− 1]× [−u(b) + 1,−u(a)]. Thus, (ii) follows.
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Suppose now that (ii) holds. Let, for brevity,

M(i, j)
def
= v[i, j]− u[i, j] (8.13)

for i, j ∈ [−n, n]. We may assume that M(i, j) > 0 for some i, j. Reasoning
as in the proof of Theorem 2.1.5, we then conclude that there exist (a1, b1),
(a0, b0) ∈ [±n]2 such that a1 < a0, v(a1) = b1 > b0 = v(a0), and

M([a1, a0 − 1]× [b0 + 1, b1]) > 0. (8.14)

From definition (8.13) and Proposition 8.1.7 we deduce that

M(i, j) = M(−i− 1,−j + 1) (8.15)

for all i ∈ [−n, n− 1], j ∈ [−n + 1, n]. Hence, by inequality (8.14),

M([−a0,−a1 − 1]× [−b1 + 1,−b0]) > 0. (8.16)

Also, since v ∈ SB
n , we have that v(−a0) = −b0 > −b1 = v(−a1). If the

rectangles in inequalities (8.14) and (8.16) do not intersect then it follows
from equation (8.12) that v(a1, a0)(−a1,−a0)[i, j] ≥ u[i, j] for all i, j ∈
[−n, n] Hence, by induction we conclude that u ≤ v(a1, a0)(−a1,−a0), and
(ii) follows since v(a1, a0)(−a1,−a0) → v. If the rectangles in (8.14) and
(8.16) do intersect, then a1 < 0 < a0 and b1 > 0 > b0 and, hence,

M([a,−a− 1]× [−v(a) + 1, v(a)]) > 0,

where a
def
= max(a1,−a0). However, then, by (8.11), v(a,−a)[i, j] ≥ u[i, j]

for all i, j ∈ [−n, n], and we conclude again by induction. �

We illustrate the preceding theorem with an example. Let n = 4, v =
[−4, 2, 1,−3], and u = [−1, 3,−4,−2]. Then, u[−4, 3] = 0 < 1 = v[−4, 3],
but u[−3, 2] = 2 > 1 = v[−3, 2], so v and u are incomparable in the Bruhat
order of SB

4 .
Theorem 8.1.8 also shows that Bruhat order on SB

n is an induced subposet
of Bruhat order on S2n (∼= S([±n])).

Corollary 8.1.9 Let u, v ∈ SB
n . Then, u ≤ v in SB

n if and only if u ≤ v
in S2n.

Proof. This follows immediately from Theorems 2.1.5 and 8.1.8. �

As for Sn, it is possible to restate Theorem 8.1.8 in a form that is
sometimes known as the “tableau criterion” for SB

n (see Exercise 6).

8.2 Type D

Let SD
n be the subgroup of SB

n consisting of all of the signed permutations
having an even number of negative entries in their window notation. More
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precisely,

SD
n

def
= {w ∈ SB

n : neg (w(1), . . . , w(n)) ≡ 0 (mod 2)}.
As a set of generators for SD

n we take SD = {sD
0 , . . . , sD

n−1}, where sD
i = sB

i

for i ∈ [n− 1], and

sD
0 = [−2,−1, 3, . . . , n] = (1,−2)(2,−1).

Figure 8.4 illustrates the action of sD
0 on SD

3 . It is clear that SD generates
SD

n . Note that Sn ⊂ SD
n ⊂ SB

n . For the rest of this section, if there is no
danger of confusion, we write simply “S” instead of “SD” and “si” instead
of “sD

i ,” for i = 0, . . . , n− 1.
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Figure 8.4. Diagram of sD
0 ∈ SD

5 and its action on SD
5 .

Again, we begin by obtaining an explicit combinatorial description of the
length function ℓD of SD

n with respect to S. Let

invD(v)
def
= invB(v)− neg (v(1), . . . , v(n)) (8.17)

for all v ∈ SB
n . Note that, as in the case of SB

n , invD(v) counts certain inver-
sions in the complete notation of v. More precisely, it follows immediately
from definition (8.17) and equation (8.2) that

invD(v) = |{(i, j) ∈ [n]× [n] : i < j, v(i) > v(j)}|
+ |{(i, j) ∈ [n]× [n] : i < j, v(−i) > v(j)}|. (8.18)

For this reason, we call the inversions counted by the right-hand side of
equation (8.18) D-inversions.

Proposition 8.2.1 Let v ∈ SD
n . Then,

ℓD(v) = invD(v). (8.19)
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Proof. We prove first that

invD(v) ≤ ℓD(v) (8.20)

for all v ∈ SD
n . Let v ∈ SD

n . If i ∈ [n − 1], then it follows from equation
(8.7) and definition (8.17) that

invD(v si) =

{
invD(v) + 1 , if v(i) < v(i + 1),
invD(v)− 1 , if v(i) > v(i + 1).

(8.21)

On the other hand, since sD
0 = sB

0 sB
1 sB

0 , we obtain from equations (8.6)
and (8.7) (for i = 1) that

invB(v sD
0 ) =

{
invB(v) + sgn(v(1)) + sgn(v(2)) + 1 , if −v(1) < v(2),
invB(v) + sgn(v(1)) + sgn(v(2)) − 1 , if −v(1) > v(2)

and, hence, we conclude from equation (8.17) that

invD(v sD
0 ) =

{
invD(v) + 1 , if v(1) + v(2) > 0,
invD(v) − 1 , if v(1) + v(2) < 0.

(8.22)

Since invD(e) = ℓD(e) = 0, equations (8.21) and (8.22) imply inequality
(8.20), as claimed.

We now prove equation (8.19) by induction on invD(v). If invD(v) =
0, then, by equations (8.17) and (8.1), inv(v(1), . . . , v(n)) = 0 and
nsp (v(1), . . . , v(n)) = 0. Therefore, v(1) < · · · < v(n) and neg (v(1), . . . ,
v(n)) ≤ 1 and this, since v ∈ SD

n , implies that v = e and equation (8.19)
holds in this case. So, let t ∈ N and v ∈ SD

n be such that invD(v) = t + 1.
Then, v 	= e and we claim that there exists s ∈ S such that invD(v s) = t.
In fact, if invD(v s) = t + 2 for all s ∈ S, then equations (8.21) and (8.22)
would imply that v(1) < v(2) < · · · < v(n) and v(1) + v(2) > 0. However,
this implies that v(1) > 0 and hence that v = e, which proves our claim. So,
let s ∈ S be such that invD(v s) = t. Then, by our induction hypothesis,
ℓD(v s) = t and hence ℓD(v) ≤ t + 1. Therefore, ℓD(v) ≤ invD(v) and this,
by inequality (8.20), concludes the induction step and, hence, the proof. �

The preceding result allows a simple description of the descent set of an
element of SD

n .

Proposition 8.2.2 Let v ∈ SD
n . Then,

DR(v) = {si ∈ S : v(i) > v(i + 1)} , (8.23)

where v(0)
def
= −v(2) and v(n + 1)

def
= 0.

Proof. By Proposition 8.2.1, we have that

DR(v) = {s ∈ S : invD(v s) < invD(v)},
so the result follows from equations (8.21) and (8.22). �

For example, if v = [−2, 1, 5,−3,−4,−6] then DR(v) = {s0, s3, s4, s5}.
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As in the previous section, the combinatorial description of SD
n allows us

to give a simple combinatorial proof of the fact that it is indeed a Coxeter
group of type Dn. (Here, the definition of Dn, n ≥ 4, from Appendix A1
is extended to include also D2 = A1 ×A1 and D3 = A3.)

Proposition 8.2.3 (SD
n , SD) is a Coxeter system of type Dn.

Proof. We follow the proof of Proposition 1.5.4. Let i, i1, . . . , ip ∈ [0, n−1]
be such that

ℓD(si1 . . . sip
si) < ℓD(si1 . . . sip

)

and w
def
= si1 . . . sip

.

If i ∈ [n − 1], then, by Proposition 8.2.2, b > a, where a
def
= w(i + 1)

and b
def
= w(i). The reasoning in this case then goes exactly as in the

proof of Proposition 8.1.3, except that now it is possible that ij = 0. How-
ever, if ij = 0, then either si1 . . . sij−1 (−2) = a and si1 . . . sij−1 (1) = b,
or si1 . . . sij−1 (−1) = a and si1 . . . sij−1 (2) = b, and in either case it still
follows that the complete notations of si1 . . . sij−1 and si1 . . . sij

are equal
except that a and b as well as −a and −b are interchanged, so the reasoning
goes through in the same way.

If i = 0, then, by Proposition 8.2.2, b > a, where a
def
= w(1) and

b
def
= w(−2). Hence, there exists j ∈ [p] such that a is to the left of b in

the complete notation of si1 . . . sij−1 but a is to the right of b in the com-
plete notation of si1 . . . sij

. Hence, the complete notations of si1 . . . sij−1

and si1 . . . sij
are equal except that a and b as well as −a and −b are in-

terchanged (this is obvious if ij ∈ [n− 1], and it follows from the reasoning
done above in the case ij = 0) and we are done as before since multiplying
w on the right by s0 has exactly the effect of interchanging a and b as well
as −a and −b in the complete notation of w. �

For a different proof of this proposition, see Exercise 7.
As done in the previous section, we now describe the parabolic subgroups

and the quotients of SD
n (again, for simplicity, we assume that |J | = |S|−1).

The proof of the next result is clear.

Proposition 8.2.4 Let i ∈ [0, n− 1] and J
def
= S \ {si}. Then,

(SD
n )J =

{
Stab ([i + 1, n]), if i 	= 1,
Stab ({−1, 2, 3, . . . , n}), if i = 1

and

(SD
n )J = {v ∈ SD

n : v(−2) < v(1) < · · · < v(i), v(i + 1) < · · · < v(n)}.
�

We illustrate the general case of the preceding proposition with some
examples. Let n = 9, and J = {s0, s1, s2, s4, s5, s7, s8}. Then (SD

n )J = {v ∈
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SD
9 : v(−2) < v(1) < v(2) < v(3), v(4) < v(5) < v(6), v(7) < v(8) <

v(9)}. If J = {s2, s3, s5, s6, s8}, then (SD
n )J = {v ∈ SD

9 : v(2) < v(3) <
v(4), v(5) < v(6) < v(7), v(8) < v(9)}.

Again, Proposition 8.2.4 implies a simple combinatorial rule for comput-
ing uJ given u ∈ SD

n and J ⊆ S. As usual, we state it only in the case that
|J | = |S|− 1. Namely, if J = S \ {si} and i 	= 1, the window notation of uJ

is obtained by rearranging {|u(1)|, . . . , |u(i)|} and {u(i + 1), . . . , u(n)} in
increasing order and then (possibly) changing the sign of the first entry so
that the resulting sequence has an even number of negative entries. On the
other hand, if i = 1, the window notation of uJ is obtained from that of
u by rearranging the elements {−u(1), u(2), . . . , u(n)} in increasing order,
and then changing the sign to the smallest one.

We illustrate this (in the general case) with some examples. Let n = 9,
J = {s0, s1, s2, s4, s5, s7, s8}, and u = [−9, 2,−7,−6, 1, 5, 4, 3,−8]. Then
the window notation of uJ is obtained by rearranging

{|2|, | − 7|, | − 9|}, {−6, 1, 5}, and {4, 3,−8}
in increasing order and, hence, uJ = [2, 7, 9,−6, 1, 5,−8, 3, 4]. On the other
hand, if J = {s0, s2, s3, s4, s6, s7, s8}, then the window notation of uJ is
obtained from that of u by rearranging the elements {9, 2,−7,−6, 1} in
increasing order, then changing the sign to the smallest one (namely −7)
and then rearranging the elements {5, 4, 3,−8} in increasing order; hence,
uJ = [7,−6, 1, 2, 9,−8, 3, 4, 5].

We now describe the set of reflections of SD
n .

Proposition 8.2.5 The set of reflections of SD
n is

{(i, j)(−i,−j) : 1 ≤ |i| < j ≤ n}.
In particular, SD

n has n2 − n reflections.

Proof. Let w ∈ SD
n . Then,

wsD
0 w−1 = (w(1),−w(2))(−w(1), w(2)).

On the other hand, we have already computed wsiw
−1, for i ∈ [n− 1], in

equation (8.9). Since w is an arbitrary element of SD
n , there follows that w(i)

and w(i + 1) can be any two elements of [±n] such that w(i) 	= ±w(i + 1),
and the result follows. �

The preceding result yields the following description of the Bruhat graph
of SD

n .

Proposition 8.2.6 Let u, v ∈ SD
n . Then, the following are equivalent:

(i) u → v.

(ii) There exist i, j ∈ [±n], |i| < j, such that u(i) < u(j) and v =
u(i, j)(−i,−j).
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Proof. By definition of the Bruhat graph and Proposition 8.2.5, we only
have to check that, given i, j, u, and v as in (ii), invD(u) < invD(v) if
u(i) < u(j).

So, suppose that u(i) < u(j). Then, from Proposition 8.1.6 we know that
invB(v) > invB(u). However, neg (v(1), . . . , v(n)) = neg (u(1), . . . , u(n))
unless i < 0 < j and u(i) < 0 < u(j). But, if i < 0 < j and u(i) < 0 < u(j),
then neg (v(1), . . . , v(n)) = neg (u(1), . . . , u(n)) + 2 and u → u(i,−i) →
u(i,−i)(−j, i)(−i, j) → v in SB

n . Hence, invB(v) ≥ invB(u) + 3, and the
result follows from equation (8.17) also in this case. �

Proposition 8.2.6 shows that the Bruhat graph of SD
n is the directed

subgraph induced by that of SB
n on SD

n . For example, the Bruhat graph
of SD

2 is shown in Figure 8.5 (cf. Figure 8.3). The Bruhat order of SD
3 is

isomorphic to that shown in Figure 2.4.

1 2

2 1 2 1

1 2

Figure 8.5. The Bruhat graph of SD
2 .

Proposition 8.2.6 also implies that if u, v ∈ SD
n and u ≤ v in SD

n , then
u ≤ v in SB

n . The converse is, however, not true. For example, [2, 1] ≤
[−2,−1] in SB

2 (see Figure 8.3), but [2, 1] and [−2,−1] are incomparable
in SD

2 (see Figure 8.5). Therefore, Theorem 8.1.8 is not enough to describe
the Bruhat order on SD

n . However, a slight variation of it does work.
Let v ∈ SB

n . Given a, b ∈ [n], we say that [−a, a] × [−b, b] is an empty
rectangle (centered at the origin) for v if

{i ∈ [±a] : |v(i)| ≤ b} = ∅.

The following simple observation is the crucial property of empty rectan-
gles. Its verification is left to the reader (the number u[i, j] is defined in
(8.10)).

Lemma 8.2.7 Let u ∈ SB
n and [−a, a]× [−b, b] be an empty rectangle for

u. Then,

u[a, b + 1]− u[−a− 1, b + 1] = a,

u[−a− 1,−b]− u[−a− 1, b + 1] = b,
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and

u[a,−b]− u[−a− 1, b + 1] = a + b + 1.

�

We can now prove the analog of Theorem 8.1.8 for the Bruhat order on
SD

n .

Theorem 8.2.8 Let v, u ∈ SD
n . Then, v ≤ u if and only if the following

hold:

(i) v[i, j] ≤ u[i, j], for all i, j ∈ [−n, n].

(ii) For all a, b ∈ [n], if [−a, a] × [−b, b] is an empty rectangle for both
v and u and u[−a− 1, b + 1] = v[−a− 1, b + 1], then u[−1, b + 1] ≡
v[−1, b + 1] (mod 2).

Proof. Suppose that v ≤ u. Then, as we have already observed, v ≤ u in
SB

n and, hence, by Theorem 8.1.8, (i) holds.
We now prove (ii). Suppose that [−a, a]× [−b, b] is empty for both u and

v and that

u[−a− 1, b + 1] = v[−a− 1, b + 1]. (8.24)

Then, from Lemma 8.2.7, we conclude that

v[a, b + 1] = u[a, b + 1],

v[−a− 1,−b] = u[−a− 1,−b],

v[a,−b] = u[a,−b]. (8.25)

Assume first that v → u. Then, v = u(i, j)(−i,−j) for some i, j ∈ [±n],
|i| < j, such that u(i) > u(j) and it is is easy to verify that v[−1, b + 1] =
u[−1, b + 1] unless −a < i ≤ −1, u(i) ≥ b, 1 ≤ j ≤ a, and u(j) < −b, in
which case clearly v[−1, b + 1] = u[−1, b + 1]− 2. This proves (ii) if v → u.

Suppose now that v ≤ u. Then, we have from the definition of Bruhat
order that there exist u0, u1, . . . , uk such that v = u0 → u1 → · · · → uk =
u. Hence, by (i),

v[i, j] ≤ u1[i, j] ≤ · · · ≤ uk−1[i, j] ≤ u[i, j]

for all i, j ∈ [−n, n]. Therefore, by equations (8.25), (8.24), and (2.5),
[−a, a] × [−b, b] is empty for ur for all r = 0, . . . , k, and (ii) follows from
the v → u case.

Conversely, suppose that (i) and (ii) hold. Let, for brevity,

M(i, j)
def
= u[i, j]− v[i, j]

for i, j ∈ [−n, n]. We may assume that M(i, j) > 0 for some i, j. Call, for
brevity, a rectangle [a, b − 1] × [c + 1, d] ⊆ [−n, n] × [−n, n] allowable if
u(a) = d, u(b) = c, and

M([a, b− 1]× [c + 1, d]) > 0.



8.2. Type D 259

Reasoning as in the proof of Theorem 2.1.5, we then conclude that there
is at least one allowable rectangle. If there is an allowable rectangle, say
[a1, a0 − 1]× [b0 + 1, b1], that does not contain the origin, then its “mirror
image” [−a0,−a1 − 1] × [−b1 + 1,−b0] is also an allowable rectangle (cf.
the proof of Theorem 8.1.8) and is disjoint from the first one. In this case,

u′ def
= u(a1, a0)(−a1,−a0) → u in SD

n and, as the reader can check, (i) and
(ii) still hold with u′ in place of u. So, the result follows by induction as in
the proof of Theorem 8.1.8.

Therefore, we only have to consider the case when all allowable rectangles
contain the origin. Call, for convenience, a point (i, j) ∈ [±n]2 a free point
of u (respectively, v) if u(i) = j 	= v(i) (respectively, v(i) = j 	= u(i)).
Reasoning as in the proof of Theorem 2.1.5, it is easy to see that every
free point of u is either the top left, or bottom right, corner of an allowable
rectangle. Since all allowable rectangles contain the origin, this implies that
if a1 < · · · < at < 0 < −at < · · · < −a1 are the x-coordinates of the free
points of u (and hence of v), then 0 < u(a1) < · · · < u(at).

