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Abstract. A Coxeter group element w is fully commutative if any reduced expression for w can be obtained
from any other via the interchange of commuting generators. For example, in the symmetric group of degree n,
the number of fully commutative elements is the nth Catalan number. The Coxeter groups with finitely many fully
commutative elements can be arranged into seven infinite families An , Bn , Dn , En , Fn , Hn and I2(m). For each
family, we provide explicit generating functions for the number of fully commutative elements and the number of
fully commutative involutions; in each case, the generating function is algebraic.
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0. Introduction

A Coxeter group element w is said to be fully commutative if any reduced word for w can
be obtained from any other via the interchange of commuting generators. (More explicit
definitions will be given in Section 1 below.)
For example, in the symmetric group of degree n, the fully commutative elements are

the permutations with no decreasing subsequence of length 3, and they index a basis for the
Temperley-Lieb algebra. The number of such permutations is the nth Catalan number.
In [9], we classified the irreducible Coxeter groups with finitely many fully commutative

elements. The result is seven infinite families of such groups; namely, An , Bn , Dn , En , Fn ,
Hn and I2(m). An equivalent classification was obtained independently by Graham [7], and
in the simply-laced case by Fan [4]. In this paper, we consider the problem of enumerating
the fully commutative elements of these groups. The main result (Theorem 2.6) is that for
six of the seven infinite families (we omit the trivial dihedral family I2(m)), the generating
function for the number of fully commutative elements can be expressed in terms of three
simpler generating functions for certain formal languages over an alphabet with at most four
letters. The languages in question vary from family to family, but have a uniformdescription.
The resulting generating function one obtains for each family is algebraic, although in some
cases quite complicated (see (3.7) and (3.11)).
In a general Coxeter group, the fully commutative elements index a basis for a natural

quotient of the corresponding Iwahori-Hecke algebra [7]. (See also [4] for the simply-laced
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case.) For An , this quotient is the Temperley-Lieb algebra. Recently, Fan [5] has shown that
for types A, B, D, E and (in a sketched proof) F , this quotient is generically semisimple,
and gives recurrences for the dimensions of the irreducible representations. (For type H ,
the question of semisimplicity remains open.) This provides another possible approach to
computing the number of fully commutative elements in these cases; namely, as the sum of
the squares of the dimensions of these representations. Interestingly, Fan also shows that
the sum of these dimensions is the number of fully commutative involutions.
With the above motivation in mind, in Section 4 we consider the problem of enumerating

fully commutative involutions. In this case, we show (Theorem4.3) that for the six nontrivial
families, the generating function can be expressed in terms of the generating functions
for the palindromic members of the formal languages that occur in the unrestricted case.
Again, each generating function is algebraic, and in some cases, the explicit form is quite
complicated (see (4.8) and (4.10)).
In Section 5, we provide asymptotic formulas for both the number of fully commutative

elements and the number of fully commutative involutions in each family. In the Appendix
we provide tables of these numbers up through rank 12.

1. Full commutativity

Throughout this paper, W shall denote a Coxeter group with (finite) generating set S,
Coxeter graph 0, and Coxeter matrix M = [m(s, t)]s,t2S . A standard reference is [8].

1.1. Words

For any alphabet A, we use A⇤ to denote the free monoid consisting of all finite-length
words a = (a1, . . . , al) such that ai 2 A. The multiplication in A⇤ is concatenation, and
on occasion will be denoted ‘ · ’. Thus (a, b)(b, a) = (a, b) · (b, a) = (a, b, b, a). A
subsequence of a obtained by selecting terms from a set of consecutive positions is said to
be a subword or factor of a.
For each w 2 W , we define R(w) ⇢ S⇤ to be the set of reduced expressions for w; i.e.,

the set of minimum-length words s = (s1, . . . , sl) 2 S⇤ such that w = s1 · · · sl .
For each integer m � 0 and s, t 2 S, we define

hs, tim = (s, t, s, t, . . .)| {z }
m

,

and let ⇡ denote the congruence on S⇤ generated by the so-called braid relations; namely,

hs, tim(s,t) ⇡ ht, sim(s,t)

for all s, t 2 S such that m(s, t) < 1.
It is well-known that for each w 2 W , R(w) consists of a single equivalence class

relative to⇡. That is, any reduced word for w can be obtained from any other by means of
a sequence of braid relations [2, Section IV.1.5].
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1.2. Commutativity classes

Let ⇠ denote the congruence on S⇤ generated by the interchange of commuting generators;
i.e., (s, t) ⇠ (t, s) for all s, t 2 S such that m(s, t) = 2. The equivalence classes of this
congruence will be referred to as commutativity classes.
Given s = (s1, . . . , sl) 2 S⇤, the heap of s is the partial order of {1, 2, . . . , l} obtained

from the transitive closure of the relations i � j for all i < j such that si = s j or
m(si , s j ) � 3. It is easy to see that the isomorphism class of the heap is an invariant of
the commutativity class of s. In fact, although it is not needed here, it can be shown that
s ⇠ t = (t1, . . . , tl) if and only if there is an isomorphism i 7! i 0 of the corresponding heap
orderings with si = ti 0 (for example, see Proposition 1.2 of [9]).
In [9], we defined w 2 W to be fully commutative if R(w) consists of a single commu-

tativity class; i.e., any reduced word for w can be obtained from any other solely by use of
the braid relations that correspond to commuting generators. It is not hard to show that this
is equivalent to the property that for all s, t 2 S such that m(s, t) � 3, no member ofR(w)

has hs, tim as a subword, where m = m(s, t).
It will be convenient to let W FC denote the set of fully commutative members of W .
As mentioned in the introduction, the irreducible FC-finite Coxeter groups (i.e., Coxeter

groups with finitely many fully commutative elements) occur in seven infinite families
denoted An , Bn , Dn , En , Fn , Hn and I2(m). The Coxeter graphs of these groups are
displayed in figure 1. It is interesting to note that there are no “exceptional” groups.
For the dihedral groups, the situation is quite simple. Only the longest element of I2(m)

fails to be fully commutative, leaving a total of 2m � 1 such elements.
Henceforth, we will be concerned only with the groups in the remaining six families.

1.3. Restriction

For any word s 2 S⇤ and any J ⇢ S, let us define s|J to be the restriction of s to J ; i.e., the
subsequence formed by the terms of s that belong to J . Since the interchange of adjacent
commuting generators in s has either the same effect or no effect in s|J , it follows that for
any commutativity class C , the restriction of C to J is well-defined.
A familyF of subsets of S is complete if for all s 2 S there exists J 2 F such that s 2 J ,

and for all s, t 2 S such that m(s, t) � 3 there exists J 2 F such that s, t 2 J .

Proposition 1.1 If F is a complete family of subsets of S, then for all s, s0 2 S⇤, we have
s ⇠ s0 if and only if s|J ⇠ s0|J for all J 2 F .

Proof: The necessity of the stated conditions is clear. For sufficiency, suppose that s is
the first term of s. Since s 2 J for some J 2 F , there must also be at least one occurrence
of s in s0. We claim that any term t that precedes the first s in s0 must commute with s. If
not, then we would have s|

{s,t} 6⇠ s0|
{s,t}, contradicting the fact that s|J ⇠ s0|J for some J

containing {s, t}. Thus we can replace s0 with some s00 ⇠ s0 whose first term is s. If we
delete the initial s from s and s00, we obtain words that satisfy the same restriction conditions
as s and s0. Hence s ⇠ s00 follows by induction with respect to length. 2
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Figure 1. The irreducible FC-finite Coxeter groups.

