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 Introduction

 It is known that, in ordinary space, the only finite groups generated by
 reflections are

 [k] (k _ 1), of order 2k, with abstract definition

 R2 = R2 = (RiR2)k=1,
 and

 [k1, k2] (k1 _ 2, k2 ' 2, 1/k + 1/k1 > 1), of order , with
 1/k1 + 1/k2 2

 abstract definition

 R2 = R 2 = 2 = - (R1R3)2 = (R2R3)k2 - 1

 [1] is the group of order 2 generated by a single reflection. Since this is the
 symmetry group of the one-dimensional polytopel { }, we write

 [1] = [I.

 [k](k _ 3) and [k1, k2] (k1 = 3, k2 = 3, 4, 5) are the symmetry groups of the
 ordinary regular polygons { k and polyhedra { ki, k2 }. The rest of the groups
 can be written as direct products, thus:

 [2] -H[ X [],

 [2, 2] = [X [ X [],

 [2,k]= [I X[k].

 1 Coxeter 1, 344.

 588
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 These groups can be made vividly comprehensible by using actual mirrors for

 the generating reflections. It is found that a candle makes an excellent object

 to reflect. By hinging two vertical mirrors at an angle 7r/k (k = 2, 3, 4, . . . ),
 we easily see 2k candle flames, in accordance with the group [k]. To illustrate
 the groups [k1, k2], we hold a third mirror in the appropriate positions.

 In the present paper, we generalize the above results to space of any number of
 dimensions, and to groups which, though infinite, are still free from infinitesimal

 operations. (One such infinite group is called 1331, and may be illustrated by
 means of three vertical mirrors, erected on the sides of an equilateral triangle
 so as to form a prism, open at the top. A candle placed within this prism gives
 rise to an unlimited number of images.)

 In order to enumerate these groups, we observe that the fundamental region'
 must be a polytope whose dihedral angles, being submultiples of 7r, are never
 obtuse. It happens that such polytopes are of a particularly simple form.

 Perhaps it is worth while to point out what contact this investigation has with
 crystallography. Each of the 32 crystal systems corresponds to a finite group of
 orthogonal transformations. Of those groups, the eleven which Schoenflies4 calls

 Holoedrie and Hemimorphe Hemiedrie are generated by reflections; in fact,

 Ch = []

 C 2 = I]X[] I= HIx HXH
 V= [ ] XE[] XE[],

 Ck =[k] (k = 3, 4, 6),
 D= h X [k],

 Td = [3, 3],

 Oh = [3, 4],

 Of the 230 space groups, the following seven are generated by reflections:

 93h) = [co] X [H] X [H0],

 6h = [ct] >X [3, 6],

 4h = [co] X [4, 4],
 )3,h= [ 3] X> 3l,

 3h= 4 3,4]

 )h =3],

 )h=[4, 3, 4].7

 2 For the case of four dimensions, see Goursat 1, 80-93.
 3 Bieberbach 1, 312.

 4 Schoenflies 1.

 5 Coxeter 2, 147.

 6Ibid., 148.

 ' Ibid., 150.
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 590 H. S. M. COXETER

 ([ I is the group generated by reflections in two points of a line. Its abstract
 definition is simply

 R2 = R= 1.)

 THEOREM 1. In spherical space, every polytope free from obtuse dihedral angles

 is a simplex.

 LEMMA 1 1. Every spherical polygon free from obtuse angles is a triangle.

 Since the angle-sum of an n-gon is greater than (n - 2)7r, at least one angle
 must be greater than (n - 2)7r/n.

 LEMMA 1. 2. If two angles of a spherical triangle are non-obtuse, then the third

 angle is not less than its opposite side.

 By the well-known formula, if A and B are non-obtuse,

 cos C = sin A sin B cos c - cos A cos B ? cos c.

 DEFINITION. A simplex-polycorypha8 is a polytope in which the number of
 edges at any vertex is equal to the number of dimensions of the space. E.g.,

 the measure polytope is a simplex-polycorypha.

 LEMMA 1. 3. If a simplex-polycorypha is free from obtuse dihedral angles, so is

 any bounding figure.

 Consider the section of the simplex-polycorypha Hm by a 3-space perpendicular

 to any element 11m3, meeting that element at an internal point 0. The three
 TIm-1's which meet at the Hm-3 will give, in the section, a trihedral angle with
 vertex 0; and the edges of this trihedral angle will be sections of the three 11m2'S

 which separate the Hmil's in pairs. Further, on account of the orthogonality,
 the dihedral angles of the trihedral angle are dihedral angles of Hm, while its face-

 angles are dihedral angles of the three IIm,-'s. On a sphere with center 0, the
 trihedral angle cuts out a spherical triangle whose angles A, B, C are dihedral
 angles of Ifm, and so non-obtuse, by hypothesis. Lemma 1. 2 gives

 c < C I7r.

 But c can be any dihedral angle of any bounding figure. Thus Lemma 1.3 is
 proved.

 (If m = 3, there is no need to take a section. If m < 3, the Lemma is
 meaningless.)

 LEMMA 1.4. In three or more dimensions, every simplex-polycorypha bounded

 entirely by simplexes is itself a simplex.
 In an m-dimensional simplex-polycorypha, m - 1 plane faces pass through

 each edge. If all the bounding figures are simplexes, these plane faces are
 triangles. Let A1, A2, . .. , Am be the m vertices that are joined to the vertex
 Ao by edges. Then the m - 1 triangles through AoA1 must be

 AoAlA2 . .. . AoAlAm.

 8 Sommerville 1. For the polytopes considered here, the definition given in Coxeter 1,
 331 (?1.1) is appropriate. Sommerville calls these simple convex polytopes.
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 By hypothesis, just m edges pass through A,. Therefore AAo, A1A2, ... X AiAm
 are the only edges through A,. Similarly for any other As. Thus the poly-
 corypha has only m + 1 vertices.

 Theorem 1 can now be proved by induction. By Lemma 1.1, it is true in two

 dimensions. Let us then assume it true in m - 1 dimensions. Consider an

 m-dimensional polytope free from obtuse dihedral angles. A small sphere9

 drawn round any vertex cuts out an (m - l)-dimensional spherical polytope

 whose dihedral angles all occur among those of the m-dimensional polytope. By

 the inductive assumption, this (m - l)-dimensional polytope is a simplex; i.e.,
 the m-dimensional polytope is a simplex-polycorypha. By Lemma 1.3 and the

 inductive assumption, every bounding figure is a simplex. The theorem follows

 by Lemma 1. 4.

 COROLLARY. In Euclidean space, every acute-angled polytope is a simplex.

 If possible, consider an acute-angled polytope that is not a simplex. By

 projection on to a spherical space of sufficiently large radius, we can obtain a

 spherical polytope whose dihedral angles differ by as little as we please from
 those of the given polytope. If we make the radius so large that the angles re-
 main acute, Theorem 1 is contradicted.

 DEFINITION. A prism10 is the topological product of a number of polytopes

 lying in absolutely perpendicular spaces. Regarding a polytope as a closed
 set of points (viz. all the points within it and on its boundary), we can define
 the prism [IIp, Hq] as follows.

 In p + q dimensions, suppose H, to be fixed, while flq is constrained to lie in
 an absolutely perpendicular space and to have a constant orientation. Sup-

 pose further that the common point of the spaces of 1, and H, belongs to both
 polytopes, and is a definite point of Hq (e.g. a vertex). Then the prism is the
 totality of points that belong to the possible positions of Hq.

 Topological products being commutative and associative, a prism may have

 any number of constituents H,, Hq, . . , and the order of their arrangement is
 immaterial. It is convenient to admit the trivial case when there is only one
 constituent.

 A simplicial prism is a "rectangular product" of (one or more) simplexes. We

 use the symbol 2m for a general simplex in m dimensions. Thus Io denotes a

 point, and 11 a straight segment (of unspecified length).
 THEOREM 2. In Euclidean space, every polytope free from obtuse dihedral angles

 is a simplicial prism.
 LEMMA 2. 1. Every polygon free from obtuse angles is either a triangle 22 or a

 rectangle [11, 211.
 This follows from the fact that the angle-sum of an n-gon is (n - 2)7r.
 LEMMA 2.2. Every polytope free from obtuse dihedral angles is a simplex-

 polycorypha.

 I We shall use the word sphere for the analogue in any number of dimensions.

