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Introduction

It is known that, in ordinary space, the only finite groups generated by
reflections are
[k] (k = 1), of order 2k, with abstract definition

1 =R} = (RiR)* =1,
and

lky, kol (k1 = 2, by = 2, 1/ky + 1/k; > %), of order 4

k¥ 1k =3 Vit

abstract definition
R} = R} = R} = (RiR:)"' = (R1R3)? = (R2R5)*2 = 1.
[1] is the group of order 2 generated by a single reflection. Since this is the
symmetry group of the one-dimensional polytope! {}, we write
1] =l

[k]l(k = 3) and [ki, k2] (k1 = 3, ke = 3, 4, 5) are the symmetry groups of the
ordinary regular polygons {k} and polyhedra {k;, k2}. The rest of the groups
can be written as direct products, thus:

(2, k] =[] X [X].

1 Coxeter 1, 344.
588
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DISCRETE GROUPS GENERATED BY REFLECTIONS 589

These groups can be made vividly comprehensible by using actual mirrors for
the generating reflections. It is found that a candle makes an excellent object
to reflect. By hinging two vertical mirrors at an angle =/k (k = 2,3,4, ... ),
we easily see 2k candle flames, in accordance with the group [k]. To illustrate
the groups [k, k2], we hold a third mirror in the appropriate positions.

In the present paper, we generalize the above results to space of any number of
dimensions,? and to groups which, though infinite, are still free from infinitesimal
operations. (One such infinite group is called | 3?|, and may be illustrated by
means of three vertical mirrors, erected on the sides of an equilateral triangle
so as to form a prism, open at the top. A candle placed within this prism gives
rise to an unlimited number of images.)

In order to enumerate these groups, we observe that the fundamental region?
must be a polytope whose dihedral angles, being submultiples of =, are never
obtuse. It happens that such polytopes are of a particularly simple form.

Perhaps it is worth while to point out what contact this investigation has with
crystallography. Each of the 32 crystal systems corresponds to a finite group of
orthogonal transformations. Of those groups, the eleven which Schoenflies® calls
Holoedrie and Hemimorphe Hemiedrie are generated by reflections; in fact,

Ci =1,

C; =1 X1l

Vi =1 X[ xI[]
Cr =1kl (k=34,6),

Dh = [1 X [K],
Té = [3,3],
0 =3,4],

Of the 230 space groups, the following seven are generated by reflections:
Bj = [w] X [»] X [«],
gé.h =[] X [3, 6],
Q:,h [°°] X[4,4],
Diw = [=] X[
T =3¢,

4
D:= 3)6
3

D}t = [4: 3: 4]'7

2 For the case of four dimensions, see Goursat 1, 80-93.
3 Bieberbach 1, 312.

¢ Schoenflies 1.

5 Coxeter 2, 147.

¢ Ibid., 148.

7 Ibid., 150.
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590 H. S. M. COXETER

([] is the group generated by reflections in two points of a line. Its abstract
definition is simply
R =Rl =1)

THEOREM 1. In spherical space, every polytope free from obtuse dihedral angles
18 a stmplex.

LemMma 1.1, Every spherical polygon free from obtuse angles is a triangle.

Since the angle-sum of an n-gon is greater than (n — 2)r, at least one angle
must be greater than (n — 2)x/n.

LemMma 1.2.  If two angles of a spherical triangle are non-obtuse, then the third
angle is not less than its opposite side.

By the well-known formula, if A and B are non-obtuse,

cos C = sin A sin B cos¢c — cos A cos B < cosc.

DEFINITION. A simplex-polycorypha® is a polytope in which the number of
edges at any vertex is equal to the number of dimensions of the space. E.g.,
the measure polytope is a simplex-polycorypha.

LemmA 1.3.  If a simplex-polycorypha is free from obtuse dihedral angles, so ts
any bounding figure.

Consider the section of the simplex-polycorypha II.. by a 3-space perpendicular
to any element II,._;, meeting that element at an internal point O. The three
I.,._.’s which meet at the II,._; will give, in the section, a trihedral angle with
vertex O; and the edges of this trihedral angle will be sections of the three IT.._s’s
which separate the II,,_,’s in pairs. Further, on account of the orthogonality,
the dihedral angles of the trihedral angle are dihedral angles of II.., while its face-
angles are dihedral angles of the three II,,_;’s. On a sphere with center O, the
trihedral angle cuts out a spherical triangle whose angles A, B, C are dihedral
angles of II,., and so non-obtuse, by hypothesis. Lemma 1.2 gives

c < C < inr.

But ¢ can be any dihedral angle of any bounding figure. Thus Lemma 1.3 is
proved.

(If m = 3, there is no need to take a section. If m < 3, the Lemma is
meaningless.)

LemMa 1.4. In three or more dimensions, every simplex-polycorypha bounded
entirely by simplexes 1s itself a simplex.