Notice that this implies that if a ∈ [n], then u−1(a) ≤ v−1(a) (or else
M(v−1(a), a) < 0). Hence,

M(i, j) ≥ M(i, j + 1) (8.26)

for all i, j ∈ [±n], with j ≥ 0, and M(0, 0) > 0. Therefore, since u, v ∈ SD
n ,

M(0, 0) ≥ 2. Hence, there exists an r ∈ [t − 1] such that v(ar+1) 	= u(ar)
(or else M(0, 0) ≤ 1). Choose r maximal with this property. So, v(ar+1) 	=
u(ar), but v(aj+1) = u(aj) for j = r + 1, . . . , t − 1. Note that this implies
that M(−1, 1 + u(ar)) = 1 and that, if ar+1 ≤ j < −ar+1, then

M(j, u(ar)) = 2. (8.27)

Let w
def
= u(ar,−ar+1)(ar+1,−ar). Then, by Proposition 8.2.6, w → u in

SD
n , and we leave it to the reader to verify, using relations (8.12), (8.26), and

(8.27), that (i) and (ii) still hold with w in place of u. This, by induction,
completes the proof of the theorem. �

We illustrate the preceding theorem with some examples. Let n = 4,
u = [4,−3,−2, 1], and v = [4, 3, 2, 1]. Then, one verifies easily that v[i, j] ≤
u[i, j] for all i, j ∈ [−4, 4]. However, [−2, 2]× [−2, 2] is an empty rectangle
for both u and v, and v[−3, 3] = 0 = u[−3, 3], but v[−1, 3] − u[−1, 3] =
0 − 1 = −1, so u and v are incomparable in the Bruhat order of SD

4 . On
the other hand, if u = [1,−3,−2, 4] and v = [1, 3, 2, 4], then v[i, j] ≤ u[i, j]
for all i, j ∈ [−4, 4], and there is no rectangle that is empty for v, so v ≤ u
in the Bruhat order of SD

4 .
For a different reformulation of Theorem 8.2.8, similar to the tableau

criteria for types A and B, see Exercise 11.
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8.3 Type Ã

Let S̃n, n ≥ 2, be the group of all bijections u of Z in itself such that

u(x + n) = u(x) + n (8.28)

for all x ∈ Z and

n∑

x=1

u(x) =

(
n + 1

2

)
, (8.29)

with composition as group operation. Clearly, such a u is uniquely deter-
mined by its values on [n], and we write u = [a1, . . . , an] to mean that
u(i) = ai for i = 1, . . . , n. We call this the window notation of u. For
example, if n = 5, u = [2, 1,−2, 0, 14], and v = [15,−3,−2, 4, 1], then

uv = [24,−4,−7, 0, 2]. The elements of S̃n are sometimes called affine per-

mutations . Note that if v ∈ Sn, then there exists a unique ṽ ∈ S̃n such
that ṽ(i) = v(i) for i ∈ [n]. This map Sn → S̃n is an injective group ho-
momorphism, and for this reason, we sometimes identify a permutation v
with the affine permutation ṽ and consider Sn as a subgroup of S̃n.

As a set of generators for S̃n we take S̃A = {s̃A
1 , s̃A

2 , . . . , s̃A
n }, where

s̃A
i

def
= [1, 2, . . . , i− 1, i + 1, i, i + 2, . . . , n]

for i = 1, . . . , n− 1 and

s̃A
n

def
= [0, 2, 3, . . . , n− 1, n + 1].

The action of s̃A
5 on S̃5 is illustrated in Figure 8.6. Note that multiplying

an element u ∈ S̃n on the right by s̃A
i (i ∈ [n]) causes the interchange of

the entries of the complete notation of u in positions i + kn and i + 1 + kn
for all k ∈ Z. Hence,

us̃A
i =

⎧
⎪⎨
⎪⎩

[u(1), . . . , u(i− 1), u(i + 1), u(i), u(i + 2), . . . , u(n)],

if i ∈ [n− 1],

[u(0), u(2), . . . , u(n− 1), u(n + 1)], if i = n.

This makes it clear that s̃A
1 , . . . , s̃A

n generate S̃n and shows the symmetry of
s̃A
1 , . . . , s̃A

n , which is not immediately apparent from their window notations.
For the rest of this section, if there is no danger of confusion, we write
simply “S” instead of “S̃A” and “si” instead of “s̃A

i ,” for i = 1, . . . , n.

Note that for all v ∈ S̃n and i, j ∈ Z,

v(i) 	≡ v(j) (mod n)

if and only if i 	≡ j (mod n).
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Figure 8.6. Diagram of esA
5 ∈ eS5 and its action on eS5.

We now obtain a combinatorial description of the length function ℓ eA of

S̃n with respect to S. Given v ∈ S̃n let

inv eA(v)
def
= inv(v(1), . . . , v(n)) +

∑

1≤i<j≤n

⌊ |v(j)− v(i)|
n

⌋

=
∑

1≤i<j≤n

∣∣∣∣
⌊

v(j)− v(i)

n

⌋∣∣∣∣ .

For example, if v = [15,−3,−2, 4, 1] ∈ S̃5 then inv eA(v) = 5+12 = 17. Note
that inv eA(v) counts certain inversions in the complete notation of v. More
precisely,

inv eA(v) = |{(i, j) ∈ [n]× P : i < j, v(i) > v(j)}|. (8.30)

In fact,
⌊ |v(j)− v(i)|

n

⌋
= |{k ∈ P : v(i) > v(j+kn)}|+|{k ∈ P : v(j) > v(i+kn)}|

(8.31)
for all 1 ≤ i < j ≤ n. For this reason we call the inversions counted by
the right-hand side of equation (8.30) Ã-inversions (sometimes also called
affine inversions).

Proposition 8.3.1 We have that

ℓ eA(v) = inv eA(v) (8.32)

for all v ∈ S̃n.
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Proof. We prove first that

inv eA(v) ≤ ℓ eA(v) (8.33)

for all v ∈ S̃n. From the combinatorial interpretation of inv eA given in

equation (8.30) and the effect of multiplying an element of S̃n on the right
by si, it is clear that

inv eA(vsi) =

{
inv eA(v) + 1, if v(i) < v(i + 1),
inv eA(v)− 1, if v(i) > v(i + 1),

(8.34)

for i ∈ [n− 1].
The situation is only slightly more complicated for sn, since the values

in the window notation for vsn are not a permutation of those for v. Notice
first that a pair (i, j) with 2 ≤ i ≤ n− 1 is an inversion for v if and only if
(i, sn(j)) is for vsn.

Assume now that v(n) < v(n + 1). Note that in this case if j > n + 1
and a pair (n, j) is an inversion of v, then (n, sn(j)) is an inversion for
vsn. Furthermore, (n, sn(j)) is an inversion for vsn and (n, j) is not an
inversion of v if and only if v(n+1) ≥ v(j) ≥ v(n). Similarly, if j > 1 and a
pair (1, j) is an inversion for vsn, then (1, sn(j)) is an inversion for v, and,
furthermore, (1, sn(j)) is an inversion for v and (1, j) is not an inversion
for vsn if and only if v(1) ≥ v(sn(j)) ≥ v(0). However, by equation (8.28),
the cardinalities of these two sets are equal. Since (n, n + 1) is an inversion
of vsn but not of v, we conclude that

inv eA(vsn) = inv eA(v) + 1. (8.35)

Similarly,

inv eA(vsn) = inv eA(v) − 1 (8.36)

if v(n) > v(n+1). Since inv eA(e) = ℓ eA(e) = 0, equations (8.34), (8.35), and
(8.36) prove inequality (8.33), as claimed.

We now prove equation (8.32) by induction on inv eA(v). If inv eA(v) = 0,

then
⌊

v(j)−v(i)
n

⌋
= 0 for all 1 ≤ i < j ≤ n and, hence, v(1) < v(2) < · · · <

v(n) and v(n)−v(1) < n. This implies that v(i) = v(1)+i−1 for i = 1, . . . , n
and, therefore, by equation (8.29), that v = e, so that equation (8.32) holds.

Now, let t ∈ N and v ∈ S̃n be such that inv eA(v) = t + 1. Then, v 	= e and
hence there exists s ∈ S such that inv eA(v s) = t (otherwise equations (8.34),
(8.35) and (8.36) would imply that v(1) < v(2) < · · · < v(n) < v(1) + n
and, hence, that v = e, as noted above). This, by the induction hypothesis,
implies that ℓ eA(v s) = t and hence that ℓ eA(v) ≤ t + 1. Therefore, ℓ eA(v) ≤
inv eA(v) and this, by inequality (8.33), concludes the induction step and
hence the proof. �

As a consequence of Proposition 8.3.1, we obtain the following simple
description of the descent set of an element of S̃n.
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Proposition 8.3.2 Let v ∈ S̃n. Then,

DR(v) = {si ∈ S : v(i) > v(i + 1)}.
Proof. By Proposition 8.3.1, we have that

DR(v) = {si ∈ S : inv eA(v si) < inv eA(v)} ,

and the result follows from equations (8.34), (8.35), and (8.36). �

The proof of the following result is essentially identical to that of
Proposition 1.5.4 and is therefore omitted.

Proposition 8.3.3 (S̃n, S̃A) is a Coxeter system of type Ãn−1. �

Next, we describe combinatorially the maximal parabolic subgroups and
their quotients in the group S̃n. Again, the proof is clear.

Proposition 8.3.4 Let i ∈ [n], and J
def
= S \ {si}. Then,

(S̃n)J = Stab ([i + 1, n + i])

and

(S̃n)J = {v ∈ S̃n : v(1) < · · · < v(i), v(i + 1) < · · · < v(n + 1)}.
�

Proposition 8.3.4 makes it very easy to describe explicitly the minimal
coset representatives of (S̃n)J . Consider for notational simplicity only the
case J = S\{si}. Then, the complete notation of uJ is obtained from that of
u by rearranging the entries {u(kn+ i+1), . . . , u(kn+n+ i)} in increasing
order, for all k ∈ Z. For example, if n = 5, u = [−3, 6, 3,−5, 14] and
J = {s1, s2, s4, s5}, then uJ = [3, 6, 9,−5, 2], whereas if J = {s1, s3, s5},
then uJ = [6, 9,−5, 3, 2].

We now describe the set of reflections of S̃n. It is convenient to introduce
the following notation. For a, b ∈ Z, a 	≡ b (mod n), let

ta,b
def
=
∏

r∈Z

(a + rn, b + rn). (8.37)

Thus, si = ti,i+1 for i ∈ [n]. Note that ta,b = tb,a = ta+kn,b+kn for all k ∈ Z.

Proposition 8.3.5 The set of reflections of S̃n is

{ti,j+kn : 1 ≤ i < j ≤ n, k ∈ Z}.

Proof. Let u ∈ S̃n, and i ∈ [n]. Then, we have that

usiu
−1 =

∏

r∈Z

(u(i) + rn, u(i + 1) + rn).

Since u is any element of S̃n we deduce that u(i), u(i + 1) can be any two
elements of Z that are not congruent modulo n, and the result follows. �
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For example, if u = [15,−3,−2, 4, 1], then us1u
−1 = [1, 20, 3, 4,−13],

us2u
−1 = [1, 3, 2, 4, 5], us3u

−1 = [1, 2, 9,−2, 5], us4u
−1 = [4, 2, 3, 1, 5], and

us5u
−1 = [20, 2, 3, 4,−14].

The preceding result enables us to obtain a description of the Bruhat
graph of S̃n.

Proposition 8.3.6 Let u, v ∈ S̃n. Then, the following are equivalent:

(i) u → v.

(ii) There exist i, j ∈ Z, i < j, i 	≡ j (mod n), such that u(i) < u(j) and
v = uti,j.

Proof. By Proposition 8.3.5 and the definition of the Bruhat graph, the
equivalence of (i) and (ii) reduces to showing that if the complete notation
of v is obtained from that of u by interchanging u(i+ rn) and u(j + rn) for
all r ∈ Z, then inv eA(v) > inv eA(u) if u(i) < u(j). This can be established
in a way analogous to that used to prove equation (8.35). �

The description of the Bruhat graph of Sn in Section 2.1 and Proposition
8.3.6 show that if u, v ∈ Sn (and we identify Sn with the subgroup Stab([n])

of S̃n as mentioned at the beginning of this section), then u → v in Sn if

and only if u → v in S̃n. Thus, the Bruhat graph of Sn is the directed
subgraph induced by that of S̃n on Sn.

We now obtain a combinatorial characterization of the Bruhat order on
S̃n. Given v ∈ S̃n, we let

v[i, j]
def
= |{a ≤ i : v(a) ≥ j}|

for all i, j ∈ Z. For an illustration, see Figure 8.7. Note that v[i, j] < +∞
and

v[i, j] = v[i + kn, j + kn] (8.38)

for all i, j, k ∈ Z. Also, note that for any a ≤ c and b ≥ d, we have that

|{x ∈ [a + 1, c] : v(x) ∈ [d, b− 1]}| = v[c, d]− v[c, b]− v[a, d] + v[a, b].

Finally, observe that if v ∈ S̃n and a < b is such that v(a) < v(b), then

v(a, b)[i, j] =

{
v[i, j] + 1, if a ≤ i < b, v(a) < j ≤ v(b) ,
v[i, j], otherwise,

(8.39)

for all i, j ∈ Z (note that v(a, b)[i, j] is well defined even though v(a, b)

	∈ S̃n).

Theorem 8.3.7 Let u, v ∈ S̃n. Then, the following are equivalent:

(i) v ≤ u.

(ii) v[i, j] ≤ u[i, j], for all i, j ∈ Z.
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Figure 8.7. v[4, 2] = 3 if v = [1, 2, 9,−2, 5].

Proof. Suppose that (i) holds. We may assume that v → u in S̃n. This, by
Proposition 8.3.6, implies that there exist i, j ∈ Z, i < j, i 	≡ j (mod n),
such that u = vti,j and u(i) < u(j). Then, i + rn < j + rn and u(i + rn) <
u(j + rn) for all r ∈ Z and (ii) follows from definition (8.37) and equation
(8.39).

Assume now that (ii) holds. Let, for brevity,

M(i, j)
def
= u[i, j]− v[i, j]

for i, j ∈ Z. Then, reasoning exactly as in the proof of Theorem 2.1.5, we
deduce that there exist a1, b1, a0, b0 ∈ Z such that a1 < a0, u(a1) = b1 >
b0 = u(a0), and

M([a1, a0 − 1]× [b0 + 1, b1]) > 0. (8.40)

If the rectangles

{[a1 + nk, a0 − 1 + nk]× [b0 + 1 + nk, b1 + nk]}k∈Z (8.41)

are all disjoint, let u′ = uta1,a0 . Then, by Proposition 8.3.6, u′ → u in S̃n

and u′[i, j] ≥ v[i, j] for all i, j ∈ Z by relations (8.39) and (8.40), so the
result follows by induction.

If the rectangles in (8.41) do intersect, then b0 +n < b1 and a1 +n < a0.

If so, let (α1, β1)
def
= (a0 +n, b0 +n). Then, u(α1) = β1 and u[i, j] > v[i, j] if

(i, j) ∈ [a1, α1−1]×[β1+1, b1]. If the rectangles {[a1+kn, α1−1+kn]×[β1+

1+kn, b1 +nk]}k∈Z are all disjoint, then u2
def
= uta1,α1 yields an element u2

such that u2 → u in S̃n and u2[i, j] ≥ v[i, j] for all i, j ∈ Z, and the result
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again follows by induction. Otherwise, define (α2, β2) = (α1 + n, β1 + n)
and continue as above. �

Note that, by equation (8.38), it is enough to compute v[i, j] for i ∈ [n]
and j ∈ Z. Furthermore, v[i, j] = 0 if i ∈ [n] and j > max(v(1), . . . , v(n)),
and v[i, j−1] = v[i, j]+1 if i ∈ [n] and j ≤ min(v(1), . . . , v(n)). Therefore,
only finitely many values v[i, j] need to be computed. For example, if v =

[1, 2, 9,−2, 5] ∈ S̃5, then we have that

(v[1,−2], . . . , v[1, 9]) = (4, 4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0),

(v[2,−2], . . . , v[2, 9]) = (5, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0),

(v[3,−2], . . . , v[3, 9]) = (6, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1),

(v[4,−2], . . . , v[4, 9]) = (7, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1),

(v[5,−2], . . . , v[5, 9]) = (8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 1, 1),

and all the other values can be readily computed from these. In particular,
this shows that only a finite number of comparisons are needed to check
condition (ii) in Theorem 8.3.7.

We illustrate the preceding theorem with an example. Let v be as above
and u = [5, 4, 3, 2, 1] ∈ S̃5. Then, v[1, 1] = 2 > 1 = u[1, 1], but v[1, 5] = 0 <
1 = u[1, 5], so v and u are incomparable in Bruhat order.

Note that Theorems 2.1.5 and 8.3.7 imply that if u, v ∈ Sn, then u ≤ v
in Sn if and only if u ≤ v in S̃n. The Hasse diagram of the Bruhat order
on the elements of S̃3 of rank ≤ 3 is shown in Figure 8.8.

1 2 3

0 2 4 1 3 2 2 1 3

1 3 4 0 1 5
0 4 2 2 0 4 2 3 1 3 1 2

2 3 5 1 1 6 1 4 3 0 5 1 1 0 5 2 4 0 3 1 4 3 2 1 4 0 2

Figure 8.8. The Bruhat order on eS3 for elements of length ≤ 3.
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8.4 Type C̃

Let n ≥ 2 and S̃C
n be the group of all bijections u of Z in itself such that

u(x + 2n + 1) = u(x) + 2n + 1 (8.42)

and

u(−x) = −u(x), (8.43)

for all x ∈ Z, with composition as group operation. Note that this implies
that

u(k(2n + 1)) = k(2n + 1)

for all k ∈ Z. From now on, and for the rest of this chapter, we set N
def
=

2n + 1.
Clearly, an element u ∈ S̃C

n is uniquely determined by its values on [n],
and we write u = [a1, . . . , an] to mean that u(i) = ai for i ∈ [n]. We call
this the window notation of u. For example, if n = 5, u = [4,−3, 16, 2,−1]
and v = [2,−4, 12,−5, 3], then uv = [−3,−2, 15, 1, 16]. Note that it follows
easily from equations (8.42) and (8.43) that

N∑

i=1

u(i) = Nn + N =

(
N + 1

2

)

for all u ∈ S̃C
n . Hence, S̃C

n ⊆ S̃2n+1. Also, note that if v ∈ SB
n , then there

is a unique element ṽ ∈ S̃C
n such that ṽ(i) = v(i) for i = 1, . . . , n. This is

an injective group homomorphism SB
n → S̃C

n and, for this reason, we often

identify v with ṽ and consider SB
n as a subgroup of S̃C

n .

As a set of generators for S̃C
n we take S̃C = {s̃C

0 , s̃C
1 , . . . , s̃C

n }, where

s̃C
i

def
=
∏

r∈Z

(i + rN, i + 1 + rN)(−i + rN,−i− 1 + rN)

for i = 1, . . . , n− 1,

s̃C
n

def
=
∏

r∈Z

(n + rN, n + 1 + rN),

and

s̃C
0

def
=
∏

r∈Z

(1 + rN,−1 + rN).
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The action of s̃C
0 , s̃C

3 , and s̃C
4 on S̃C

4 is illustrated in Figures 8.9, 8.10, and
8.11, respectively. Thus,

ws̃C
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[w(1), . . . , w(i− 1), w(i + 1), w(i), w(i + 2), . . . , w(n)],

if i ∈ [n− 1],

[w(1), . . . , w(n− 1), w(n + 1)], if i = n,
[w(−1), w(2), . . . , w(n)], if i = 0,

for all w ∈ S̃C
n . Note that, by equations (8.43) and (8.42), w(−1) = −w(1)

and w(n + 1) = 2n + 1 − w(n), so that the window notation of ws̃C
i can

be computed directly from that of w. For the rest of this section, if there
is no danger of confusion, we write simply “S” instead of “S̃C” and “si”
instead of “s̃C

i ,” for i = 0, . . . , n. Note that u(i) ≡ u(j) (mod N) if and

only if i ≡ j (mod N), for all u ∈ S̃C
n and i, j ∈ Z.
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Figure 8.9. Diagram of esC
0 ∈ eSC

4 and its action on eSC
4 .
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Figure 8.10. Diagram of esC
3 ∈ eSC

4 and its action on eSC
4 .

The above remarks make it clear that S generates S̃C
n , and our first goal

is that of determining the length function ℓ eC of S̃C
n with respect to S.

Given v ∈ S̃C
n , we let

inv eC(v)
def
= invB(v(1), . . . , v(n))

+
∑

1≤i≤j≤n

(⌊ |v(i)− v(j)|
N

⌋
+

⌊ |v(i) + v(j)|
N

⌋)
. (8.44)

For example, inv eC([4,−3, 16, 2,−1]) = 10 + 10 = 20.
Note that, by equations (8.31) and (8.2), inv eC(v) counts certain

inversions in the complete notation of v.

Proposition 8.4.1 Let v ∈ S̃C
n . Then,

ℓ eC(v) = inv eC(v) . (8.45)
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Figure 8.11. Diagram of esC
4 ∈ eSC

4 and its action on eSC
4 .