 10 Called prismotope by Schoute 1. Cf. Coxeter 1, 351.
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 A small sphere drawn round any vertex cuts out a spherical polytope whose
 dihedral angles all occur among those of the whole polytope. By Theorem 1, this
 spherical polytope is a simplex.

 LEMMA 2.3. A prism whose constituents are simplex-polycoryphas is itself a

 simplex-polycorypha.

 Since every vertex of [H,, IT.] is a vertex of one H, and of one Hq, the edges
 which meet there are the covertical edges of H, and of Hq. If, in particular, H,
 and Hq have respectively p and q covertical edges, then [IT,, IIJ has p + q; i.e.
 the prism is a simplex-polycorypha. This result, having been proved for two
 constituents, at once extends to the case of any number.

 LEMMA 2.4. Every simplicial prism can be characterized by a "vertex diagram"

 consisting of a simplex with edges of two types.

 Consider again the construction for [Hp, HqI. When Hq moves so that each
 point of it describes an edge of H,, its edges describe rectangles. Thus, if AB
 and AD are edges of IHp and 11q respectively, the rectangle ABCD is an element
 of [IP, HqW.

 In the simplicial prism [2p, 'qy ... ], the edges that meet at any vertex fall
 into sets of p, q, etc., such that the first set belong to 2p, the second set to Zq,
 and so on. Two edges occurring in any one set are sides of a triangle belonging
 to the corresponding simplex. Two edges occurring in separate sets are sides
 of a rectangle.

 We can now represent the p + q + ... covertical edges as vertices of a topo-
 logical simplex, putting the mark "a" against those edges of the simplex which
 correspond to triangles, and "p3" against those which correspond to rectangles.
 The vertices of this vertex diagram fall into sets of p, q, . .. , such that every pair
 occurring in the same set are joined by a-edges, while every pair occurring in
 different sets are joined by 3-edges. (In the special case of [ap, aq, ... ],11 the
 vertex diagram can be identified with the vertex figure, and then the a-edges
 and W-edges are al's and 3iBls;l2 hence the notation.)

 Since the form of the vertex diagram depends only on the numbers p, q, .. ..
 we shall not obtain a different diagram by beginning with a different vertex.
 (The following illustration is the vertex diagram for [43, 2]-)

 W ~~~~---

 \\\ X'
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 LEMMA 2. 5. Every trihedra 1'3 polyhedron bounded by triangles 12 and rec-

 tangles [11, 11] is either a tetrahedron 13 or a triangular prism [12, 11] or a rec-
 tangular solid [1i, 24, 21].

 If a trihedral polyhedron is bounded by f3 triangles and f4 quadrangles, it must

 have 2(3f3 + 4f4) edges and 1(3f3 + 4f4) vertices. Hence 2f3, 3f4 must be
 (non-negative) integers, and, by Euler's Theorem,

 2 f3 + 3 f4 = 2.

 The solutions 2 + 0, 1 + 1, 0 + 2 give the three possible kinds of polyhedron.
 LEMMA 2.6. If a simplex-polycorypha in more than three dimensions is bounded

 solely by simplicial prisms, then the types of prisms occurring at any vertex are the

 same as at any other vertex.

 If a simplex-polycorypha in m dimensions is bounded solely by simplicial

 prisms, we can construct a vertex diagram at any vertex, and we have to show

 that this will be the same for all vertices. Any edge AB of the simplex-poly-

 corypha will be represented by a vertex B' in the vertex diagram at A and by a
 vertex A' in the vertex diagram at B. The edge AB belongs to m - 1 bounding
 prisms; in the vertex diagrams considered, these are represented by the m - 1

 bounding simplexes that meet at B' or A' respectively. Hence the two vertex

 diagrams are simplexes, alike in m - 1 of their m bounding figures. If m > 3,
 this is sufficient to make them identical.

 Since any vertex of the polycorypha can be reached from any other by a chain
 of edges, repeated application of this result proves the lemma.

 LEMMA 2.7. In three or more dimensions, every simplex-polycorypha bounded

 solely by simplicial prisms is itself a simplicial prism.
 The case of three dimensions is covered by Lemma 2. 5, so we may suppose the

 number of dimensions to exceed three. By Lemma 2.6, the polycorypha is
 characterized by a vertex diagram, viz. a simplex with a-edges and 3-edges. Let
 P be any vertex of this vertex diagram. The remaining vertices form a simplex
 which, being the vertex diagram of one of the bounding prisms of the poly-

 corypha, has sets of vertices joined among themselves by a-edges and joined to
 one another by 3-edges.

 We have to prove that the vertices of the whole simplex fall into sets in the

 same manner. This is certainly true if all the edges through P are of type ,3.
 On the other hand, if P is joined to one of the other vertices by an a-edge, it must
 be joined by a-edges to all the other vertices of the same set, since otherwise there

 would be a triangle of sides a, ay, 3, which is impossible by Lemma 2.5. For the
 same reason, P cannot be joined by a-edges to vertices of two distinct sets. Thus

 the vertices of the whole simplex are distributed in the desired manner, the vertex
 P either forming a new set by itself or becoming attached to one of the old sets.

 LEMMA 2.8. Every simplex-polycorypha free from obtuse dihedral angles is a
 simplicial prism.

 By Lemma 2. 1, this is true in two dimensions. Let us assume it true in m - 1

 dimensions, and use induction. By Lemma 1.3 and the inductive assumption,

 13 I.e., a polyhedron with trihedral vertices.
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 the m-dimensional polycorypha is bounded by simplicial prisms. Hence, by
 Lemma 2. 7, it is itself a simplicial prism.

 Theorem 2 follows from Lemmas 2.2 and 2. 8.
 THEOREM 3.14 If all the dihedral angles of an m-dimensional polytope are less

 than or equal to 0 (O < 0 < r), then the number of bounding figures is less than some
 number depending only on m and 0.

 Take first the case when m = 3. In the spherical image by parallel normals

 ("Gaussian" image for surfaces of continuous curvature), to each face of the
 polyhedron corresponds to a point on the unit sphere, to an edge where the
 dihedral angle is 01 corresponds a great-circular arc of length X - 01, and to an
 n-hedral vertex corresponds a spherical n-gon. By hypothesis, the spherical
 distances between the points on the sphere are greater than or equal to r - 0.
 Consequently, circles of spherical radius I (w - 0), described round the points,
 will not overlap. If N is the number of faces of the polyhedron, comparison
 of areas gives

 2r(1 - sin 10)N < 4r,

 N <2/(1 - sin8 0).

 When 0 = i7r, this gives the "best possible" result N < 6. (The actual poly-
 hedra are those considered in Lemma 2.5.)

 The analogous result for general m is easily seen to be

 ir i 7i(-0
 N < 2 f sinm-2 po dso sif5nm-2cp dc.

 E.g., form = 4, N < 2r/(r - 0- sin 0).
 DEFINITIONS. A group of congruent transformations (of Euclidean space into

 itself) is said to be discrete if the totality of transforms of a point never has a
 limit point. E.g., the group generated by a single rotation, through an angle
 incommensurable with 7r, is not discrete; but every finite group is a fortiori
 discrete. Bieberbach'5 has proved that a group is discrete if and only if it is
 free from infinitesimal operations.

 Consider a point of such general position that it has distinct transforms under
 all the different operations of the group. Sufficiently small neighborhoods of
 these transforms can be taken so as to be equivalent under the group, and not
 overlap. By gradually increasing these neighborhoods, we eventually obtain a
 set of congruentl6 regions which together fill up the whole space. Any one of
 these regions is, by definition, a fundamental region; and the group can be gen-
 erated by the operations which transform this particular region into its neighbors.

 14 I am indebted to Prof. G. P6lya for this extension of Theorem 2. It will not be applied
 in the sequel, but is inserted for its intrinsic interest.

 15 Bieberbach 1, 313-314.
 16 In the wide sense; i.e., directly congruent, or enantiomorphous.
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 A point of general position on the boundary of the fundamental region is also on

 the boundary of a neighboring region, and may or may not be transformed into

 itself by the relevant generator. If not, a sufficiently small neighborhood of this

 point, in the neighboring region, will be equivalent to a certain portion of the

 original region. The fundamental region can then be modified by subtracting

 this portion and adding the aforesaid neighborhood. Thus the only case in

 which the fundamental region is uniquely determined is when every point of the

 boundary is transformed into itself. It is easily seen that this can only happen

 when all the generators are reflections.