In an m-dimensional simplex-polycorypha, m — 1 plane faces pass through
each edge. If all the bounding figures are simplexes, these plane faces are
triangles. Let A, As, ..., A, be the m vertices that are joined to the vertex
Aobyedges. Thenthem — 1 triangles through 4,4, must be

AoA iy, ..., Acd 1A .

8 Sommerville 1. For the polytopes considered here, the definition given in Coxeter 1,
331 (§1.1) is appropriate. Sommerville calls these simple convez polytopes.
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DISCRETE GROUPS GENERATED BY REFLECTIONS 591

By hypothesis, just m edges pass through A;. Therefore A4y, A14s, ..., A1Am
are the only edges through A,. Similarly for any other A;. Thus the poly-
corypha has only m 4 1 vertices.

Theorem 1 can now be proved by induction. By Lemma 1.1, it is true in two
dimensions. Let us then assume it true in m — 1 dimensions. Consider an
m-dimensional polytope free from obtuse dihedral angles. A small sphere’
drawn round any vertex cuts out an (m — 1)-dimensional spherical polytope
whose dihedral angles all occur among those of the m-dimensional polytope. By
the inductive assumption, this (m — 1)-dimensional polytope is a simplex; i.e.,
the m-dimensional polytope is a simplex-polycorypha. By Lemma 1.3 and the
inductive assumption, every bounding figure is a simplex. The theorem follows
by I.emma 1.4.

CoroLLARY. In Euclidean space, every acute-angled polytope is a stmplex.

If possible, consider an acute-angled polytope that is not a simplex. By
projection on to a spherical space of sufficiently large radius, we can obtain a
spherical polytope whose dihedral angles differ by as little as we please from
those of the given polytope. If we make the radius so large that the angles re-
main acute, Theorem 1 is contradicted.

DEeFINITION. A prism!® is the topological product of a number of polytopes
lying in absolutely perpendicular spaces. Regarding a polytope as a closed
set of points (viz. all the points within it and on its boundary), we can define
the prism [IT,, IT,] as follows.

In p 4 ¢ dimensions, suppose II, to be fixed, while II, is constrained to lie in
an absolutely perpendicular space and to have a constant orientation. Sup-
pose further that the common point of the spaces of II,, and II, belongs to both
polytopes, and is a definite point of I, (e.g. a vertex). Then the prism is the
totality of points that belong to the possible positions of II,.

Topological products being commutative and associative, a prism may have
any number of constituents II,, II,, ..., and the order of their arrangement is
immaterial. It is convenient to admit the trivial case when there is only one
constituent.

A simplicial prism is a ‘‘rectangular product’’ of (one or more) simplexes. We
use the symbol Z,, for a general simplex in m dimensions. Thus Z, denotes a
point, and Z, a straight segment (of unspecified length).

TuEOREM 2. In Euclidean space, every polytope free from obtuse dihedral angles
s a simplicial prism.

Lemma 2.1.  Every polygon free from obtuse angles s either a triangle Z, or a
rectangle [, Zi].

This follows from the fact that the angle-sum of an n-gon is (n — 2).

Lemma 2.2, Every polytope free from obtuse dihedral angles is a simplex-
polycorypha.

9 We shall use the word sphere for the analogue in any number of dimensions.
10 Called prismotope by Schoute 1. Cf. Coxeter 1, 351.
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592 H. 8. M. COXETER

A small sphere drawn round any vertex cuts out a spherical polytope whose
dihedral angles all occur among those of the whole polytope. By Theorem 1, this
spherical polytope is a simplex.

Lemma 2.3. A prism whose constituents are simplex-polycoryphas is ilself a
simplex-polycorypha.

Since every vertex of [IT,, IT,] is a vertex of one II, and of one II,, the edges
which meet there are the covertical edges of I, and of II,. If, in particular, IT,
and II, have respectively p and ¢ covertical edges, then [II,, II,] has p + ¢; 7.e.
the prism is a simplex-polycorypha. This result, having been proved for two
constituents, at once extends to the case of any number.

LemMma 2.4.  Every simplicial prism can'be characterized by a “‘vertex diagram’
consisting of a stmplex with edges of two types.

Consider again the construction for [II,, II,]. When II, moves so that each
point of it describes an edge of II,, its edges describe rectangles. Thus, if AB
and AD are edges of II, and II, respectively, the rectangle A BCD is an element
of [II,, IT,).

In the simplicial prism [Z,, =, ... ], the edges that meet at any vertex fall
into sets of p, ¢, etc., such that the first set belong to Z,, the second set to Z,,
and so on. Two edges occurring in any one set are sides of a triangle belonging
to the corresponding simplex. Two edges occurring in separate sets are sides
of a rectangle.

