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THE COMPLETE ENUMERATION OF FINITE GROUPS OF
THE FORM Ri

2={RiRj)
k-i=i

H. S. M. COXETER*.

In this paper, we investigate the abstract group defined by the relations f

in order to find what values of the integers k(j will make the group finite.
If some of the relations (2) are absent, we can suppose the corresponding

k's to be infinite; but this never happens when the group is finite. If any
kH = 1, Rj is merely an alternative name for i?,-; therefore we may suppose
that kh> 1.

It is convenient to represent the group by a graph of dots and links, as
in the Table at the end of this paper. The dots represent the generators.
The numbers written under certain links are values of k(j. Whenever a
link is not so numbered, we understand that ku = 3. Whenever two dots
are not (directly) linked, we understand that ku = 2.

The group is said to be irreducible or reducible according as its graph is
connected or disconnected. If reducible, it is the direct product of two
or more irreducible groups, represented by the connected pieces of the
graph.

With the help of certain lemmas, we shall prove the following

THEOREM J. The only irreducible finite groups of the form

are,
[3»], [3»,4], [k], [3 ,5] , [ 3 , 4 , 3 ] , [ 3 , 3 , 5 ] ,
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(The numbers occurring in these symbols are the values of those k's that are
greater than 2. For details, see the Table.)

* Received 30 October, 1933; read 10 November, 1933.
| In compact form, (i?,i2;)*'V = 1 (1 ^i^j^m, ki;= 1).
X Cf. H. S. M. Coxeter, Annals of Math., 35 (1934), 601 (Theorem 9). We shall refer

to this paper as D.g.g.r.
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LEMMA 1. / / the •particular form

where b1 = b2 = ... = bp^b(

(p^l, i = p+l:p+2, ..., w)r

v
is invariant under a certain orthogonal substitution, then £a*,2 is likewise
invariant. x

n '
Since the substitution is orthogonal, Zx? must be invariant, and so also

„ ' i
must the difference H (bj—b1)xj

2.
P-rl

n
The equation 2 (bj—b1)xi

2 = 0

represents a (p times degenerate) cone, whose "vertex " is thep-space

Xp+1 = XpJr2 = . . . = Xn = 0 .

Since the cone is invariant, this js-space must also be invariant.

Therefore the form Sa;,2 will still be invariant when ^e replace all save
I

the first p x's by zero.

LEMMA 2. Any linear transformation tJiat leaves invariant the two
particular forms

(1) s«,y,« ( ^ = 1 ) ,
i

(2) £c,2/,2 (c,.>0 for all j),
I

V
also leaves invariant Tyf.

i

If 61? b2, .... bn are real non-vanishing numbers,, such that the form
n
HbjX? is invariant under a certain orthogonal substitution, then Lemma 1
I

shows that the sums of the positive and negative terms are separately
invariant. Therefore

I

is invariant. Since an orthogonal substitution is merely a linear trans-
it

formation that leaves Sar3
2 invariant, Lemma 2 can now be deduced by

I
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putting |6ij = c71

Abbreviation. For "group generated by reflections" we-write g.g.r.

LEMMA 3. Every finite g.g.r. in the generalized Minkowshian space*
Ss T{ is simply isomorphic with a g.g.r. in the Euclidean space *SS+/

Let the general point of Ss T' be (xv x2, ..., xs+t), at distance

s+i

from the origin.
It is well knoAvn that any finite linear group leaves invariant a positive

definite quadratic form, e.g. the sum of all transforms of Sz,2. This must
hold, in particular, for a finite group of congruent transformations in
Ss Tl. By a suitable change of coordinates, under which the jjeneral point
becomes {yx, y2, ...,ys+t), at distance

8+1

1

from the (new) origin, the invariant form becomes (say)

8+t

1
8+t

By Lemma 2, we can now assert the invariance of 2 yf.
i

We thus have a group of congruent transformations in Ss Tl, leaving
t+t
2 yf invariant. By giving the variables yi a new geometrical interpreta-
I

tion, we can regard the same algebraic substitutions as congruent
s+t

transformations in Ss+t, leaving 2 €}y^ invariant.
I

A reflection is characterized by the fact that it leaves invariant every
point whose coordinates satisfy a certain linear equation. Therefore,
reflections remain reflections when we pass from Ss Tl to Ss+t.