Proof. We prove first that

inv eC(v) ≤ ℓ eC(v) (8.46)

for all v ∈ S̃C
n . It is clear from definition (8.44) that

inv eC(vsi)− inv eC(v) = sgn(v(i + 1)− v(i)) (8.47)

for i ∈ [n− 1]. Furthermore, we have from equations (8.44) and (8.6) that

inv eC(vs0)− inv eC(v) = sgn(v(1)). (8.48)

Finally, noting that

⌊ |a− k|
k

⌋
−
⌊ |a|

k

⌋
=

⎧
⎨
⎩

−1, if a ≥ k,
0, if 0 < a < k,
1, if a ≤ 0,

(8.49)
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for a ∈ Z and k ∈ P, we conclude from equations (8.44) and (8.1) that

inv eC(vsn)− inv eC(v) = invB(v(1), . . . , v(n− 1), N − v(n))

− invB(v(1), . . . , v(n))

+ |{i ∈ [n− 1] : v(i) + v(n) ≤ 0}|
− |{i ∈ [n− 1] : v(i) + v(n) ≥ N}|
+ |{i ∈ [n− 1] : v(n)− v(i) ≤ 0}|
− |{i ∈ [n− 1] : v(n)− v(i) ≥ N}|

+

⌊ |2N − 2v(n)|
N

⌋
−
⌊ |2v(n)|

N

⌋

=

∣∣∣∣
⌊

2N − 2v(n)

N

⌋∣∣∣∣−
∣∣∣∣
⌊

2v(n)

N

⌋∣∣∣∣
= sgn(N − 2v(n)). (8.50)

Since inv eC(e) = 0 = ℓ eC(e), equations (8.47), (8.48), and (8.50) prove
(8.46), as claimed.

We now prove equation (8.45) by induction on inv eC(v). If inv eC(v) = 0,
then 0 < v(1) < v(2) < · · · < v(n) < n + 1 and, hence, v = e and

equation (8.45) clearly holds. So, let t ∈ N and v ∈ S̃C
n be such that

inv eC(v) = t + 1. Then, v 	= e and, hence, there exists s ∈ S such that
inv eC(vs) = t (otherwise equations (8.47), (8.48), and (8.50) would imply
that 0 < v(1) < v(2) < · · · < v(n) < n + 1 and hence that v = e). This, by
the induction hypothesis, implies that ℓ eC(vs) = t, and the result follows as
in the proof of Proposition 8.1.1. �

The proof of the preceding result allows us to obtain a simple description
of the descent set of an element of S̃C

n .

Proposition 8.4.2 Let v ∈ S̃C
n . Then,

DR(v) = {si ∈ S : v(i) > v(i + 1)} .

Proof. This follows immediately from equations (8.47), (8.48), and (8.50),
and the observation that v(0) = 0 and v(n + 1) = N − v(n). �

As in the previous sections, we can now give a simple combinatorial proof
of the fact that S̃C

n is a Coxeter group of type C̃n.

Proposition 8.4.3 (S̃C
n , S̃C) is a Coxeter system of type C̃n.

Proof. We proceed as in the proof of Proposition 1.5.4. Let i, i1, . . . , ip ∈
[0, n] be such that

ℓ eC(si1 . . . sip
si) < ℓ eC(si1 . . . sip

)

and w
def
= si1 . . . sip

. If i ∈ [n − 1], then, by Proposition 8.4.2, b > a,

where a
def
= w(i + 1) and b

def
= w(i), and the reasoning goes through as in

Proposition 8.1.3, except that ij 	= 0, n since a 	≡ ±b (mod N).
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If i = 0, then, by Proposition 8.4.2, 0 > a, where a
def
= w(1). Hence, a

appears to the left of 0 in the complete notation of the identity, but to
the right of it in that of w. Hence, there exists a j ∈ [p] such that a is
to the left of 0 in the complete notation of si1 . . . sij−1 but to the right
of it in that of si1 . . . sij

. Hence, a = si1 . . . sij−1 (−1) = si1 . . . sij
(1) and

ij = 0, and, therefore, the complete notations of si1 . . . sij−1 and si1 . . . sij

are equal except that kN + a and kN − a are interchanged for each k ∈ Z.
Hence, the same is true for the complete notations of si1 . . . ŝij

. . . sip
and

si1 . . . sip
and, therefore,

si1 . . . sip
si = si1 . . . ŝij

. . . sip
, (8.51)

since i = 0 and the effect of s0 on w is exactly that of interchanging kN +a
and kN − a, for each k ∈ Z.

If i = n, then, by Proposition 8.4.2, a > N−a, where a
def
= w(n). Hence, a

is to the right of N−a in the complete notation of the identity but to the left
of it in that of w. Reasoning as above, we conclude that there exists j ∈ [p]
such that ij = n and the complete notations of si1 . . . sij−1 and si1 . . . sij

are equal, except that kN + a and (k + 1)N − a are interchanged for each
k ∈ Z. Thus, the same is true for the complete notations of si1 . . . ŝij

. . . sip

and si1 . . . sip
, and this proves equation (8.51) since i = n and the effect of

sn on w is exactly that of interchanging kN + a and (k + 1)N − a, for each
k ∈ Z. �

We now describe combinatorially the parabolic subgroups and quotients
of S̃C

n . As in the previous sections, we describe for notational convenience
only the case |S \ J | = 1. The reader should be able to see the validity of
the following result “by inspection.”

Proposition 8.4.4 Let i ∈ [0, n], and J
def
= S \ {si}. Then,

(S̃C
n )J = Stab ([−i, i]) ∩ Stab ([i + 1, 2n− i])

and

(S̃C
n )J = {v ∈ S̃C

n : v(0) < v(1) < · · · < v(i), v(i + 1) < · · · < v(n + 1)}.
�

The preceding result yields a simple combinatorial rule to compute, given
u ∈ S̃C

n and J ⊆ S, the minimal coset representative uJ . Namely, if J =
S \ {si}, then the complete notation of uJ is obtained from that of u by
rearranging in increasing order the elements of {u(−i+rN), . . . , u(i+rN)}
and {u(i + 1 + rN), . . . , u((r + 1)N − i − 1)} for all r ∈ Z. Equivalently,
the window notation of uJ is obtained from that of u by first writing the
elements of {|u(1)|, . . . , |u(i)|} in increasing order, and then writing the
n − i smallest elements of {u(i + 1), . . . , u(n), N − u(n), . . . , N − u(i +

1)} in increasing order. For example, if u = [4,−3, 16, 2,−1] ∈ S̃C
5 and
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J = S \ {s3}, then uJ = [3, 4, 16,−1, 2], whereas if J = S \ {s0, s2}, then
uJ = [−3, 4,−5,−1, 2], and if J = S \ {s0, s5}, then uJ = [−3,−1, 2, 4, 16].

Next, we describe the set of reflections of S̃C
n . For a, b ∈ Z, a 	≡ b

(mod N), let

ta,b
def
=
∏

r∈Z

(a + rN, b + rN). (8.52)

Thus, si = ti,i+1t−i,−i−1 for i ∈ [n− 1], s0 = t1,−1, and tn,n+1 = sn.

Proposition 8.4.5 The set of reflections of S̃C
n is

{ti,j+kN t−i,−j−kN : 1 ≤ i < |j| ≤ n, k ∈ Z} ∪ {ti,−i+kN : i ∈ [n], k ∈ Z}.
Proof. Let u ∈ S̃C

n . Then, we have that

usiu
−1 =

∏

r∈Z

(u(i)+rN, u(i+1)+rN)(−u(i)+rN,−u(i+1)+rN), (8.53)

if i ∈ [n− 1],

usnu−1 =
∏

r∈Z

(u(n) + rN, u(n + 1) + rN)

(note that u(n + 1) = N − u(n)), and

us0u
−1 =

∏

r∈Z

(u(1) + rN,−u(1) + rN). (8.54)

Since u is an arbitrary element of S̃C
n , we conclude that u(i) and u(i + 1)

can be any two elements of Z, not congruent to 0 modulo N , such that
±u(i) 	≡ u(i + 1) (mod N). Similarly, we conclude that u(1) (respectively,
u(n)) can be any element of Z not congruent to 0 modulo N . The result
follows. �

The preceding proposition makes it easy to describe the Bruhat graph
of S̃C

n .

Proposition 8.4.6 Let u, v ∈ S̃C
n . Then, the following are equivalent:

(i) u → v.

(ii) There exist i, j ∈ Z, j 	≡ i (mod N), i, j 	≡ 0 (mod N), i < j, such
that u(i) < u(j) and either v = uti,jt−i,−j (if i 	≡ −j (mod N)) or
v = uti,j (if i ≡ −j (mod N)).

Proof. By Proposition 8.4.5 and the definition of the Bruhat graph, it is
enough to show that if v, u, i, and j are as in (ii), then inv eC(v) > inv eC(u) if
u(i) < u(j). However, this can be verified, using relations (8.44) and (8.1),
in a way similar to the proof of 8.50. �

Note that Propositions 8.1.6 and 8.4.6 imply that if u, v ∈ SB
n , then

u → v in SB
n if and only if u → v in S̃C

n .
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We now give a combinatorial characterization of the Bruhat order on
S̃C

n . For v ∈ S̃C
n , let

v[i, j]
def
= |{a ∈ Z : a ≤ i, v(a) ≥ j}|, (8.55)

for i, j ∈ Z. Note that v[i, j] < +∞ and that v[i, j] = v[i + kN, j + kN ]
for all i, j, k ∈ Z. The proof of the following result is identical to that of
Proposition 8.1.7 and is therefore omitted.

Proposition 8.4.7 Let v ∈ S̃C
n . Then,

v[−i− 1,−j + 1]− v[i, j] = j − i− 1,

for all i, j ∈ Z. �

We then have the following characterization of Bruhat order on S̃C
n .

Theorem 8.4.8 Let u, v ∈ S̃C
n . Then, the following are equivalent:

(i) v ≤ u.

(ii) v[i, j] ≤ u[i, j], for all i, j ∈ Z.

Proof. Suppose that (i) holds. Then, by Propositions 8.3.6 and 8.4.6, v ≤ u

in the Bruhat order of S̃N and, therefore, (ii) holds by Theorem 8.3.7.
Conversely, assume that (ii) holds. Let, as in the previous sections,

M(i, j)
def
= u[i, j]− v[i, j] (8.56)

for i, j ∈ Z. Reasoning as in the proof of Theorem 8.3.7 (recall that v, u ∈
S̃N ), we then conclude that there exist a1, b1, a0, b0 ∈ Z such that a1 < a0,
u(a1) = b1 > b0 = u(a0),

M([a1, a0 − 1]× [b0 + 1, b1]) > 0, (8.57)

and the rectangles

{[a1 + kN, a0 − 1 + kN ]× [b0 + 1 + kN, b1 + kN ]}k∈Z (8.58)

are all disjoint. Then, from definition (8.56) and Proposition 8.4.7, we
deduce that

M(i, j) = M(−i− 1,−j + 1)

for all i, j ∈ Z. Hence, by inequality (8.57),

M([−a0,−a1 − 1]× [−b1 + 1,−b0]) > 0. (8.59)

Also, since u ∈ S̃C
n , we have that u(−a0) = −b0 > −b1 = u(−a1). If the

rectangles

{[−a0 + kN,−a1 − 1 + kN ]× [−b1 + 1 + kN,−b0 + kN ]}k∈Z (8.60)

(which are themselves pairwise disjoint) are disjoint with the ones in (8.58),

then u′ def
= uta1,a0t−a1,−a0 is such that u′ → u (by Proposition 8.4.6) and
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u′[i, j] ≥ v[i, j] (by relations (8.57), (8.59), and (8.39)), and (i) follows by
induction.

If the rectangles in (8.58) and (8.60) intersect, then there exists ℓ ∈ Z

such that the rectangles [a1, a0 − 1] × [b0 + 1, b1] and [−a0 + ℓN,−a1 −
1 + ℓN ] × [−b1 + 1 + ℓN,−b0 + ℓN ] have nonempty intersection. Hence,
ℓN − a0 < a0, a1 < ℓN − a1, b0 < ℓN − b0, and ℓN − b1 < b1. Note that
this implies that (ℓN − a0, a0) and (a1, ℓN − a1) are both inversions of u

and, hence, that a0, a1 	≡ 0 (mod N). Let a
def
= max(a1, ℓN − a0) and

r
def
=

⌊
2u(a)

N

⌋
− ℓ.

Then, the rectangles

{[a + kN, (ℓ + r + k)N − a− 1]× [(ℓ + r + k)N − u(a) + 1, u(a) + kN ]}k∈Z

are all disjoint and, by inequalities (8.57) and (8.59),

M([a, (ℓ + r)N − a− 1]× [(ℓ + r)N − u(a) + 1, u(a)]) > 0. (8.61)

Therefore, if u′ def
= uta,(ℓ+r)N−a, then u′ → u and, by relations (8.61) and

(8.39), u′[i, j] ≥ v[i, j] for all i, j ∈ Z, so (i) again follows by induction. �

We illustrate the preceding theorem with an example. Let v = [4,−3, 16,
2,−1] and u = [−1,−2,−3,−4,−5]. Then, v[−4, 4] = 1 < 2 = u[−4, 4] and
v[3, 10] = 1 > 0 = u[3, 10], so v and u are incomparable in the Bruhat order

of S̃C
5 .

Note that, since S̃C
n ⊆ S̃2n+1, the comments made after Theorem 8.3.7

apply to S̃C
n . In particular, only a finite number of comparisons is actually

needed to check condition (ii) of Theorem 8.4.8.
The last theorem can be restated in the following way, which is the “affine

analog” of Corollary 8.1.9.

Corollary 8.4.9 Let u, v ∈ S̃C
n . Then, v ≤ u in S̃C

n if and only if v ≤ u

in S̃2n+1. �

Finally, note that Theorems 8.1.8 and 8.4.8 imply that if u, v ∈ SB
n (and

we identify SB
n as a subgroup of S̃C

n as explained at the beginning of this

section), then v ≤ u in SB
n if and only if v ≤ u in S̃C

n .

The Hasse diagram of the Bruhat order on the elements of S̃C
2 of rank

≤ 3 is shown in Figure 8.12.

8.5 Type B̃

Let S̃B
n be the subgroup of S̃C

n consisting of all the elements of S̃C
n that have,

in the complete notation, an even number of entries to the left of position
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1 2

1 2 1 3 2 1

2 1 1 3 2 1 2 4 3 1

3 1 2 1 2 4 1 2 2 6 3 1 3 4 4 2

Figure 8.12. The Bruhat order on eSC
2 for the elements of length ≤ 3.

n that are greater than n (note that this number cannot be infinite). More
precisely,

S̃B
n = {u ∈ S̃C

n : u[n, n + 1] ≡ 0 (mod 2)}, (8.62)

where u[n, n+1] is defined by (8.55). So, for example, if u = [4,−3, 16, 2, 1] ∈
S̃C

5 , then u[5, 6] = 1 and, hence, u 	∈ S̃B
5 . Thus, S̃B

n is a subgroup of S̃C
n

of index 2. In fact, S̃C
n = S̃B

n

⊎
(S̃B

n tn,n+1) (where tn,n+1 has the same
meaning as in definition (8.52), so tn,n+1 = s̃C

n ).

Note that if u ∈ S̃C
n , then u[n, n + 1] = 0 if and only if u ∈ SB

n (where

we identify SB
n with a subgroup of S̃C

n , as done in the previous section).

Hence, in particular, SB
n ⊆ S̃B

n .

As a set of generators for S̃B
n we take S̃B

def
= {s̃B

0 , s̃B
1 , . . . , s̃B

n−1, s̃
B
n },

where s̃B
i

def
= s̃C

i for i = 0, . . . , n− 1,

s̃B
n = tn−1,n+1t−n+1,−n−1, (8.63)

and ta,b is defined by (8.52). Figure 8.13 illustrates the action of s̃B
4 on S̃B

4 .
From equation (8.63), we deduce that

ws̃B
n = [w(1), w(2), . . . , w(n− 2), w(n + 1), w(n + 2)]

= [w(1), w(2), . . . , w(n− 2), N − w(n), N − w(n− 1)]

for all w ∈ S̃C
n . For the rest of this section, if there is no danger of confusion,

we write simply “S” instead of “S̃B” and “si” instead of “s̃B
i ,” for i =

0, . . . , n.
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Figure 8.13. Diagram of esB
4 ∈ eSB

4 and its action on eSB
4 .

It is, of course, useful to recognize, from the window notation, which
elements of S̃C

n are in S̃B
n . To this end, note that if i ∈ [n] and u ∈ S̃C

n then

|{k ∈ N : u(i− kN) > n}|+ |{k ∈ N : u(−i− kN) > n}| =
⌊ |u(i)|+ n

N

⌋

and, hence,

n∑

i=1

⌊ |u(i)|+ n

N

⌋
= u[n, n + 1]. (8.64)

As in the previous sections, we first obtain a combinatorial description
of the length function ℓ eB of S̃B

n with respect to S. Given v ∈ S̃B
n , let

inv eB(v) = inv eC(v)− v[n, n + 1]. (8.65)

For example, if v = [−1,−2, 6, 4, 14] ∈ S̃B
5 , then inv eB(v) = 14 − 2 = 12.

Note that, since
⌊
|a|
N

⌋
=
⌊
|2a|
N

⌋
−
⌊
|a|+n

N

⌋
for all a ∈ Z, we have from
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definition (8.44) and equation (8.64) that

inv eB(v) = invB(v(1), . . . , v(n)) +

n∑

i=1

⌊ |v(i)|
N

⌋

+
∑

1≤i<j≤n

(⌊ |v(i)− v(j)|
N

⌋
+

⌊ |v(i) + v(j)|
N

⌋)
. (8.66)

Proposition 8.5.1 Let v ∈ S̃B
n . Then,

ℓ eB(v) = inv eB(v) . (8.67)

Proof. We proceed as in the proof of Proposition 8.4.1. It is clear from
equations (8.47) and (8.65) that

inv eB(vsi)− inv eB(v) = sgn(v(i + 1)− v(i)), (8.68)

for all v ∈ S̃B
n and i ∈ [n− 1]. Similarly, from equations (8.48) and (8.65),

we obtain that

inv eB(vs0)− inv eB(v) = sgn(v(1)), (8.69)

for all v ∈ S̃B
n . Finally, noting that s̃B

n = s̃C
n s̃C

n−1s̃
C
n , we conclude from

equations (8.50) and (8.47) that

inv eC(vs̃B
n )− inv eC(v) = sgn(N − 2(vs̃C

n s̃C
n−1)(n)) + sgn(N − 2v(n))

+ sgn((vs̃C
n )(n)− (vs̃C

n )(n− 1))

= sgn(N − 2v(n− 1)) + sgn(v(n + 1)− v(n− 1))

+ sgn(N − 2v(n)). (8.70)

Therefore, we have from equation (8.65) that

inv eB(vs̃B
n )− inv eB(v) = sgn(v(n + 1)− v(n− 1))

= sgn(N − v(n)− v(n− 1)), (8.71)

for all v ∈ S̃B
n . Since inv eB(e) = 0, equations (8.68), (8.69), and (8.71) imply

that

inv eB(v) ≤ ℓ eB(v)

for all v ∈ S̃B
n .

We now prove equation (8.67) by induction on inv eB(v), in a way exactly
analog to the one used in the proof of Proposition 8.4.1. This works since
if v ∈ S̃B

n and inv eB(v) = 0, then 0 < v(1) < v(2) < · · · < v(n) and
v(n − 1) + v(n) < N . Hence, v(n) < n + 1 (for if v(n) = n + 1, then
v(n − 1) = n − 1 and, hence, v(i) = i for i = 1, . . . , n − 1, which is

a contradiction since v ∈ S̃B
n ), which implies that v = e. Similarly, if

v ∈ S̃B
n is such that inv eB(vs) > inv eB(v) for all s ∈ S, then equations

(8.68), (8.69), and (8.71) would imply that 0 < v(1) < v(2) < · · · < v(n)
and v(n) + v(n− 1) < N . This, as just observed, implies that v = e. �
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As done in the previous sections, we can now easily obtain a description
of the descent set of an element of S̃B

n and a combinatorial proof of the fact

that S̃B
n is a Coxeter group of type B̃n.