We can now represent the p 4+ ¢ + ... covertical edges as vertices of a topo-
logical simplex, putting the mark ‘o’ against those edges of the simplex which
correspond to triangles, and ““B”’ against those which correspond to rectangles.
The vertices of this vertex diagram fall into sets of p, ¢, ... , such that every pair
occurring in the same set are joined by a-edges, while every pair occurring in
different sets are joined by B-edges. (In the special case of [, ag, ... ],'* the
vertex diagram can be identified with the vertex figure, and then the a-edges
and B-edges are a;’s and B:’s;!? hence the notation.)

Since the form of the vertex diagram depends only on the numbers p, ¢, ... ,
we shall not obtain a different diagram by beginning with a different vertex.
(The following illustration is the vertex diagram for [Z3, Z,].)
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LemMma 2.5, Every trihedral®® polyhedron bounded by lriangles Z, and rec-
tangles [Z1, Z.] is either a tetrahedron Z; or a triangular prism [Z., Z.] or a rec-
tangular solid [, Z,, Z1].

If a trihedral polyhedron is bounded by f; triangles and f; quadrangles, it must
have 1(3f; + 4f:) edges and 3(3f; 4+ 4f.) vertices. Hence }f; 3f: must be
(non-negative) integers, and, by Euler’s Theorem,

ifa+ 3fi=2

The solutions 2 4 0,1 4 1, 0 4+ 2 give the three possible kinds of polyhedron.

LemMA 2.6.  If a simplex-polycorypha in more than three dimensions is bounded
solely by simplicial prisms, then the types of prisms occurring at any verlex are the
same as at any other vertex.

If a simplex-polycorypha in m dimensions is bounded solely by simplicial
prisms, we can construct a vertex diagram at any vertex, and we have to show
that this will be the same for all vertices. Any edge AB of the simplex-poly-
corypha will be represented by a vertex B’ in the vertex diagram at A and by a
vertex A’ in the vertex diagram at B. The edge A B belongs to m — 1 bounding
prisms; in the vertex diagrams considered, these are represented by the m — 1
bounding simplexes that meet at B’ or A’ respectively. Hence the two vertex
diagrams are simplexes, alike in m — 1 of their m bounding figures. If m > 3,
this is sufficient to make them identical.

Since any vertex of the polycorypha can be reached from any other by a chain
of edges, repeated application of this result proves the lemma.

LeMMA 2.7, In three or more dimensions, every simplex-polycorypha bounded
solely by simplicial prisms is itself a simplicial prism.

The case of three dimensions is covered by Lemma 2. 5, so we may suppose the
number of dimensions to exceed three. By Lemma 2.6, the polycorypha is
characterized by a vertex diagram, viz. a simplex with a-edges and 8-edges. Let
P be any vertex of this vertex diagram. The remaining vertices form a simplex
which, being the vertex diagram of one of the bounding prisms of the poly-
corypha, has sets of vertices joined among themselves by a-edges and joined to
one another by B-edges.

We have to prove that the vertices of the whole simplex fall into sets in the
same manner. This is certainly true if all the edges through P are of type 8.
On the other hand, if P is joined to one of the other vertices by an a-edge, it must
be joined by a-edges to all the other vertices of the same set, since otherwise there
would be a triangle of sides «, @, 8, which is impossible by Lemma 2.5. For the
same reason, P cannot be joined by a-edges to vertices of two distinct sets. Thus
the vertices of the whole simplex are distributed in the desired manner, the vertex
P either forming a new set by itself or becoming attached to one of the old sets.

LemMa 2.8, Every simplex-polycorypha free from obtuse dihedral angles is a
simplicial prism.

By Lemma 2. 1, thisis true in two dimensions. Let us assume it trueinm — 1
dimensions, and use induction. By Lemma 1.3 and the inductive assumption,

13 I.e., a polyhedron with trihedral vertices.
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594 H. 8. M. COXETER

the m-dimensional polycorypha is bounded by simplicial prisms. Hence, by
Lemma 2.7, it is itself a simplicial prism.

Theorem 2 follows from Lemmas 2.2 and 2.8.

THEOREM 3.1 If all the dihedral angles of an m-dimensional polytope are less
than or equalto 6 (0 < 6 < ), then the number of bounding figures is less than some
number depending only on m and 6.

Take first the case when m = 3. In the spherical image by parallel normals
(“Gaussian’’ image for surfaces of continuous curvature), to each face of the
polyhedron corresponds to a point on the unit sphere, to an edge where the
dihedral angle is 6; corresponds a great-circular arc of length  — 6;, and to an
n-hedral vertex corresponds a spherical n-gon. By hypothesis, the spherical
distances between the points on the sphere are greater than or equal to = — 6.
Consequently, circles of spherical radius 3 (r — 6), described round the points,
will not overlap. If N is the number of faces of the polyhedron, comparison
of areas gives

27(1 — sin 30)N < 4,
N < 2/(1 — sin 36).