 A group of congruent transformations is said to be reducible"7 if it can be re-

 garded as the direct product of groups of congruent transformations in two

 absolutely perpendicular complementary subspaces Ja, J'. Every operation is
 then of the form QQ' (= Q'Q), where Q transforms CX into itself and Q' trans-

 forms C' into itself. The groups in the subspaces are called components, and

 may themselves be reducible; but we can eventually analyse the original group

 into a number of irreducible components.

 A group is said to be trivially reducible if it has identity for a component. In

 this case the complementary component operates in a subspace X which is
 transformed into itself by every operation of the group, and we regard the funda-

 mental region as lying in C instead of in the whole space. In other words, we

 consider the section of the true fundamental region by Co. Thus we regard a

 trivially reducible group and its non-trivial component as having the same funda-
 mental region.

 If a group leaves one point invariant, it transforms into itself the unit sphere

 around this point. In this case we regard the fundamental region as lying on the

 sphere. In other words, we replace the angular fundamental region by its

 spherical section. Thus we confuse a group in spherical space with the corre-

 sponding Euclidean group which leaves the center invariant. (A group which

 leaves more than one point invariant is always trivially reducible.)

 Consider, for example, the group generated by reflections in two perpendicular
 planes in ordinary space. This is trivially reducible, its non-trivial component is

 generated by reflections in two perpendicular lines of a plane, and its fundamental
 region is an arc of length 2w.

 We use the word prime for a space of one fewer than the current number of
 dimensions, and secundum for the next lower space (i.e. the intersection of two
 primes).

 The Fricke-Klein construction for a fundamental region.18 Given a point P

 which is not invariant under any operation, and its transforms Pi, P2, . . , we
 can construct a fundamental region by drawing the perpendicularly bisecting

 17 More strictly, "completely reducible." When the group is finite, our omission of the
 word "completely" is justified by Burnside 1.

 18 Fricke-Klein 1, 108, 216.
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 primes of PP1, PP2, .... A finite'9 number of these primes cut off a funda-
 mental region around P, and the rest of them are irrelevant.

 ABBREVIATION. For "group generated by reflections" we shall write "g.g.r.".
 THEOREM 4. The general finite g.g.r. has for fundamental region a spherical

 simplex, whose vertices fall into sets which belong to the fundamental regions of the
 irreducible components, vertices in different sets being joined by edges of length ir.

 LEMMA 4. 1.2? Every finite group of congruent transformations leaves at least one
 point invariant.

 Consider the set of transforms of a point of general position. Every operation
 of the group permutes these points among themselves, and leaves their centroid
 invariant.

 LEMMA 4. 2. If a discrete group is generated by refections in certain primes, then
 these primes and their transforms are so distributed that, whenever n of the primes
 meet in a secundum, they are inclined to one another at angle r/n in cyclic succession.

 Let a, b be any two of the primes that are not parallel. Then the group must
 contain reflections in new primes a', b', a", b", ... which are the reflected
 images of a, b, a', b', . . . in b, a', b', a", ... respectively. These are inclined to
 a at all multiples of the angle (a b).

 a

 /V\~~~6
 a

 If this angle were incommensurable with ir, the sequence of primes would be
 infinite, a point of general position would have an infinite number of transforms
 lying on a finite circle, and the group would not be discrete. Hence we can write

 (a b) = d r/n,

 19 Cartan 1.

 'I Bieberbach 1, 327 (XI). Coxeter 2, 182 (?20.2) is an immediate corollary of this
 lemma.
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 where n and d are co-prime integers. If integers v and 6 are chosen so that
 v d-a n = 1, we shall have

 v (a b) = (5lr + r/n.

 Thus there is a prime inclined to a at angle r/n, and the primes can be re-ordered
 soastomaked = 1.

 LEMMA 4.3. If a finite group is reducible, there exist two absolutely perpendicu-
 lar complementary subspaces C, C', such that every operation is of the form QQ',
 where Q leaves invariant every point of C' and Q' leaves invariant every point of C.

 In the notation of matrices,

 0\ ( A 0)(1 1
 0 A' 0 10o A'/.

 LEMMA 4. 4. If a reducible finite group is generated by reflections, its components
 are likewise generated by reflections.

 Consider any reflection which belongs to a reducible finite group. By Lemma
 4.3, it transforms X and C' into themselves. Therefore Co (or C') must lie in the

 reflecting prime, while C' (or C) is perpendicular to it. Hence Q (or Q') is
 identity, while Q' (or Q) is a reflection.

 LEMMA 4.5. Ifafinite g.g.r. is not trivially reducible, it leaves invariant just one
 point of the Euclidean space, and its fundamental region is one of the parts into
 which the unit sphere around this point is divided by the reflecting primes and their
 transforms.

 A finite g.g.r., operating in Euclidean space, leaves at least one point invariant,
 by Lemma 4. 1. If it leaves more than one point invariant, it must leave all the
 points of a subspace of one or more dimensions; this makes it trivially reducible.
 The group can be regarded as operating in a spherical space, and its fundamental
 region is then given by the Fricke-Klein construction.

 LEMMA 4.6. If a finite g.g.r. is not trivially reducible, it is generated by reflec-
 tions in the bounding primes of its fundamental region.

 These are the operations which transform the fundamental region into the
 neighboring regions.

 LEMMA 4.7. The fundanental region ofafinite g.g.r. is a spherical simplex.
 If the fundamental region has a pair of antipodal vertices, all its bounding

 primes must pass through the join of these vertices, since any other prime would

 divide the region into two parts. There are thus two invariant points, the group
 is trivially reducible, and we construct the fundamental region in a subspace.

 If the fundamental region has no vertices (e.g. a hemisphere), suppose it has a
 k-dimensional element but no (k - 1)-dimensional element. Then all the bound-
 ing primes must pass through this k-dimensional element, since any other prime

 would give a (k - 1)-dimensional element by intersection.
 Thus the fundamental region, which we have agreed to derive from the non-

 trivial component, has vertices, but no antipodal vertices. This makes it a
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 polytope. By Lemma 4.2, all the dihedral angles are submultiples of 7r; there-

 fore none of them can be obtuse. By Theorem 1, the polytope is a simplex.

 The rest of Theorem 4 follows by means of Lemma 4.4. The sets of vertices

 lie in absolutely perpendicular spaces.2"

 THEOREM 5. If an infinite discrete g.g.r. has a finite fundamental region, this

 fundamental region is a simplicial prism whose constituents are the fundamental

 regions of the irreducible components.

 LEMMA 5. 1. If a reducible discrete group is generated by reflections, its com-
 ponents are likewise generated by reflections.

 We proceed as in Lemma 4.4, bearing in mind the fact that the subspaces
 C, C' may be at infinity.

 LEMMA 5.2. If an infinite discrete g.g.r. is not trivially reducible, its fundamental

 region is one of the parts into which space is divided by the reflecting primes and their
 transforms. It is generated by reflections in the bounding primes of the fundamental
 region.

 Cf. Lemmas 4. 5, 4. 6.

 The fundamental region of an infinite discrete g.g.r. may be finite or infinite.
 If finite, Lemma 4.2 shows that it is a Euclidean polytope whose dihedral angles

 are submultiples of 7r. Hence, by Theorem 2, it is a simplicial prism.

 The bounding figures of the simplicial prism

 fall into sets of the form

 [lm)L 1, Zm2` "M3 * ], [.m . 2;, -1 M m3, *. ** ], etc.

 Two bounding figures belonging to different sets lie in perpendicular primes, so

 that the reflections in them are permutable. The group generated by reflections
 in the bounding primes of the prism is thus the direct product of groups gener-

 ated by reflections in the bounding primes of ; "m2, etc. In this manner we
 analyse the group into its irreducible components.

 COROLLARY. All the components are then infinite.

 THEOREM 6. Every irreducible discrete g.g.r. has a simplicial fundamental

 region; and the general discrete g.g.r. is simply isomorphic with a direct product of

 such groups.

 If the group is finite, the fundamental region is a simplex (whether the group

 is irreducible or not). If the group is infinite while the fundamental region is

 finite, the fundamental region is a simplicial prism; but the group is reducible if
 this prism has more than one constituent. Bieberbach22 has proved that groups

 21 Cf. Coxeter 2, 146 (?16.4). The fundamental region of [m] X [n] is described in
 Goursat 1, 82.

 22 Bieberbach 1, 327.
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 with infinite fundamental regions are always reducible. By Lemma 5. 1, the
 irreducible components are generated by reflections.