Proposition 8.5.2 Let v ∈ S̃B
n . Then,

DR(v) = {si ∈ S : i ∈ D(v(0), v(1), . . . , v(n), v(n + 2))}.
Proof. This follows immediately from equations (8.68), (8.69), and (8.71)
and the fact that v(0) = 0 and v(n + 2) = N − v(n− 1). �

Proposition 8.5.3 (S̃B
n , S̃B) is a Coxeter system of type B̃n.

Proof. We prove that the exchange condition holds, as in the proofs of the
corresponding results in the previous sections. Let i, i1, . . . , ip ∈ [0, n] be
such that

ℓ eB(si1 . . . sip
si) < ℓ eB(si1 . . . sip

)

and w
def
= si1 . . . sip

.

If i ∈ [n − 1], then, by Proposition 8.5.2, b > a, where a
def
= w(i + 1),

and b
def
= w(i). Hence, there exists j ∈ [p] such that a is to the left of b

in the complete notation of si1 . . . sij−1 but is to the right of b in that of
si1 . . . sij

. Since |a| 	≡ |b| (mod N), this implies that ij ∈ [n]. If ij ∈ [n−1],
then the reasoning goes through as in the proof of Proposition 8.4.3. If
ij = n, then reasoning as in the proof of the case i ∈ [n − 1], ij = 0
of Proposition 8.2.3, we conclude that the complete notations of si1 . . . sip

and si1 . . . ŝij
. . . sip

are equal, except that kN + a and kN + b as well
as kN − a and kN − b are interchanged for each k ∈ Z. This implies
that si1 . . . sip

si = si1 . . . ŝij
. . . sip

by the definitions of w, a, and b, since
i ∈ [n− 1].

If i = 0, then the reasoning goes through exactly as in the proof of the
case i = 0 of Proposition 8.4.3.

If i = n, then, by Proposition 8.5.2, b > a, where b
def
= w(n − 1) and

a
def
= w(n + 1), and the reasoning goes through analogously to the case

i = 0 of the proof of Proposition 8.2.3, since ij 	= 0. �

We now describe combinatorially the (maximal, for notational simplicity)

parabolic subgroups and quotients of S̃B
n . The reader should be able to

verify the following result “by inspection.”

Proposition 8.5.4 Let i ∈ [0, n], and J
def
= S \ {si}. Then,

(S̃B
n )J =

{
Stab ([−i, i]) ∩ Stab ([i + 1, 2n− i]), if i 	= n− 1,
Stab ([−n− 1, n + 1] \ {n,−n}), if i = n− 1

and
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(S̃B
n )J = {v ∈ S̃B

n : v(0) < · · · < v(i), v(i + 1) < · · · < v(n) < v(n + 2)}.
�

The preceding proposition yields a simple combinatorial rule for com-
puting the minimal coset representatives of S̃B

n . Namely, if u ∈ S̃B
n and

J = S \ {si}, with i 	= n − 1, then the complete notation of uJ is ob-
tained from that of u by rearranging {u(rN− i), . . . , u(rN), . . . , u(rN + i)}
and {u(rN + i + 1), . . . , u(rN + N − i − 1)} in increasing order, for all
r ∈ Z, and then (possibly) switching the elements in positions rN + n and

rN +n+1, for all r ∈ Z, so that the resulting element is in S̃B
n (see equation

(8.62)). Equivalently, the window notation of uJ is obtained from that of
u by first writing {|u(1)|, . . . , |u(i)|} in increasing order, then writing the
n− i smallest elements of {u(i + 1), . . . , u(n), N − u(n), . . . , N − u(i + 1)}
in increasing order, and then (possibly) changing a to N − a, where a is
the rightmost element written down. On the other hand, if i = n− 1, then
the complete notation of uJ is obtained from that of u by rearranging the
elements {u(rN − n − 1), u(rN − n + 1), . . . , u(rN − 1), u(rN), u(rN +
1), . . . , u(rN + n − 1), u(rN + n + 1)} in increasing order, for all r ∈ Z.
Equivalently, the window notation of uJ is obtained from that of u by writ-
ing down the elements of {|u(1)|, . . . , |u(n − 1)|, |N − u(n)|} in increasing
order and then changing a to N−a, where a is the rightmost element writ-
ten down. For example, if v = [−1,−2, 6, 4, 14] ∈ S̃B

5 and J = S\{s2}, then
vJ = [1, 2,−3, 4, 5], whereas if J = S \ {s0}, then vJ = [−3,−2,−1, 4, 5],
and if J = S \ {s4}, then vJ = [1, 2, 3, 4, 5] (as was to be expected).

We now describe the set of reflections of S̃B
n .

Proposition 8.5.5 The set of reflections of S̃B
n is

{ti,j+kN t−i,−j−kN : 1 ≤ i < |j| ≤ n, k ∈ Z} ∪ {ti,2kN−i : i ∈ [n], k ∈ Z} .

Proof. Let w ∈ S̃B
n . We have already computed wsiw

−1 for i = 0, 1, . . . ,
n− 1 in equations (8.53) and (8.54). Furthermore,

usnu−1 =
∏

r∈Z

(rN +u(n), rN +N−u(n−1))(rN +u(n−1), rN +N−u(n)).

(8.72)

Since u is an arbitrary element of S̃B
n , we conclude that u(i) and u(i + 1)

can be any two elements of Z, not congruent to 0 modulo N , such that
u(i) 	≡ ±u(i + 1) (mod N). Similarly, u(1) can be any element of Z such
that u(1) 	≡ 0 (mod N). The result follows from equations (8.53), (8.54),
and (8.72). �

The proof of the following result is similar to that of Proposition 8.2.6
and is left to the reader.

Proposition 8.5.6 Let u, v ∈ S̃B
n . Then, u → v in S̃B

n if and only if u → v

in S̃C
n . �
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Thus, the Bruhat graph of S̃B
n is the directed subgraph of that of S̃C

n

induced by S̃B
n , and hence a combinatorial description of it is given by

Proposition 8.4.6.
The preceding proposition implies, in particular, that if u, v ∈ S̃B

n and

u ≤ v in S̃B
n , then u ≤ v in S̃C

n . The converse, however, is false. For example,

if v = [4, 3, 2, 1] and u = [4, 3, 7, 8], then v, u ∈ S̃B
4 and v ≤ u in S̃C

4 (by

Proposition 8.4.6, since u = vt4,5t3,6), but v 	≤ u in S̃B
4 since inv eB(v) = 6 =

inv eB(u).

A combinatorial characterization of Bruhat order in S̃B
n , similar to that

of Theorem 8.2.8, is not known at present.
The Hasse diagram of the Bruhat order on the elements of S̃B

2 of rank
≤ 3 is shown in Figure 8.14 (the reader should compare this with Figure
8.12).

1 2

1 2 2 1 3 4

3 4 2 1 2 1 3 6 4 3

4 3 3 6 2 1 1 2 1 8 4 3 4 7 6 3

Figure 8.14. The Bruhat order on eSB
2 for the elements of length ≤ 3.

8.6 Type D̃

Let S̃D
n be the subgroup of S̃B

n consisting of all the elements of S̃B
n that

have, in their complete notation, an even number of negative entries to the
right of 0 (note that this number cannot be infinite). More precisely,

S̃D
n =

{
u ∈ S̃B

n : u[0, 1] ≡ 0 (mod 2)
}

, (8.73)
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where u[a, b] is defined by (8.55). So, for example, if u = [5,−3, 4, 2, 1] ∈ S̃B
5 ,

then u[0, 1] = 1 and, hence, u 	∈ S̃D
5 . Thus, S̃D

n is a subgroup of S̃B
n of

index 2. In fact S̃B
n = S̃D

n

⊎
(S̃D

n t−1,1) (where t−1,1 has the same meaning
as in definition (8.52), so t−1,1 = s̃C

0 ). Note that we may identify SD
n as a

subgroup of S̃D
n in a natural way.

As a set of generators for S̃D
n we take S̃D

def
= {s̃D

0 , s̃D
1 , . . . , s̃D

n−1, s̃
D
n },

where s̃D
i

def
= s̃B

i for i = 1, . . . , n, and

s̃D
0 = t1,−2t−1,2. (8.74)

The action of s̃D
0 on S̃D

4 is illustrated in Figure 8.15. From this, we deduce

that if w ∈ S̃C
n , then

ws̃D
0 = [w(−2), w(−1), w(3), . . . , w(n)].

For the rest of this section, if there is no danger of confusion, we write
simply “S” instead of “S̃D” and “si” instead of “s̃D

i ,” for i = 0, . . . , n.
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Figure 8.15. Diagram of esD
0 ∈ eSD

4 and its action on eSD
4 .
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It is, of course, useful to be able to recognize, from the window notation,
which elements of S̃B

n are in S̃D
n . To this end, note that if i ∈ [n] and

u ∈ S̃C
n , then

|{k ∈ P : u(i− kN) > 0}|+ |{k ∈ N : u(−i− kN) > 0}| =
∣∣∣∣
⌊

u(i)

N

⌋∣∣∣∣ ,

and, hence,

u[0, 1] =

n∑

i=1

∣∣∣∣
⌊

u(i)

N

⌋∣∣∣∣ =
n∑

i=1

⌊ |u(i)|
N

⌋
+ neg (u(1), . . . , u(n)). (8.75)

As usual, we begin by obtaining a combinatorial description of the length
function ℓ eD of S̃D

n with respect to S. Given v ∈ S̃D
n , we let

inv eD(v)
def
= inv eB(v)− v[0, 1]. (8.76)

For example, if v = [−1,−2, 6, 4,−14] ∈ S̃D
5 , then inv eD(v) = 21− 4 = 17.

Note that, from relations (8.75), (8.66), and (8.1), we deduce that

inv eD(v) = inv(v(1), . . . , v(n)) + nsp (v(1), . . . , v(n))

+
∑

1≤i<j≤n

(⌊ |v(i)− v(j)|
N

⌋
+

⌊ |v(i) + v(j)|
N

⌋)
. (8.77)

Proposition 8.6.1 Let v ∈ S̃D
n . Then,

ℓ eD(v) = inv eD(v). (8.78)

Proof. We prove first that

inv eD(v) ≤ ℓ eD(v), (8.79)

for all v ∈ S̃D
n . It is clear from definition (8.76) and equation (8.68) that

inv eD(vsi) = inv eD(v) + sgn(v(i + 1)− v(i)), (8.80)

for all v ∈ S̃D
n and i ∈ [n− 1]. Similarly, we conclude from relations (8.76)

and (8.71) that

inv eD(vsn)− inv eD(v) = sgn(N − v(n)− v(n− 1)), (8.81)

for all v ∈ S̃D
n . Now, using definition (8.76) and proceeding analogously to

the proof of equation (8.71) in Proposition 8.5.1 we conclude that

inv eD(vs̃D
0 )− inv eD(v) = sgn(v(1) + v(2)), (8.82)

for all v ∈ S̃D
n . Since inv eD(e) = ℓ eD(e) = 0, equations (8.80), (8.81), and

(8.82) prove inequality (8.79), as desired. To prove equation (8.78), we
now proceed by induction on inv eD(v) in a way analogous to the proof of
Proposition 8.5.1. This works because if v(1) < · · · < v(n), 0 < v(1)+v(2),
and v(n) + v(n− 1) < N , then 0 < v(2) < · · · < v(n) < N and |v(1)| < N ,



284 8. Combinatorial Descriptions

which implies that v[0, 1] = neg (v(1), . . . , v(n)) and, therefore, that v(1) >

0 since v ∈ S̃D
n . �

As done in the previous sections, we deduce from the proof of the pre-
ceding result the following description of the descent set of an element of
S̃D

n .

Proposition 8.6.2 Let v ∈ S̃D
n . Then,

DR(v) = {si ∈ S : i ∈ D(v(−2), v(1), . . . , v(n), v(n + 2))}.
�

At this point in the chapter, the reader should have no trouble proving
the following result by herself.

Proposition 8.6.3 (S̃D
n , S̃D) is a Coxeter system of type D̃n. �

The next result describes combinatorially the (maximal, for notational

simplicity) parabolic subgroups and quotients of S̃D
n . Its verification is left

to the reader.

Proposition 8.6.4 Let i ∈ [0, n], and J
def
= S \ {si}. Then,

(S̃D
n )J =

⎧
⎨
⎩

Stab ([−i, i]) ∩ Stab ([i + 1, 2n− i]), if i 	= 1, n− 1,
Stab ([−1, N + 1] \ {1, N − 1}), if i = 1,
Stab ([−n− 1, n + 1] \ {−n, n}), if i = n− 1,

and

(S̃D
n )J = {v ∈ S̃D

n : v(−2) < v(1) < . . . < v(i),

v(i + 1) < . . . < v(n) < v(n + 2)}.
�

As in the preceding sections, Proposition 8.6.4 can be used to describe
combinatorially the minimal coset representatives of S̃D

n . Namely, if u ∈
S̃D

n and J = S \ {si} with i 	= 1, n − 1, then the complete notation of
uJ is obtained from that of u by rearranging the elements of {u(rN −
i), . . . , u(rN), . . . , u(rN + i)} and {u(rN + i + 1), . . . , u(rN + N − i− 1)}
in increasing order and then (possibly) switching the elements in positions
rN + n and rN + n + 1 for all r ∈ Z, and (possibly) those in positions

rN + 1 and rN − 1 for all r ∈ Z, so that the resulting element is in S̃D
n .

Equivalently, the window notation of uJ is obtained from that of u by
first writing {|u(1)|, . . . , |u(i)|} in increasing order, then writing the n − i
smallest elements of {u(i + 1), . . . , u(n), N − u(n), . . . , N − u(i + 1)} in
increasing order, and then (possibly) changing the sign of the leftmost
element written down and (possibly) changing a to N − a, where a is
the rightmost element written down so that the resulting window notation
represents an element of S̃D

n .
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On the other hand, if i = n − 1, then the complete notation of uJ

is obtained from that of u by rearranging the elements of {u(rN − n −
1), u(rN−n+1), . . . , u(rN−1), u(rN +1), . . . , u(rN +n−1), u(rN +n+1)}
in increasing order, for all r ∈ Z, and then (possibly) switching the elements
in positions rN + 1 and rN − 1, for all r ∈ Z, so that the resulting element
is in S̃D

n . Equivalently, the window notation of uJ is obtained from that
of u by writing down the elements of {|u(1)|, . . . , |u(n− 1)|, |N − u(n)|} in
increasing order, then changing a to N−a, where a is the rightmost element
written down, and then (possibly) changing the sign of the leftmost element
written down so that the resulting window notation represents an element
of S̃D

n .
Finally, if i = 1, then the complete notation of uJ is obtained from that

of u by rearranging the elements of {u(rN −1), u(rN +2), . . . , u(rN +N −
2), u(rN + N + 1)} in increasing order, for all r ∈ Z, and then (possibly)
switching the elements in positions rN + n and rN + n + 1, for all r ∈ Z,
so that the resulting element is in S̃D

n . Equivalently, the window notation
of uJ is obtained from that of u by writing down the n smallest elements
of {−u(1), u(2), . . . , u(n), N − u(n), . . . , N − u(2), N + u(1)} in increasing
order, then changing the sign of the leftmost element written down, and
then (possibly) changing a to N − a, where a is the rightmost element
written down, so that the resulting window notation represents an element
of S̃D

n .

For example, if v = [5,−3,−15, 2, 12] ∈ S̃D
5 and J = S \ {s3}, then

vJ = [3, 5, 15,−1, 9], whereas if J = S \ {s4}, then vJ = [−1, 2, 3, 5,−4],
and if J = S \ {s1}, then vJ = [15,−5,−3,−1, 9].

We now describe the set of reflections of S̃D
n .

Proposition 8.6.5 The set of reflections of S̃D
n is

{ti,j+kN t−i,−j−kN : 1 ≤ i < |j| ≤ n, k ∈ Z}.
Proof. The computations for s1, . . . , sn are the same as in equations (8.53)
and (8.72). For s0, we now obtain that

us0u
−1 =

∏

r∈Z

(rN + u(1), rN − u(2))(rN − u(1), rN + u(2))

for all u ∈ S̃D
n , and the result follows as in the proof of Proposition 8.5.5. �

The proof of the following result is similar to that of Proposition 8.2.6
and is left to the reader.

Proposition 8.6.6 Let u, v ∈ S̃D
n . Then, u → v in S̃D

n if and only if u → v

in S̃B
n . �

Thus, the Bruhat graph of S̃D
n is the directed subgraph induced on S̃D

n

by the Bruhat graph of S̃B
n . Hence, a combinatorial criterion for deciding if
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u → v in S̃D
n is given by Proposition 8.5.6 (and hence by Proposition 8.4.6).

Note, however, that when Proposition 8.4.6 is applied to two elements
u, v ∈ S̃D

n , then in part (ii) necessarily i 	≡ −j (mod N).

From Proposition 8.6.6, there follows that if u, v ∈ S̃D
n and u ≤ v in

S̃D
n , then u ≤ v in S̃B

n . The converse, however, is false; for example, if

u = [5, 3,−15, 2,−12] and v = [−5,−3,−15, 2,−12], then u, v ∈ S̃D
5 and

u ≤ v in S̃B
5 (by Proposition 8.5.6, since v = ut−2,2t−1,1), but u 	≤ v in S̃D

5

since inv eD(v) = 25 = inv eD(u).
A result analogous to Theorem 8.2.8, allowing a direct comparison of any

two elements of S̃D
n under Bruhat order is not known at present.

Exercises

1. For n ≥ 2, let (Bn, {s0, s1, . . . , sn−1}) be a Coxeter system of type
Bn (see Appendix A1), so B2 ⊆ B3 ⊆ · · · .
(a) Show that there is a unique group homomorphism g : Bn → SB

n

such that g(si) = sB
i , for i = 0, . . . , n−1, and that g is surjective.

(b) For x ∈ Bn \ Bn−1, let p
def
= min{ℓ(y) : y ∈ Bn−1x} and

si1 . . . sip
∈ Bn−1x. Show that

(i1, . . . , ip) =

{
(n− 1, n− 2, . . . , n− p), if p ≤ n,
(n− 1, n− 2, . . . , 1, 0, 1, . . . , p− n), if p ≥ n.

(c) Deduce from (b) that there are at most 2n right cosets of Bn−1

in Bn and hence, by induction, that g is a bijection.

2. Prove that the length of σ ∈ SB
n is given by

ℓB(σ) =
inv±(σ) + neg(σ)

2
,

where inv±(σ) is the length of σ in the symmetric group S([±n]);
that is,

inv±(σ) = |{(i, j) ∈ [±n]2 : i < j, σ(i) > σ(j)}|.
[For example, for σ = [−3,−2, 1] ∈ SB

3 , we have inv±(σ) = 8 and
neg(σ) = 2, thus ℓB(σ) = 5.]

3. Let w = [−9, 3, 1,−5,−6, 8, 2,−4, 7] ∈ SB
9 , and J = S \ {sB

0 , sB
2 , sB

7 }.
Compute wJ and Jw.

4. Let k ∈ [0, n− 1], and J
def
= SB \ {sB

k }.
(a) For u, v ∈ (SB

n )J show that the following are equivalent:

(i) v ≤ u.

(ii) v(j) ≥ u(j), for j = k + 1, . . . , n.



Exercises 287

(b) Prove (a) without using Theorem 8.1.8.
(c) Deduce Theorem 8.1.8 from part (b) and Theorem 2.6.1.

5. A poset M(n) is defined as follows. The elements of M(n) are the
subsets of [n], and the partial order is so defined: If A, B ⊆ [n], with
A = {a1, . . . , aj}< and B = {b1, . . . , bk}<, then A ≤ B if and only if
j ≤ k and aj−i ≤ bk−i for i = 0, . . . , j − 1. The diagram of M(4) is
shown in Figure 8.16. Show the following:

(a) M(n) is isomorphic to Bruhat order on the quotient (SB
n )J ,

where J = S \ {sB
0 }.

(b) M(n) is a distributive lattice.

[Hint: Part (a) of Exercise 4 is useful.]

∅

1

2

3

4

12

13

1423

24

34

123

124

134

234

1234

Figure 8.16. The poset M(4).