When 0 =  «, this gives the ‘‘best possible”’ result N < 6. (The actual poly-
hedra are those considered in Lemma 2.5.)
The analogous result for general m is easily seen to be

ir Hr—09)
N <2 / sin™2 o do / f sin™ 2 ¢ dep.
0 0

E.g.,form =4,N < 2x/(r — 6 — sin 0).

DerinNITIONS. A group of congruent transformations (of Euclidean space into
itself) is said to be discrete if the totality of transforms of a point never has a
limit point. E.g., the group generated by a single rotation, through an angle
incommensurable with =, is not discrete; but every finite group is a fortior:
discrete. Bieberbach!® has proved that a group is discrete if and only if it is
free from infinitesimal operations.

Consider a point of such general position that it has distinct transforms under
all the different operations of the group. Sufficiently small neighborhoods of
these transforms can be taken so as to be equivalent under the group, and not
overlap. By gradually increasing these neighborhoods, we eventually obtain a
set of congruent!s regions which together fill up the whole space. Any one of
these regions is, by definition, a fundomental region; and the group can be gen-
erated by the operations which transform this particular region into its neighbors.

14 T am indebted to Prof. G. Pélya for this extension of Theorem 2. It will not be applied
in the sequel, but is inserted for its intrinsic interest.

15 Bieberbach 1, 313-314.

16 Tn the wide sense; 7.e., directly congruent, or enantiomorphous.
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A point of general position on the boundary of the fundamental region is also on
the boundary of a neighboring region, and may or may not be transformed into
itself by the relevant generator. If not, a sufficiently small neighborhood of this
point, in the neighboring region, will be equivalent to a certain portion of the
original region. The fundamental region can then be modified by subtracting
this portion and adding the aforesaid neighborhood. Thus the only case in
which the fundamental region is uniquely determined is when every point of the
boundary is transformed into itself. It is easily seen that this can only happen
when all the generators are reflections.

A group of congruent transformations is said to be reducible! if it can be re-
garded as the direct product of groups of congruent transformations in two
absolutely perpendicular complementary subspaces @, @’. Every operation is
then of the form QQ’ (=Q’Q), where @ transforms & into itself and @’ trans-
forms @’ into itself. The groups in the subspaces are called components, and
may themselves be reducible; but we can eventually analyse the original group
into a number of 2rreductble components.

A group is said to be trivially reducible if it has identity for a component. In
this case the complementary component operates in a subspace & which is
transformed into itself by every operation of the group, and we regard the funda-
mental region as lying in & instead of in the whole space. In other words, we
consider the section of the true fundamental region by @ Thus we regard a
trivially reducible group and its non-trivial component as having the same funda-
mental region.

If a group leaves one point invariant, it transforms into itself the unit sphere
around this point. In this case we regard the fundamental region as lying on the
sphere. In other words, we replace the angular fundamental region by its
spherical section. Thus we confuse a group in spherical space with the corre-
sponding Euclidean group which leaves the center invariant. (A group which
leaves more than one point invariant is always trivially reducible.)

Consider, for example, the group generated by reflections in two perpendicular
planesin ordinary space. This is trivially reducible, its non-trivial component is
generated by reflections in two perpendicular lines of a plane, and its fundamental
region is an arc of length 1.

We use the word prime for a space of one fewer than the current number of
dimensions, and secundum for the next lower space (z.e. the intersection of two
primes).

The Fricke-Klein construction for a fundamental region.® Given a point P
which is not invariant under any operation, and its transforms Py, P,, ..., we
can construct a fundamental region by drawing the perpendicularly bisecting

17 More strictly, ‘‘completely reducible.”” When the group is finite, our omission of the
word ‘‘completely’’ is justified by Burnside 1.
18 Fricke-Klein 1, 108, 216.
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596 H. S. M. COXETER

primes of PP,, PP,, ... . A finite® number of these primes cut off a funda-
mental region around P, and the rest of them are irrelevant.

ABBREVIATION. For “group generated by reflections’” we shall write “g.g.r.”’.

THEOREM 4. The general finite g.g.r. has for fundamental region a spherical
simplex, whose vertices fall into sets which belong to the fundamental regions of the
trreducible components, vertices in different sets being joined by edges of length 3.

LemMa 4.1 Every finite group of congruent transformations leaves at least one
point invariant.

Consider the set of transforms of a point of general position. Every operation
of the group permutes these points among themselves, and leaves their centroid
invariant.

LemMa 4.2.  If a discrete group 1s generated by reflections in certain primes, then
these primes and their transforms are so distributed that, whenever n of the primes
meet in a secundum, they are inclined to one another at angle m/n in cyclic succession.

Let a, b be any two of the primes that are not parallel. Then the group must
contain reflections in new primes a’, b’, a’’, b’’, ... which are the reflected
images of a, b, a’,b’, ... inb,a’,b’,a’’, ... respectively. These are inclined to
a at all multiples of the angle (a b).