 The words "simply isomorphic with" are inserted in order to admit trivially
 reducible groups.

 THEOREM 7. If a discrete g.g.r. has both finite and infinite components, its
 fundamental region can be regarded as a generalized pyramid which joins a sim-
 plicial prism to a simplex situated at infinity in a space absolutely perpendicular to
 the space of the prism.

 Such a group is the direct product of a finite group whose fundamental region is
 a spherical simplex, and an infinite group whose fundamental region is a sim-
 plicial prism. Let us imagine the spherical simplex to be drawn (with its proper
 angles) on a sphere of infinite radius, lying in a Euclidean (q + 1)-space ab-
 solutely perpendicular to the p-space of the prism. Consider the infinite

 (p + q + l)-dimensional pyramidal region obtained by joining every point of the
 prism to every point of the simplex at infinity. This region has bounding primes
 of two types:

 (1) joining a bounding (p - 1)-space of the prism to the q-space (at infinity)
 of the simplex;

 (2) joining a bounding (q - 1)-space of the simplex to the p-space of the prism.
 Since the p-space is absolutely perpendicular to the q-space at infinity, every
 prime of the first type is perpendicular to every prime of the second. Reflections
 in the primes of the first type generate the infinite component of our group, while
 reflections in primes of the second type generate the finite component. Hence
 reflections in all the primes must generate the direct product, as required.

 For example, the fundamental region of

 [k] X [??]

 is an infinite "wedge" (in ordinary space), bounded by four planes: two parallel;
 and two, perpendicular to these, mutually inclined at 7r/k.

 THEOREM 8. Every discrete g.g.r. has an abstract definition of the form

 (8.1) R2 = (Ri R) kii -1

 Since the direct product of several groups having such abstract definitions is
 another group of the same kind, it will be sufficient, by Theorem 6, to consider
 the cases when the fundamental region is a spherical or Euclidean simplex. Let

 Ri denote the reflection in the ith bounding prime of this simplex, and 1r/kii
 the angle between the ith and jth bounding primes. Then the relations (8. 1)
 are certainly satisfied. Clearly, also, the R's suffice to generate the whole group.
 It remains to be proved that every relation satisfied by the R's is a consequence
 of(8. 1).

 Let23

 (8.2) Ra RbRc .R.. =z 1

 23 This proof is the "obvious extension of an argument used by Burnside" to which
 reference was made in Coxeter 2, 146.
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 600 H. S. M. COXETER

 be any relation satisfied by the R's. Consider a point, moving continuously in
 the spherical or Euclidean space in which the given group operates, beginning
 within a particular fundamental region, proceeding through the a-face into a
 neighboring region, then through the b-face of this region into a third (wvIliclh
 may be the first over again), . . . and finally through the z-face of some region
 into another region (which we shall identify with the first).

 The first region is transformed into the second by the operation Ra, into the
 third by

 RaRbR' .Ra = RaRL,

 into the fourth by

 (Ra Rb)Rc(Ra Rb)-'* Ra Rb = Ra Rb RK,

 ... and into the last by Ra Rb R, . .. R,. By hypothesis, this operation is
 identity. Hence the last region is the same as the first, and we may regard the
 moving point as describing a closed path.

 We can immediately reduce the general sequence

 Ra, Rb . .. , Rs

 to one in which no two consecutive R's are the same. For, since

 R2 = 1,

 Ra... Rh Ri Rj Rk ... Rz = Ra ... R., Rk ... R, if i j.

 In terms of the path, the moving point passes through the i-face of some region I
 into J (say), and then back through the same interface into I. This path can be
 decomposed into one which misses J altogether (unless it enters on a different
 occasion) along with a loop passing twice through the interface. The loop itself
 is a path which corresponds, in the manner described, to the relation R = 1.

 A~~~~~~~~~~ A\ / . . .~~
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 We shall now reduce the net of fundamental regions to a "skeleton," by dis-
 carding the primes but retaining the secunda. The possible paths, of the kind
 considered, constitute the Poincare group of the space residual to these secunda.
 Since the whole space is simply connected, any such path can be decomposed
 into loops around single secunda. This decomposition of the path corresponds
 to a factorization of Ra Rb . . . Rz. By reinserting the primes, we see that each
 factor is of the form

 (Rp . .. RQ) (R i Rj )kii (Rp . .. RQ)-1.

 Hence, finally, (8.2) is an algebraic consequence of

 (Ri Rj)kii = 1.

 THEOREM 9. The following list24 comprises all irreducible discrete groups gen-

 erated by reflections.

 Finite groups: [3n] (n _ 0), [3", 41 (n _ 0), [ 1 (n _ 1),25 [I] (k _ 5),
 3

 313 3 2313 ~313,3 ,3
 [3 y51, [3 24 y3] [313 y5], 313 1 3R3 1 3X3 X

 3n 4

 Infinite groups: 13n! (n _ 3), [4,3 n4] (n > 0), 3 (n > 0);
 L3 _j

 3n,;3 r3R3 r3,3,3 r313R3,3,31
 3 (n(7 > O); oo 1 [316]; [3y3'4,3]y L3 X3_ L3,3,3 L3w3 J

 L I

 LEMMA 9. 1.26 If all diagonal minors of a determinant are positive, while all
 non-diagonal elements are negative or zero, then all algebraic first minors are positive
 or zero.

 Let A denote the m-rowed determinant a I1, A the minor derived by omit-
 ting the ith row and jth column, A hi that derived by omitting two rows and
 columns, and so on. We are given

 A e> 0 A to prove A ( ... > 0. , a > 0, a < ( j),
 and we have to prove that (_ )i-i A't > O.

 24 For the notation, see Todd 1, 214; Coxeter 2, 151, 147, 162. The number of dimensions
 of the space in which the group operates (spherical space, in the finite case) is equal to the

 number of digits in the symbol, except in the case of 13 I, when it is n - 1. For a more
 systematic notation, see p. 618, below.

 For an independent investigation of the groups [3n], [3n, 41, [k], [3, 51, [3, 4, 31, [3, 3, 51,
 see Motzok 1.

 25 To avoid repetition.

 26 This lemma, being of unnecessary generality, could be replaced by Stieltjes 1.
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 602 H. S. M. COXETER

 Since we can transpose the jth and mth columns (provided we also transpose

 the jth and mth rows), it will be sufficient to prove that

 ()m-iA' > 0 (i < m).
 This is true when m = 2, since A ' = a2 < 0. Using induction, we assume
 the lemma as applied to A', so that

 (_)i-i Aim > 0.
 We now have

 m-1

 t= - ()i-m am AJs,
 i = 1

 whence
 m-1

 ()m-iAi = A (_ a7) (-)i-iA'' > 0.
 i=1

 LEMMA 9. 2. A determinant of the kind considered in Lemma 9. 1 is definitely

 diminished by simultaneously increasing -aa and -aa (i # j).
 Writing A = f(a 1, a2), we have

 f(al- ,al - a2 -f(al, a2) = 1s4 + eA 2 - c-A12

 If a > 0 and e > 0, this expression is definitely negative, since A l 0, A 2 < 0
 and A 1 2 > 0.

 The enumeration of our irreducible groups merely involves the enumeration of

 simplexes whose dihedral angles are submultiples of 7r, for which see Coxeter 2,
 136-144 (??15.4-15.9). The only step left obscure27 was the "Note" in the

 middle of ?15.2. This can be derived from Lemma 9.2 by putting a' = 1
 and a = -cos (i j).

 THEOREM 10. In spherical or Euclidean space, the continued product of the

 reflections in the bounding primes of a simplex, taken in any order, is an operation
 which leaves no point invariant.

 The reader will have no difficulty in proving this.

 DEFINITION. By the generators of a g.g.r., we shall mean the reflections in the
 bounding primes of its fundamental region.

 THEOREM 11. Of the continued products of the generators of a finite g.g.r.,

 arranged in various orders, any two are conjugate.

 LEMMA 11. 1. If the vertices of an m-gon are numbered from 1 to m in any order,

 we can arrange the numbers in natural order by repeated application of the following
 operation: whenever a side of the m-gon has inconsecutive numbers at its ends, we

 are allowed to transpose those numbers.

 We prove this by showing that the numbers at the ends of a side can be trans-
 posed even when they are consecutive.