2. The generic case

Choose a distinguished generator s1 2 S, and let W = W1,W2,W3, . . . denote the infinite
sequence of Coxeter groups in which Wi is obtained from Wi�1 by adding a new generator
si such that m(si , si�1) = 3 and si commutes with all other generators of Wi�1. In the
language of [9], {s2, . . . , sn} is said to form a simple branch in the graph of Wn . For
n � 1, let Sn = S [ {s2, . . . , sn} denote the generating set for Wn , and let 0n denote the
corresponding Coxeter graph (see figure 2). It will be convenient also to let S0 and 00
denote the corresponding data for the Coxeter group W0 obtained when s1 is deleted from
S. Thus Sn = S0 [ {s1, . . . , sn} for all n � 0.

Figure 2. A simple branch.
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2.1. Spines, branches, and centers

For any w 2 W FC
n , we define the spine of w, denoted � (w), to be the pair (l, A), where l

denotes the number of occurrences of s1 in some (equivalently, every) reduced word for w,
and A is the subset of {1, . . . , l � 1} defined by the property that k 2 A iff there is no
occurrence of s2 between the kth and (k + 1)th occurrences of s1 in some (equivalently,
every) reduced word for w. We refer to l as the length of the spine.
Continuing the hypothesis thatw is fully commutative, for J ✓ Sn we letw|J denote the

commutativity class of s|J for any reducedword s 2 R(w). (It follows from the discussion in
Section 1.3 that this commutativity class is well-defined.) In particular, for each w 2 W FC

n ,
we associate the pair

(w|Sn�S0 , w|S1).

We refer to w|Sn�S0 and w|S1 as the branch and central portions of w, respectively.
For example, consider the Coxeter group F7. We label its generators {u, t, s1, . . . , s5}

in the order they appear in figure 1, so that {s2, . . . , s5} is a simple branch. The heap of a
typical fully commutative member of F7 is displayed in figure 3. Its spine is (5, {1, 4}), and
the heaps of its central and branch portions are displayed in figure 4.
DefineBn (the “branch set”) to be the set of all commutativity classes B over the alphabet

Sn � S0 = {s1, . . . , sn} such that

Figure 3. An F7-heap.
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Figure 4. Center and branch.

(B1) If (si , si ) is a subword of some member of B, then i = 1.
(B2) If (si , s j , si ) is a subword of some member of B, then i = 1.

Furthermore, given a spine � = (l, A), we define Bn(� ) to be the set of commutativity
classes B 2 Bn such that there are l occurrences of s1 in every member of B, and

(B3) The kth and (k + 1)th occurrences of s1 occur consecutively in some member of B if
and only if k 2 A.

We claim (see Lemma 2.1) that Bn(� ) contains the branch portions of every fully commu-
tative w 2 Wn with spine � . Note also that Bn depends only on n, not W .
Similarly, let us define C = CW (the “central set”) to be the set of commutativity classes

C over the alphabet S1 = S such that

(C1) For all s 2 S1, no member of C has (s, s) as a subword.
(C2) If hs, tim is a subword of some member of C , where m = m(s, t) � 3, then s1 occurs

at least twice in this subword. (In particular, s1 = s or s1 = t .)

In addition, we say that C 2 CW is compatible with the spine � = (l, A) if every member
of C has l occurrences of s1, and

(C3) If hs, tim is a subword of some member of C , where m = m(s, t) � 3, then this
subword includes the kth and (k + 1)th occurrences of s1 for some k 62 A.
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Let C(� ) = CW (� ) denote the set of � -compatible members of C. We claim (again, see
Lemma 2.1) that C(� ) contains the central portions of every w 2 W FC

n with spine � . Note
also that C(� ) depends only on W = W1 (more precisely, on the Coxeter graph 0), not the
length of the branch attached to it.

Lemma 2.1 The mapping w 7! (w|Sn�S0 , w|S1) defines a bijection

W FC
n �!

[
�

Bn(� ) ⇥ CW (� ).

Proof: For all non-commuting pairs s, t 2 Sn , we have {s, t} ✓ S1 or {s, t} ✓ Sn � S0,
so by Proposition 1.1, the commutativity class of any w 2 W FC

n (and hence w itself) is
uniquely determined by w|Sn�S0 and w|S1 . Thus the map is injective.
Now choose an arbitrary fully commutative w 2 Wn with spine � = (l, A), and set

B = w|Sn�S0 , C = w|S1 . The defining properties of the spine immediately imply the
validity of (B3). Since consecutive occurrences of any s 2 Sn do not arise in any s 2 R(w),
it follows that for all k � 1, the kth and (k + 1)th occurrences of s in s must be separated
by some t 2 Sn such that m(s, t) � 3. For s = s2, s3, . . . , sn , the only possibilities for t
are in Sn � S0; hence (B1) holds. For s 2 S0, the only possibilities for t are in S1, so (C1)
could fail only if s = s1 and for some k, the only elements separating the kth and (k + 1)th
occurrences of s1 in s that do not commute with s1 are one or more occurrences of s2. In
that case, we could choose a reduced word for w so that the subword running from the kth
to the (k + 1)th occurrences of s1 forms a reduced word for a fully commutative element
of the parabolic subgroup isomorphic to An generated by {s1, . . . , sn}. However, it is easy
to show (e.g., Lemma 4.2 of [9]) that every reduced word for a fully commutative member
of An has at most one occurrence of each “end node” generator. Thus (C1) holds.
Concerning (B2), (C2) and (C3), suppose that (si , s j , si ) occurs as a subword of some

member of the commutativity class B. If i > 1, then every s 2 Sn that does not commute
with si belongs to Sn � S0. Hence, some reduced word forw must also contain the subword
(si , s j , si ), contradicting the fact thatw is fully commutative. Thus (B2) holds. Similarly, if
we suppose that hs, tim occurs as a subword of some member of C , wherem = m(s, t) � 3
and s, t 2 S1, then again we contradict the hypothesis that w is fully commutative unless
s = s1 or t = s1, since s1 is the onlymember of S1 that may not commutewith somemember
of Sn � S1. In either case, since hs, tim cannot be a subword of any s 2 R(w), it follows
that s1 occurs at least twice in hs, tim (proving (C2)), and between two such occurrences
of s1, say the kth and (k + 1)th, there must be an occurrence of s2 in s. By definition, this
means k 62 A, so (C3) holds. Thus B 2 Bn(� ) and C 2 CW (� ).
Finally, it remains to be shown that the map is surjective. For this, let � = (l, A) be a

spine, and choose commutativity classes B 2 Bn(� ) andC 2 CW (� ). Select representatives
sB 2 (Sn � S0)⇤ and sC 2 S⇤

1 for B and C . Since S1 \ (Sn � S0) = {s1} is a singleton, and
this singleton appears the same number of times in sB and sC (namely, l times), it follows
that there is a word s 2 S⇤

n whose restrictions to Sn � S0 and S1 are sB and sC , respectively.
We claim that s is a reduced word for some w 2 W FC

n , and hence w 7! (B,C).
To prove the claim, first consider the possibility that for some s 2 Sn , (s, s) occurs as

a subword of some member of the commutativity class of s. In that case, depending on
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whether s 2 S1, the same would be true of either B or C , contradicting (B1) or (C1). Next
consider the possibility that hs, tim occurs as a subword of someword s0 in the commutativity
class of s, where m = m(s, t) � 3. We must have either s, t 2 Sn � S0 or s, t 2 S1, and
hence the same subword appears in some member of B or C , respectively. In the former
case, (B2) requires that s = s1 and m = 3. However the restriction of s0 to S1 would then
have consecutive occurrences of s1, contradicting (C1). In the latter case, (C2) and (C3)
require that s1 = s or s1 = t , and that the subword hs, tim includes the kth and (k + 1)th
occurrences of s1 in s0 for some k 62 A. It follows that s2 does not occur between these two
instances of s1 in s0, and thus they appear consecutively in the restriction of s0 to Sn � S0,
contradicting (B3). Hence the claim follows. 2

The above lemma splits the enumeration of the fully commutative parts of the Coxeter
groups W0,W1,W2, . . . into two subproblems. The first subproblem, which is universal
for all Coxeter groups, is to determine the number of branch commutativity classes with
spine � ; i.e., the cardinality of Bn(� ) for all integers n � 0 and all � . The second
subproblem, which needs only to be done once for each series Wn , is to determine the
number of central commutativity classes with spine � ; i.e., the cardinality of CW (� ).