* H.S.M.Ck>xeterandJ.A.Todd, Proc. Camb. PM.Soc., 30(1934), 1-3. The reflection
in the prime la^Xj = 0 is the transformation

»/= *,—2«,-o,-X {i = 1, 2 s+t),
where A = :
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LEMMA 4. Every finite group of the form i?,2 = {RiRi)
kiJ= 1 can be

generated by reflections in the bounding primes of a spherical simplex.

We know* that there exist, in some generalized Minkowskian space
S* T' (5-r-/ <wi), wi-J-1 points Jl°? -4

1, ..., -4T", such that

A°Ai = l ( l <

^U> = 2 cos (w/2Jtrt) (1 < i < j < m).

Let a1' (1 ^ i ^ w) denote the prime, through A1, perpendicular to A0 A'.
Then it is easily seen that a', a> are inclined at an angle ir/k^. The primes
a' cut off a certain region around A0. (If closed, this region is a polytope,
and A0 is its in-centre.) Reflection in any prime a' gives a new region,
congruent f to the first. Reflection in any other bounding prime of the new
region gives a third region; and so on. Since all the dihedral angles are of
the form irjk, the regions Trill fit together without overlapping, and there
will be no interstices j . In fact, the region bounded by the primes a1' is a
fundamental region for the group generated by the reflections in these primes.

Let i?,- denote the reflection in the prime a'. The relations (1) and (2)
evidently hold. The R's, so defined, may perhaps satisfy other relations,
not deducible from these§. But we can assert that the g.g.r. is simply
isomorphic either with the abstract group defined by (1) and (2) or with
a factor group thereof. Hence, if the abstract group is finite, the g.g.r.
is a fortiori finite.

By Lemma 3, the g.g.r. occurs in Euclidean space. By Theorem 8 of
Discrete groups generated by reflections c, it is simply isomorphic with the
whole abstract group. Since the origin is invariant^, the group can be
regarded as operating in spherical space. By Lemma 4. 7 of the paper
just cited**, if the number of dimensions is taken as small as possible,
the spherical fundamental region is a simplex.

Our theorem now follows from the enumeration of Groups whose
fundamental regions are simplexes^.

* Coxeter and Todd, loc. cit., 1.
* Or, rather, enantiomorphows.
: Cf. D.g.g.r., 596.
§ The argument used in D.g.g.r. shows that such extra relations will appear only if

the part of space filled by the fundamental region and its transforms is multiply-connected.
I: D.g.g.r., 599.
f! In Euclidean (or Minkowskian) space, every finite group of congruent transformations

leaves invariant the centroid of all the transforms of a point of general position.
•• D.g.g.r., 597.
ft Journal London Math. Soc, 6 (1931), 132-134. For a fuller account, see Proc.

London Math. Soc. (2), 34 (1932), 144-151. In both these papers (the former, the
penultimate line on p. 132; the latter, the last line on p. 13G), ait should be a,,.
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TABLE OF IRREDUCIBLE FINITE GROUPS OF THE FORM Jtf = («,•«,•)*« = 1.

Symbol

[3—i] t

[3—*. 4]

[3, 5]§

[3, 4, 3]

[3, 3, 5]

3

_3

"3, 3

3, 3

_3

3, 3, 3-

3, 3

3

3, 3, 3, 3

3, 3

3

Graph

Trinity College,
Cambridge.

Order*

2903040

696729600

* Proc. London Math. Soc. (2), 34 (1932), 160, 159. All the orders save the last three
can be deduced from the theory of regular polytopes. For the rest, see Phil. Trans. Royal
Soc. (A), 229 (1930), 381-384.

t The symmetric group of degree m + 1 . [ ] is the group of order 2; its graph is a
single dot. m is the number of dots in the graph i.e. the number of generators.

X The dihedral group of order 21:. [3] and [4] have already occurred above.
§ The extended icosahedral group.

("31
|| is the same as [3, 3].

*j The group of the twenty-seven lines on the cubic surface.