 27 J am indebted to Prof. P6lya for pointing this out.
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 Suppose first that the numbers in order are

 1, 2, p3, p4, . - . X Pm,

 so that every pi > 2. Interchanging 1 with pm, then with pm-i, and so on, we
 obtain the new order

 pm, 2, 1, P.33 ... * Pm-i,

 which is the same as the old except that 1 and 2 have been transposed. We may
 describe this process as "making 1 run round the polygon."

 Using induction, let us assume that the numbers 1 - 1 and 1 can be transposed
 (when associated with consecutive vertices of the polygon). Then we can trans-

 pose 1 and 1 + 1 by making 1 run round the polygon. Hence, finally, we can

 transpose the numbers at the ends of any side whatever, and the lemma is
 reduced to the familiar generation of the symmetric group by transpositions.

 LEMMA 11 . 2. If m vertices of an (m + 1)-gon are numbered from 1 to m in any

 order, while the remaining vertex is marked 1' (1 < 1 < m)i, we can derive any
 rearrangement of the numbers by repeated application of the operation of Lemma

 11. 1, regarding 1' as consecutive only to 1.

 We can transpose 1 and 1' by making 1' run round the polygon; and then the
 presence of 1' will not affect the argument used in proving Lemma 11.1.

 By Theorem 9, every irreducible finite g.g.r. is of the form

 [kl, 1c2, ... I k1Cm ] or 3[

 In the former case28 the abstract definition is

 R= (Ri Ri+i)ki = (R. Ri)2 = 1 (i < i- 1).

 Thus inconsecutive R's are permutable.

 Consider any ordering of the m R's. By numbering the vertices of an m-gon
 in accordance with the suffixes, we obtain a representation, not only of the con-
 tinued product corresponding to the chosen ordering, but also of the obvious con-
 jiugates of this product, derived by cyclic permutation of the factors. The
 operation described in Lemma 11. 1 will not affect this set of m conjugate
 products. Hence every such product is conjugate to R1 R2 ... RFm.

 ~3n~

 3P has an abstract definition conveniently represented by the diagram

 -3

 nl ... N1 N 0 P P1 ... Pp_

 Q

 28 Todd 1, 224 (4).
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 of which the case n = p = 2 is explained in Coxeter 2, 164.29
 By associating the generators

 Nnl* . . . X N1, N, 0, P, P1, .. ., Pp-1, Q

 with the numbers

 1, ...,Y I- 2,1- 1, 1,1 + 1, 1 + 2,.. mf,1'

 we are able to apply Lemma 11.2, and to conclude that all continued products
 of these generators are conjugate.

 Theorem 11 now follows, by Lemma 4. 4.

 These arguments can be extended to cover most of our infinite groups; but it is

 easily seen that the operations R1 R2 R3 R4 and R1 R3 R2 R4 of 1341 are not con-
 jugate.

 THEOREM 12. The continued product of the generators of an infinite g.g.r., ar-
 ranged in any order, is of infinite period.

 This follows easily from Lemma 4. 1, Theorem 10 and Theorem 6.
 DEFINITION. R (without a suffix) will denote a particular continued product

 of the generators of an irreducible finite g.g.r., viz.

 R = R1R2 ... Rm for [k1, k2, ...km]
 and

 R=Nn- . ... N1NOPP1 ... P,_1 Q for 3P].
 3

 (We now make a brief digression into the theory of regular polytopes.)
 DEFINITION. The Petrie polygon of a regular polygon is the regular polygon

 itself. The Petrie polygon of a regular polyhedron is a skew polygon of which
 every two consecutive sides, but no three, belong to one face.30 The Petrie
 polygon of a regular polytope in m dimensions is a skew polygon of which every
 m - 1 consecutive sides, but no m consecutive sides, belong to the Petrie polygon
 of one bounding figure. Thus, if

 ... AoA1 .. Am-,lAm ...

 is a Petrie polygon of the regular polytope IHm, then

 AoAi ... Am-, and Al ... Amil Am

 occur in Petrie polygons of two adjacent I~I's.
 Remark. Every finite regular polytope can be orthogonally projected on to a

 plane in such a way that one Petrie polygon appears as an ordinary regular poly-

 29 All the generators are involutory. Pairs not directly linked are permutable. If X, Y
 are linked, XYX = YXY.

 30 Coxeter 3.
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 gon whose interior is the projection of the rest of the polytope. The square
 aspect of the regular tetrahedron, the hexagonal aspects of the octahedron and

 cube, and the decagonal aspects of the icosahedron and dodecahedron, are

 familiar. In the projections of the four-dimensional polytopes, a second Petrie

 polygon (really congruent to the first, of course) appears as a star polygon,31 viz.

 {a} for {3, 3, 3}, [X} for {3, 3, 4} and {4, 3, 3}3

 {12} for {3, 4,1 ,33 {3} for 13, 3, 5}34 and {5, 3, 3}.

 THEOREM 13. Of the cycles in which the operation R of [k1, k2, , kmi] per-
 mzutes the vertices of {k1, k2, ... kmi }, one is the cycle of vertices of a Petrie
 polygon.

 Let X0 be an alternative symbol for the vertex Ao, and let X1 denote the mid-
 point of the edge A0oA1, X2 the center of the plane face ... AoA A2, X3 the center
 of the solid whose Petrie polygon involves AoA1A2A3, ... and Xm the center of
 the whole polytope.35 We take Ri (i < m) to be the reflection in the prime de-
 termined by the m points that we obtain by omitting Xi-, from the set of X's.

 When m = 2, R1 and R2 are the reflections in an in-radius X1X2 and a circum-
 radius AoX2 of the polygon { k }, X1 being the mid-point of the side A A 1. Since
 the angle between these radii is 7r/k, the product R _ R1R2 is a rotation through
 2w/k, which effects a cyclic permutation of the vertices of k }.

 We thus have a basis for induction, and can assume that

 r R1R2 ... Rm-i

 effects a cyclic permutation of the vertices of the Petrie polygon

 AoAi ... Am-lAm *-- .

 of the Hm-i whose center is Xm-. In virtue of this inductive assumption,

 Ai+= rA1 (i < m- 1)

 afl(1 Am= rA=,,-,.

 Also, since Rm is the reflection in AoA, ... A.,m_2Xm,

 Ai RmAi (i < -1).

 Hence Ai+, = ftRAi

 = RA, < (i<m-1).

 31 Called {h'} in Coxeter 3.
 32 Van Oss 1, Tafel I.
 ;I Ibid., Tafel IT.

 34 Ibid., Tafel Nrilla. The projections given in Tafeln VIE, VrI1a exhibit Petrie poly-
 gons of {5, 3, 2 , {3, 5, -2-

 35 Coxeter 2, 155.
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 Finally, since the reflection in the prime A1 ... A ,,-I,, is rRm?'-t,

 A, , = r-'Am

 - rR ,A

 - RAm-1.

 DEFINITION. S will denote the central inversion, i.e. that transformation in

 spherical space which replaces every point by its antipodes. S has the peculi-
 arity of being permutable with every transformation in the spherical space.

 THEOREM 14. If the fundamental region of a finite g.g.r. has no internal sym-
 metry, the central inversion is an operation of the group.

 Consider a particular fundamental region F. By producing its bounding
 primes, we see that one of the congruent regions is antipodal to F. If S' is that
 operation of the group which transforms F into this antipodal region, it is clear
 that the product S'-'S leaves F invariant. If F has no internal symmetry, this
 operation must be identity, and so S' = S.

 COROLLARY. If the fundamental region has internal symmetries, we may aug-
 ment the g.g.r. by adjoining these symmetries. The augmented group will contain

 the central inversion (although the g.g.r. may or may not).
 DEFINITION. By Theorems 11 and 12, (in any discrete g.g.r.) the period of a

 continued product of the generators is independent of their order of arrange-
 ment. We shall call this period h. In particular, R is of period h.

 THEOREM 15. If any irreducible finite g.g.r. contains the central inversion S,
 then h is even and

 S= R- h

 (By Theorem 11, this result would not be affected by rearranging the factors
 of R.)

 We shall prove this theorem by examining, in each of the ten cases, the effect
 of the operation R on the simplest polytope whose group of symmetries includes
 the irreducible group under consideration. This method has the advantage that
 it enables us to find the actual values of h, and to see which of our groups do not
 contain the central inversion. (The results of this investigation are summarized
 in the Table on p. 618, below.)

