
THE PRODUCT OF THE GENERATORS OF A FINITE GROUP
GENERATED BY REFLECTIONS

By H. S. M. COXETER

In Euclidean n-space, every finite group generated by reflections leaves at
least one point invariant, and thus may be regarded as operating on a sphere.
It has for its fundamental region a spherical simplex whose dihedral angles are
submultiples of r, say r/pk [6; 597, 619], [10; 190]. Accordingly we can use as
generators the reflections R1, R2, R, in the bounding hyperplanes of this
simplex. The product R1R2 R, has already been found useful in various
ways [6; 606-617], [7], [11]. The n generators may be taken in any order, since
the products in different orders are all conjugate [6; 602]. Most of the applica-
tions of R1R2 R, were concerned with its period, h. In the present paper
we consider its characteristic roots

where e2"/h and the exponents mi are certain integers which may be taken
to lie between 0 and h. They are computed by a trigonometrical formula in-
volving the periods, p;k, of the products of pairs of generators. (The product
of two reflections is simply a rotation.)
The point of interest is that the same integers occur in a different connection.

It turns out that the order of the group is

(ml-t- 1)(m2 + 1)... (m + 1),

and that these factors m; + 1 are the degrees of n basic invariant forms [2;
Chapter XVII]. Moreover, when every p; is 2, 3, 4 or 6, so that the group is
crystallographic, there is a corresponding continuous group, and the Betti num-
bers of the group manifold are the coefficients in the Poincar polynomial

Having computed the m’s several years earlier [10; 221, 226, 234], I recognized
them in the Poincar polynomials while listening to Chevalley’s address at the
International Congress in 1950. I am grateful to A. J. Coleman for drawing
my attention to the relevant work of Racah [16], which helps to explain the
"coincidence"; also, to J. S. Frame for many helpful suggestions (such as his
idea of using the matrix T in 1, see [8; 6]), to J. A. Todd for his conjecture
that the Jacobian of the basic invariants will always factorize into linear forms
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766 H.S.M. COXETER

corresponding to the reflecting hyperplanes, and to Racah himself for his proof
of this conjecture and his verification that the degrees of the invariants for the
non-crystallographic group [3, 3, 5] are indeed

2, 12, 20, 30.

1. The characteristic equation. Since RaR2 R. is an orthogonal trans-
formation, its n characteristic roots have unit modulus and may be expressed as

where 0 _< }a _< }. _< _< }. _< 2r. Since the roots occur in conjugate pairs,

(1.2)

In particular, when n is odd, }(.+,) r.

In other words, R,R2 R, is the product of rotations through angles },
2 }t. in completely orthogonal planes, along with a reflection when n
is odd [10; 216]. If its period is h, each angle of rotation must be a multiple
of 2-/h, say

2mir/h (m,

_
m2

_ _
m.),

the m’s being n positive integers connected in pairs by the relations

(1.3) mi - m,+l-i h.

Since the characteristic roots are invariants, they can be computed in terms
of any system of affine coordinates, rectangular or oblique. In the present
case the fundamental region itself provides a convenient system, the coordinates
x, x2, x. being distances from the reflecting hyperplanes [10; 182]. The
reflection R is now given by

’-- 2aixXi Xi

where -a is the cosine of the dihedral angle between the j-th and k-th hyper-
planes, and a 1. Let the partial product RR. R transform xi into
x() and set

(i) (n)
Xi Xi Yi Xi Zi

Then the reflection R is given by the equations

(k)

By summing the differences x x we obtain

(1.4) y xi 2aiy zi yi

(j= 1,2, ,n).
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Let X, Y, Z denote row vectors with respective components x;, y;, zi and
T the upper triangular matrix with entries

2ai, (j < k),

(1.5) t=l 10 (j=k),

( > ),

so that the matrix I] a ]1 is 1/2(T -t- T’). Equations (1.4) may now be expressed as

-x, yt z yt
k-1

or

(1.6)

whence

-X YT, Z YT’,

Z X(-T-1T’).
Since the product R1R2 Rn defines the mapping obtained by eliminating Y
from (1.6), its matrix is

(1.7) R -T-1T’.