If this angle were incommensurable with =, the sequence of primes would be
infinite, a point of general position would have an infinite number of transforms
lying on a finite circle, and the group would not be discrete. Hence we can write

(ab) =dr/n,

19 Cartan 1.
10 Bieberbach 1, 327 (XI). Coxeter 3, 182 (§20.2) is an immediate corollary of this

lemma.
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where n and d are co-prime integers. If integers » and é are chosen so that
vd — én = 1, we shall have

v(ab) =o6r + n/n.

Thus there is a prime inclined to a at angle 7 /n, and the primes can be re-ordered
so astomaked = 1.

LemMA 4.3.  If a finite group is reducible, there exist two absolutely perpendicu-
lar complementary subspaces &, &', such that every operation is of the form QQ’,
where Q leaves invariant every point of @' and Q' leaves invariant every point of &.

In the notation of matrices,

(5 2)=G D6 )

LemMma 4.4.  If a reducible finite group is generated by reflections, its components
are likewrse generated by reflections.

Consider any reflection which belongs to a reducible finite group. By Lemma
4.3, it transforms @ and @’ into themselves. Therefore & (or &) must lie in the
reflecting prime, while @’ (or @) is perpendicular to it. Hence Q (or @’) is
identity, while @’ (or Q) is a reflection.

LeEmMMmA 4.5.  If a finite g.g.r. is not trivially reducible, it leaves tnvariant just one
point of the Euclidean space, and its fundamental region is one of the parts inlo
which the unit sphere around this point vs divided by the reflecting primes and their
transforms.

A finite g.g.r., operating in Euclidean space, leaves at least one point invariant,
by Lemma 4.1. If it leaves more than one point invariant, it must leave all the
points of a subspace of one or more dimensions; this makes it trivially reducible.
The group can be regarded as operating in a spherical space, and its fundamental
region is then given by the Fricke-Klein construction.

LemMA 4.6. If a finite g.g.r. is not trivially reducible, il is generated by reflec-
tions in the bounding primes of its fundamental region.

These are the operations which transform the fundamental region into the
neighboring regions.

LemMma 4.7.  The fundamental region of a finile g.g.r. is a spherical stimplez.

If the fundamental region has a pair of antipodal vertices, all its bounding
primes must pass through the join of these vertices, since any other prime would
divide the region into two parts. There are thus two invariant points, the group
is trivially reducible, and we construct the fundamental region in a subspace.

If the fundamental region has no vertices (e.g. a hemisphere), suppose it has a
k-dimensional element but no (k — 1)-dimensional element. Then all the bound-
ing primes must pass through this k-dimensional element, since any other prime
would give a (k — 1)-dimensional element by intersection.

Thus the fundamental region, which we have agreed to derive from the non-
trivial component, has vertices, but no antipodal vertices. This makes it a
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598 H. S. M. COXETER

polytope. By Lemma 4.2, all the dihedral angles are submultiples of r; there-
fore none of them can be obtuse. By Theorem 1, the polytope is a simplex.

The rest of Theorem 4 follows by means of Lemma 4.4. The sets of vertices
lie in absolutely perpendicular spaces.?

THEOREM 5. If an infinite discrete g.g.r. has a finite fundamental region, this
Sfundamental region is a simplicial prism whose constituents are the fundamental
regions of the irreducible components.

Lemma 5.1. If a reducible discrete group s generated by reflections, its com-
ponents are ltkewise generated by reflections.

We proceed as in Lemma 4.4, bearing in mind the fact that the subspaces
@, @ may be at infinity.

Lemma 5.2.  If aninfinite discrete g.g.r. 1s not trivially reducible, its fundamental
region is one of the parts into which space is divided by the reflecting primes and their
transforms. It is generated by reflections in the bounding primes of the fundamental
region.

Cf. Lemmas4.5,4.6.

The fundamental region of an infinite discrete g.g.r. may be finite or infinite.
If finite, Lemma 4.2 shows that it is a Euclidean polytope whose dihedral angles
are submultiples of . Hence, by Theorem 2, it is a simplicial prism.

The bounding figures of the simplicial prism

[(Zmiy Zmyy Zmgy « « -]
fall into sets of the form
(20 0y By By o+ by By 2704, Sy - -, et

Two bounding figures belonging to different sets lie in perpendicular primes, so
that the reflections in them are permutable. The group generated by reflections
in the bounding primes of the prism is thus the direct product of groups gener-
ated by reflections in the bounding primes of Z,,, ., etc. In this manner we
analyse the group into its irreducible components.

CoroLLARY. All the components are then infinite.

THEOREM 6. FEvery trreducible discrete g.g.r. has a simplicial fundamental
region; and the general discrete g.g.r. vs simply 1somorphic with a direct product of
such groups.