2.2. Spinal analysis

The possible spines that arise in the FC-finite Coxeter groups are severely limited. To make
this claim more precise, suppose that W = W1,W2, . . . is one of the six nontrivial families
of FC-finite Coxeter groups (i.e., A, B, D, E , F , or H ). The Coxeter graph of W can then
be chosen from one of the six in figure 5. For convenience, we have used s as the label for
the distinguished generator previously denoted s1.

Lemma 2.2 If C 2 CW is compatible with the spine � = (l, A) and W is one of the
Coxeter groups in figure 5, then A ✓ {1, l � 1}.

Proof: Let s 2 S⇤ be a representative of C , and towards a contradiction, let us suppose
that A includes some k such that 1 < k < l � 1. Note that it follows that the kth and
(k + 1)th occurrences of s in s are neither the first nor the last such occurrences.
For the H -graph, property (C1) implies that the occurrences of s and t alternate in s.

Hence, the kth and (k+1)th occurrences of s appear in the middle of a subword of the form

Figure 5.
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(s, t, s, t, s, t, s). In particular, these two occurrences of s participate in a subword of s of
the form (t, s, t, s, t), contradicting (C3).
For the F-graph, property (C1) implies that any two occurrences of s must be separated

by at least one t . On the other hand, the subword between two occurrences of s must be
a reduced word for some fully commutative member of the subgroup generated by {t, u}
(property (C2)), so the occurrences of s and t must alternate, and in the restriction of s
to {s, t}, the kth and (k + 1)th occurrences of s appear in the middle of a subword of
the form (s, t, s, t, s, t, s). By (C3), these two occurrences of s cannot participate in an
occurrence of (t, s, t, s) or (s, t, s, t) in s. Hence, the two occurrences of t surrounding
the kth (respectively, (k + 1)th) occurrence of s must be separated by an occurrence of u.
However in that case, (u, t, u) is a subword of some member of the commutativity class
of s, contradicting (C2).
For the E-graph, at least one of t and t 0 must appear between any two occurrences of s

(otherwise (C1) is violated), and both t and t 0 must appear between the kth and (k + 1)th
occurrences of s, by (C3). On the other hand, property (C3) also implies that the subword
(strictly) between the (k � 1)th and (k + 2)th occurrences of s in smust be a reduced word
for some fully commutative member ofW , a Coxeter group isomorphic to A4. In particular,
this implies that t 0 can appear at most once, and t at most twice, in this subword. Since we
have already accounted for at least four occurrences of t and t 0, we have a contradiction.
This completes the proof, since the remaining three graphs are subgraphs of the preceding

ones. 2

2.3. Branch enumeration

The previous lemma shows that for the FC-finite Coxeter groups, we need to solve the
branch enumeration problem (i.e., determine the cardinality of Bn(� )) only for the spines
� = (l, A) such that A ✓ {1, l � 1}. For this, we first introduce the notation

Bn,l :=
✓
2n � 1
n + l � 1

◆
�

✓
2n � 1
n + l + 1

◆
=

2l + 1
n + l + 1

✓
2n
n + l

◆

for the number of (n + l, n � l)-ballot sequences. That is, Bn,l is the number of orderings
of votes for two candidates so that the winning candidate never trails the losing candidate,
with the final tally being n+ l votes to n� l votes (for example, see [3, Section 1.8]). This
quantity is also the number of standard Young tableaux of shape (n + l, n � l).
Let �(P) = 1 if P is true, and 0 otherwise.

Lemma 2.3 For integers n, l � 0, we have

|Bn(l, ;)| = Bn,l ,

|Bn(l, {1})| = |Bn(l, {l � 1})| = Bn,l�2 + Bn,l�1 �

✓
n

l � 2

◆
(l � 2),

|Bn(l, {1, l � 1})| = Bn+1,l�3 � 2
✓
n + 1
l � 3

◆
+ �(l  n + 4) (l � 3).
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Proof: For i = 0, 1, 2, let B(i)
n,l denote the cardinality of Bn(� ) for � = (l, ;), (l, {1}) and

(l, {1, l � 1}), respectively. In the case � = (l, ;), the defining properties (B1) and (B3)
for membership of B in Bn(� ) can be replaced with

(B10) For 1  i  n, no member of B has (si , si ) as a subword.

It follows that for 1  k < l, the kth and (k+1)th occurrence of s1 in anymember of B must
be separated by exactly one s2, and the total number of occurrences of s2 must be l � 1, l,
or l+1, according to whether the first and last occurrences of s1 are preceded (respectively,
followed) by an s2. Furthermore, the restriction of B to {s2, . . . , sn} is a commutativity
class with no subwords of the form (si , si ) or (si , s j , si ) except possibly (s2, s3, s2). By
shifting indices (i + 1 ! i), we thus obtain any one of the members of Bn�1(l 0, ;), where
l 0 denotes the number of occurrences of s2. Accounting for the four possible ways that s1
and s2 can be interlaced (or two, if l = 0), we obtain the recurrence

B(0)
n,l =

(
B(0)
n�1,l�1 + 2B(0)

n�1,l + B(0)
n�1,l+1 if l � 1,

B(0)
n�1,0 + B(0)

n�1,1 if l = 0.

On the other hand, it is easy to show that Bn,l satisfies the same recurrence and initial
conditions, so B(0)

n,l = Bn,l . (In fact, one can obtain a bijection with ballot sequences by
noting that the terms of the recurrence correspond to specifying the last two votes.)
By word reversal, the cases corresponding to � = (l, {1}) and � = (l, {l�1}) are clearly

equivalent, so we restrict our attention to the former. Properties (B1) and (B3) imply that
the restriction of any B in Bn(� ) to {s1, s2} must then take the form

(⇤, s1, s1, s2, s1, s2, s1, . . . , s2, s1, ⇤),

where each ‘⇤’ represents an optional occurrence of s2. We declare the left side of B to be
open if the above restriction has the form (s2, s1, s1, s2, . . .), and there is no s3 separating
the first two occurrences of s2. Otherwise, the left side is closed.

Case I. The left side is open. In this case, if we restrict B to {s2, . . . , sn} (and shift indices),
we obtain any one of the members of Bn�1(l 0, {1}), where l 0 = l or l � 1, according to
whether there is an occurrence of s2 following the last s1. (If l = 2, then there is no
choice: l 0 = l = 2 is the only possibility.)

Case II. The left side is closed. In this case, if we delete the first occurrence of s1 from B,
we obtain any one of the commutativity classes in Bn(l � 1, ;).

The above analysis yields the recurrence

B(1)
n,l =

(
B(1)
n�1,l�1 + B(1)

n�1,l + B(0)
n,l�1 if l � 3,

B(1)
n�1,2 + B(0)

n,1 if l = 2.
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It is easy to verify that the claimed formula for B(1)
n,l satisfies the same recurrence and the

proper initial conditions.
For � = (l, {1, l � 1}), the restriction of any B in Bn(� ) to {s1, s2} takes the form

(⇤, s1, s1, s2, s1, s2, s1, . . . , s2, s1, s1, ⇤),

where again each ‘⇤’ represents an optional occurrence of s2. In the special case l = 3, this
becomes (⇤, s1, s1, s1, ⇤); by deleting one of the occurrences of s1, we obtain any one of
the commutativity classes in Bn(2, {1}).
Assuming l � 4, we now have not only the possibility that the left side of B is open (as

in the case � = (l, {1})), but the right side may be open as well, mutatis mutandis.