 (i) In the case of [3n], the polytope is the regular simplex {3n} or an,1-
 Since its vertices do not occur in opposite pairs, the group cannot contain the
 central inversion.

 If a,, a2, ... , an+2 are the vertices, the generators are the transpositions

 R i= (a=ai+1)

 and R RR2 ... Rn+1 permutes the a's cyclicly.36 Therefore

 h = n + 2.

 36 Cf. Todd 1, 229.
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 An 'n + 2 } with all pairs of vertices joined can be regarded as a projection (of
 the vertices and edges) of a,,+,. The In + 2} itself is then the projection of a
 Petrie polygon.

 (ii) In the case of [3n, 4], we consider the cross polytope 13n, 4} or On+2,
 whose vertices

 a,, a2, . . .,~ an+2X Cl, C2, .. * Cn+2

 occur in opposite pairs ai, ci. The generators can be taken to be reflections in
 the primes

 Xl = X2, X2 = X3, . I Xn+ = Xn+2 Xn+2 = ?

 V~iZ.31

 R, = (ala2)(clc2), R2 = (a2a3)(c2c3), Rn+1 = (anq lan+2)(Cn+lcn+-2),

 Rn+2 = (an+2Cn+2)

 We now have

 R = R1R2 . . . Rn+2 = (ala2 ... an+2) (clc2 . . *Cn+2a.+2)

 = (ala2 ... an+2Clc2 ... Cn+2).

 Therefore h = 2(n + 2)

 and Rih = (alcl)(a2c2) ... (an+2cn+2) = S.

 A { 2(n + 2) } with all pairs of vertices joined, except those that are diametri-

 cally opposite, can be regarded as a projection (of the vertices and edges) of
 03,+2. The 1 2(n + 2) } itself is then the projection of a Petrie polygon.

 (iii) In the case of L3 we consider the cross polytope {3,, ,} or 3n+3. The

 generators, being reflections in the primes

 XI = X22 X2 - X32 .* . Xn = Xn+l, Xn+1 = Xn+2y Xn+2 = Xn+3,

 Xn+2 + Xn+3 = 0?

 are

 Nn-I = (ala2)(CIC2), Vn-2 = (a2a3)(C2c3), - N = (a ,an+1)(Cncn+1),

 o = (an+lan+2)(cz+Icln+2), P = (an+2an+?3) (C n+2cn+3),

 Q = (an+2Cn+3)(n+2an+3) -

 Since PQ = (an+2Cn+2)(an+3Cn+3)ywe have

 R - n-INn-2 . . . NOPQ = (aia2 . . . . . Cn+2)(an+3Cn+3)

 7 Todd's K's arc in the reverse order.
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 Therefore h = 2(n + 2) again.
 If n is even, the central inversion does not belong to the group, since the poly-

 tope {3, } or hy,+3 then has no opposite vertices. But if n is odd,

 Rn+2 = (aici) (a2c2) ... (an+3cn+3) = S.

 (iv) In the case of [k], R = R1R2 and h = k. If k is odd, the central inver-

 sion does not belong to the group, since { k } then has no opposite vertices. But

 if k is even,

 Rik

 is the rotation through -r, which is S.

 (v) In the decagonal projection of the icosahedron 13, 5 }, the decagon
 clearly represents a Petrie polygon, and opposite vertices of the Petrie polygon
 are opposite vertices of t3, 5 1. Therefore,38 for [3, 51,

 h= 10 and R5= S.

 (vi) In Van Oss's dodecagonal projection of 13, 4, 3}, the peripheral {12}
 represents a Petrie polygon (since four consecutive vertices belong to the Petrie

 polygon of a bounding octahedron), and opposite vertices of the Petrie polygon
 are opposite vertices of {3, 4, 31. Therefore,39 for [3, 4, 3],

 h= 12 and R6= S.

 (vii) In Van Oss's triacontagonal projection of 13, 3, 5)}, the peripheral 1301
 represents a Petrie polygon (since four consecutive vertices belong to a bounding

 tetrahedron), and opposite vertices of the Petrie polygon are opposite vertices
 of { 3, 3, 5 1. Therefore,Z8 for [3, 3, 5],

 h= 30 and RI5 = S.

 3, 3

 (viii) In the case of 3, 3 we consider the vertices40
 -3

 a, .. * a6; b1, - * - , b6; C12, . , C56

 of 221, and observe 4 that

 R NNOPPQ = (654321) [456. 123]

 = (ala6c34c23b6b5b4b3c16c56a3a2) (a5c35c24cl3blcl2b2c26cl5c46a4c45) (C36C25C14),

 whence h = 12.

 38 Todd 1, 230.

 39 Ibid., 227.

 40 Coxeter 1, 388 (?9.4). Todd 2 provided the most satisfactory proof of the corre-
 spondence between these vertices and the lines on the general cubic surface (Schlafli 1,
 Dickson 1).

 41 Coxeter 2, 165 (18. 31).
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 Since 221 has no opposite vertices, the central inversion is absent.

 ~3, 3, 3~
 (ix) In the case of 3, 3 we consider the vertices42

 3_

 C12y '- - C78; C12, - C78

 of 321, and observe43 that

 R -N2NNOPPQ = (7654321) [4567. 1238]

 (Cl7C67C34C23C78C68C58C48C38Cl7C67C34C23C78C68C58C48C38)
 (C5 7c35c2 4cl3Cl 8cl2C2 8C2 7Cl 6c5 7C35C24Cl3cl 8Cl2C2 8C2 7C1 6)

 (C3 6C25Cl4C3 7C2 6Cl5C4 7C45C5 6C3 6C25Cl4C 37C2 6Cl5C4 7C45C5 6)

 (C4 6C4 6),

 whence h = 18 and R9 = (cC) = S.

 (x) In the case of 3, 3 , we consider the vertices44
 3_

 a123, ..., a7ss; b123, ..., b7ss; C12, , C98

 of 421, and observe45 that

 R N3N2NNOPPQ = (87654321) V123

 - (al78a678b349b239c98c97c96c95c94c93bl89b789a345a234c83
 bl78b678a349a239c89c79c69c59c49c39al89a789b345b234c38)

 (a57 8b359b24 9bl3 9c 9lbl2 9c 92b2 89bl 7gb 689a34 6a235C 84C 73bl6 8

 b57 8a359a24 9al3 9ci 9al2 9C29a2 89a1 79a 6 8sb34 6b235c4 8C3 7al 68)

 (a36 9a25 9al4 9a3 89a2 79al 6 9a58 sb35 6b245bl34c3lc28a2 78al6 7a56 8

 b3 6gb25 9bl4 gb3 8sb2 7 9bl6 sb5 89a356a245al34C13c 82b2 78bl 6 7b56 8)

 (a379a269a159a489b456a679b347b236c58c47c36a,58a478b459a567

 b3 7gb2 6 9bl5gb48 9a466b6 7ga34 7a23 6C 85C 74c 63b,5 8b4 78a45 gb56 7)

 (al48a378a267a,56a458b569a367a256al45a348a237c86c75c64c53
 bl4 8b3 78b2 6 7b,5 6b45 8a56 9b3 6 7b25 6bl45b34 8b23 7C6 8C5 7c4 6C35)

 (a4 6 8b46 9a4 6 7b4 7ga45 7b5 7 ga35 7a24 6al35C14al23bl28c 72b2 6 bl7

 b46 8a46 gb46 7a4 79b45 7a57 9b35 7b246bl35c4lbl23al2 8C2 7a2 68a,5 7)

 (aa 6 8a25 7al4 6a35 8a24 7al3 6cl5al24c23cl2c 81bl2 7C 62b25 8bl47

 b36 8b25 7bl4 6b35 8b24 7bl3 6c5lbl24c32c2lc1 8al2 7C2 6a25 8al4 7)

 (C1 7al2 6C25a24 8al3 7C1 6al25C24a23 8C8 7C7 6C 65C54c43bl3 8

 c 7lbl2 6c52b24 8bl3 7C 6ibl25c42b23 8c 78C 6 7C5 6C45C34al3 8),

 whence h = 30 and R15 = (ab) (c11csi) = S.

 42 Coxeter 1, 387.
 4" Coxeter 2, 168.
 14 Ibid., 170.
 45 Ibid., 172.
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 THEOREM 16. If an irreducible discrete g.g.r. operates in Euclidean space of

 m dimensions (or spherical space of m - 1 dimensions), the total number of reflcc-
 tions is Imh.