6. Given w ∈ SB
n , define an array A(w)

def
= (A(w)i,j)1≤i≤n,1≤j≤n+1−i by

letting

{A(w)i,1, . . . , A(w)i,n+1−i}<
def
= {k ∈ [±n] : w(k) ≥ i}< ,
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for i = 1, . . . , n. For example, if w = [−7, 2, 6,−1,−4, 5,−3], then

A(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7 −5 −4 −1 2 3 6
−7 −5 −1 2 3 6
−7 −5 −1 3 6
−5 −1 3 6
−1 3 6
−1 3
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to verify that A(w) is always weakly increasing down each
column. Show that for u, v ∈ SB

n , the following are equivalent:

(i) u ≤ v.
(ii) A(u)i,j ≥ A(v)i,j , for all i ∈ [n], j ∈ [n + 1− i].

7. For n ≥ 3, let (Dn, {s0, s1, . . . sn−1}) be a Coxeter system of type Dn

(see Appendix A1), so A3
∼= D3 ⊆ D4 ⊆ · · · .

(a) Show that there is a unique group homomorphism h : Dn → SD
n

such that h(si) = sD
i , for i = 0, . . . n−1, and that h is surjective.

(b) For x ∈ Dn \ Dn−1 let p
def
= min{ℓ(y) : y ∈ Dn−1x}, and

si1 . . . sip
∈ Dn−1x. Show that either (i1, . . . , ip) = (n − 1, n −

2, . . . , 3, 2, 0) or (i1, . . . , ip) is the initial segment of length p of
the sequence (n− 1, n− 2, . . . , 2, 1, 0, 2, 3, . . . , n− 2, n− 1).

(c) Deduce from (b) that there are at most 2n right cosets of Dn−1

in Dn and, hence, by induction, that h is a bijection.
(d) Show that h : Dn → SD

n is an isomorphism directly as a con-
sequence of Exercise 1.

8. Prove that the length of σ ∈ SD
n is given by

ℓD(σ) =
inv±(σ) − neg(σ)

2

(cf. Exercise 2).
[For example, for σ = [−3,−2, 1] ∈ SD

3 , we have ℓD(σ) = 3.]

9. Let w = [9, 2,−7,−6,−1, 5, 4, 3,−8] ∈ SD
9 . Compute wJ and Jw

when J = {sD
3 , sD

6 , sD
7 }, {sD

1 , sD
3 , sD

6 , sD
7 }, {sD

0 , sD
3 , sD

6 , sD
7 }, and

{sD
0 , sD

1 , sD
3 , sD

6 , sD
7 }.

10. Let u = [−6, 2, 1,−4, 9,−7, 3, 8,−5].

(a) Compute uJ and Ju in SD
9 , when J = {sD

2 , sD
3 , sD

6 } and
{sD

1 , sD
2 , sD

3 , sD
6 }.

(b) Do part (a) considering u as an element of SB
9 .

11. Say that two vectors (a1, . . . , ak), (b1, . . . , bk) ∈ Zk are D-compatible
if the following condition is satisfied:
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If {|ai|, . . . , |aj |} = {|bi|, . . . , |bj|} = [j − i + 1] for some 1 ≤ i ≤
j ≤ k, then neg (ai, . . . , aj) ≡ neg (bi, . . . , bj) (mod 2).

For u, v ∈ SD
n , let A(u)i,j and A(v)i,j (i ∈ [n], j ∈ [n + 1 − i])

have the same meaning as in Exercise 6. Show that the following are
equivalent:

(i) u ≤ v.
(ii) A(u)i,j ≥ A(v)i,j , for all i ∈ [n] and j ∈ [n + 1− i], and the two

vectors (A(u)i,1, . . . , A(u)i,n+1−i) and (A(v)i,1, . . . , A(v)i,n+1−i)
are D-compatible for all i ∈ [n].

12. (a) Prove that the one-way infinite path in Example 1.2.6 is indeed
the Coxeter graph of S∞.

(b) Describe as a permutation group the Coxeter group given by the
two-way infinite path

(c) Describe as permutation groups the Coxeter groups given by the
one-way infinite graphs

4

13. Let w = [−5, 4, 2, 8, 6] ∈ S̃5. Compute wJ and Jw when J =
{s̃A

1 , s̃A
2 , s̃A

4 , s̃A
5 }.

14. Let u, v ∈ S̃n. Show that the following are equivalent:

(i) u → v.
(ii) There exist i, j ∈ [n], i 	= j, and k ∈ N such that

⎧
⎨
⎩

v(a) = u(a), if a ∈ [n] \ {i, j},
v(i) = u(j) + kn,
v(j) = u(i)− kn,

and either |v(i)− v(j)| > |u(i)− u(j)|, or |v(i)− v(j)| = |u(i)−
u(j)| and (u(i)− u(j))(i− j) > 0.

15. Given u ∈ S̃n and i ∈ [n], let

Invi(u)
def
= |{j ∈ P : i < j, u(i) > u(j)}|

and

Inv(u)
def
= (Inv1(u), . . . , Invn(u)).

For example, if u = [5, 3,−2] ∈ S̃3, then Inv(u) = (4, 2, 0). Inv(u) is

called the affine inversion table of u. Show that the map Inv: S̃n →
Nn \ Pn is a bijection.
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16. Let (a1, . . . , an) ∈ Zn. Show that the following conditions are
equivalent:

(i) There exists u ∈ S̃C
n such that (u(1), . . . , u(n)) = (a1, . . . , an).

(ii) If i, j ∈ [0, n] and i 	= j, then ±ai 	≡ aj (mod N), (where

a0
def
= 0).

17. Let w = [−5, 7, 2,−1, 8] ∈ S̃C
5 and J = {s̃C

0 , s̃C
1 , s̃C

3 , s̃C
5 }. Compute

wJ and Jw.

18. Let w = [−3, 1, 2, 7, 6] ∈ S̃B
5 . Compute wJ and Jw when J equals

{s̃B
1 , s̃B

2 , s̃B
3 , s̃B

5 } and {s̃B
0 , s̃B

2 , s̃B
3 , s̃B

4 }.

19. Let w = [2,−7,−1, 3, 6] ∈ S̃D
5 . Compute wJ and Jw when J equals

{s̃D
0 , s̃D

5 }, {s̃D
1 , s̃D

3 , s̃D
5 }, {s̃D

0 , s̃D
2 , s̃D

3 , s̃D
4 }, and {s̃D

0 , s̃D
1 , s̃D

3 , s̃D
4 }.

20. Let e1, . . . , e6 ∈ P. Define

E6
def
= {ei : i ∈ [6]} ∪

{
Σ

3
− ei − ej : {i, j} ∈

(
[6]

2

)}

∪
{

ei −
Σ

3
: i ∈ [6]

}
,

where Σ
def
= e1 + · · · + e6. Suppose that |E6| = 27 (this is easily

achieved; take, e.g., (e1, . . . , e6) = (3, 6, 11, 13, 19, 20)). Let SE
6 be

the subgroup of S(E6) consisting of all the v ∈ S(E6) such that the
following hold:

(i) v
(

1
3Σ− ei − ej

)
= 1

3

∑6
r=1 v(er)− v(ei)− v(ej),

for all {i, j} ∈
(
[6]
2

)
,

(ii) v
(
ei − 1

3Σ
)

= v(ei)− 1
3

∑6
r=1 v(er), for all i ∈ [6].

It is clear that such a v ∈ SE
6 is uniquely determined by its values

on {e1, . . . , e6}. We therefore write v = [a1, . . . , a6] to mean that
v(ei) = ai for i = 1, . . . , 6. So, for example, e = [e1, e2, . . . , e6]. Let

si = [e1, . . . , ei−1, ei+1, ei, ei+2, . . . , e6]

for i = 1, . . . , 5, and

s0 =

[
1

3
Σ− e2 − e3,

1

3
Σ− e1 − e3,

1

3
Σ− e1 − e2, e4, e5, e6

]
.

(a) Show that S
def
= {s0, . . . , s5} generates SE

6 .
(b) Show that (SE

6 , S) is a Coxeter system of type E6.

21. Let e1, . . . , e7 ∈ P. Define

E7
def
= {±ei : i ∈ [7]} ∪

{
±
(

1

3
Σ− ei − ej

)
: {i, j} ∈

(
[7]

2

)}
,
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where Σ
def
= e1 + · · ·+ e7. Suppose that |E7| = 56. Let SE

7 be the sub-
group of S(E7) consisting of all the v ∈ S(E7) such that the following
hold:

(i) v(−a) = −v(a), for all a ∈ E7,

(ii) v
(

1
3Σ− ei − ej

)
= 1

3

∑7
r=1 v(er)− v(ei)− v(ej),

for all {i, j} ∈
(
[7]
2

)
.

It is clear that such a v ∈ SE
7 is uniquely determined by its values

on {e1, . . . , e7}. We therefore write v = [a1, . . . , a7] to mean that
v(ei) = ai for i = 1, . . . , 7. Let

si = [e1, . . . , ei−1, ei+1, ei, ei+2, . . . , e7]

for i = 1, . . . , 6, and

s0 =

[
1

3
Σ− e2 − e3,

1

3
Σ− e1 − e3,

1

3
Σ− e1 − e2, e4, . . . , e7

]
.

(a) Show that S = {s0, . . . , s6} generates SE
7 .

(b) Show that (SE
7 , S) is a Coxeter system of type E7.

22. Let e1, . . . , e8 ∈ P. Define

E8
def
= {±ei : i ∈ [8]} ∪

{
±
(

1

3
Σ− ei − ej

)
: {i, j} ∈

(
[8]

2

)}

∪
{
±
(

ei + ej + ek −
1

3
Σ

)
: {i, j, k} ∈

(
[8]

3

)}

∪
{
±(ei − ej) : {i, j} ∈

(
[8]

2

)}
,

where Σ
def
= e1 + . . .+e8. Suppose that |E8| = 240. Let SE

8 be the sub-
group of S(E8) consisting of all the v ∈ S(E8) such that the following
hold:

(i) v(−a) = −v(a), for all a ∈ E8,

(ii) v
(

1
3Σ− ei − ej

)
= 1

3

∑8
r=1 v(er)− v(ei)− v(ej),

for all {i, j} ∈
(
[8]
2

)
,

(iii) v
(

1
3Σ− ei − ej − ek

)
= 1

3

∑8
r=1 v(er)− v(ei)− v(ej)− v(ek),

for all {i, j, k} ∈
(
[8]
)
,

(iv) v(ei − ej) = v(ei)− v(ej), for all 1 ≤ i < j ≤ 8.

It is clear that such a v ∈ SE
8 is uniquely determined by its values on

{e1, . . . , e8}, so we write v = [a1, . . . , a8] to mean that v(ei) = ai for
i = 1, . . . , 8. Let

si = [e1, . . . , ei−1, ei+1, ei, ei+2, . . . , e8]
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for i = 1, . . . , 7, and

s0 =

[
1

3
Σ− e2 − e3,

1

3
Σ− e1 − e3,

1

3
Σ− e1 − e2, e4, . . . , e8

]
.

(a) Show that S = {s0, . . . , s7} generates SE
8 .

(b) Show that (SE
8 , S) is a Coxeter system of type E8.

23. Let e1, . . . , e5 ∈ P. Define

F4
def
= {ei − ej : i, j ∈ [5], i 	= j} ∪ {±(e1 + e2 − ej) : j = 3, 4, 5}

∪ {±ei : i ∈ [5]} ∪ {±(2ei − ej) : 1 ≤ i < 3 ≤ j ≤ 5}.
Suppose that |F4| = 48 (take, e.g., (e1, . . . , e5) = (7, 8, 9, 10, 11)). Let
SF

4 be the subgroup of S(F4) consisting of all the v ∈ S(F4) such
that the following hold:

(i) v(ei − ej) = v(ei)− v(ej), for i, j ∈ [5], i 	= j,
(ii) v(−a) = −v(a), for all a ∈ F4,
(iii) v(e1 + e2 − ej) = v(e1) + v(e2)− v(ej), for j = 3, 4, 5,
(iv) v(2ei − ej) = 2v(ei)− v(ej), for 1 ≤ i < 3 ≤ j ≤ 5.

Such a v ∈ SF
4 is uniquely determined by its values on {e1, . . . , e5} and

we write v = [a1, . . . , a5] to mean that v(ei) = ai for i = 1, . . . , 5. Let
s1 = [e2, e1, e3, e4, e5], s3 = [e1, e2, e4, e3, e5], s4 = [e1, e2, e3, e5, e4],
and s2 = [e1 + e2 − e3, e2, 2e2 − e3, e4, e5].

(a) Show that S = {s1, s2, s3, s4} generates SF
4 .

(b) Show that (SF
4 , S) is a Coxeter system of type F4.

24. Let α be the golden ratio, namely α = 1
2 (1 +

√
5), and e1, e2, e3 ∈ P.

Define

H3
def
= {±ei : i ∈ [3]} ∪ {±(αei − (α− 1)Σ) : i ∈ [3]},

where Σ
def
= e1 + e2 + e3. Suppose that |H3| = 12 (this is easily

achieved; take, e.g., (e1, e2, e3) = (2, 1 + α, 2α)). Let SH
3 be the sub-

group of S(H3) consisting of all the v ∈ S(H3) such that the following
hold:

(i) v(−a) = −v(a), for all a ∈ H3,
(ii) v(αei − (α− 1)Σ) = αv(ei)− (α− 1)(v(e1) + v(e2) + v(e3)), for

i = 1, 2, 3.

It is clear that such a v ∈ SH
3 is uniquely determined by its values on

{e1, e2, e3}. We therefore write v = [a1, a2, a3] to mean that v(ei) = ai

for i = 1, 2, 3. So, for example, e = [e1, e2, e3]. Let s1 = [e2, e1, e3],
s2 = [e1, e3, e2], and s3 = [−e1 + (α− 1)(e2 + e3), e2, e3].

(a) Show that S = {s0, s1, s2} generates SH
3 .

(b) Show that (SH
3 , S) is a Coxeter system of type H3.
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25. Let α be the golden ratio, namely α = 1
2 (1+

√
5), and e1, e2, e3, e4 ∈ P.

Define

H4
def
= {±ei : i ∈ [4]}

∪ {±((α + 1)ei − (α− 1)Σ) : i ∈ [4]}
∪ {±(αei − (α− 1)Σ) : i ∈ [4]}
∪ {±(αei − Σ) : i ∈ [4]}
∪ {±(ei + (α + 1)ej − Σ) : i, j ∈ [4], i 	= j}
∪ {±(αei + (α + 1)ej − Σ) : i, j ∈ [4], i 	= j}
∪ {ei − ej : i, j ∈ [4], i 	= j}
∪ {±(ei − αej) : i, j ∈ [4], i 	= j},

where Σ = e1 + · · · + e4. Suppose that |H4| = 116 (take, e.g.,
(e1, e2, e3, e4) = (3α, 5, 2 + 2α, 7 − α)). Let SH

4 be the subgroup of
S(H4) consisting of all the v ∈ S(H4) such that the following hold:

(i) v(−a) = −v(a), for all a ∈ H4,
(ii) v(αei − (α− 1)Σ) = αv(ei)− (α− 1)v(Σ),

v((α + 1)ei − (α− 1)Σ) = (α + 1)v(ei)− (α− 1)v(Σ),
v(αei − Σ) = αv(ei)− v(Σ), for all i ∈ [4],

(iii) v(ei + (α + 1)ej − Σ) = v(ei) + (α + 1)v(ej)− v(Σ),
v(αei + (α + 1)ej − Σ) = αv(ei) + (α + 1)v(ej)− v(Σ),
v(ei − αej) = v(ei)− αv(ej),
v(ei − ej) = v(ei)− v(ej), for all i, j ∈ [4], i 	= j,

where v(Σ)
def
= v(e1) + v(e2) + v(e3) + v(e4). It is clear that such

a v ∈ SH
4 is uniquely determined by its values on {e1, e2, e3, e4},

and we therefore write v = [a1, . . . , a4] to mean that v(ei) = ai

for i = 1, . . . , 4. Let s1 = [e2, e1, e3, e4], s2 = [e1, e3, e2, e4], s3 =
[e1, e2, e4, e3], and s0 = [−e1 + (α− 1)(e2 + e3 + e4), e2, e3, e4].

(a) Show that S = {s0, s1, s2, s3} generates SH
4 .

(b) Show that (SH
4 , S) is a Coxeter system of type H4.

Notes

The fact that the groups SB
n and SD

n of “signed permutations” and “even
signed permutations” are Coxeter systems of types Bn and Dn (with respect
to the generating sets SB and SD) is part of the folklore of the subject.

That the group S̃n of affine permutations gives a realization of the Coxeter
system of type Ãn−1 was first explicitly mentioned by Lusztig [365]. This
realization was then further studied by Shi [455] and Björner and Brenti

[62]. Combinatorial descriptions of the groups of type C̃n appear in Bédard
[19] and Shi [467].
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A unified and comprehensive study of combinatorial descriptions of a
large class of Coxeter groups, which includes the affine Weyl groups of
types Ãn, C̃n, B̃n, and D̃n, is given in the thesis of H. Eriksson [223] (see
also H. and K. Eriksson [224]). The combinatorial descriptions given in
Sections 8.4, 8.5, and 8.6 are essentially equivalent to those given in [223].

Exercises 2 and 8 are due to Incitti [311].
Exercise 5. See Stanley [491].
Exercise 11. See Proctor [423].
Exercise 15. See Björner and Brenti [62].
Exercises 20, 21, 22, 23, 24, and 25. See Eriksson [223].
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Appendix A2

Graphs, posets, and complexes

Graphs, posets, and simplicial complexes are, together with permutations
and tableaux, the basic combinatorial notions used. They play an important
role throughout the book.

In this appendix, we define and recall some terminology, notation, and
results. More details, proofs and references for the first two sections can
be found, for example, in [497], and for the last three, for example, in [64,
Section 4.7].

A2.1 Graphs and Digraphs

By a graph we mean a pair G = (V, E), where V is a set and E ⊆
(
V
2

)
. We

call V the set of nodes or vertices of G, and E the set of edges of G. A path
in G is a sequence Γ = (x0, . . . , xk) ∈ V k+1 such that {xi, xi+1} ∈ E for all
i = 0, . . . , k − 1. If x0 = xk and k ≥ 1, then we call Γ a cycle. We also say
that the path Γ connects x0 and xk. A graph is connected if for all x, y ∈ V
there is a path Γ that connects x and y.

A rooted graph is a pair (G, x), where G is a graph and x is a vertex of
G, called the root. A tree is a connected graph with no cycles. A vertex v
of a tree is a leaf if |{x ∈ V : {x, v} ∈ E}| = 1. Note that if (G, x) is a
rooted tree, then for every v ∈ V there is a unique path Γ(v) connecting x
and v. Given two vertices u, v ∈ V , we then say that u is a descendant of
v if v ∈ Γ(u).
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By a directed graph (or digraph, for short) we mean a pair D = (V, A),
where V is a set and A ⊆ V 2. We call V the set of nodes or vertices of D and
A the set of directed edges of D. We write x → y to mean that (x, y) ∈ A.
An edge x → x is called a loop. A directed path (or, path, for short) in D
is a sequence Γ = (x0, x1, . . . , xk) ∈ V k+1 such that x0 → x1 → · · · → xk.
We say that Γ goes from x0 to xk, and we call k the length of Γ. If x0 = xk,
we call Γ a directed cycle. The edges of a directed cycle of length k = 2
are sometimes referred to as a pair of antiparallel edges. If S ⊆ V , then
(S,A ∩ S2) is also a digraph called the induced directed subgraph, induced
by D on S.

It is sometimes convenient to allow multiple edges in graphs and di-
graphs. This means that E is a multiset of elements from

(
V
2

)
(resp., A

is a multiset of elements from V 2). Such graphs with multiple edges ap-
pear a few times in the book. We do not distinguish this more general case
terminologically or notationally.

A2.2 Posets

The word poset is an abbreviation of partially ordered set. Thus, a poset
P = (P,≤) consists of a set P together with a partial order relation ≤.
The relation is suppressed from the notation when it is clear from context.
If Q ⊆ P , we may refer to Q also as a poset, having in mind the induced
subposet (Q,≤), whose order relation is the restriction of P ’s. Two elements
x, y ∈ P are said to be comparable if either x ≤ y or y ≤ x, and incomparable
otherwise.