Case I.The left and right sides of B are both open. In this case, if we restrict B to {s2, . . . , sn}
(and shift indices), we obtain any one of the members of Bn�1(l � 1, {1, l � 2}).

Case II. Exactly one of the left or right sides of B is open. Assuming it is the left side
that is open, if we restrict B to {s2, . . . , sn} (and shift indices), we obtain any one of the
members of Bn�1(l 0, {1}), where l 0 = l � 1 or l � 2, according to whether there is an
occurrence of s2 following the last s1.

Case III. The left and right sides of B are both closed. In this case, if we delete the first and
last s1 from B, we obtain any one of the members of Bn(l � 2, ;).

The above analysis yields B(2)
n,3 = B(1)

n,2 and the recurrence

B(2)
n,l = B(2)

n�1,l�1 + 2
�
B(1)
n�1,l�1 + B(1)

n�1,l�2
�
+ B(0)

n,l�2

for l � 4. Once again, it is routine to verify that the claimed formula for B(2)
n,l satisfies the

same recurrence and initial conditions. 2

Remark 2.4 The union of Bn(l, ;) for all l � 0 is the set of commutativity classes
corresponding to the fully commutative members of the Coxeter group Bn whose reduced
words do not contain the subword (s1, s2, s1). In the language of [10], these are the “fully
commutative top elements” of Bn; in the language of [4], these are the “commutative
elements” of the Weyl group Cn .

Let R(x) denote the generating series for the Catalan numbers. That is,

R(x) =

1�

p

1� 4x
2x

=

X
n�0

Bn,0xn =

X
n�0

1
n + 1

✓
2n
n

◆
xn.

Note that x R(x)2 = R(x) � 1. The following is a standard application of the Lagrange
inversion formula (cf., Exercise 1.2.1 of [6]). We include below a combinatorial proof.

Lemma 2.5 We have
P

n�0 Bn,l xn = xl R(x)2l+1 = R(x)(R(x) � 1)l .
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Proof: A ballot sequence in which A defeats B by 2l votes can be factored uniquely into
2l + 1 parts by cutting the sequence after the last moment when candidate B trails by i
votes, i = 0, 1, . . . , 2l � 1. The first part consists of a ballot sequence for a tie vote,
and all remaining parts begin with a vote for A, followed by a ballot sequence for a tie.
After deleting the 2l votes for A at the beginnings of these parts, we obtain an ordered
(2l + 1)-tuple of ballot sequences for ties, for which the generating series is R(x)2l + 1. 2

2.4. The generic generating function

To enumerate the fully commutative elements of the family W = W1,W2, . . . , all that
remains is the “central” enumeration problem; i.e., determining the cardinalities of CW (� )

for all spines � of the form described in Lemma 2.2. Setting aside the details of this problem
until Section 3, let us define

cl,0 = |CW (l, ;)|, cl,1 = |CW (l, {1})| = |CW (l, {l � 1})|, cl,2 = |CW (l, {1, l � 1})|,

and let Ci (x) (i = 0, 1, 2) denote the generating series defined by

C0(x) =

X
l�0

cl,0xl , C1(x) = c2,1 + 2
X
l�3

cl,1xl�2, C2(x) =

X
l�3

cl,2xl�4.

Although these quantities depend on W , we prefer to leave this dependence implicit.

Theorem 2.6 If W is one of the six Coxeter groups displayed in figure 5, we have
X
n�0

��W FC
n

��xn = R(x)C0(R(x) � 1) + R(x)2C1(R(x) � 1) + R(x)3C2(R(x) � 1)

�

1
1� x

C1
✓

x
1� x

◆
�

2
(1� x)2

C2
✓

x
1� x

◆
+

1
1� x

C2(x).

Proof: Successive applications of Lemmas 2.1, 2.2, and 2.3 yield

��W FC
n

��
=

X
�

|Bn(� )| · |CW (� )|

=

X
l�0

cl,0B(0)
n,l + c2,1B(1)

n,2 + 2
X
l�3

cl,1B(1)
n,l +

X
l�3

cl,2B(2)
n,l

=

X
l�0

cl,0Bn,l + c2,1(Bn,0 + Bn,1 � 1)

+ 2
X
l�3

cl,1
✓
Bn,l�2 + Bn,l�1 �

✓
n

l � 2

◆◆

+

X
l�3

cl,2
✓
Bn+1,l�3 � 2

✓
n + 1
l � 3

◆
+ �(l  n + 4)

◆
. (2.1)
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Using Lemma 2.5 to simplify the corresponding generating function,1 we obtain

X
n�0

��W FC
n

��xn

=

X
l�0

cl,0R(x)(R(x) � 1)l + c2,1
✓
R(x) + R(x)(R(x) � 1) �

1
1� x

◆

+ 2
X
l�3

cl,1
✓
R(x)(R(x) � 1)l�2 + R(x)(R(x) � 1)l�1 �

xl�2

(1� x)l�1

◆

+

X
l�3

cl,2
✓
x�1R(x)(R(x) � 1)l�3 � 2

xl�4

(1� x)l�2
+

xl�4

1� x

◆
.

Bearing in mind that R(x)2 = x�1(R(x) � 1), it is routine to verify that this agrees with
the claimed expression. 2

Remark2.7 Aswe shall see in the next section, for each seriesWn the generating functions
Ci (x) are rational, so the above result implies that the generating series for |W FC

n | belongs
to the algebraic function field Q(R(x)) = Q(

p

1� 4x).

3. Enumerating the central parts

In this section, we determine the cardinalities of the central sets C(� ) = CW (� ) for each of
the six Coxeter groupsW displayed in figure 5. (The reader may wish to review the labeling
of the generators in these cases, and recall that the distinguished generator s1 has been given
the alias s.) We subsequently apply Theorem 2.6, obtaining the generating function for the
number of fully commutative elements in Wn .

3.1. The A-series

In this case, s is a singleton generator, so there is only one commutativity class of each
length. It follows easily from the defining properties that the only central commutativity
classes are those of (s) and ( ) (the empty word). These are compatible only with the spines
� = (1, ;) and (0, ;), respectively. Thus we have

C0(x) = 1+ x, C1(x) = C2(x) = 0,

and Theorem 2.6 implies

X
n�0

��AFCn ��xn = R(x)2 = x�1(R(x) � 1).



P1: PMR
Journal of Algebraic Combinatorics KL559-05-Stem February 15, 1998 13:27

304 STEMBRIDGE

Extracting the coefficient of xn , we obtain

��AFCn ��
=

1
n + 2

✓
2n + 2
n + 1

◆
, (3.1)

a result first proved in [1, Section 2].

3.2. The B-series

In this case, we have S = {s, t}, and the defining properties imply that the central commu-
tativity classes are singletons in which the occurrences of s and t alternate. It follows that
cl,0 is simply the number of alternating {s, t}-words in which s occurs l times; namely, 4 (if
l > 0) or 2 (if l = 0). Also, the only alternating {s, t}-word that is compatible with a spine
(l, A) with A 6= ; is (s, t, s), which is compatible with (2, {1}). Thus we have

C0(x) = 2+

4x
1� x

, C1(x) = 1, C2(x) = 0.

After some simplifications, Theorem 2.6 yields

X
n�0

��BFCn+1��xn = x�1((1� 4x)�1/2 � 1) + x�1(R(x) � 1) �

1
1� x

.

Extracting the coefficient of xn�1, we obtain

��BFCn ��
=

n + 2
n + 1

✓
2n
n

◆
� 1, (3.2)

a result first proved in [10, Section 5].