Since T(XI R) XT -4- T’, its characteristic equation (whose roots are (1.1)) is

hTA-T’[= 0;

that is,

(1.8)

1/2(h + 1) a,.X alaX a,X

as, 1/2(), A- 1) a2aX

an an, a.a 1/20, + 1)

The determinant, when expanded, has one term for each permutation in the
symmetric group of degree n; for example, the permutations

(1 2)(3 4) and (1 2 3)(4 5 6 7)

yield the terms

and

"4" 1)}n-
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2. The equation for cos mr/h. Let us represent the fundamental region by a
graph, in such a way that the nodes represent the n bounding hyperplanes, two
nodes being joined by a branch whenever the corresponding hyperplanes are
not perpendicular. Since -ai is the cosine of the dihedral angle between two
hyperplanes, it vanishes whenever the j-th and k-th hyperplanes are perpendic-
ular, that is, whenever the j-th and k-th nodes are not directly joined. Since
the dihedral angles of the spherical simplex are submultiples of 7, the graph is
always a tree or a forest [10; 195]; this means that it contains no circuit. Hence
every cyclic product of a’s, such as

a12a23a31 or a,a56a67a74

must vanish, and the only non-vanishing terms in the expansion of (1.8) are
those whose corresponding permutations are of period 1 or 2; namely, the
identity, the transpositions, and the products of disjoint transpositions.

Dividing by ,, writing

x 1/2(x + x-),
and observing that ai a;, we obtain the simplified equation

(2.1) X" "’- itmA. 0

where he firs summation is over all he branch of he graph, he second is
over all pairs of non-adjacen branches, and so on [8; 5]. A more elegan wa
of expressing it is

(2.2)

X a12 a13 aln

a2 X a23 a2a

If the graph is not connected, the determinant is equal to the product of
several determinants of lower order corresponding to the various trees in the
forest. Thus the ’s for the direct product of several groups are just all the
’s for the various irreducible components. Accordingly we restrict consideration
to the irreducible groups

[3-1], [3"-, 41, [3-"’1,

[3--’,2.1] (n 6, 7, 8),

[3, 4, 31, [p], [3, 5], [3, 3,.5],

whose fundamental regions are represented by trees [10; 200].
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Since the roots of (1.8) are (1.1), those of (2.1) or (2.2) are

cos 1/2,, cos 1/2, cos 1/2,

or, in the other notation,

cos mir/h (j 1, 2, n).

3. The particular cases.
with j < k are

In the case of [3-1], where the non-vanishing ai’s

al. a3 a,_,, cos r/3 -1/2,

the number of sets of r non-adjacent branches is (n:r), and the equation is

In the case of [3-, 4], the only change is that a_ cos r/4 -(1/2).
Among the (:r) sets of r non-adjacent branches, (:_1) contain this last branch,
while the remaining (n-:-) do not. Thus the coefficient of (2X) is now

r--1 -t- r -n--r r

in other words, it is equal to the number of sets of r non-adjacent branches in
the graph

which is used by Witt [17; 301] to represent this group.
In the notation of Chebyshev polynomials [10; 222], the equations for [3-]

and [3-2, 4] are

(3.1) U,,(X) 0 and T,,(X) O.

Hence the values of X are, respectively,

cos jr/(n -t- 1) and cos (2j 1)r/2n (j 1, 2, n).

The number of sets of r non-adjacent branches is not altered when the
double branch is separated to form a fork. But then the number of nodes,
which is the number of dimensions, is increased by 1, and we have the equation
XT,,(X) for [3"-2’’]. Returning to n dimensions we have, for [3-a’’1], the
equation

(3.2) XT,,_(X) O,

with roots

0 and cos (2j- 1)r/2(n- 1) (j- 1, 2, ..., n- 1).
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The graph for [3"-4’2’] consists of a row of n 4 branches, a second row of
two, and a third that is a single branch, all radiating from one central node.
Thus the number of sets of r non-adjacent branches is

((n-rl)-r)_}_ ((n- 4)-(r-r_1 1)) ((n- 4)r_2-(r- 2))
__(n r-1)W(nr- 1 -]-(nr-2 r r-

r -r -r- -r-3].
Taking this to be the coefficient of (2X)- (wih he appropriate sign)
obtain he equagion

(a.a) u (x) o.
The individual cses are sho in Table 1, where Y 2X.