A sequence (x0, x1, . . . , xh) of elements of P is called a chain (respectively
multichain) if x0 < x1 < · · · < xh (respectively, x0 ≤ x1 ≤ · · · ≤ xh). We
then also say that the chain (respectively, multichain) goes from x0 to xh.
The integer h is called the length of the chain (respectively, multichain).
The supremum of this number over all chains of P is the rank (or length)
of P . A chain is maximal if its elements are not a proper subset of those of
any other chain. If all maximal chains are of the same finite length, then
P is pure. An element x ∈ P is maximal if there is no element y ∈ P such
that x < y.

Suppose that P is pure of length k. Define the rank r(x) of x ∈ P to be the
length of the subposet {y ∈ P : y ≤ x}. The rank function r : P → [0, k]
restricts to a bijection on each maximal chain, and decomposes P into rank
levels Pi = {x ∈ P : r(x) = i}, i ∈ [0, k].

If x ≤ y in P , we define the closed interval (or interval, for short) [x, y] =
{z ∈ P : x ≤ z ≤ y}, the open interval (x, y) = {z ∈ P : x < z < y}, and
the half-open interval (x, y] = {z ∈ P : x < z ≤ y}. A bottom element 0̂
(resp. a top element 1̂) is an element satisfying 0̂ ≤ x (resp. x ≤ 1̂) for all
x ∈ P . If P has a bottom element 0̂ and every interval [0̂, x] is pure, then
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P is graded. The rank function r : P → N is defined for a graded poset P
as for a pure one. If |Pi| < ∞ for all i ≥ 0, then we call the formal power
series

∑
i≥0 |Pi|qi the rank generating function of P .

Suppose from now on that all intervals in P are finite (only such posets
appear in this book). A pair (x, y) such that x < y and no z ∈ P satisfies
x < z < y is called a covering and is denoted by x � y (or y � x). Let
Cov(P ) be the set of all coverings in P . This set of ordered pairs implies all
other order relations by transitivity, and Cov(P ) is clearly minimal with
this property. A chain is saturated if all successive relations are coverings:
x0 � x1 � · · ·� xh. If P has a 0̂ (respectively, a 1̂), then an element x ∈ P
is an atom (respectively, coatom) of P if 0̂ � x (respectively, x � 1̂).

The standard way of depicting a poset P is to draw a digraph with
the elements of P as nodes and the elements of Cov(P ) as upward-directed
edges. This graph is called the diagram of P (sometimes the Hasse diagram).
For instance, Figure 2.10 depicts a graded poset of length 3, with the rank
levels P1 and P2 both of cardinality k.

A map f : P → Q of posets is order-preserving if x ≤ y implies f(x) ≤
f(y), for all x, y ∈ P . If, instead, x ≤ y implies f(x) ≥ f(y), the map
is order-reversing. Two posets P and Q are isomorphic if there exists an
order-preserving bijection f : P → Q such that f−1 is also order-preserving.
A poset P is a Boolean algebra if there is a set X such that P is isomorphic
to the set of all subsets of X , partially ordered by inclusion. A bijection
f : P → P is an automorphism if f and f−1 are order-preserving, and an
antiautomorphism if f and f−1 are order-reversing.

A poset P is a lattice if for all x, y ∈ P , the subposet {z ∈ P : z ≤
x, z ≤ y} has a top element, the meet x∧ y, and — dually — the subposet
{z ∈ P : z ≥ x, z ≥ y} has a bottom element, the join x ∨ y. If only the
meet x ∧ y is guaranteed to exist, P is a meet-semilattice. See Section 3.2
for a few more definitions pertaining to (semi)lattices.

The Möbius function of P assigns to each ordered pair x ≤ y an integer
µ(x, y) according to the following recursion:

µ(x, y) =

{
1, if x = y,
−∑x≤z<y µ(x, z), if x < y.

(A2.1)

Let Int(P )
def
= {(x, y) ∈ P 2 : x ≤ y}. Given a commutative ring R, the

incidence algebra of P with coefficients in R, denoted I(P ; R), is the set of
all functions f : Int(P ) → R with sum and product defined by

(f + g)(x, y)
def
= f(x, y) + g(x, y)

and

(fg)(x, y)
def
=
∑

x≤z≤y

f(x, z) g(z, y), (A2.2)

for all f, g ∈ I(P ; R) and (x, y) ∈ Int(P ). For instance, µ ∈ I(P ; Z).
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It is well known (see, e.g., [497, Section 3.6]) that I(P ; R) is an associative

algebra having δ as identity element (where δ(x, y)
def
= 1 if x = y, and

def
= 0

otherwise) and that an element f ∈ I(P ; R) is invertible if and only if
f(x, x) is invertible for all x ∈ P . If f is invertible, then we denote by f−1

its (two-sided) inverse.

See [497, Chapter 3] for more about posets and the Möbius function.

A2.3 Simplicial complexes

By an (abstract simplicial) complex on vertex set V is meant a nonempty
collection ∆ of finite subsets of V , called faces, which is closed under con-
tainment: F ⊆ F ′ ∈ ∆ implies F ∈ ∆. Since we assume that ∆ 	= ∅, it
follows that ∅ ∈ ∆. If F ⊆ F ′ ∈ ∆, let [F, F ′] = {G ∈ ∆ : F ⊆ G ⊆ F ′}.
The dimension of a face is defined by dimF = |F |−1, and the dimension of
∆ by dim∆ = supF∈∆ dimF (which can be equal to ∞). So, for example,
dim{∅} = −1.

A complex ∆ is pure d-dimensional if every face is contained in some
d-dimensional face. Almost all complexes dealt with in this book are pure.
In this case, the d-dimensional faces are called facets and the (d − 1)-
dimensional faces are called panels. The collection of all facets is denoted
by F(∆). Two facets C and C′ are adjacent if dim(C ∩C′) = d− 1.

Let ∆ ⊆ ∆′ be complexes and assume that x is a vertex of ∆′ but not
of ∆. Then, ∆′ is said to be a cone over ∆ with cone point x if

C ∈ F(∆) ⇔ C ∪ {x} ∈ F(∆′).

For any complex ∆, we let ‖∆‖ denote its topological space, or geometric
realization. For this construction, as well as such notions as Euler charac-
teristic, simplicial homology and homotopy type, and their connections, see
any textbook on algebraic topology (e.g. [401]).

Let ∆ be a finite d-dimensional simplicial complex, and let fi be the
number of i-dimensional faces of ∆. The sequence f = (f0, . . . , fd) is called
the f -vector of ∆. We put f−1 = 1. The h-vector h = (h0, . . . , hd+1) of ∆
is defined by the equation

d+1∑

i=0

fi−1x
d+1−i =

d+1∑

i=0

hi(x + 1)d+1−i. (A2.3)

Note that h0 = 1, h1 = n− d− 1, and

hd+1 = fd − fd−1 + · · ·+ (−1)df0 + (−1)d+1 = (−1)dχ̃(∆),

where χ̃(∆) is the reduced Euler characteristic of ∆. In particular,

hd+1 =

{
1, if ‖∆‖ is homeomorphic to a sphere,
0, if ‖∆‖ is homeomorphic to a ball.
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An important way in which complexes arise in combinatorics is from
posets. If P is a poset, let ∆(P ) be the collection of all finite chains x0 <
x1 < · · · < xk in P . A subset of a chain is again a chain, so this is a
simplicial complex, called the order complex of P .

We make use of the following two facts. Let x < y in P . Then, the
Möbius function µ(x, y) is equal to the reduced Euler characteristic of the
order complex of the open interval (x, y):

Fact A2.3.1 µ(x, y) = χ̃(∆((x, y))).

See [497, Proposition 3.8.6] for a proof.

Fact A2.3.2 Let f : P → P be an order-preserving map such that x ≥
f(x) = f2(x) for all x ∈ P . Then, the order complexes of P and of f(P )
are homotopy equivalent.

It is not hard to give a direct proof that ∆(f(P )) is a strong deforma-
tion retract of ∆(P ) in this situation. For another simple proof, see [60,
Corollary 10.12].

A2.4 Shellability

Throughout this section, let ∆ be a pure d-dimensional complex of at most
countable cardinality. We will be considering linear orderings C1, C2, C3,
. . . of F(∆). Given such an ordering, let ∆k = [∅, C1]∪ [∅, C2]∪· · ·∪ [∅, Ck],
for k ≥ 1. Thus, ∆k is the subcomplex generated by the k first facets.

Definition A2.4.1 The complex ∆ is said to be shellable if its facets can
be arranged in linear order C1, C2, C3, . . . in such a way that ∆k−1 ∩ [∅, Ck]
is pure (d− 1)-dimensional, for k = 2, 3, . . . . Such an ordering of F(∆) is
called a shelling.

In other words, a linear order C1, C2, C3, . . . is a shelling if and only if
whenever i < k, there exists some j < k such that Ci ∩ Ck ⊆ Cj ∩ Ck,
and |Cj ∩ Ck| = |Ck| − 1. Note that

if ∆′ is a cone over ∆, then ∆′ is shellable if and only if ∆ is. (A2.4)

Given a shelling, define the restriction of facet Ck by

R(Ck) = {x ∈ Ck : Ck \ {x} ∈ ∆k−1}. (A2.5)

(Here, and whenever else needed, we let ∆0 = ∅.) Shellings and their re-
striction maps have several useful characterizations, of which we mention
the following.

Fact A2.4.2 Given an ordering C1, C2, C3, . . . of F(∆) and a map R :
F(∆) → ∆, the following are equivalent:
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(i) C1, C2, C3, . . . is a shelling and R its restriction map.

(ii) ∆k =
⊎k

i=1[R(Ci), Ci ], for all k ≥ 1.

A pure complex ∆ is said to be thin if every panel is contained in exactly
two facets. It is called subthin if every panel is contained in at most two
facets and it is not thin. It is locally finite if every vertex is contained in
only finitely many facets.

Let Bd and Sd denote the standard PL d-ball and d-sphere (i.e., a geomet-
ric d-simplex and the boundary of a geometric (d+1)-simplex, respectively).
Using some simple facts from PL (piecewise linear) topology, one derives
the following.

Fact A2.4.3 Let ∆ be a shellable pure d-dimensional simplicial complex.

(i) If ∆ is finite and subthin, then ‖∆‖ is PL homeomorphic to Bd.

(ii) If ∆ is finite and thin, then ‖∆‖ is PL homeomorphic to Sd.

(iii) If ∆ is infinite and thin, then ‖∆‖ is contractible.

(iv) If ∆ is infinite, thin, and locally finite, then ‖∆‖ is PL homeomorphic
to Rd.

If ∆ is finite and shellable, then the h-vector has the following
interpretation in terms of the restriction map:

hi = card {C ∈ F(∆) : |R(C)| = i}. (A2.6)

The definition of the h-vector can be extended to infinite shellable
complexes via equation (A2.6).

Fact A2.4.4 Let ∆ be a shellable pure d-dimensional complex and let h
def
=

hd+1. Then, ‖∆‖ has the homotopy type of a wedge of h copies of the
d-sphere. Consequently,

H̃i(∆; Z) =

{
Zh, if i = d,
0, if i 	= d.

(A2.7)

Here, H̃i(∆; Z) denotes reduced simplicial homology with integer coeffi-
cients.

The link of a face F ∈ ∆ (including F = ∅) is the subcomplex lk∆(F )
def
=

{G ∈ ∆ : G ∪ F ∈ ∆ and G ∩ F = ∅}. The complex ∆ is said to be
Cohen-Macaulay if

H̃i(lk∆(F ); Z) = 0, for all F ∈ ∆ and i < dim lk∆(F ). (A2.8)

By a theorem of Reisner, this property is (in the finite case) equivalent to
the Cohen-Macaulayness (in the sense of commutative algebra) of a certain
ring k[∆], for every coefficient field k. The ring k[∆] is the quotient of the
polynomial ring k[x1, . . . , xn], whose indeterminates are the vertices xi of
∆, modulo the ideal generated by the square-free monomials xi1xi2 · · ·xik
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corresponding to nonfaces {xi1 , xi2 , . . . , xik
} /∈ ∆. See [496] for a detailed

discussion of this connection to ring theory.
It is easy to see that shellability of ∆ is inherited by all links lk∆(F ).

Hence, from equation (A2.7) we get the following:

Fact A2.4.5 If ∆ is shellable, then ∆ is Cohen-Macaulay.

A colored complex ∆, on vertex set V and with color set S, is by definition
a pure d-dimensional complex ∆ with a partition V =

⊎
s∈S Vs such that

|C ∩ Vs| = 1 for all C ∈ F(∆) and all s ∈ S. It is convenient to think of
S as a set of colors, the condition being that every facet has exactly one
vertex of each color. Clearly, |S| = d+1. Examples of colored complexes are
provided by order complexes of pure posets P of length d, where S = [0, d]
and the color classes Vs are the rank levels Pi.

Let ∆ be a colored complex as above. Define the type of a face F ∈ ∆
as its set of colors: τ(F ) = {s ∈ S : F ∩ Vs 	= ∅}. Then, for E ⊆ S, let
∆E = {F ∈ ∆ : τ(F ) ⊆ E}. The type-selected subcomplex ∆E is pure
(|E| − 1)-dimensional.

Fact A2.4.6 Suppose that ∆ is colored and shellable. Fix E ⊆ S. Then,
∆E is shellable and

h|E|(∆E) = card {C ∈ F(∆) : τ(R(C)) = E}.

A2.5 Regular CW complexes

By a ball in a topological space T we mean a subspace σ ⊆ T that is

homeomorphic to the ball Bd, for some d ≥ 0. The (relative) interior
◦
σ and

boundary ∂σ = σ \ ◦
σ are defined via transfer from Bd. If dimσ = 0, then

◦
σ = σ = {point}.
Definition A2.5.1 A regular CW complex Γ is a collection of balls in a
Hausdorff space ‖Γ‖ = ∪σ∈Γσ such that the following hold:

(i) The interiors
◦
σ partition ‖Γ‖.

(ii) The boundary ∂σ is a union of some members of Γ, for all σ ∈ Γ of
positive dimension.

This definition of a regular CW complex is not the standard one in the
topological literature, where an approach via attaching maps (applicable
also to general “non-regular” CW complexes) is more common. In that
setting, regularity means that the attaching map of each cell should be
a homeomorphism on the whole cell that is being attached, not only on
its interior. For detailed topological treatments of regular cell complexes,
see [158] or [363]. For a discussion of regular CW complexes from a com-



306 Appendix A2. Graphs, posets, and complexes

binatorial point of view, including motivation for the equality of the two
definitions, see [64, Section 4.7].

The balls σ ∈ Γ are the closed cells of Γ; their interiors
◦
σ are the open

cells. If ‖Γ‖ ∼= T , then Γ is said to provide (via the homeomorphism)
a regular CW decomposition of the space T . The geometric realizations of
abstract simplicial complexes are examples of regular CW complexes whose
cells are the geometric simplices representing the abstract faces.

The cell poset C(Γ) is the set of closed cells of Γ ordered by containment.
Now, it turns out that the order complex of C(Γ) is homeomorphic to ‖Γ‖,
which has the following consequence.

Fact A2.5.2 The cell poset determines the topology of ‖Γ‖ and its cellular
structure up to cell-preserving homeomorphism.

For any CW complex Γ, there exists an algebraic chain complex, the
cellular chain complex,

· · · −→Ci+1
di+1−→ Ci

di−→ Ci−1−→ · · ·
with the following properties:

(i) Ci is a free Abelian group with a basis indexed by the i-dimensional
cells of Γ.

(ii) Hi (‖Γ‖; Z) ∼= Ker di / Im di+1.

Furthermore, if Γ is regular, there exists a mapping from pairs of cells (σ, τ)
such that σ ⊂ τ and dimσ + 1 = dim τ (or, in other words, from coverings
σ � τ in C(Γ)) to numbers [σ : τ ] ∈ {+1,−1} (called incidence numbers)
such that the boundary maps are given by

di (τ) =
∑

σ�τ

[σ : τ ] σ, (A2.9)

where we identify cells with the corresponding basis elements.
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Permutations and tableaux

Permutations play a central role throughout the book. They have close
connections with the combinatorics of tableaux, which is of importance in
Chapters 6 and 7.

Here, we first review the basic definitions and establish notation for per-
mutations and tableaux. Then, in Sections A3.3 – A3.9 we summarize those
properties of the Robinson-Schensted correspondence that are needed in
Chapter 6. The final section concerns properties of dual equivalence of
skew tableaux, needed in Chapter 7.

For a detailed treatment with proofs of this material, see [450]. Much of
the material can also be found in [248], [328], and [498].

A3.1 Permutations

Fix a set E, finite or infinite. Bijections x : E → E are called permuta-
tions of E. They form a group under composition that we denote by S(E).
Subgroups of S(E) are called permutation groups. A permutation represen-
tation of a group W is a homomorphism f : W → S(E) for some set E.

If G ⊆ S(E) is a permutation group and A ⊆ E, let

Stab (A)
def
= {x ∈ G : x(A) = A}.

The notation means that x maps A onto A as a set (not necessarily fixing
each of its elements). This defines a subgroup of G called the stabilizer of A.
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The finite groups Sn
def
= S([n]) are called the symmetric groups. Suppose

that E is a finite subset of Z, such as [n] or [±n]. Then, permutations
x ∈ S(E) can be denoted by listing all the values x(i) left to right in order
of increasing argument i. For instance, 74185236 denotes the permutation
1 �→ 7, 2 �→ 4, 3 �→ 1, etc., an element of S8. We call this the complete
notation 1 for x. To keep notation simple, we omit commas in the complete
notation wherever, as in the given example, confusion cannot arise. So,
writing x = x1x2 . . . xn for a permutation x of a finite set E ⊂ Z, this means
that xi = x(ei) for all i, where ei is the i-th element of E in increasing order.

At times, we also write permutations in disjoint cycle form, omitting to
write the 1-cycles. For instance, we have that

74185236 = (1, 7, 3)(2, 4, 8, 6),

where the left-hand side uses complete notation and the right hand side
disjoint cycle form. Permutations of the form (i, j) are called transpositions.

Our convention for multiplying permutations is to read the product right
to left as composition of mappings. For instance, with permutations of [5]
expressed in complete notation, we have

31524 · 15243 = 34125.

This has the consequence for Sn that multiplying x = x1x2 . . . xn (complete
notation) on the right by a transposition ti,j = (i, j) has the effect of
transposing the values in positions i and j, whereas multiplying on the left
transposes the values i and j. For example,

24531 · t2,5 = 21534 and t2,5 · 24531 = 54231.

Given a sequence (x1, x2, . . . , xn) ∈ Zn, define

inv (x1, x2, . . . , xn)
def
= |{(i, j) : 1 ≤ i < j ≤ n and xi > xj}|,

neg (x1, x2, . . . , xn)
def
= |{i ∈ [n] : xi < 0}|,

nsp (x1, x2, . . . , xn)
def
=
∣∣∣
{
{i, j} ∈

(
[n]

2

)
: xi + xj < 0

}∣∣∣ ,
D(x1, x2, . . . , xn)

def
= {i ∈ [n− 1] : xi > xi+1}.

These definitions apply, in particular, to permutations x = x1x2 . . . xn ∈
S(E), where E ⊆ Z, |E| = n.

1Of course, listing only the first seven values (i.e., the images of 1, 2, . . . , 7, in this
order) uniquely identifies a permutation of S8. Thus, the last entry of the complete
notation of a permutation is redundant and could be omitted. Although it would make
no sense to use this shorter notation for the elements of the symmetric group, such
“window notation” is extremely convenient for other permutation groups, including all
those discussed in Chapter 8.
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The functions “neg” and “nsp” (short for “number of negative entries”
and “number of negative sum pairs”) appear only in Chapter 8. For more
about the “descent set” D = DR, see Section A3.4.

A pair (i, j) ∈ [n]2 is an inversion of a permutation x = x1x2 . . . xn (or
of a sequence (x1, . . . , xn)) if i < j and xi > xj . The inversion table of x
(or of (x1, . . . , xn)) is the sequence

(I1(x), . . . , In(x)),

where

Ii(x)
def
= |{j ∈ [n] : i < j, xi > xj}|.