If the group is finite, the fundamental region is a simplex (whether the group
is irreducible or not). If the group is infinite while the fundamental region is
finite, the fundamental region is a simplicial prism; but the group is reducible if
this prism has more than one constituent. Bieberbach?? has proved that groups

21 Cf. Coxeter 2, 146 (§16.4). The fundamental region of [m] X [n] is described in
Goursat 1, 82.
22 Bieberbach 1, 327.
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with infinite fundamental regions are always reducible. By Lemma 5.1, the
irreducible components are generated by reflections.

The words “simply isomorphic with”’ are inserted in order to admit trivially
reducible groups.

TaEOREM 7. If a discrete g.g.r. has both finite and infinite components, its
fundamental region can be regarded as a generalized pyramid which joins a sim-
plicial prism to a simplex situated at infinity in a space absolutely perpendicular to
the space of the prism.

Such a group is the direct product of a finite group whose fundamental region is
a spherical simplex, and an infinite group whose fundamental region is a sim-
plicial prism. Let us imagine the spherical simplex to be drawn (with its proper
angles) on a sphere of infinite radius, lying in a Euclidean (¢ 4+ 1)-space ab-
solutely perpendicular to the p-space of the prism. Consider the infinite
(p + q + 1)-dimensional pyramidal region obtained by joining every point of the
prism to every point of the simplex at infinity. This region has bounding primes
of two types:

(1) joining a bounding (p — 1)-space of the prism to the g-space (at infinity)
of the simplex;

(2) joining a bounding (¢ — 1)-space of the simplex to the p-space of the prism.
Since the p-space is absolutely perpendicular to the g-space at infinity, every
prime of the first type is perpendicular to every prime of the second. Reflections
in the primes of the first type generate the infinite component of our group, while
reflections in primes of the second type generate the finite component. Hence
reflections in all the primes must generate the direct product, as required.

For example, the fundamental region of

(k] X [«]

is an infinite “wedge” (in ordinary space), bounded by four planes: two parallel;
and two, perpendicular to these, mutually inclined at = /k.
THEOREM 8.  Every discrete g.g.r. has an-abstract definition of the form

8.1) R: = (R; Rj)%i = 1.

Since the direct product of several groups having such abstract definitions is
another group of the same kind, it will be sufficient, by Theorem 6, to consider
the cases when the fundamental region is a spherical or Euclidean simplex. Let
R; denote the reflection in the ¢*» bounding prime of this simplex, and =/ki;
the angle between the ¢*" and j** bounding primes. Then the relations (8.1)
are certainly satisfied. Clearly, also, the R’s suffice to generate the whole group.
It remains to be proved that every relation satisfied by the R’s is a consequence
of (8.1).

Let?

(8.2) ReRyR....R, =1

23 This proof is the ‘“‘obvious extension of an argument used by Burnside’’ to which
reference was made in Coxeter 2, 146.
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be any relation satisfied by the R’s. Consider a point, moving continuously in
the spherical or Euclidean space in which the given group operates, beginning
within a particular fundamental region, proceeding through the a-face into a
neighboring region, then through the b-face of this region into a third (which
may be the first over again), ... and finally through the z-face of some region
into another region (which we shall identify with the first).

The first region is transformed into the second by the operation R,, into the
third by

R.RyR;'.R., = R, Ry,
into the fourth by
(Ra Rb)Rc(Ra Rb)—l 'Ra Rb = Ra Rb Rc’

... and into the last by R, Ry R. ... R,. By hypothesis, this operation is
identity. Hence the last region is the same as the first, and we may regard the
moving point as describing a closed path.

We can immediately reduce the general sequence

Rs Ry, ..., R,
to one in which no two consecutive R’s are the same. For, since
2
Rt‘ = 1:

R,... RvRiR;R;. ... R.=Ro ... RyR: ... R, if 1= 7.

In terms of the path, the moving point passes through the i-face of some region 1
into J (say), and then back through the same interface into I. This path can be
decomposed into one which misses J altogether (unless it enters on a different
occasion) along with a loop passing twice through the interface. The loop itself
is a path which corresponds, in the manner described, to the relation R: =1

J
/A . . .
1
. o
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We shall now reduce the net of fundamental regions to a ‘‘skeleton,” by dis-
carding the primes but retaining the secunda. The possible paths, of the kind
considered, constitute the Poincaré group of the space residual to these secunda.
Since the whole space is simply connected, any such path can be decomposed
into loops around single secunda. This decomposition of the path corresponds
to a factorization of R, Ry ... R,. By reinserting the primes, we see that each
factor is of the form

(R, ... R) (R; R))*i (R, ... Ry~
Hence, finally, (8.2) is an algebraic consequence of
(R: R))ki = 1.

THEOREM 9. The following list** comprises all irreducible discrete groups gen-
erated by reflections.