TABLE 1

Group n

[33] 4

[3...] 5

[32.2.1] 6

[3’’’] 7

[3,.-.] S

Equation for 2 cos 1/2

y4_3y._[_ 1-- 0

Y(Y’- 4Y + 2) 0

(y2 1)(y4 4y2

__
1) 0

y( y6 6 Y4 -l- 9Y 3) 0

y8 7 Y6 -[- 14Y’ 8 y2 _}_ 1 0

Values of

1234
5’ 5’ 5’ 5

13157
8’ 8’ 2’ 8’ 8

1 1 5 7 211
12’ 3’ 12’ 12’ 3’ 12

1 5 7 1 11 13 17
18’ 18’ 18’ 2’ 18’ 18’ 18

1 7 11 13 17 19 23 29
30’ 30’ 30’ 30’ 30’ 30’ 30’ 30

1121324[3’2’119 Y(Y 4)(Y 1)(Y 3Y - 1) ( 0, 5’ 3’ 5’ 2’ 5’ 3’ 5’ 1

The final entry (n 9) is not strictly relevant, as the group is infinite. But
it is interesting to observe that 0, corresponding to the fact that the trans-
formation RR2 R, of infinite period, is a kind of screw.

These, as well as the other infinite groups [3a’a’] and [3’’], are special cases
of the general "trigonal" group [3’’’] in n T p -t- q 1 dimensions [5; 159].
Frame has investigated the operation

RR R+++I
for [3"’"], obtaining the characteristic equation

(3.4) ,/,/o/,- X,_,_,,_, 0,
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where, 1 +X+X+ +),’. Since

k-r4. X ,_ Ur(X), where X 2

the corresponding equation for X is

(3.5) U.++o+,(X) U._(X)G_(X)G_(X) O.

Since U_,(X) 0, this reduces to U.+,+(X) 0 for the symmetric group
[3"’’] [3+], in agreement with the first equation (3.1). Since Uo(X) 1,
it reduces to

u+(x) G-, (x) o

for [3"""]; this agrees with (3.2) by virtue of the identity

V.(X) U._4(X) 4XT._,(X).

Finally, since UI(X) 2X, we have

G+,(x) 2xG_,(x) o
for [3’2"], in agreement with (3.3).

Combining all these with the known results for the groups of the regular
polytopes [10; 221], we obtain the complete list shown in Tble 2.

Group

[3--’
[3"-, 41

[3,,,]
[3TM

[3,.2.,1
[3, 4,3]

[3, 51
[3,3,5]

n

n+l
2n

2(n- 1)

12
18
30
12
P
10
30

TABLE 2

ml m2 m.

1,2,3, ,n
1,3,5, ,2n-- 1
1, 3, ,n-- 1,

2n- 5, 2n- 3
1, 4, 5, 7, 8, 11
1, 5, 7, 9, 11, 13, 17
1, 7, 11, 13, 17, 19, 23, 29
1, 5, 7, 11
1, p-- 1
1, 5, 9
1, 11, 19, 29

m 1/2nh

1/2n(n + 1)
n

n(n- 1)
36
63
120
24
P
15
6O

I-[ (m + 1)

(n + 1)
2".nl

2"-1

72.6!
8.9!

102-10!
1152
2p
120

14400

Among the m’s, for [3"-3’’], the value n 1 breaks the rhythm of the sequence
of odd numbers. When n is odd, it comes between n 2 and n. When n is
even, it is repeated: the equation has a double root.
The group contains the central inversion if and only if the m’s are all odd

[10; 225-226].



772 H.S.M. COXETER

4. The number of reflections. By (1.3), the sum of all the m’s is 1/2nh, which
we recognize as the number of reflections in the group [6; 610], though the under-
lying reasons for this remain obscure when n > 3. It is also very remarkable
that the product YI(m - 1) is equal to the order of the group. To seek a possible
hint towards explaining these mysteries, let us re-examine the small values of n.
When n 2, we have the simple kaleidoscope consisting of two mirrors

inclined at z-/p. The product R1R2 is a p-gonal rotation, the number of re-
flections is p h, and the order is

2p (m + 1)(m.-[- 1).