In the rest of this appendix, all permutations will be elements of Sn.

A3.2 Tableaux

A partition λ = (λ1, . . . , λk) of the integer n (written λ ⊢ n or |λ| = n)
is a weakly decreasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk

such that λ1 + · · ·+ λk = n. The integers λ1, . . . , λk are called the parts of
λ, and k is called the length of λ. If k = 0, then λ is the empty partition.
A partition is geometrically represented by its (Ferrers) diagram, a left-
justified arrangement of boxes (also called cells) having λi boxes in row i.
For instance, the following is the diagram of (5, 3, 2, 2, 1):

A partititon λ = (λ1, . . . , λk) is a hook if λ2 = λ3 = · · · = λk = 1,
a rectangle if λ1 = λ2 = · · · = λk, a square if λ1 = · · · = λk = k, and a

staircase if (λ1, . . . , λk) = (k, k−1, . . . , 2, 1). We let δn
def
= (n, n−1, . . . , 2, 1)

for all n ∈ P.
Given two partitions µ = (µ1, . . . , µr), λ = (λ1, . . . , λk), we write µ ⊆ λ

to mean that r ≤ k and µi ≤ λi for i = 1, . . . , r. In this case, we call
λ \ µ a skew partition. Skew partitions are also represented geometrically
as diagrams. A skew partition of the form λ \ δn, where λ is a square of
length n, is called an antistaircase.

Given two skew partitions θ and ρ, we say that θ is an extension of (or
extends ) ρ if there exist three partitions λ, µ, and ν, with ν ⊆ µ ⊆ λ such
that ρ = µ \ ν and θ = λ \ µ. We then write λ \ ν = ρ ∪ θ. We say that
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θ is a final segment (respectively, initial segment) of ρ if there exists three
partitions λ, µ, ν with ν ⊆ µ ⊆ λ such that ρ = λ \ ν and λ \µ = θ (respec-
tively, µ \ ν = θ). Flipping the diagram of a skew partition along the main
diagonal yields the diagram of another skew partition, called its conjugate.
For example, the conjugate of (5, 3, 2, 2, 1) \ (2, 2, 1) is (5, 4, 2, 1, 1) \ (3, 2).
A skew partition is called self-conjugate (or symmetric) if it coincides with
its conjugate. For example, (4, 2, 1, 1) \ (1) is self-conjugate.

By a connected skew partition we mean a skew partition whose diagram
is rookwise connected. The diagram of a partition (and hence of a skew
partition) can be naturally identified with a subset of N2. Giving N2 its
natural partial order ((a, b) ≤ (c, d) if and only if a ≤ c and b ≤ d) then
gives a partial order on the cells of the diagram. For this reason, we often
identify a diagram with its corresponding poset in this way.

A tableau is a filling of the boxes of a diagram by distinct integers so
that each row and each column is strictly increasing when read left to right
and top to bottom. We call these integers the entries of the tableau. A
tableau is called standard (or a standard Young tableau) if its entries are
the numbers 1, 2, . . . , n, for some n. For instance,

1 2 5 8 11

3 6 10

4 9

7 13

12

is a standard Young tableau.
If we reflect a tableau T across the main diagonal, then we get another

tableau, which we call the transpose of T , and denote by T ′. Given a tableau
T and i ∈ Z, we let T|+i

be the tableau obtained by adding i to each entry
of T . If T is standard, we sometimes abuse terminology and call T|+i

also
a standard tableau. Given a tableau T , we denote by Ta,b its b-th entry
(from the left) in its a-th row (from the top).

The (possibly skew) partition associated with the diagram of a tableau
T is called its shape , denoted sh(T ), so, for example, the shape of the
preceding tableau is (5, 3, 2, 2, 1). We say that a tableau T has normal
shape if sh((T ) is a partition. If we wish to emphasize that there are no
restrictions on the shape of T , then we say that T is a skew tableau (or that
it has skew shape).

We let SY Tn denote the set of all standard Young tableaux with n boxes,

SY Tλ the subset of those having shape λ, and fλ def
= |SY Tλ|. The word

“tableau” in this book means (unless otherwise explicitly stated) standard
Young tableau.
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A3.3 The Robinson-Schensted correspondence

With each permutation x ∈ Sn is associated a pair (P (x), Q(x)) of tableaux
of the same normal shape according to the following rule.

Let x = x1x2 . . . xn. Starting with the pair of empty tableaux (∅, ∅),
iterate the following procedure n times. Assume that (Pi, Qi) has been
constructed after i steps. Now, if xi+1 is greater than all entries in the
first row of Pi, then place it at the end of that row (adding a new box).
Otherwise, if, say, p1,j < xi+1 < p1,j+1, then replace (or “bump”) p1,j+1

by xi+1. Then, repeat the same operation on the second row with p1,j+1

playing the role of xi+1. This bumping process will continue row by row
until either a new box is created at the end of some existing row or a
new one-box row is created. With this algorithm, a new box is created
somewhere and the left tableau Pi grows to Pi+1. Let the right tableau
Qi grow to Qi+1 by placing i + 1 in the correspondingly located new box.
Due to this formation algorithm, the left tableau P (x) is often called the
insertion tableau and the right tableau Q(x) is called the recording tableau.

The whole procedure is best explained by an example. Let x = 35214.
The various steps in the formation of P and Q are:

Pi Qi

Step1 : 3 1

Step2 : 3 5 1 2

Step3 :
2 5

3

1 2

3

Step4 :

1 5

2

3

1 2

3

4

Step5 :

1 4

2 5

3

1 2

3 5

4

The last pair of tableaux is (P (x), Q(x)).

Fact A3.3.1 The mapping x �→ (P (x), Q(x)) is a bijection between
permutations x ∈ Sn and pairs of tableaux (P, Q) ∈ ⋃λ⊢n SY T 2

λ .

This is called the Robinson-Schensted correspondence, and much of this
appendix is concerned with summarizing its key properties.
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A3.4 Descent sets

The right and left descent sets of x ∈ Sn are, by definition,

DR(x) = {i ∈ [n− 1] : x(i) > x(i + 1)}
and DL(x) = DR(x−1). For example,

DR(41253) = {1, 4} , DL(41253) = {3}.
Note that the left descent set of a permutation x ∈ Sn consists of those
i ∈ [n− 1] such that i + 1 appears to the left of i in the complete notation
of x.

The descent set of a tableau T is the set D(T ) consisting of those entries
i such that i + 1 appears in a strictly lower row. This is related to the
previous definition via the Robinson-Schensted correspondence as follows.

Fact A3.4.1 DL(x) = D(P (x)) and DR(x) = D(Q(x)).

For instance, for

Q(35214) =

1 2

3 5

4

computed earlier, both x and Q(x) have (right) descent set = {2, 3}.

A3.5 Special tableaux

A tableau is row superstandard if when reading its rows from left to right
and from top to bottom, we get the integers 1, 2, . . . , n in their natural
order. For instance, the following is the row superstandard tableau of shape
(5, 3, 1):

1 2 3 4 5

6 7 8

9

By symmetry there is a corresponding notion of column superstandard
tableaux.

The reading word ρ(T ) of a tableau T is obtained by reading the rows
of T from left to right and from bottom to top. For instance, let T be the
row superstandard tableau of shape (5, 3, 1). Then, ρ(T ) = 967812345.We
will sometimes consider ρ(T ) as an element of Sn if T has n boxes (and is
standard). For a given partition λ = (λ1, . . . , λk), there is a unique tableau
Tλ having descent set {λk, λk + λk−1, . . . , λk + · · · + λ2}. It is called the
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reading tableau of shape λ, because of the bijection

ρ(T ) ←→ (T, Tλ),

which holds under Robinson-Schensted for all T ∈ SY Tλ. For example, the
reading tableau of shape (5, 3, 1) is

1 3 4 8 9

2 6 7

5

A3.6 Knuth equivalence

Let x, y ∈ Sn. We write x≈
K

y if there exist 1 < i < n such that x1x2 . . . xn

and y1y2 . . . yn differ only on the substrings xi−1xixi+1 and yi−1yiyi+1,
and these substrings are related to each other in either of the following two
ways:

bca ↔ bac or cab ↔ acb,

where a < b < c. This is called elementary Knuth equivalence. It means
that a commutation ac ↔ ca is allowed if and only if the commuted pair
has a neighbor b of intermediate value placed immediately to the left or
immediately to the right.

Let x∼
K

y be the equivalence relation (called Knuth equivalence) gener-

ated by x≈
K

y. For instance,

2 1 5 4 3 6 ≈
K

2 1 5 4 6 3 ≈
K

2 1 5 6 4 3 ≈
K

2 5 1 6 4 3 ≈
K

2 5 6 1 4 3

shows that 215436∼
K

256143.

The equivalence classes with respect to ∼
K

are called Knuth classes. This

turns out to characterize the relation of having the same insertion tableau.

Fact A3.6.1 P (x) = P (y) if and only if x∼
K

y, for all x, y ∈ Sn.

This result has a dual form characterizing equality of recording tableaux.
The dual form can be easily deduced using Fact A3.9.1 below. Because of
its importance in Chapter 6, we nevertheless give the explicit statement.

For x, y ∈ Sn, we write x ≈
dK

y if x and y differ by transposition of two

values i and i+1, and either i−1 or i+2 occurs in a position between those
of i and i + 1. This defines elementary dual Knuth equivalence, and dual
Knuth equivalence (written x ∼

dK
y) is the transitive closure. For instance,

2 1 5 4 3 6 ≈
dK

3 1 5 4 2 6 ≈
dK

4 1 5 3 2 6 ≈
dK

4 2 5 3 1 6

shows that 215436 ∼
dK

425316.
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Fact A3.6.2 Q(x) = Q(y) if and only if x ∼
dK

y, for all x, y ∈ Sn.

The equivalence classes under “∼
dK

” are called dual Knuth classes.

A3.7 Jeu de taquin slides

Let T be a skew tableau and x ∈ N2 be such that sh(T ) extends {x}. We
then define the backward jeu de taquin slide (or backward slide, for short)
of T into x to be the skew tableau, denoted jx(T ), obtained as follows. We
first fill cell x by “sliding” into it the smaller (or only one) of the entries
of T that occupy the cells immediately to the right and immediately below
cell x. This will vacate a new cell x′, which we now fill by the same sliding
rule, and so on until we have vacated a cell y for which neither the cell
directly below it nor the one directly to its right are in sh(T ).

For example, if

T =

• 1 4 8

2 5 6 �

3 7

(A3.1)

and x is the cell marked by a •, then we obtain

• 1 4 8

2 5 6

3 7

→
1 • 4 8

2 5 6

3 7

→
1 4 • 8

2 5 6

3 7

→
1 4 6 8

2 5 •
3 7

and so

jx(T ) =

1 4 6 8

2 5

3 7

Similarly, if x ∈ N2 is such that {x} extends sh(T ), then we define a
forward jeu de taquin slide (or forward slide, for short) of T into x to be
the skew tableau, denoted jx(T ), defined as follows. We first fill cell x by
“sliding” into it the largest (or only one) of the entries of T that occupy
the cells immediately to the left and immediately above cell x. This vacates
a new cell x′, which we fill by the same rule until we have vacated a cell y
for which neither the cell immediately to its left nor the one immediately
above it are in sh(T ).

For example, if T is the tableau in (A3.1) and x is the cell marked by a
�, then we obtain

1 4 8

2 5 6 �

3 7

→
1 4 �

2 5 6 8

3 7

→
1 � 4

2 5 6 8

3 7

→
� 1 4

2 5 6 8

3 7
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so

jx(T ) =

1 4

2 5 6 8

3 7

A slide sequence for T is a sequence of cells (x1, . . . , xr) such that it is
meaningful to form the tableaux Tr, . . . , T1, where, for each i = 1, . . . , r,

either Ti = jxi
(Ti−1) or Ti = jxi(Ti−1) (and where T0

def
= T ).

A3.8 Evacuation and antievacuation

We describe two operations called evacuation and antievacuation that
transform a tableau T to other tableaux e(T ), e∗(T ) of the same shape.
These operations turn out to be involutions.

Let T be a tableau with n cells. Delete entry “n” from T and perform a
forward slide into the cell that contained it. This will vacate a cell of T . Now
do the same for entry “n− 1,” then for entry “n− 2,” etc., and finally for
entry “1.” You will now have the empty tableau. Then, the antievacuation
tableau of T , denoted e∗(T ), is the tableau whose entries record the order
in which the cells of T have been vacated.

For example, if

T =

1 3 6

2 4 7

5

then we obtain from it the following sequence of tableaux:

T →
1 3 6

2 4

5

→
1 3

2 4

5

→
1 3

2 4

→
1 3

2 →
1

2 →
1

and, therefore,

e∗(T ) =

2 5 7

1 4 6

3

Note that e∗(T ) has the same shape as T . It is a fact that the mapping e∗

is an involution on the set of tableaux of any given shape.
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Next, starting from T , we first delete the entry “1” and perform a back-
ward slide on the cell that contained it; then we do the same for the entry
“2,” etc. . . . Then, the tableau that records (in reverse) the order in which
the cells of T have been vacated in this process is called the evacuation of
T and is denoted by e(T ).

For example, if

T =

1 3 4

2 5 6

7

then we obtain the following sequence of tableaux :

T →
3 4

2 5 6

7

→
3 4

5 6

7

→
4

5 6

7

→
6

5

7

→
6

7 → 7

and, hence,

e(T ) =

2 5 7

1 4 6

3

Again, e(T ) has the same shape as T , and the mapping e is an involution.

A3.9 Symmetries of the R-S correspondence

Let w0 be the reverse permutation w0 = n . . . 3 2 1. We summarize the re-
markable effects on tableaux that multiplication with w0 and the operation
x �→ x−1 have under the Robinson-Schensted correspondence.

With our convention for multiplying permutations, we get the following
combinatorial meanings of the algebraic operations:

x−1 ←→ switch places and values,
xw0 ←→ reverse the places,
w0x ←→ reverse the values,

w0xw0 ←→ reverse both.

For instance, if x = 24135, then x−1 = 31425, xw0 = 53142, w0x = 42531,
and w0xw0 = 13524.
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Recall that for a tableau P , we let P ′ denote the transposed tableau (i.e.,
P mirrored in its main diagonal). This clearly commutes with evacuation:
e(P ′) = e(P )′.

Fact A3.9.1 If x ↔ (P, Q) are matched under the Robinson-Schensted
correspondence, then so are

x−1 ←→ (Q, P ),
xw0 ←→ (P ′, e(Q)′),
w0x ←→ (e(P )′, Q′),

w0xw0 ←→ (e(P ), e(Q)).

Note that the last relation implies that evacuation is an involution on
SY Tλ.

We leave it to the reader to exemplify these relations; for instance,
starting from the pair

24135 ←→
(

1 3 5

2 4
,

1 2 5

3 4

)
.

A3.10 Dual equivalence

In this section, we summarize the properties of an equivalence relation for
skew tableaux that is closely connected to the dual Knuth equivalence of
permutations, as discussed in Section A3.6.

Let P and Q be skew tableaux. We say that P is dual equivalent to Q,
denoted P ≈ Q, if whenever a slide sequence can be applied to both P and
Q, then the resulting tableaux are of the same shape.

Note that the sequence in the definition can be empty. Thus, two
dual equivalent tableaux necessarily have the same shape. The converse,
however, is not true in general. For example, if

S =
2 3

1
and T =

1 3

2

then S and T are not dual equivalent. In fact, performing a backward slide
into the cell (1, 1) yields

j(1,1)(S) = 1 2 3 and j(1,1)(T ) =
1 3

2

which do not have the same shape. We do have, however, the following
remarkable result.

Fact A3.10.1 Let U and V be two tableaux of the same normal shape.
Then, U ≈ V .
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Although the definition of dual equivalence is a global one, this concept
can be characterized locally, and this is one of the most important of its
many properties.

Fact A3.10.2 Let X, S, T , and Y be four tableaux such that sh(Y ) extends
sh(T ), sh(T ) extends sh(X), and S ≈ T . Then, X ∪ S ∪ Y ≈ X ∪ T ∪ Y .

Note that in this lemma we are writing, for simplicity, X ∪S ∪Y instead
of X ∪ S|+|X|

∪ Y|+|X|+|S|
, etc., thereby tacitly using the convention stated

in Section A3.2. We will do this routinely.
A skew partition λ \ µ is said to be miniature if |λ \ µ| = 3. A tableau T

is said to be miniature if sh(T ) is miniature.

Fact A3.10.3 Each dual equivalence class of miniature tableaux consists
of at most two tableaux. Furthermore, a miniature tableau T is in a two-
element dual equivalence class if and only if its reading word is either 132,
231, 213, or 312. In each case, the unique tableau S dual equivalent to T
is equal to T except that its reading word is the reverse of that of T .

Two tableaux U and V are elementary dual equivalent if there exist four
tableaux X , S, T , and Y as in the hypotheses of Fact A3.10.2 such that S
and T are miniature, S ≈ T , U = X ∪ S ∪ Y , and V = X ∪ T ∪ Y . So, for
example,

1 2 3

4 5

6

and

1 2 3

4 6

5

are elementary dual equivalent, but

1 2 3

4 5

6

and

1 2 6

4 5

3

are not.
It is clear from this definition and Fact A3.10.2 that two tableaux that

are related by a chain of elementary dual equivalences are dual equivalent.
Remarkably, the converse is also true.

Fact A3.10.4 Let U and V be two tableaux. Then, U ≈ V if and only if
U can be obtained from V by a sequence of elementary dual equivalences.
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Enumeration and symmetric functions

In this appendix, we review some results, notation and terminology re-
garding formal power series and symmetric functions. These are needed in
connection with the enumerative theory of Coxeter groups. Further details,
including proofs, can be found in [450], [497], [498], and [258].

A4.1 Formal power series

Let x = (x1, x2, . . .) be a sequence of independent variables and R be a
commutative ring with identity. We denote by R[[x]] the ring of formal
power series in x1, x2, . . .. Given (a1, a2, . . . , ap) ∈ Np and F ∈ R[[x]], we
denote by [xa1

1 · · ·xap
p ](F ) the coefficient of the monomial xa1

1 · · ·xap
p in F ,

and we also write F (0)
def
= [x0

1x
0
2 · · · ](F ). If F ∈ R[[x]] is invertible, we

write G = F−1 (or G = 1/F ) to mean that FG = GF = 1. An element
F ∈ R[[x]] is rational if there exist polynomials P, Q ∈ R[x1, x2, . . .] such
that Q(0) is invertible in R and

F =
P

Q
.

Recall that there is a notion of convergence in R[[x]]. Namely, if
F, F1, F2, . . . ∈ R[[x]], then we write

lim
n→∞

Fn = F
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if for each monomial xa1
1 xa2

2 · · · , there is an integer N (depending on
a1, a2, . . .) such that [xa1

1 xa2
2 · · · ](Fn) = [xa1

1 xa2
2 · · · ](F ) for all n ≥ N . We

then say that the sequence {Fn}n=1,2,... converges to F . In particular, we
write

∏

n≥1

Fn = F

to mean that

lim
n→∞

n∏

i=1

Fi = F.

Given F ∈ R[[x]] such that F (0) = 1, we define

log (F )
def
=
∑

n≥1

(−1)n−1 (F − 1)n

n
.

Let now z, x, and q be three independent variables. The following result
is usually known as the q-Binomial Theorem, see, e.g., [258, Appendix II.3].

Fact A4.1.1 We have that

∑

n≥0

n−1∏

i=0

(
1− zqi

1− qi+1

)
xn =

∏

i≥0

(1 − zxqi)

(1 − xqi)

in Q[[z, x, q]].

Let D be a directed graph on vertex set [n]. The adjacency matrix of D

is the matrix Z
def
= (Zu,v)u,v∈[n] defined by

Zu,v =

{
1, if u → v,
0, otherwise.

For u, v ∈ [n], define a formal power series Fu,v(q) ∈ Z[[q]] by

Fu,v(q)
def
=
∑

n≥0

Fu,v(n) qn,

where Fu,v(n) equals the number of paths of length n from u to v (so
Fu,v(1) = Zu,v, Fu,v(0) = δu,v).