3n
Finite groups: [3"] (n 20), [3,4(n 20), |3 [(nz=1),® [k]l(k 2 5),
3
3,3 3,3,3 3,3,3,3
[3,5], 1[3,4,3], 1[3,3,5], 3,3, 3,3 |, 3,3
3 3 3
__ 3,4
Infinite groups: |3vﬁ (n=3), [4,3",4](n =0), 3 (n=0),
3
3",:; 3,3 3,3,3 3,3,3,3,3
(n ; 0)’ [w]’ [3’6]) [3 ’374’3], 373 ) 37373 ) 373
3
3,3 3 3
3
L )

Lemma 9.1.2% If all diagonal minors of a determinant are positive, while all
non-diagonal elements are negative or zero, then all algebraic first minors are positive
or zero.

Let A denote the m-rowed determinant | a} |, A} the minor derived by omit-
ting the ¢*» row and j** column, A%} that derived by omitting two rows and
columns, and so on. We are given

AP >0, Ajp>0, Ak >0,...,a;>0, a;s0 (=),
and we have to prove that (=)~ 4; = 0.

2 For the notation, see Todd 1, 214; Coxeter 2, 151, 147, 162. The number of dimensions
of the space in which the group operates (spherical space, in the finite case) is equal to the
number of digits in the symbol, except in the case of @.’_, when it is n — 1. For a more
systematic notation, see p. 618, below.

For an independent investigation of the groups [3"], [3~, 4], [k], [3, 5], 3, 4, 3], [3, 3, 5],
see Motzok 1.

% To avoid repetition.

26 This lemma, being of unnecessary generality, could be replaced by Stieltjes 1.
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Since we can transpose the j** and mt columns (provided we also transpose
the j*h and m*r rows), it will be sufficient to prove that
(=)"#4s 20 (G < m).

This is true when m = 2, since A} = a? < 0. Using induction, we assume
the lemma as applied to A, so that

(=)= 4in

v

0.
We now have

m—1
Af= =] (=) mar Al

i=1
whence

m—1

(=)mAi = DT (—aD (=)~ Ain =0

i=1
Lemma 9.2. A determinant of the kind considered in Lemma 9.1 s definitely
diminished by simultaneously increasing —a} and —al (i # j).
Writing A = f(a}, a?), we have
flaz— 3, a1 — €) — flaz, a) = 84; + eAT — ded;;.

If 5 > 0 and € > 0, this expression is definitely negative, since A < 0, A3 <0
and 412 > 0.

The enumeration of our irreducible groups merely involves the enumeration of
simplexes whose dihedral angles are submultiples of =, for which see Coxeter 2,
136-144 (§§15.4-15.9). The only step left obscure? was the ‘“Note” in the
middle of §15.2. This can be derived from Lemma 9.2 by putting ai = 1
and a} = — cos (i J).

TaHEOREM 10. In spherical or Euclidean space, the continued product of the
reflections in the bounding primes of a simplex, taken in any order, is an operation
which leaves no point tnvariant.

The reader will have no difficulty in proving this.

DEeriNiTION. By the generators of a g.g.r., we shall mean the reflections in the
bounding primes of its fundamental region.

TaEOREM 11. Of the continued products of the generators of a finite g.g.r.,
arranged tn vartous orders, any two are conjugate.

LemMA 11.1.  If the vertices of an m-gon are numbered from 1 to m in any order,
we can arrange the numbers in natural order by repeated application of the following
operation: whenever a side of the m-gon has inconsecutive numbers at its ends, we
are allowed to transpose those numbers.

We prove this by showing that the numbers at the ends of a side can be trans-
posed even when they are consecutive.

27 ] am indebted to Prof. Pélya for pointing this out.
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Suppose first that the numbers in order are

1) 2) D3y P4y - -+ 5 Pmy

so that every p; > 2. Interchanging 1 with p,,, then with p,_;, and so on, we
obtain the new order

Pm, 2) 1) P3y ---y Pm—yy

which is the same as the old except that 1 and 2 have been transposed. We may
describe this process as ‘“‘making 1 run round the polygon.”

Using induction, let us assume that the numbers ! — 1 and [ can be transposed
(when associated with consecutive vertices of the polygon). Then we can trans-
pose !l and I 4+ 1 by making [ run round the polygon. Hence, finally, we can
{ranspose the numbers at the ends of any side whatever, and the lemma is
reduced to the familiar generation of the symmetric group by transpositions.

LemMa 11.2.  If m vertices of an (m + 1)-gon are numbered from 1 to m in any
order, while the remaining vertex is marked I’ (1 = I = m), we can derive any
rearrangement of the numbers by repeated application of the operation of Lemma
11.1, regarding I’ as consecutive only to .

We can transpose [ and I’ by making I’ run round the polygon; and then the
presence of I’ will not affect the argument used in proving Lemma 11.1.