3.3. The D-series

In this case, a set of representatives for the central commutativity classes consist of the
subwords of (s, t, s, t 0, s, t, s, t 0, . . .), togetherwith (t, t 0), (s, t, t 0), (t, t 0, s), and (s, t, t 0, s).
Of these, only (s, t, t 0, s) is compatible with a spine (l, A) with A 6= ;; the remainder are
compatible only with (l, ;) for some l. Among the subwords of (s, t, s, t 0, s, t, s, t 0, . . .),
the number with l occurrences of s is 8 (if l � 2), 7 (if l = 1), or 3 (if l = 0). Thus we have

C0(x) = (1+ 2x + x2) +

✓
3+ 7x +

8x2

1� x

◆
, C1(x) = 1, C2(x) = 0,

and after some simplifications, Theorem 2.6 implies

X
n�0

��DFCn+2��xn =

1
2x2

((1� 4x)�1/2 � 1� 2x) + x�2(R(x) � 1� x) �

1
1� x

.
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Extracting the coefficient of xn�2, we obtain

��DFCn ��
=

n + 3
2n + 2

✓
2n
n

◆
� 1, (3.3)

a result obtained previously in [4] and [10, Section 10].

3.4. The H-series

As in the B-series, the central commutativity classes are the singletons formed by each of the
alternating {s, t}-words. In particular, the value ofC0(x) is identical to its B-series version.
The words that are compatible with spines of the form (l, {1}) are those that begin with s
(and have at least two occurrences of s), and (t, s, t, s); thus c2,1 = 3 and cl,1 = 2 for l � 3.
Thewords compatiblewith spines of the form {1, l�1} are those that both begin and endwith
s and have at least four occurrences of s; i.e., c3,2 = 0 and cl,2 = 1 for l � 4. Thus we have

C0(x) = 2+

4x
1� x

, C1(x) = 3+

4x
1� x

, C2(x) =

1
1� x

.

After some simplifications, Theorem 2.6 yields

X
n�0

��HFC
n+1

��xn = x�2((1� 4x)�1/2 � 1� 2x) �

8
1� 2x

+

4� 3x
(1� x)2

.

Extracting the coefficient of xn�1, we obtain

��HFC
n

��
=

✓
2n + 2
n + 1

◆
� 2n+2 + n + 3. (3.4)

3.5. The F-series

In this case, we can select a canonical representative s 2 S⇤ from each central commutativity
class by insisting that whenever s and u are adjacent in s, u precedes s. Any such word has
a unique factorization s = s0s1 · · · sl with s0 2 {t, u}⇤ and s1, . . . , sl each being words con-
sisting of an initial s followed by a {t, u}-word. In fact, given our conventions, wemust have
s0 2 {( ), (t), (u), (t, u), (u, t)} and si 2 {(s), (s, t), (s, t, u)} for 1  i  l, with si = (s)
allowed only if i = l. We also cannot have (s, t, u) preceded by (u), (t, u), or (s, t, u); other-
wise, somemember of the commutativity class of s contains the forbidden subword (u, t, u).
Conversely, any word meeting these specifications is the canonical representative of some
central commutativity class. The language formed by these words therefore consists of

{( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}⇤

· {( ), (s, t, u)} · {( ), (s)}, (3.5)
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together with the exceptional cases {(u), (t, u), (u, s), (t, u, s)}. Hence

C0(x) = (2+ 2x) +

(3+ 2x)(1+ x)2

1� x � x2
=

(1+ x)(5+ 3x)
1� x � x2

.

Turning now to C1(x), note that the central commutativity classes that are compatible
with a spine of the form (l, {1}) are those for which the first two occurrences of s do not
participate in an occurrence of the subwords (s, t, s, t), or (t, s, t, s). If s occurs three or
more times, this requires ( ) to be the first factor in (3.5), followed by an occurrence of
(s, t, u, s, t). Hence, the canonical representatives compatible with (l, {1}) consist of

(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}⇤ · {( ), (s, t, u)} · {( ), (s)} (3.6)

and four additional cases with l = 2: {(s, t, s), (u, s, t, s), (s, t, s, u), (t, u, s, t, s)}. It
follows that c2,1 = 5, and therefore

C1(x) = c2,1 + 2
X
l�3

cl,1xl�2 = 3+ 2
(1+ x)2

1� x � x2
= 1+

4+ 2x
1� x � x2

.

To determine C2(x), note first that (s, t, u, s, t, s) is the unique canonical representative
compatible with the spine (3, {1, 2}). For the spines (l, {1, l�1})with l � 4, compatibility
requires (s) to be the last factor in (3.6), and it must be preceded by (s, t, u, s, t). Hence

C2(x) =

X
l�3

cl,2xl�4 = x�1
+

x
1� x � x2

.

After simplifying the generating function provided by Theorem 2.6, we obtain

X
n�0

��FFCn+2��xn =

10� 5(1+ x)(R(x) � 1)
1� 4x � x2

+ x�1(R(x) � 1)

�

6� 4x
1� 3x + x2

+

1+ x
1� x � x2

�

1
1� x

. (3.7)

While it is unlikely that there is a simple closed formula for |FFCn |, it is interesting to note
that the Fibonacci numbers fn satisfy

X
n�0

fnxn =

1
1� x � x2

,
X
n�0

f2nxn =

1� x
1� 3x + x2

,
X
n�0

f3nxn =

1� x
1� 4x � x2

,

so when the coefficient of xn�2 is extracted in (3.7), we obtain

��FFCn ��
= 5 f3n�4 � 5

n�1X
k=2

f3k�5
n � k + 1

✓
2n � 2k
n � k

◆
+

1
n

✓
2n � 2
n � 1

◆

� 2 f2n�2 � 2 f2n�4 + fn�1 � 1.
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3.6. The E-series

We claim that there is a unique member of each central commutativity class (in fact, any
commutativity class in S⇤) with the property that (s, u), (t 0, u), and (t 0, t) do not occur
as subwords. To see this, note first that the set of left members of these pairs is disjoint
from the set of right members. Secondly, these pairs are precisely the set of commuting
generators ofW . Hence, for any pair of words that differ by the interchange of two adjacent
commuting generators, one member of the pair can be viewed as a “reduction” of the other,
in the sense that the set of positions where u and t occur are farther to the left. Furthermore,
since the set of instances of the forbidden pairs in any given word are pairwise disjoint, it
follows by induction that any sequence of reductions eventually terminates with the same
word, proving the claim.
Let L denote the formal language over the alphabet S formed by the canonical represen-

tatives (in the sense defined above) of the central commutativity classes. Given any formal
language K over S, we will write K (x) for the generating function obtained by assigning
the weight xl to each s 2 K for which s occurs l times. Note that by this convention, we
have C0(x) = L(x).
Any word s 2 S⇤ has a unique factorization s = s0s1 · · · sl with s0 2 {t, t 0, u}⇤ and

s1, . . . , sl each being words consisting of an initial s followed by a {t, t 0, u}-word. For
membership in L , every subword of s not containing s must be a member of

E := {( ), (t), (u), (t, u), (u, t), (t 0), (t, t 0), (u, t 0), (t, u, t 0), (u, t, t 0)},

the set of canonical representative for the fully commutative members of the subgroup
generated by {t, t 0, u}. When s is prepended to these words, only six remain canonical:

a1 = (s), a2 = (s, t), a3 = (s, t, u), a4 = (s, t 0), a5 = (s, t, t 0), a6 = (s, t, u, t 0).

Thus we have L ⇢ E · {a1, . . . , a6}⇤.
For each e 2 E , let Le denote the set of s 2 L for which the initial factor s0 is e. If

s0 = ( ), then either s = ( ), s = (s), or deletion of the initial s in s yields a member of
Le for some e 2 {(t), (t, u), (t 0), (t, t 0), (t, u, t 0)}, and conversely. In terms of generating
functions, we have

L ( )(x) = 1+ x + x(L(t)(x) + L(t,u)(x) + L(t 0)(x) + L(t,t 0)(x) + L (t,u,t 0)(x)).