When n 3, the situation is already non-trivial. The group [p, q] is generated
by the three mirrors of MSbius’s polyhedral kaleidoscope, which cut out a
spherical triangle of angles

The order, being equal to the number of such triangles that fit together to fill
up the whole surface of the sphere, is

g 8pq/{4- (p- 2)(q- 2)}

[10; 82]. The sides of the triangles are arcs of certain great circles which we
call lines of symmetry. (They lie in the planes of actual or irtual mirrors.)
They cross one another orthogonally at -g points lying also on another set of
great circles which we call equators [10; 67, 73]. The lines of symmetry dissect
the equators into g arcs: altitudes of the g spherical triangles.
The product RIR.Ra is a rotatory-reflection along an equator [10; 90]; that

is, reflection in the equator combined with an h-gonal rotation. With this
definition for h, the length of the altitude is /h, whence, by spherical trigo-
nometry

(4.1) cos cos + cos -.
P q

Thus the values of h for [3, 3], [3, 4], [3, 5] are 4, 6, 10. Postponing consideration
of the exceptional case where p or q 2, we observe that h is even; consequently,
h is the period not only of the rotatory component of R1R2R3 but of this operation
itself. The equation (2.1) becomes

+ cos X O,

whose roots are :t:cos /h and 0. Thus

-h =h-1.ml 1, m2 2 ma

Since each equator contains 2h of the g altitudes, the number of equators is
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g/2h. A given one of the g/2h equators meets each of the others at a pair of
antipodal points. But the number of such points on each equator is h. Hence,

(4.2) -g 1 ;
2h

that is [10; 19, 91],

g (h + 2)h (ml + 1)(m-}- 1)(m3 + 1).

Each line of symmetry consists of a certain number of arcs, which are sides
of characteristic triangles. Every point where a right angle occurs is a common
end of two arcs on each of two perpendicular lines of symmetry; it also lies on
two intersecting equators. Every arc not of this kind is a common hypotenuse
of two of the triangles, and is crossed by an equator (joining the other vertices
of these triangles). A given line of symmetry meets each of the g/2h equators
at a pair of antipodal points, which are either right-angle points or points on
hypotenuses. Hence, the number of arcs into which the line of symmetry is
divided (by other lines of symmetry) is twice the number of equators, namely,
g/h. But the total number of arcs (being the 3g sides of the g triangles, each
used twice) is ]g. Hence, the number of lines of symmetry, or of reflecting
planes [10; 68] is

3_h= m+m,.+,mn.
2

The above theory breaks down when we try to apply it to the reducible
group [p, 2], whose single equator coincides with a line of symmetry. Here
(4.1) yields h p; but the period of R1R2R3 is p or 2p according as p is even
or odd. Since g 4p, (4.2) is no longer valid; but the number of lines of sym-
metry is still

(4.3) h -t- gh 1.

(This supersedes the more complicated expression 4.51 of [10; 68].)

5. Laporte’s theorem and its extension. Another expression for the number
of lines of symmetry (valid for both reducible and irreducible groups, operating
on a sphere in ordinary space) has been discovered by Laporte [14; 455]. He
finds it equal to the quotient of the perimeter and area of the characteristic triangle.

In fact, the combined perimeters of the g triangles amount to twice the total
length of the lines of symmetry, that is, 4r times their number. Hence, the
number is

namely, the perimeter -k x -[- divided by the area 4r/g.
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Combining this with (4.3), we obtain

h+ -i
When the group is irreducible [10; 228] so ha h(h + 2), his formula for
he perimeger becomes simply

+ x + 6/(h + 2),

in agreement with [10; 74].
Analogously, in four dimensions, the reflecting hyperplanes meet the unit

hypersphere around their common point in an equal number of great spheres,
forming g spherical tetrahedra of surface S and volume V, say. Clearly gV
2. Since gS is twice the total surface of the great spheres, their number is

8 4 V"

Thus, Laporte’s theorem extends as follows:
For a finite group generated by reflections in four dimensions, the number of

reflecting hyperplanes is 1/4- times the quotient of the surface and volume of the
characteristic tetrahedron.
The surface S, being the sum of the spherical excesses of the four faces, is

equal to the sum of the twelve face angles minus 4r. In the case of the group
[p, q, r] with p, q, r all greater than 2 [10; 139], we have

Since V 2r2/g.,,r, this agrees with the formula 12.81 of [10; 232], provided
we accept the expression 2h,,,r for the number of reflecting hyperplanes.

Laporte’s theorem extends likewise to more than four dimensions, but is then
less useful because the hyper-surface of the simplex is a difficult collection of
Schl/fli functions [10; 142].