By Theorem 9, every irreducible finite g.g.r. is of the form

3n
[kl, kz, ey ’Cm_d or 37 |.
3

In the former case?® the abstract definition is
R: = (RiRip)% = (RiR)? =1 f<i—=1).

Thus inconsecutive R’s are permutable.

Consider any ordering of the m R’s. By numbering the vertices of an m-gon
in accordance with the suffixes, we obtain a representation, not only of the con-
tinued product corresponding to the chosen ordering, but also of the obvious con-
jugates of this product, derived by cyclic permutation of the factors. The
operation described in Lemma 11.1 will not affect this set of m conjugate
products. Hence every such product is conjugate to Ry R, ... Ron.

3n
37 | has an abstract definition conveniently represented by the diagram
3

Not il N\__N__O__P___P___. P,

23 Todd 1, 224 (4).
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of which the case n = p = 2isexplained in Coxeter 2, 164.2
By associating the generators

Nuty...,N,y,N,O, PPy, ..., Pp1,Q
with the numbers
, ..., -2l -,LLl4+1L14+2...,ml,

we are able to apply Lemma 11.2, and to conclude that all continued products
of these generators are conjugate.
Theorem 11 now follows, by Lemma 4 . 4.

These arguments can be extended to cover most of our infinite groups; but it is
easily seen that the operations R, R; R; R, and R, R; R R4 of \?fl are not con-
jugate.

THEOREM 12. The continued product of the generators of an infinite g.g.r., ar-
ranged in any order, is of infinite period.

This follows easily from Lemma 4.1, Theorem 10 and Theorem 6.

DEerFiNiTION. R (without a suffix) will denote a particular continued product
of the generators of an irreducible finite g.g.r., 2.

R = R1 Rz Rm fOI' [kl, kz, ,km_l]
and
3n
R=N,,.. NNOPP,...P,,Q for |37]|
3

(We now make a brief digression into the theory of regular polytopes.)

DEeriniTioN. The Petrie polygon of a regular polygon is the regular polygon
itself. The Petrie polygon of a regular polyhedron is a skew polygon of which
every two consecutive sides, but no three, belong to one face.?* The Petrie
polygon of a regular polytope in m dimensions is a skew polygon of which every
m — 1 consecutive sides, but no m consecutive sides, belong to the Petrie polygon
of one bounding figure. Thus, if

LAy . A A .
is a Petrie polygon of the regular polytope II,., then
AoAl P A,,,_l a.nd Al e Am_l Am

occur in Petrie polygons of two adjacent II,._’s.
Remark. Every finite regular polytope can be orthogonally projected on to a
plane in such a way that one Petrie polygon appears as an ordinary regular poly-

29 All the generators are involutory. Pairs not directly linked are permutable. If X, Y
are linked, XYX = YXY.
30 Coxeter 3.
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gon whose interior is the projection of the rest of the polytope. The square
aspect of the regular tetrahedron, the hexagonal aspects of the octahedron and
cube, and the decagonal aspects of the icosahedron and dodecahedron, are
familiar. In the projections of the four-dimensional polytopes, a second Petrie
polygon (really congruent to the first, of course) appears as a star polygon,3! viz.

{3} for {3, 3, 3}, {8} for {3, 3, 4} and {4, 3, 3},
{32} for {3, 4, 3}, 391 for {3, 3, 5}% and {5, 3, 3}.

THEOREM 13. Of the cycles in which the operation R of [ki, ke, . .. , kmn_i] per-
mutes the vertices of {ki, ks, ..., km_1}, one is the cycle of vertices of a Petrie
polygon.

Let X, be an alternative symbol for the vertex A,, and let X, denote the mid-
point of the edge 4041, X: the center of the plane face ... 494142, X; the center
of the solid whose Petrie polygon involves 40414243, ... and X, the center of
the whole polytope.*® We take R; (i = m) to be the reflection in the prime de-
termined by the m points that we obtain by omitting X ;_; from the set of X’s.

When m = 2, R, and R are the reflections in an in-radius XX and a circum-
radius 4,X of the polygon {k}, X, being the mid-point of the side A¢4;. Since
the angle between these radii is = /k, the product B = R.R, is a rotation through
2w /k, which effects a cyclic permutation of the vertices of {k}.

We thus have a basis for induction, and can assume that

r = R1R2 e Rm_1
effects a cyclic permutation of the vertices of the Petrie polygon
AcAy ... Anid,, ...

of the II,._; whose centeris X,._1. In virtue of this inductive assumption,

A = rA; ¢ <m-—1)
and A, =rd,._..
Also, since R, is the reflection in A4 ... 42X m,
A; = R.A; T <m-—=1).
Hence A= R4,
= RA; (i<m—1).

st Called {h'} in Coxeter 3.

32 Van Oss 1, Tafel I.

38 Ibid., Tafel II.

3 Ibid., Tafel VIII¢. The projections given 