Similarly, deletion of s from the second position defines a bijection from L(u) �{(u), (u, s)}
to L (u,t) [ L(u,t 0) [ L(u,t,t 0), so we have

L(u)(x) = 1+ x + x(L(u,t)(x) + L(u,t 0)(x) + L (u,t,t 0)(x)).

Combining these two decompositions, we obtain

L(x) =

X
e2E

Le(x)

= L ( )(x) + x�1(L( )(x) � 1� x) + L (u)(x) + x�1(L(u)(x) � 1� x)
= x�1(1+ x)(L( )(x) + L(u)(x) � 2). (3.8)
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Now consider the language K = L \ {a2, . . . , a6}⇤, and the refinements Ki (2  i  6)
consisting of those nonvoid members of K whose initial factor is ai . Since the result of
appending a1 = (s) to any s 2 L remains in L if and only if s does not already end in s, it
follows that L( ) = K {( ), a1}. Similarly, we have

(s, t) · L (u) = K3{( ), a1},

so (3.8) can be rewritten in the form

L(x) = x�1(1+ x)2K (x) + x�2(1+ x)2K3(x) � 2x�1(1+ x). (3.9)

For 2  i  6, the commutativity classes of

a2a3, a3a4a3, aiai , aia5 (i 6= 3), a5ai , aia6, a6ai (i 6= 2),

each have representatives in which one or more of the subwords (t, s, t), (t 0, s, t 0), (u, t, u)
and (t, u, t) appear, and hence cannot be central. Conversely, as a subset of {a2, . . . , a6}⇤,
membership in K is characterized by avoidance of the subwords listed above. It follows
that K5 = {a5}, K6 = {a6} [ a6K2, and

K2 = {a2} [ a2K4,
K3 = {a3, a3a5, a3a4} [ {a3, a3a4}K2,
K4 = {a4} [ a4K2 [ a4K3.

Solving this recursive description of the languages Ki (essentially a computation in the ring
of formal power series in noncommuting variables a2, . . . , a6), we obtain

K2 = {a2, a2a4a3a5} [ {a2a4, a2a4a3, a2a4a3a4}K+

2 ,

K3 = {a3a5} [ {a3, a3a4}K+

2 ,

K4 = {a4a3a5} [ {a4, a4a3, a4a3a4}K+

2 ,

K6 = a6K+

2 ,

where K+

2 = {( )} [ K2 = {a2a4, a2a4a3, a2a4a3a4}⇤ · {( ), a2, a2a4a3a5}. Thus

K3(x) = x2 + (x + x2)(1+ x + x4)(1� x2 � x3 � x4)�1 =

x(1+ 2x � x2)
1� x � x3

,

K (x) = 1+

6X
i=2

Ki (x) =

1+ 5x + 6x2 + 3x3

1� x2 � x3 � x4
,

and hence (3.9) implies

C0(x) =

(1+ x)(10+ 7x + 4x2)
1� x � x3

.
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The central commutativity classes compatible with spines of the form (l, {1}) are those
for which the first two occurrences of s do not participate in an occurrence of the subwords
(s, t, s) or (s, t 0, s). These correspond to the members of L for which the first occurrence
of one of the factors ai is either a5 or a6, followed by at least one more occurrence of
a1, . . . , a6. If a5 is the first factor, the possibilities are limited to {( ), (u), (t, u)}a5a1, since
a5 can be followed only by a1. If the first factor is a6, then the choices consist of themembers
of K6{( ), a1} other than a6, since no nonvoid member of E can precede a6. Hence, the
language of canonical representatives compatible with the spines (l, {1}) is

{( ), (u), (t, u)}a5a1 [ K6{( ), a1} � {a6}.

In particular, (s, t, t 0, s), (u, s, t, t 0, s), (t, u, s, t, t 0, s), (s, t, u, t 0, s), and (s, t, u, t 0, s, t)
are the members compatible with the spine (2, {1}), so c2,1 = 5. Hence, using the decom-
position of K6 determined above, we obtain

C1(x) = �5+ 2x�2(�x + 3x2 + (1+ x)K6(x)) = �1+

6� 2x + 2x2

1� x � x3
.

The canonical representatives of the central commutativity classes compatiblewith spines
of the form (l, {1, l � 1}) must have a factorization in which there are at least three occur-
rences of the words ai , the first and penultimate of these being a5 or a6. Since a6 cannot
be preceded by any of the factors ai , a5 must be the penultimate factor. Since a5 can be
followed only by a1, the first factor must therefore be a6, there is no non-void member of E
preceding a6, and the last factor must be a1. From the above decompositions of K6 and K+

2 ,
it follows that the language formed by the members of L that start with a6 and terminate
with a5a1 is

a6 · {a2a4, a2a4a3, a2a4a3a4}⇤ · a2a4a3a5a1, (3.10)

and therefore

C2(x) =

x2

1� x2 � x3 � x4
=

x2

(1+ x)(1� x � x3)
.

Combining our expressions for Ci (x) (i = 0, 1, 2), the generating function provided by
Theorem 2.6 can be simplified to the form

X
n�0

��EFCn+3��xn =

16� 52x + 45x2 � x�1(R(x) � 1)
1� 7x + 14x2 � 9x3

�

6� 14x + 12x2

1� 4x + 5x2 � 3x3
+

1� x3 � x4

(1� x2)(1� x � x3)
. (3.11)
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4. Fully commutative involutions

We will say that a commutativity class C is palindromic if it includes the reverse of some
(equivalently, all) of its members. A fully commutative w 2 W is an involution if and only
ifR(w) is palindromic.
In the following, we will adopt the convention that if X is a set of commutativity classes,

then X̄ denotes the set of palindromic members of X . Similarly, W̄ and W̄ FC shall denote
the set of involutions in W and W FC, respectively.

4.1. The generic generating function

Consider the enumeration of fully commutative involutions in a series of Coxeter groups
W =W1,W2, . . . of the type considered in Section 2. It is clear that w 2 W FC

n is an
involution if and only if its branch and central portions are palindromic. Thus byLemma2.1,
determining the cardinality of W̄ FC

n can be split into two subproblems: enumerating ¯Bn(� )

(the palindromic branch classes) and ¯CW (� ) (the palindromic central classes).
For integers n, l � 0, we define B̄n,l =

�n
k
�
, where k = d

n+l
2 e.

Lemma 4.1 We have

|
¯Bn(l, ;)| = B̄n,l ,

|
¯Bn(l, {1})| = B̄n+1,0 � 1 (if l = 2; or 0, if l > 2),

|
¯Bn(l, {1, l � 1})| = B̄n+1,l�3 � �(l  n + 4) (if l � 3).

Proof: Following the proof of Lemma 2.3, for i = 0, 1, 2, let B̄(i)
n,l denote the cardinality

of ¯Bn(� ) for � = (l, ;), (l, {1}) and (l, {1, l�1}), respectively. Recall that the occurrences
of s1 and s2 must be interlaced in any representative of B 2 Bn(l, ;), and that when we
restrict B to {s2, . . . , sn} (and shift indices), we obtain a member of Bn�1(l 0, ;), where l 0
denotes the number of occurrences of s2. To be palindromic, it is therefore necessary and
sufficient that the {s2, . . . , sn}-restriction of B is palindromic, and that l 0 = l + 1 or l � 1
(or 0, if l = 0). This yields the recurrence

B̄(0)
n,l =

(
B̄(0)
n�1,l+1 + B̄(0)

n�1,l�1 if l � 1,

B̄(0)
n�1,1 + B̄(0)

n�1,0 if l = 0.