6. Invariant forms. It is well known that every finite group of homogeneous
linear transformations on n real variables has a set of n algebraically inde-
pendent invariants, such that every invariant is algebraically expressible in
terms of them [2; 357]. When these are polynomials of smallest possible degrees,
we call them a set of basic invariant forms. One of them, of course, is a positive
definite quadratic form, which can be used to express the group as a group of
orthogonal transformations. The Jacobian of any set of basic invariant forms
is independent of the particular forms chosen, and is a relative invariant (that
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is, every transformation of the group either leaves it unchanged or reverses its
sign).
By equating each of a given set of n invariants to a constant, say

(6.1) I,(xl xn) cA (lc 1, n),

we obtain n equations for n unknown x’s. These equations can be solved if the
invariants are independent, that is, if the Jacobian does not vanish identically.
Then the values of the x’s for which the Jacobian does vanish are multiple
solutions of the equations (with appropriate c’s), and if the group is generated
by reflections, the locus of such points is the set of reflecting hyperplanes. Hence,

6.2. For any finite group generated by reflections, the Jacobian of a set of basic
invariant forms breaks up into the product of the linear forms whose vanishing
determines the reflecting hyperplanes.

This theorem was conjectured by Todd (see [13; 239, second footnote] for a
special case). The above proof was kindly supplied by Racah. Racah and
Todd also made (independently) the following observation.
By eliminating all but one of the variables in (6.1) we obtain an equation

whose degree is the product of the degrees of the invariants. If the constants
c are sufficiently general, the solution will separate into (say) M systems of g
points [2; 358]. Hence, the product of the degrees is equal to Mg. If the n
independent invariant forms have the property that the product of their degrees is
exactly g (so that M 1), then they are a basic set, and every other invariant is
not merely algebraically but rationally expressible in terms of them.

Since the Jacobian of n forms of various degrees/c has degree (/c 1)
k n, and the number of reflecting hyperplanes [6; 610] is 1/2nh, we seek

invariants I such that

k 1/2n(h + 2),

Moreover, the k’s will be all even when the group contains the central inversion,
and only then. Let us now try some special cases.

In terms of Cartesian coordinates, the symmetric group [3n-1], of order (n + 1) !,
is generated by reflections in the n hyperplanes

Xl X2 0, X,.- Xa 0, X.- X+l 0,

all orthogonal to x 0 in Euclidean (n + 1)-space [5; 163], [10; 226].
Hence a set of basic invariant forms is provided by the elementary symmetric
functions

Z XlX2 Z XlX2X3 XlX2 Xn/l

of degrees 2, 3, n - 1.
The "hyper-octahedral" group [3"-2, 4], of order 2nn!, is generated by reflec-

tions in the n hyperplanes

Xl X2 O, X2 Xa O, X_ X O, Xn 0
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of Euclidean n-space, or by all the sign-changes and permutations of the n
coordinates. Hence, a set of basic invariant forms is provided by the elementary
symmetric functions of x, x, xn, of degrees

2, 4, 6, ..., 2n.

The subgroup [3n-3’1’1], of index 2 [10; 200], generated by reflections in the
hyperplanes

xl x 0, x x3 0, x_ x 0, x_ A- x 0,

di;ffers in that it admits only even numbers of sign-changes. Thus the expression
2 2(xx x) I x is an invariant (instead of a relative invariant), and the

degree 2n is replaced by n. (It follows that, when n is even, there are two inde-
pendent invariants of the same degree n.)

In terms of complex coordinates x xl "4- ix2 and y xl ixz the dihedral
group [p] is generated by

x’ y, y’ x

and x’ y, y’ -Ix,
where e’/; and we find the basic invariants

xy, x’ + y’

[2; 362], of degrees 2 and p. Clearly, their Jacobian is a numerical multiple of

Klein [13; 237, 242] obtained invariants A, B, C, D, of degrees 2, 6, 10, 15,
for the icosahedral group. He observed that D (the Jacobian of A, B, C) is
the square root of a polynomial in A, B, C. It follows that A, B, C alone form
a basic set of invariants for the extended icosahedral group [3, 5].