The following basic result is sometimes known as the Transfer Matrix
Method. See Theorem 4.7.2 in [497] for a detailed discussion

Fact A4.1.2 Let u, v ∈ [n]. Then,

Fu,v(q) =
(−1)u+vdet(I − qZ; v, u)

det(I − qZ)
,

where (I− qZ; v, u) denotes the matrix obtained from I− qZ by deleting its
v-th row and u-th column, and I is the n× n identity matrix.

Corollary A4.1.3 The series Fu,v(q) is rational.
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A4.2 Symmetric functions

An element F ∈ R[[x]] is said to be symmetric if

F (x1, x2, . . .) = F (xu(1), xu(2), . . .)

for all bijections u : P → P, and it is said to be bounded if there is a constant
M such that all of the monomials appearing in F have degree ≤ M . F
is called a symmetric function if it is both symmetric and bounded. For
example,

∏
i≥1(1 + xi) is symmetric but not a symmetric function.

Let λ = (λ1, . . . , λk) be a partition. A column strict plane partition T of
shape λ is a filling of the boxes of the diagram of λ with positive integers
so that each row is weakly decreasing when read from left to right and each
column is strictly decreasing when read from top to bottom. The content
of T is the vector

m(T ) = (m1(T ), m2(T ), . . .),

where mi(T ) equals the number of entries of T that are equal to i (i ∈ P).
The Schur function associated to λ is defined by

sλ(x)
def
=
∑

T

x
m1(T )
1 x

m2(T )
2 · · · ,

where T runs over all the column strict plane partitions of shape λ. It is a
remarkable fact that sλ(x) is always a symmetric function.

Fact A4.2.1 Let λ be a partition; then, sλ(x) is a symmetric function,
homogeneous of degree |λ|.
In fact, much more is true. It is clear that the symmetric functions that
are homogeneous of a given degree n form a vector space, and it turns out
that the set {sλ(x)}λ⊢n is a basis for it.

Let p ∈ P and S ⊆ [p − 1]. A sequence (a1, . . . , ap) ∈ Pp is compatible
with S if the following hold:

(i) a1 ≤ a2 ≤ · · · ≤ ap.

(ii) ai < ai+1 if i ∈ S.

Denote by CS the set of all the sequences compatible with S. The
fundamental quasi-symmetric function QS,p(x) is

QS,p(x)
def
=

∑

(a1,...,ap)∈CS

xa1 · · ·xap
.

We then have the following result.

Fact A4.2.2 Let λ be a partition. Then,
∑

T∈SYTλ

QD(T ),|λ|(x) = sλ(x),
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where D(T ) is the descent set of T (see Section A3.4).

For example, if λ = (2, 1), then there are two tableaux of shape λ, namely

1 2

3
and

1 3

2

so

s(2,1)(x) = Q{2},3(x) + Q{1},3(x).
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[59] A. Björner, The Möbius function of factor order, Theoret. Computer Sci.
117 (1993), 91–98. [88]

[60] A. Björner, Topological Methods, in Handbook of Combinatorics (eds. R.
Graham, M. Grötschel, and L. Lovász), North-Holland, Amsterdam, 1994,
pp. 1819–1872. [303]

[61] A. Björner, F. Brenti, An improved tableau criterion for Bruhat order,
Electron. J. Combin. 3 (1996), no. 1, #R22.

[62] A. Björner, F. Brenti, Affine permutations of type A, Electron. J. Combin.
3 (1996), no. 2, #R 18. [242, 293, 294]

[63] A. Björner, A. M. Garsia, R. P. Stanley, An introduction to Cohen-
Macaulay partially ordered sets, in Ordered Sets (ed. I. Rival), Reidel,
Dordrecht, 1982, pp. 583–615.

[64] A. Björner, M. LasVergnas, B. Sturmfels, N. White, G. M. Ziegler, Ori-
ented Matroids, Cambridge University Press, Cambridge, 1993. [243, 299,
306]

[65] A. Björner, M. Wachs, Bruhat order of Coxeter groups and shellability,
Adv. Math. 43 (1982), 87–100. [64]

[66] A. Björner, M. Wachs, On lexicographically shellable posets, Trans. Amer.
Math. Soc. 277 (1983), 323–341.

[67] A. Björner, M. Wachs, Generalized quotients in Coxeter groups, Trans.
Amer. Math. Soc. 308 (1988), 1–37. [64, 242]

[68] B. D. Boe, Kazhdan-Lusztig polynonomials for Hermitian symmetric
spaces, Trans. Amer. Math. Soc. 309 (1988), 279–294.

[69] B. D. Boe, A counterexample to the Gabber-Joseph conjecture, in
Kazhdan-Lusztig Theory and Related Topics, Contemp. Math. Vol. 139,
American Mathematical Society, Providence, RI, 1992, pp. 1–3. [170]



Bibliography 327

[70] B. Boe, W. Graham, A lookup conjecture for rational smoothness, Amer.
J. Math. 125 (2003), 317–356.

[71] M. Bona, Combinatorics of Permutations, Chapman-Hall/CRC Press,
New York, 2004.

[72] A. Borel, Foreword to Chevalley’s paper [134]. [63]
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Algebra 120 (1989), 74–89.

[353] P. Le Chenadec, Canonical forms in finitely presented algebras. 7th In-
ternational Conference on Automated Deduction (Napa, Calif., 1984),
Lecture Notes in Comput. Sci., 170, Springer, Berlin, 1984, pp. 142–165.

[354] B. Leclerc, A finite Coxeter group the weak Bruhat order of which is not
symmetric chain, European J. Combin. 15 (1994), 181–185.

[355] L. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-
Lusztig polynomials, Adv. Studies Pure Math. 28 (2000), 155–220.

[356] C. Le Conte de Poly-Barbut, Le diagramme du treillis permutoèdre est
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Index of notation

We collect here the main notation used in the book, with references to the
pages where definitions can be found. For general notational conventions,
see the beginning of the book.

(W, S) Coxeter system 2
T the set of reflections of (W, S) 12
TR(w) {t ∈ T : wt < w} 16
TL(w) {t ∈ T : tw < w} 16
DR(w) S ∩ T (w), right descent set 17, 312
DL(w) S ∩ TL(w), left descent set 17, 312
DJ

I , DI = DI
I descent class 39

ℓ(w) length of element w 15
≤ Bruhat order of (W, S) 27
≤R right weak order of (W, S) 65
≤L left weak order of (W, S) 65
x � y covering in Bruhat order 35
x �R y covering in right weak order 65
WJ parabolic subgroup 39
W J , JW quotient 39, 41
w = wJ · wJ canonical factorization 40
w0 longest element in finite group 36
w0(J) longest element in subgroup WJ 39
wJ

0 longest element in quotient W J 43
µJ(x, y) Möbius function of W J 53
S∗ free monoid generated by S 3
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R(w) set of reduced decompositions of w 77
NF (w) normal form of w 79
R(W, S) ∪w∈WR(w) 118
R(W,S)(q) reduced word enumerator 122
P J projection map 42
aℓ(w) absolute length of w 61, 234

u
t→ w edge in Bruhat graph 27

Invol(W ) poset of involutions 61
Γu,w cell complex of Bruhat interval 53
∆(W, S) Coxeter complex of (W, S) 86
N (W, S) nerve of (W, S) 86, 206

GL(V ) general linear group 89
Ed Euclidean space 8
〈 p |β 〉 pairing 93
(· | ·) bilinear form 93
ks,s′ edge weights 91

w(β)
def
= σw(β) W -action on V 94

w(p)
def
= σ∗

w(p) W -action on V ∗ 94
γ > 0 positive vector 96
γ < 0 negative vector 96
ps1s2...sk position in numbers game 99
Φ = Φ+

⊎
Φ− root system 101

Π simple roots 101
N(w) positive roots associated with w 102
tγ reflection associated with root γ 104
dp (β) depth of root β 109
(Φ+,≤) root poset 109
Σ set of small roots 113
N (α) a set defined for small roots α 114
β dom γ β dominates γ 116
DΣ(w) small descent set 119
Hβ hyperplane determined by root β 123
AΣ arrangement of small h-planes 123
Spr(W, S) Springer number 128

[x, y], (x, y) closed and open interval in poset 300
ℓ(u, w) length of interval [u, w] 48
0̂, 1̂ bottom and top elements in poset 300
x ∧ y meet operation 70
x ∨ y join operation 71
x � y x covered by y 301
Cov(P ) set of covering pairs 301
µ(x, y) Möbius function 301
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Int(P ) set of intervals in poset P 301
I(P ; R) incidence algebra 301

F(∆) set of facets of complex ∆ 302
‖∆‖ geometric realization of ∆ 302
∆(P ) order complex of poset P 303
χ̃(∆) reduced Euler characteristic 302
R(Ck) restriction map of shelling 303
∆E type-selected subcomplex 305
C(Γ) cell poset of complex Γ 306

Ru,v(q) R-polynomial 132
Pu,v(q) Kazhdan-Lusztig polynomial 133

R̃u,v(q) reduced R-polynomial 140
D(∆; <) descent set of Bruhat path 141
R<(u, v) R-polynomial of reflection ordering 141
B(u, v) set of Bruhat paths from u to v 141
D(s1, . . . , sr) set of distinguished subexpressions 145
D(ξ)u set of distinguished subexpressions 146
N(Γ) negative set of lattice path 150
Ψα(q), Υα(q) lattice path polynomials 150
Ra0,...,ai

(q) R-polynomial of a chain 153

H = H(W, S) Hecke algebra of (W, S) 174
{Tw}w∈W canonical basis for H 174
{Cw}w∈W Kazhdan-Lusztig basis for H 174
µ(y, w) critical coeff. of K-L polynomial 135, 174
Γ(W,S), ΓC , Γλ Kazhdan-Lusztig graph 175, 177, 191

Γ̃(W,S), Γ̃C , Γ̃λ colored Kazhdan-Lusztig graph 176, 177, 191
x "L y left preorder 177
x ∼L y left equivalence 177
DR(C) descent set of left cell C 179
ε(w) sign character 15
RegW regular representation 180
KLC, KLλ Kazhdan-Lusztig representation 181, 191
IndS

J [χ] induced representation 183
DESR(i) certain set of permutations 187
a(x) Lusztig’s a-function 198

λ \ µ skew partition 309
δn staircase partition 218
SY Tn set of standard tableaux of size n 310
SY Tλ set of standard tableaux of shape λ 310
fλ fλ = |SY Tλ| 310
D(T ) descent set of tableau 312



356 Index of notation

ρ(T ) reading word of tableau 312
T ′ transposed tableau 310

x
i≈
K

y Knuth step of type i 185

x≈
K

y elementary Knuth equivalence 313

x∼
K

y Knuth equivalence 313

x ≈
dK

y elementary dual Knuth equivalence 313

x ∼
dK

y dual Knuth equivalence 313

jx(T ) backward jeu de taquin slide 314
jx(T ) forward jeu de taquin slide 314
e(T ) evacuation of tableau 315
e∗(T ) antievacuation of tableau 315
p(T ) promotion of tableau T 216
P ≈ Q dual equivalence of tableaux 317

W (t; q) length-descent enumerator 208
[k]q q-analog of the integer k 204
exp (x; q) q-analog of exponential series 210
expWJ

(x; q) a special series 211
dexWJ

(x; q) a special series 211
sλ(x) Schur function 321
QS,p(x) fundamental quasi-symmetric function 321
aλ(w) Stanley multiplicities 231
Fw(x) Stanley symmetric function 233

S(E) group of all permutations of set E 307
Stab(A) stabilizer of subset A 307
inv(x) inversion number 20
neg (x1, . . . , xn) number of negative entries 308
nsp (x1, . . . , xn) number of negative sum pairs 308
D(x1, . . . , xn) descent set of sequence 308

S
(k)
n special quotient in Sn 41

L(k, n− k) special quotient in Sn 42
M(n) special quotient in SB

n 287
(Sn, S) permutation group of type An−1 21
(SB

n , SB) permutation group of type Bn 248
(SD

n , SD) permutation group of type Dn 255
(SE

6 , S) permutation group of type E6 290
(SE

7 , S) permutation group of type E7 290
(SE

8 , S) permutation group of type E8 291
(SF

4 , S) permutation group of type F4 292
(SH

3 , S) permutation group of type H3 292
(SH

4 , S) permutation group of type H4 293

(S̃n, S̃A) permutation group of type Ãn−1 263
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(S̃C
n , S̃C) permutation group of type C̃n 271

(S̃B
n , S̃B) permutation group of type B̃n 279

(S̃D
n , S̃D) permutation group of type D̃n 284
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A-tableau, 240
absolute length, 235
adjacency matrix, 320
adjacent facets, 302
AK-equivalent, 241
antiautomorphism, 37, 69, 301
antibrick, 217
antievacuation, 315
antiparallel edges, 300
antipodal map, 127
antistaircase, 309
arrangement

Shi, 124
small hyperplanes, 123

atom, 301
automaton

canonical, 120
finite state, 118

automorphism, 37, 69, 301

balanced signature, 54
ball, 305
bilinear form, 93

symmetric, 97
BN-pair, 10
Boolean algebra, 301
Bott’s theorem, 208

bottom element, 300
brick, 217
Bruhat

cell, 29
decomposition, 11, 29
edge, 176
graph, 28
order, 28

cell
closed, 306
of diagram, 309
left, 177
open, 306
two-sided, 199

cell poset, 306
chain, 300

essential, 86
maximal, 300
saturated, 301

chain property, 35, 45
chamber, 123

Weyl, 123
coatom, 301
Cohen-Macaulay, 304
combinatorial invariance, 161
commutation class, 77
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comparable, 300
compatible, 321
complete notation

of permutation, 308
complex

Cohen-Macaulay, 304
colored, 305
Coxeter, 86
locally finite, 304
order, 74, 303
pure, 302
regular CW, 305
shellable, 303
simplicial, 302
subthin, 304
subword, 86
thin, 304

composition, 149
cone, 302
conjugate, 23
coset representative

maximal, 40
minimal, 40

covering, 301
Coxeter

diagram, 1
generators, 2
graph, 1
group, 2
matrix, 1
number, 86
system, 2

Coxeter group
affine, 8
hyperbolic, 8
universal, 4

crown, 52
CW complex, 305
CW decomposition, 306
cycle, 299

D-compatible, 288
defect, 168
deletion property, 17, 18
depth, 109
descendant, 299
descent, 17

composition, 154
descent class, 39

descent number, 208
descent set, 17

of Bruhat path, 141
of left cell, 179
of sequence, 308
small, 119
of tableau, 312

diagram
Ferrers, 309
Hasse, 301
of poset, 301

digraph, 300
dimension, 302
directed poset, 36
disjoint cycle form

of permutation, 308
distance

from bigrassmannian, 168
distinguished element, 79
distinguished subexpression, 145
dominate, 116
dual equivalence, 317

elementary, 318

edge
long, 113
short, 113

edge set
of Bruhat path, 141

Euclidean space, 9
Euler characteristic

reduced, 302
Eulerian polynomial, 208
evacuation, 315
exchange property, 18

strong, 15
exponents, 204
extension

of a skew partition, 309

f -vector, 302
face, 302
facet, 302
Ferrers diagram, 309
firing a node, 98
flag variety, 29
formal power series

rational, 319
symmetric, 321
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free monoid, 3
free point, 259

game
negative, 98
positive, 98

generalized staircase, 239
geometric realization, 302
graph, 299

connected, 299
directed, 300
rooted, 299

group
dihedral, 6
general linear, 11
matrix, 10
reflection, 8
simple, 11
simply-laced, 4
symmetric, 20, 308
symmetry, 7
Weyl, 4

h-vector, 87, 302
Hecke algebra, 174
hook length formula, 232
hook shape, 309
hyperplane

small, 123

incidence algebra, 301
incidence numbers, 306
incomparable, 300
interval in poset, 300
inversion, 20, 309

eA-, 261
affine, 261
B-, 247
D-, 253

inversion number, 20
inversion table, 309

affine, 289
involution, 61
irreducible, 2
isomorphic posets, 301

jeu de taquin, 314
join, 301

K-L order of SY Tn, 196
Kazhdan-Lusztig

basis, 174
colored graph, 176
graph, 175
polynomial, 134
representation, 181

Knuth class, 313
dual, 314

Knuth equivalence, 313
dual, 313
dual elementary, 313
elementary, 185, 313

Knuth step of type i, 185
Kostka number, 189

language
formal, 118
regular, 118

lattice, 301
lattice path, 149
lattice property, 70
leaf, 299
left

cell, 177
equivalence, 177
order, 65
preorder, 177

length, 15
absolute, 61, 235
of chain, 300
of lattice path, 150
of multichain, 300
of partition, 309
of path, 300
of poset, 300

lifting property, 35, 58
link, 304
log-concave polynomial, 167
loop, 300
lower s-conjugate, 138

Möbius function, 52, 301
matching, 158
maximal element, 300
meet, 301
meet-semilattice, 70, 301
miniature

skew partition, 318
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tableau, 318
move

braid-, 75
nil-, 75

multichain, 300

negative set
of lattice path, 150

nerve, 86, 206
NilCoxeter algebra, 240
normal form, 78
normal form forest, 80
normal shape, 310
numbers game, 97

order complex, 303
order dimension, 59, 84
order-preserving, 301
order-reversing, 301
ortholattice, 71

panel, 302
part, 309
partition, 309

plane column strict, 321
skew, 309

path, 299
directed, 300

permutation, 307
affine, 5, 260
alternating, 128
bigrassmannian, 168
group, 307
representation, 307
signed, 5

Poincaré polynomial, 201
Poincaré series, 201
poset, 300

graded, 301
pure, 300

presentation, 2
projection, 43, 58
promotion

sequence, 222
step, 216
total, 216

pure, 302

quasi-symmetric function

fundamental, 321
quotient, 39

generalized, 59

R-polynomial, 132
of a chain, 153
of a multichain, 166

rank, 2
of element in poset, 300
function, 301
generating function, 301
of poset, 300

rank level, 300
reading word of tableau, 312
rectangle, 309

allowable, 258
empty (for signed permutation),

257
reduced decomposition, 15
reduced expression, 15
reduced word, 15

lex. first, 78
refinement order, 149
reflection, 12

associated, 16, 67
simple, 12

reflection ordering, 137
regular polytope, 7
representation

alternating, 182
contragredient, 94
geometric, 97
homology, 199
induced, 183
Kazhdan-Lusztig, 181
linear, 89
permutation, 11, 307
regular, 180
standard geometric, 97
trivial, 182

restriction map, 303
right order, 65
Robinson-Schensted corresp., 311
root, 101

of graph, 299
humble, 116
negative, 101
positive, 101
simple, 101
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small, 113
root poset, 109
root system, 101

crystallographic, 9

s-relation, 225
Schubert cell, 29
Schur function, 321
segment

final, 310
initial, 310

shape
of left cell, 190
skew, 310
of tableau, 310

shellable, 303
shelling, 303
skew partition

conjugate, 310
connected, 310
self-conjugate, 310
symmetric, 310

slide
backward, 314
forward, 314
sequence, 315

special matching, 158
Springer number, 128
square, 309
stabilizer, 307
staircase, 309
staircase relation, 225
standard Young tableau, 310
Stanley symmetric function, 233
stone, 217
subcomplex

type-selected, 305
subexpression, 144
subgraph, 300
subgroup

alternating, 15
commutator, 23
parabolic, 38
reflection, 24, 55

rotation, 15
stabilizer, 307
Young, 41

subposet, 300
length-selected, 61

subthin, 304
subword, 33
subword property, 34
symmetric function, 321
symmetric group, 4, 308

tableau, 310
antievacuation, 315
evacuation, 316
insertion, 311
reading, 313
recording, 311
skew, 310
standard, 310
superstandard, 312
transpose, 310

tableau criterion, 47
thin, 304
Tits cone, 123
Tits system, 10
top element, 300
transfer matrix method, 320
transposition, 308
tree, 299

universality property, 3
upper s-conjugate, 138

W -graph, 196
weak order, 65
Weyl group, 9, 10
window notation

of affine permutation, 260
of signed permutation, 245

word problem, 75
word property, 76

Young’s rule, 188