It is easy to verify that B̄n,l satisfies the same recurrence and initial conditions.
For spines of the form � = (l, {1}), it is clear that there can be no palindromic classes

unless l = 2, since for l > 2, there must be an occurrence of s2 between the last two
occurrences of s1, but not for the first two. Assuming l = 2, the bijection provided in the
proof of Lemma 2.3 preserves palindromicity, and thus proves the recurrence

B̄(1)
n,2 = B̄(1)

n�1,2 + B̄(0)
n,1.
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It is routine to check that the claimed formula for B̄(1)
n,2 satisfies the same recurrence and

initial conditions.
For � = (l, {1, l � 1}), the left and right sides of any palindromic B 2 Bn(� ) must be

both open or both closed, in the sense defined in the proof of Lemma 2.3. Furthermore, a
branch class with this property is palindromic if and only if its restriction to {s2, . . . , sn} is
palindromic, so the bijection provided in Lemma 2.3 for this case yields

B̄(2)
n,l = B̄(2)

n�1,l�1 + B̄(0)
n,l�2 (l � 4)

and B̄(2)
n,3 = B̄(1)

n,2. Once again, it is routine to check that the claimed formula for B̄
(2)
n,l satisfies

the same recurrence and initial conditions. 2

Lemma 4.2 We have
P

n�0 B̄n,l xn =
1+x R(x2)
p

1�4x2
xl R(x2)l .

Proof: We have
P

n�0 B̄n,l xn = Fl,0(x) + Fl,1(x), where Fl, j (x) =

P
n+l= j mod 2 B̄n,l xn .

We can interpret Fl, j (x) as the generating function for sequences of votes in an election in
which A defeats B by l + j votes. Such sequences can be uniquely factored by cutting the
sequence after the last moment when B trails A by i votes, i = 0, 1, . . . , l + j � 1. The
first factor consists of an arbitrary sequence for a tie vote, which has generating function
1/

p

1� 4x2, and the remaining l + j factors each consist of a vote for A, followed by a
“ballot sequence” for a tie vote (cf., Section 2.3), which has generating function x R(x2). 2

Turning now to the palindromic central commutativity classes, let us define

c̄l,0 = |
¯CW (l, ;)|, c̄2,1 = |

¯CW (2, {1})|, c̄l,2 = |
¯CW (l, {1, l � 1})|,

and associated generating functions

C̄0(x) =

X
l�0

c̄l,0xl , C̄12(x) = c̄2,1x�1
+

X
l�3

c̄l,2xl�4.

Theorem 4.3 If W is one of the Coxeter groups displayed in figure 5, then

X
n�0

��W̄ FC
n

��xn =

1+ x R(x2)
p

1� 4x2
(C̄0(x R(x2)) + R(x2)C̄12(x R(x2))) �

1
1� x

C̄12(x).

Proof: As noted previously, w 2 W FC is an involution if and only if the central and
branch portions ofw are palindromic. Successive applications of Lemmas 2.1, 2.2, and 4.1
therefore yield

��W̄ FC
n

��
=

X
�

|
¯Bn(� )| · | ¯CW (� )| =

X
l � 0

c̄l,0 B̄(0)
n,l + c̄2,1 B̄(1)

n,2 +

X
l � 3

c̄l,2 B̄(2)
n,l

=

X
l � 0

c̄l,0 B̄n,l + c̄2,1(B̄n+1,0 � 1) +

X
l � 3

c̄l,2(B̄n+1,l�3 � �(l  n+ 4)). (4.1)
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The corresponding generating function thus takes the form

X
n�0

��W̄ FC
n

��xn =

1+ x R(x2)
p

1� 4x2
X
l�0

c̄l,0xl R(x2)l + c̄2,1x�1
✓
1+ x R(x2)
p

1� 4x2
�

1
1� x

◆

+

X
l�3

c̄l,2
✓
1+ x R(x2)
p

1� 4x2
xl�4R(x2)l�3 �

xl�4

1� x

◆
,

using Lemma 4.2. 2

As we shall see below, both C̄0(x) and C̄12(x) are rational, so the generating series for
|W̄ FC

n | belongs to the algebraic function field Q(x, R(x2)) = Q(x,
p

1� 4x2).

4.2. The A-series

In this case, we have C̄0(x) = 1 + x and C̄12(x) = 0, since there are only two central
commutativity classes (namely, those of ( ) and (s)), and both are palindromic. Hence

X
n�0

�� ĀFCn ��xn =

(1+ x R(x2))2
p

1� 4x2
= x�1

✓
1+ x R(x2)
p

1� 4x2
� 1

◆
.

Either by extracting the coefficient of xn , or more directly from (4.1), we obtain

�� ĀFCn ��
= B̄n+1,0 =

✓
n + 1

d(n + 1)/2e

◆
. (4.2)

4.3. The B-series

In this case, the central commutativity classes are singletons in which the occurrences of
s and t alternate. For each l � 0, there are two such words that are palindromic and have
l occurrences of s. Among these, (s, t, s) is the only one that is compatible with a spine
(l, A) with A 6= ;. Hence C̄0(x) = 2/(1� x), C̄12(x) = x�1, and Theorem 4.3 implies

X
n�0

��B̄FCn+1��xn = x�1
✓
1+ x R(x2)
p

1� 4x2
� 1

◆
+

2
1� 2x

�

1
1� x

.

Extracting the coefficient of xn�1, we obtain

��B̄FCn ��
= 2n +

✓
n

dn/2e

◆
� 1. (4.3)
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4.4. The D-series

In this case, the palindromic central classes are represented by the odd-length subwords
of (s, t, s, t 0, s, t, s, t 0, . . .) whose middle term is t or t 0, together with ( ), (s), (t, t 0), and
(s, t, t 0, s). In particular, leaving aside (s, t, t 0, s), there are exactly four such words with l
occurrences of s for each even l � 0, so we have

C̄0(x) = x + x2 +

4
1� x2

.

Also C̄12(x) = x�1, since (s, t, t 0, s) is the only representative compatible with a spine of
the form (l, A) with A 6= ;. After simplifying the expression in Theorem 4.3, we obtain

X
n�0

��D̄FCn+2��xn =

1+ 3x
2x3

✓
1

p

1� 4x2
� 1

◆
+

2
1� 2x

�

x�1

1� x
.

Extracting the coefficient of xn�2 yields

��D̄FCn ��
=

8>><
>>:
2n�1 +

3
2

✓
n
n/2

◆
� 1 if n is even,

2n�1 +

1
2

✓
n + 1

(n + 1)/2

◆
� 1 if n is odd.

(4.4)

4.5. The H-series

The palindromic central classes in this case are the same as those for the B-series; the only
difference is that those corresponding to hs, ti7, hs, ti9, . . . are now compatible with spines
of the form (l, {1, l � 1}) for l � 4. Thus we have

C̄0(x) =

2
1� x

, C̄12(x) =

x�1

1� x
.

The generating function provided by Theorem 4.3 is therefore

X
n�0

��H̄FC
n+1

��xn =

4
1� 2x

�

2� x
(1� x)2

,

and hence
��H̄FC

n
��
= 2n+1 � (n + 1). (4.5)

4.6. The F-series

Recall that in Section 3.5, we selected a set of canonical representatives for the central
commutativity classes by forbidding the subword (s, u). If s is one such representative,
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let s⇤ denote the canonical representative obtained by reversing s and then reversing each
offending (s, u)-subword.
If s is the canonical representative of a palindromic class (i.e., s = s⇤), then either

s 2 {( ), (u)}, or else s has a unique factorization fitting one of the forms

a(s)a⇤, a(u, s)a⇤, a(t)a⇤,

wherea is itself a canonical representative for somecentral commutativity class. Conversely,
any canonical representative ending in (s) can be uniquely factored into one of the two forms
a · (s) or a · (u, s), and the corresponding word obtained by appending a⇤ remains central.
Similarly, any canonical representative ending with (t) but not (u, t) or (u, s, t), when
factored into the form a · (t), remains central when a⇤ is appended.
Now from (3.5), the language of canonical representatives ending in (s) consists of the

exceptional set {(u, s), (t, u, s)}, together with

{( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}⇤ · {(s), (s, t, u, s)}, (4.6)

and the language of representatives ending with (t) but not (u, t) or (u, s, t) is

{(t)} [ {( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}⇤ · (s, t). (4.7)

Including the exceptional cases ( ) and (s), this yields

C̄0(x) = 3+ 2x +

(3+ 2x2)(x + x3)
1� x2 � x4

+

x2(3+ 2x2)
1� x2 � x4

= 1+

2+ 5x + x2 + 3x3

1� x2 � x4
.