This and the other three-dimensional results (including the dihedral group)
may be summarized by saying that the degrees of the basic invariants for
[p, q] are

2, g/2h, h,
where

8pqg 2pA-2q-pq’ cs2 cos cos
P q

The invariant of degree g/2h may be taken to be the product of the g/2h linear
forms whose vanishing determines the g/2h equatorial planes of the polyhedron
{} [10; 18-19 (g 4N,)I.
[3’’], of order 72.6!, is the group of Gosset’s six-dimensional semi-regular

polytope 2, whose 27 vertices correspond to the 27 lines on the general cubic
surface [9; 465], [4; 388]. It is generated by the following six linear transforma-
tions of seven variables, xl, x6, y, satisfying the relation

x+... +x=O:
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the five transpositions (xx), (xx), (xx), (xx), (xx) and the substitution

"-’> (xl u, x. u, xa u, x4 "{- u, x5 -}" u, x6 "l- u, y u),

where u 1/2(x, -t- x -}- x -t- y) 1/2(-x4 x5 x6 + y). These six trans-
formations are easily seen to be involutory and to correspond to the nodes of
the tree

in such a way that the product of two transformations is of period 3 or 2 ac-
cording as the corresponding nodes are adjacent or non-adjacent. Moreover,
they permute the 27 linear forms

a, x,-l.-y, b x-y (i 1, 6),

c, -x, x (i < j);

for example, Q interchanges them in pairs thus:

(a, c.a) (a c,a) (aa c,.) (b c56) (55 c6) (56 c45).

(Burnside [2; 487] used equivalent linear forms, only he wrote a, b, c, d, e, f, s
instead of a, a, aa, a, a, a, 6y.) In this mnner we obtuin the invariants

Ebb+ Z

-2 +( 1) 2- ss_,
,.o

wheres x + x (for example, so 6, s 0). The onlyI’sthat
vanish identically are I1 and I3. The quadratic invariant is

I2 6(s W 2y2).

The relations k 42 and k 72.6 suggest the values k 2, 5, 6, 8,
9, 12. In fact, we can prove that the six inwriants I, I, I, Is, I, I2 are
independent, by verifying that the Jacobian

ds not vanish identically. For this purpose we use special values of the
variables, namely,

(x., x, x., x,, x, x., y) (1, , , , , 0, 0),
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where Actually these values would make J 0, since y is a factor
of every OI/Oy. (In fact, y 0 is one of the 36 reflecting hyperplanes; the others
consist of 15 such as xl x2 0 and 20 such as xl x. xa y 0.) But
we can first remove the factor y and then set y 0, obtaining

(k even),

(k odd),

1_ 0I._A 2k(k 1)s_..y Oy

With the special values chosen above, we have
ands 810 5. Thus

0 when k 0 (mod 5),

0I.
12x 0I_ 60x 016 144xOx OX OX

960x + 840x --120x,

2268x 2520x 252x,

It follows that

011.___ _24480x1 _{_ 27720x 660x, 3900x,Ox

y Oy

\1320

(k 2),

(k 5, 6, 8, 9),

(k 12).

J
12.60.144.120. 252(7800 1320)

Y

Xl X5

1

Xl Xa

X X
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This differs from zero since the Vandermonde determinant is the product of
differences of xl x5 which are different fifth roots of unity. Hence J
does not vanish identically, and the six chosen invariants are indeed inde-
pendent. Since

2.5.6.8.9.12 72.6!,

they are a basic set.
Frame [12] has obtained the same degrees by using a different coordinate

system (with six variables instead of seven).
Racah [16] has proceeded along similar lines for the remaining irreducible

groups:
[33’2’1], of order 8.9!, the group of Gosset’s seven-dimensional polytope 321

whose 56 vertices are

(3, 3, -1, -1, -1, -1, -1, -1) and (1, 1, 1, 1, 1, 1, -3, -3) permuted,

in the 7-space xl + x8 0 [4; 387];
[34’2’1], of order 192.10!, the group of Gosset’s eight-dimensional polytope

42, whose 240 vertices are

(3,0,0,0,0,0,0,0,-3),

permuted, in the 8-space x + -{- x9 0 [4; 395];
[3, 4, 3], of order 2(4!) 2, the group of the regular 24-cell {3, 4, 3}, whose 24

vertices are the permutations of (-+-1, =i=l, 0, 0) [10; 156]; and finally
[3, 3, 5], of order (5!) , the group of the regular 600-cell {3, 3, 5}, whose 120

vertices are the permutations of

(2, O, O, 0), (-+-1, =i=l, =i=l, d=l)

along with the even permutations of (=t=r, =t=l, =t=r-1, 0), where

r 1/2(5t+ 1) 2cos

[10; 157].
Racah’s results enable us to complete Table 3.
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Group

[3"-1]
[3"-, 41
[3-..]
[3-.,1]
[3,.-.,]
[3...]