 LEMMA 16. 1. In an irreducible discrete g.g. r. whose symbol contains no evten

 digits, all reflections are conjugate.
 Since every reflection in the group is conjugate to some generator, it will be

 sufficient to prove that the generators are conjugate. If U, Z are any two gener-
 ators, our assumption implies that we can find a sequence of generators U, V,
 W... , Y, Z, such that the products UT', VTW, , YZ are all of odd period.
 Suppose

 (UV)2i+l - 1

 Then (UV) U (YU"I)' =-Y

 whence U and V are conjugate. Proceeding similarly throughout the sequence,
 we conclude that U and Z are conjugate.

 For infinite groups, Theorem 16 is obvious, since h is infinite. For finite

 groups, we consider the actual cases (as in Theorem 15).

 (i)46 [3n]. m=n +1, h=m+ 1.

 The transposition (aia3) is the reflection that reverses the edge a as of a,
 leaving the opposite am-2 invariant. By Lemma 16. 1, all the reflections are of
 this kind. Hence their number is 4m(m + 1).

 (ii)47 [3n, 4]. m = n + 2, h = 2m.

 Since

 (R1R2)3 = (R2R3)3 - = (Rvi2Rni- 1)3= 1,

 every reflection is conjugate either to R1 or to RIi. Rf reverses each of the
 opposite edges a1a2, C1C2 of A3z; Rm transposes the opposite vertices am, cm. Since
 13m has 2m(m - 1) edges and 2m vertices, the total number of reflections is

 rn(mn - 1) ( +n - ? = in2.

 ~3n~

 (iii)48 3 . I t + 3, h = 2 (m - 1).
 3

 By Lemma 16. 1. every reflection is conjugate to that which reverses the

 opposite edges ala2, cIc2 of On,?. Hence the number of reflections is m(m - 1).

 46 For the case when n = 3, cf. Goursat 1, 90.
 47 For the case when n = 2, ibid., 85.

 48 For the case whenl n = 1, ibid., 82.
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 DISCRETE GROUPS GENERATED BY REFLECTIONS 611

 (These same reflections occur in [3n2,- 4], whose remaining m reflections gen-
 erate [m.)49

 (iv) [k]. m = 2, h= k.

 If k is odd, every reflection reverses one side of I k I and leaves the opposite
 vertex invariant; so the number is k.

 If k is even, R1 reverses each of two opposite sides of I k }, while IR2 leaves two
 opposite vertices invariant; so the number is 1k + 'k.50 (Although Al and R2
 are not conjugate in [k], these same operations are conjugate in the larger group

 [2k].)

 (v) [3, 5]. m = 3, h = 10.

 Every plane of symmetry of {3, 5} passes through one pair of opposite edges,
 and bisects another pair; so the number of planes is 15.

 (vi)51 [3, 4, 3]. m = 4, h = 12.

 Since

 (RiR2)3 = (R3R4)3= 1,

 there are only two sets of mutually conjugate reflections. But there is a reflec-
 tion that transposes two opposite vertices of {3, 4, 31, and another that trans-
 poses two opposite octahedra. Hence the total number is 12 + 12.52 (All these
 reflections are conjugate in the group of symmetries of tl,2 {3, 4, 3 } .53)

 (Vii)54 [3, 3, 5]. m = 4, h = 30.

 There is a reflection that transposes two opposite vertices of {3, 3, 5 }. By
 Lemma 16. 1, every reflection is of this kind. Hence the number is 60.

 3(m3

 (viii) 3, 3 . m = 6, h = 12.

 -3

 [9 [I means [I X II X ... (to mii terms), which might also be written [2m-1]. (See Preface
 for the cases m = 2, 3.)

 The relation between these groups is epitomized in the symbolic equation
 3m-3

 [3m-2,4] J 3 + [ ] (m > 3).
 3

 50 [k] = [Tk] + [1k] (k even).
 51 Goursat 1, 86.

 52 [3, 4 3 ] [3 ] +

 53 This is an example of the "augmented group" defined in the corollary to Theorem 14.
 It is derived from [3, 4, 3] by adjoining the operation considered in Robinson 1.

 5' Goursat 1, 88.
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 612 H. S. M. COXETER

 Pi transposes the two opposite q's555

 ajb1c23c24c25c2 6, a2b2c13c14c15c16

 of 221. Since there are 72 ar5's, the number of reflections is 36. (These corre-
 spond, of course, to the double-sixes on the cubic surface.)

 (ix) 3 3 . m = 7, h= 18.

 -3

 P1 transposes the two opposite /36's

 C13 * c18C23 ... C2 8, C13* C18C23 ... C28

 of 321. Since there are 126 A6's, the number of reflections is 63. (These corre-
 spond56 to the 63 period characteristics of genus 3.)

 (x) 3L 3 . im = 8, h = 30.
 L3 _1

 P1 transposes the two opposite vertices c12, c21 of 421. Since there are 240

 vertices, the number of reflections is 120.57
 THEOREM 17. Every irreduciblefinite g.g.r. can be generated by two operations.
 For all finite groups of the form [k1, k2, . . . , kmJl, this was proved by Todd,58

 the two generating operations being, except in one case, RI and R.
 In the case of [3n], putting R = R1R2 ... R,+?, we have

 Ri+1 = RiRlR-' (i < n).

 In the case of [3n, k], putting R = R1R2 ... Rn+2 we have

 R =+1 RiR1R- (i < n),

 Rn+2 = RnR (R-'R 1)nR.

 This result includes [3n, 4], [k], [3, 5], [3, 3, 5], and incidentally also the infinite
 groups [cX], [3, 6]. Todd59 generates the exceptional group [3, 4, 3], by means
 of RiR2R4 and R1R3R4.

 ~3n~

 In the case of 3 we define

 .3

 U _Nnrr-1 n-2 . . . NOY I,- POQY

 55 Coxeter 2, 165.
 66 Du Val 1, 58.
 67 Ibid., 47, 49.
 68 Todd 1, 226.
 69 Ibid..y 228.
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 and observe that

 U-1 OU - ONONO (since 0 is permutable with N1, . - ,)

 = N,

 U-1Ni U = ON ... Ni-. Ni Ni+i Ni.Ni+,Ni.Ni-. NO

 = ON ... Ni-Ni+i Ni- ... NO

 =Ni+iy

 V-1 OV - QPQ = P, VOV-1 = PQP =

 and

 U-1 VU = ONPOQNO = OPNONQO = OPONOQO = POPNQOQ

 = POQNPOQ= VNV.

 Since N = N-', we now have

 N = VU-'V-'UV,

 Ni= U-iNUi,

 0 = UN U-1,

 P = V-1 UNU-1V,

 Q = VUNU-1 V-.

 When n is even, we can alternatively generate the group by means of 0 and

 R' -Nn1Nn_2 ... NPOQ.60

 In fact,

 N = OR'n+1 OR'-n+ 0,

 Ni= R'-i NR'i)

 P = R /-(n+l) OR /n+l

 Q = R 'OR1 -1 (n even6l).

 The remaining groups are the symmetry groups of the polytopes 221, 321, 421,
 which were considered in Coxeter 1.62 However, we shall reconsider them here,
 in order to show that they can all be generated by the special operations 0, R.

 60 By Theorem 11, R' is conjugate to R (which has OP in place of P0). But the
 permutable operations P, Q could never be distinguished in terms of 0 and R.

 61 When n is odd, R'n+2 = S, so that

 R'tn+ OR'-(n+l) =- R' 01' = QPNONPQ

 and Rt-(n+l) ORn+1 = R'OR'-1 = Q.

 62 408 (11.63), 406 (11.52), 409 (11.71).
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 614 H. S. M. COXETER

 We can express the generators of 321 in terms of 0 and

 -3

 R Nnl Nn_2 ... NOPP1 Q,

 by observing that

 R-1 OR = QP1 PONONOPP1 Q = QP1 PNPP1 Q

 = N,

 R-'NiR = QPPONN, ... Ni- N i N+ N i N i+ Ni Ni-. N, NOPP, Q

 = QP, PONN, ... N Nij N ... N1 NOPP1 Q

 =Ni+iy

 R-2 Nn,- R2 = QP1 PONN1 ... Nn_2Nnl QP1 PONN, * Nn_2

 Nnl Nn_2 ... N1 NOPP, QNn,_ Nn2 ... N1 NOPP, Q

 = QP, PONN, ... Nn2 QP, PONN, ... Nn_3Nn-l Nn_2

 Nnl Nn_2 Nn l Nn3 *.. N, NOPP, QNn_2 ... N1 NOPP, Q

 = QP1 PONN, ... Nn2 QP, PONN. Nn_3

 Nn_2 Nn3 ... N1 NOPP1 QNn2 ... N1 NOPP1 Q

 = QP, PONQP1 PONOPP1 QNOPP, Q

 = P1 PP1 QOQPNONONPQOQP, PP1

 = PP1 POQOPOPOQOPP, P = PP, POPOPP1 P = POP

 = OPO,

 RPR-1 = N Nn_2 ... NOPP, PP, PON ... Nn_2 Nn1

 = P1,

 R-'PR = QP, POPOPP, Q = QOQ

 = OQO,

 whence

 Ni-, = R-iORi (N= No),

 P = OR-(n+2) ORn+2 0

 (17. 1) P1 = ROR-(n+2) ORn+2 OR-'
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 These relations can be simplified considerably when n 2, and slightly when
 n = 3.

 3, 3

 For 3, 3 (n = 2, R = Ni NOPP, Q), we find
 3 _

 R3OR-3 = OQO,

 so that

 N1 = R-20R2,

 N = R-1OR,

 P = R40R-4,

 P1 = RI' OR-5,

 Q = OR3 OR-3 0.

 3, 3, 3

 For 3, 3, (n = 3, R = N2N, NOPP1 Q),
 _3, _j

 R9 Sy
 so that

 R-5 OR - R4 OR-4

 and

 N2 = R- OR3,

 N1 = R-20R2

 N = R-1 OR,

 P = OR4 OR-4 O.

 P1 = ROR4OR-40R-1,

 Q = OR-' OR4 OR-4 ORO.

 3, 3, 3, 3

 For 3, 3 ] we cannot do better than put n = 4 in (17.1). Incidentally,
 -3_

 3, 3, 3, 3, 3

 by putting n = 5 we obtain a generation of the infinite group 3H 3 by
 3 _j

 tw-o63 operations. For n > 5 we have the (infinite) symmetry groups of Du
 Val's Minkowskian polytopesf 1121.

 63Three were used in Coxeter 1, 409.
 6" Du Val 1, 71.
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 616 H. S. M. COXETER

 DEFINITION. If F is a group which contains the central inversion S,

 will denote the factor group F/i, where 2 is the subgroup of order 2 generated
 by S. From an abstract definition for r, we derive an abstract definition for 2 r

 by inserting the new relation S = 1.

 Examples.

 (i) -[2k] - [k], both having the abstract definition

 R2 = R2 = (RJR2)k= 1

 (ii) [3y 4] - [3, 3].

 2[3, 4]65 has the abstract definition

 R= = R2 = (R1R2)3 = (R2R3)4= (R3R1)2 = (R2R3R1)3 = 1.

 On putting R3 = I? R1, this becomes

 R1 = R2 = R3 = (R1R2)3= (R2R')3 - (R' R1)2 = (R2R' Ri)4 1

 which is the abstract definition for [3, 3] (with the superfluous relation R4 - 1)
 (iii) In the notation of Coxeter 2, 145-151, (since the central inversion is a

 negative operation when the number of Euclidean dimensions is odd)

 1[3n 4] - [3n, 4]' (n odd),

 2[3, 5] - [3, 5]' (the icosahedral group66),

 ~3, 33 ~ 3,3 3~
 a ,P 3, .

 Du Val 1, 58 shows that the last of these groups is the 0-characteristic group of

 genus 3. We now see that an abstract definition for it can be obtained by adjoin-

 ing the relation
 R= 1

 to the abstract definitions7 for 3, 3 . This new definition is more elegant

 _3 _J
 than (18.51).68 In terms of the digits 1, 2, , 8, whose pairs denote the
 twenty-eight odd 6-characteristics (or the twenty-eight bitangents of the plane
 quartic curve), Q (or Qo) is simply a bifid substitution, while the other six gen-
 erators are transpositions.69 By 15 (ix) above, R permutes twenty-seven of the

 65 Fricke-Klein 1, 71.
 66 Ibid., 72.

 67 Coxeter 2, 149 (16.74).
 68 Ibid., 166.
 69 Ibid., 168.
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 odd characteristics (or bitangents) in three cycles, namely

 (17 67 34 23 78 68 58 48 38)

 (57 35 24 13 18 12 28 27 16)

 (36 25 14 37 26 15 47 45 56).
 3, 3, 3, 3

 (iv) 3, 3 is the group considered in Du Val 1, 49. The "one extra

 -3_

 relation" that was required in Coxeter 2, 174 (at the bottom of the page) is
 now seen to be

 R'5 = 1

 where R = N3 N2 N1 NOPP1 Q.

 (v) Of Goursat's groups,70

 3

 XLII is 3

 3

 XLIV isA([] X [3,4]),

 XLV is -[3, 4, 3],

 XLVII is -[3, 3, 4],

 XLIX is - ( [ I X [3, 5]),

 L is -[3, 3, 5];

 But LI [3, 3, 3] itself, the central inversion being absent.

 Remark. If F (containing S) is a g.g.r. in spherical space, then 2r is a g.g.r.
 in elliptic space (of the same number of dimensions).

 THEOREM 18. For every finite g.g.r. in Euclidean (or spherical) space, there is a
 simply isomorphic group in elliptic space. Every other discrete g.g.r. in, elliptic
 space is of the form

 2(1~) X ]p(2) X ..)

 where all the Fr's7 occur among

 [3n, 4], 3 (n odd), [k] (k even), [3, 5], [3, 4, 3], [3, 3, 5],

 F3331 313 3, 3 31

 70 Goursat 1, 78, 79.

 71 There may, of course, be only one.

This content downloaded from 205.175.118.33 on Tue, 03 Jan 2017 23:06:41 UTC
All use subject to http://about.jstor.org/terms



 618 H. S. M. COXETER

 LEMMA 18. 1. If F, a finite g.g.r., contains S, then

 2([]x IF) r.
 LEMMA 18.2. If a reducible group contains the central inversion, then each

 component must contain its own central inversion.

 (The proofs of these lemmas are omitted, as they involve no ingenuity.)

 It is obvious that any group in elliptic space can be derived from a group in

 spherical space by identifying antipodal points. If the spherical group does not

 contain the central inversion, the elliptic group is simply isomorphic (but the

 fundamental region of the latter is one half of that of the former). If the

 spherical group is of the form [ ] X r and contains the central inversion, the

 derived elliptic group is simply isomorphic with r, by Lemma 18. 1. The

 remaining case is when the spherical group contains the central inversion but no

 component [ ] (i.e., no single reflection which is permutable with all the others).
 By Lemma 18.2, every component of the spherical group must then contain

 its own central inversion.

 TABLE OF IRREDUCIBLE FINITE GROUPS GENERATED BY REFLECTIONS

 Group Order72 m h Central inversion?

 [3nj (n + 2)! n + 1 n + 2 Only when n = 0

 [3n, 4] 2n+2(n + 2)! n + 2 2(n + 2) Yes

 -3nl

 3[] 2n+2(n + 3)! n + 3 2(n + 2) Only when n is odd

 [k] 2 k 2 k Only when k is even

 [3, 51 120 3 10 Yes

 [3, 4, 31 1152 4 12 Yes

 [3, 3, 5] 14400 4 30 Yes

 [33 3 51840 6 12 No

 [3 3 2903040 7 18 Yes

 3y 3 696729600 8 30 Yes
 73

 72 Coxeter 2, 159.
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 GRAPHICAL REPRESENTATION OF THE IRREDUCIBLE GROUPS GENERATED BY REFLECTIONS

 (Finite) (Infinite)

 4 4 4 4 4 4

 5 7

 4 6 ~~4
 5 4

 Here each dot represents a mirror, i.e. the prime of a generating reflection.
 The links indicate the relative positions of the various mirrors. When two dots
 are joined by a link marked k, the corresponding mirrors are inclined at angle
 7r/k. When a link is unmarked, we understand k = 3. When two dots are not
 (directly) linked, the mirrors are perpendicular.73

 11 Cf. Coxeter 4.
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 620 H. S. M. COXETER

 By Theorem 9, the above graphs represent all irreducible discrete groups
 generated by reflections. By Theorem 6, the graph for any reducible discrete
 g.g.r. is obtained by juxtaposing several of these, repetitions being allowed.

 INDEX
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