[3, , 31

[3, 5l
[3, 3, 5l

TABLE 3

Degrees

2, 3, 4, ..-,n-t- 1
2, 4, 6, 2n
2, 4, n, 2n 4,2n- 2
2, 5, 6, 8, 9, 12
2, 6, 8, 10, 12, 14, 18
2, 8, 12, 14, 18, 20, 24, 30
2, 6, 8, 12
2, p
2, 6, 10
2, 12, 20, 30

Sum

1/2n(n T 3)
n(n T 1)

n
42
7O
128
28

p-}-2
18
64

Product

(n W 1)
2n[
2"-1 n!
72-6!
8-9!

192.10!
1152
2p
120

14400

Comparison with Table 2 reveals an extremely remarkable fact:
The degrees of the basic invariant forms are

ml - 1, m2 + 1, m 1.

In other words, the degrees, which were found with great labor for each group
separately, can actually be derived from the graphical symbols by means of
the equation (2.1) or (2.2).

If this could be explained in general terms, the other mysteries would be
1cleared up at once. From (1.3) we have m -nh, and Theorem 6.2 shows

that this is the number of reflecting hyperplanes. Also YI (m -}- 1), being the
product of the degrees, is the order of the group.
By (1.3) again, since the smallest degree is ml -I- 1 2, the greatest is mn

1 h. When the group is of the form [p, q, ], namely, the group of a regular
polytope {p, q, }, h is the number of sides of the Petrie polygon [10; 225].
This suggests that there may be some significance in the fact that the degrees
12 and 20 for [3, 3, 5] are the numbers of sides of the Petrie polygons of the
regular star polytopes

which have the same vertices and edges as {3, 3, 5} [10; 266, 267, 278]. Similarly,
6 is the number of sides of the Petrie polygon of the great dodecahedron {5,
which has the same vertices and edges as the icosahedron {3, 5} [10; 102].

7. The application to simple Lie groups. Among the finite groups generated
by reflections, those in which the only angles occurring between pairs of re-
flecting hyperplanes are multiples of r/4 and r/6 are said to be crystallographic.
For, each is a subgroup of an infinite discrete group generated by reflections,
and leaves a lattice invariant [10; 191, 205]. These crystallographic groups
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play a vital role in the theory of simple Lie groups. Table 4 gives in each case
the finite group, the corresponding Lie group, and the Poincari polynomial for
the group manifold as computed by Pontrjagin [15], Brauer [1], and Chevalley.
(Our n is the of Cartan [3].)

Finite
group

[3n-2, 4]

[33..,

[3, 4,3]

[6]

Lie
group

A
B orC
D
Eo
E
Es

F4

TABLE 4

Poinear polynomial

(1 -- t3)(1 d- t’) (1 d- =’+1)
(1 q- t)(1 T t) (1 -- ’’-)

(1 -t- ta)(1 + r) (1 + t’"-)(1 q-

(1 q- ta)(1 -!- t)(1 q-- t)(l -t- t)(1 -1-- t’)(1 -1-- )
(1 + t)( + t)(_ + t’’)(1 + t")( + t’)(1 + t’)( + ’)
(1 -I- t3)(1 -t- t)(1 q- ta)(1 q- ’)

(1 -I- t)(1 -I- t)(1 -t- t")(1 -I- ’)
(1 d- ta)(1 --Y t’)(1 -- t)(1 + )

(i + t)(i + )

Comparing this with Tables 2 and 3, we see that the Poincar polynomial is

(1 q-- t"’+’)(1 q-- ’’+’) (1 -!- t’"+:).
Chevalley observed that the differences of consecutive exponents form a palin-

dromic sequence; for example, for E, where the exponents are 3, 9, 11, 15, 17,
23, the differences are 6, 2, 4, 2, 6. This property is n immediate consequence
of the fact that, by (1.3),

(2mx W 1) @ (2mn + 1) (2m2 q- 1) + (2m._ - 1) 2h -I- 2.

The dimension of the group manifold, being the degree of the Poincar poly-
nomial, 1 - Bit -+- B,_tr- -t- , is

r (2m, + 1) + (2m2 -t- 1) -{- @ (2m. @ 1) n(h + 1).

Cartan showed that r n is twice the number of reflections in the finite group,
in agreement with our remark that the number of reflections is 1/2nh.
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