The unique palindromic classes compatible with the spines (2, {1}) and (3, {1, 2}) are
represented by (s, t, s) and (s, t, u, s, t, s). For the spines � = (l, {1, l � 1}) with l � 4,
recall from Section 3.5 that a canonical representative compatible with � must begin with
(s, t, u, s, t) and end with (t, u, s, t, s). Selecting the portions of (4.6) and (4.7) that begin
with (s, t, u, s, t) yields the languages

(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}⇤ · {(s), (s, t, u, s)},
(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}⇤ · (s, t),

so we have

C̄12(x) = 2x�1
+

x + x2 + x3

1� x2 � x4
.

Simplification of the generating series provided by Theorem 4.3 yields

X
n�0

��F̄FCn+2��xn =

4+ 10x + 2x2 + x2(1+ 5x + 3x2 � 5x3)Q(x)
1� 4x2 � x4

+ (1+ 3x)Q(x) �

3+ 4x + 2x2 + 3x3

1� x2 � x4
+

1
1� x

, (4.8)

where Q(x) = ((1� 4x2)�1/2 � 1)/2x2.
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The coefficients can be expressed in terms of the Fibonacci numbers as follows:

��F̄FC2n ��
= f3n + f3n�2 +

1
2

n�1X
k=1

( f3k�2 + f3k�4)
✓
2n � 2k
n � k

◆
+

1
2

✓
2n
n

◆
� fn+2 + 1,

��F̄FC2n+1�� = 5 f3n�1 +

5
2

n�1X
k=1

f3k�3
✓
2n � 2k
n � k

◆
+

3
2

✓
2n
n

◆
� fn+2 � fn + 1.

4.7. The E-series

In Section 3.6, we selected a canonical representative s for each central commutativity
class. As in the previous section, we let s⇤ denote the canonical representative for the
commutativity class of the reverse of s.
If s 2 S⇤ is a representative of any palindromic commutativity class, then the set of gener-

ators appearing an odd number of times in smust commute pairwise. Indeed, the “middle”
occurrence of one generator would otherwise precede the “middle” occurrence of some
other generator in every member of the commutativity class. Aside from the exceptional
cases ( ), (u), and (s) (which cannot be followed and preceded by the samemember of S and
remain central), it follows that every central palindromic class has a unique representative
fitting one of the forms

a⇤(t)a, a⇤(t 0)a, a⇤(t, t 0)a, a⇤(u, t 0)a, a⇤(u, s)a, (4.9)

where a is the canonical representative of some central commutativity class. However,
we cannot assert that the above representatives are themselves canonical; for example, if
a = (s, t), then a⇤(u, t 0)a is a representative of a central palindromic class, but the canonical
representative of this class is (t, u, s, t 0, s, t).
For the representatives whose middle factor is (t), (t 0), (t, t 0), or (u, t 0), observe that s

must be the first term of a, assuming that a is nonvoid. Furthermore, if we prepend an
initial s (or s, t , in the case of (u, t 0)), the resulting words (s, t)a, (s, t 0)a, (s, t, t 0)a, and
(s, t, u, t 0)a are (in the notation of Section 3.6)members of the formal languages K2{( ), (s)},
K4{( ), (s)}, K5{( ), (s)}, and K6{( ), (s)}, respectively. Conversely, any member of these
languages arises in this fashion.
For a representative whose middle factor is (u, s), if we prepend (s, t, t 0) to (u, s)a,

we obtain a member of a central commutativity class whose canonical representative is
(s, t, u, t 0, s)a, and hence a member of K6{( ), (s)}. Conversely, any member of K6{( ), (s)}
other than a6 = (s, t, u, t 0) arises this way.
Collecting the contributions of the five types of palindromic central classes, along with

the exceptional cases {( ), (u), (s)}, we obtain

C̄0(x) = 2+ x + x�2(1+ x2)(K2(x2) + K4(x2) + K5(x2)

+ K6(x2)) + x�3((1+ x2)K6(x2) � x2) =

6+ 3x + 2x2 �x3 + 3x4 + x5

1� x2 � x6
.
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For the spine� = (2, {1}), there is a unique� -compatible central class that is palindromic;
namely, the class of (s, t, t 0, s). For the spines � of the form (l, {1, l�1}), recall from (3.10)
that the canonical representatives of the � -compatible classes all begin with a6a2a4 and end
with a3a5a1. It follows that for a palindromic central class represented by a word of the
form (4.9) to be compatible with � , it is necessary and sufficient that a end with a3a5a1.
Using the decompositions obtained in Section 3.6, we find that

{a2a4, a2a4a3, a2a4a3a4}⇤ · a2a4a3a5,
{a4a3a5} [ {a4, a4a3, a4a3a4} · {a2a4, a2a4a3, a2a4a3a4}⇤ · a2a4a3a5,

a6 · {a2a4, a2a4a3, a2a4a3a4}⇤ · a2a4a3a5

are the respective portions of K2, K4, and K6 that end with a3a5; there are no such words
in K5. It follows that

C̄12(x) = x�1
+ x�4

✓
x6 +

x8 + 2x10 + x12 + x14

1� x4 � x6 � x8
+

x9

1� x4 � x6 � x8

◆

= x�1
+

x2 + x4 + x5 + x6

(1+ x2)(1� x2 � x6)
.

The generating function provided by Theorem 4.3 can be simplified to the form

X
n�0

��ĒFCn+3��xn =

(2� 3x2)(3+ 5x � 6x2 � 9x3) + Q(x)(1+ x � 4x2 � 3x3 + 2x4)
1� 7x2 + 14x4 � 9x6

�

1+ x2 + x5 � x8

(1� x)(1+ x2)(1� x2 � x6)
, (4.10)

where Q(x) = ((1� 4x2)�1/2 � 1)/2x2.

5. Asymptotics

Given the lack of simple expressions for the number of fully commutative members of En
and Fn , it is natural to consider asymptotic formulas.

Theorem 5.1 We have
(a) |EFCn | ⇠

1
31 (25�9� �4�2)(�2+2)n, where �

.
= 1.466 is the real root of x3 = x2+1.

(b) |FFCn | ⇠ (7� � 11)� 3n, where �
.
= 1.618 is the largest root of x2 = x + 1.

Proof: Consider the generating function G(x) =

P
n�0 |W FC

n |xn of Theorem 2.6.
In the case of Fn , we see from (3.7) that the singularities of G(x) consist of a branch cut

at x = 1/4, together with simple poles at x = 1 and the zeroes of 1� x � x2, 1� 3x + x2,
and 1 � 4x � x2. The latter are (respectively) {1/� , �� }, {1/� 2, � 2}, and {1/� 3, �� 3},
where � = (1+

p

5)/2 denotes the golden ratio. The smallest of these (in absolute value)
is 1/� 3 .

= 0.236, a zero of 1 � 4x � x2. In particular, since 1/� 3 < 1/4, the asymptotic
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behavior of |FFCn | is governed by the local behavior ofG(x) at x = 1/� 3. More specifically,
since there is a simple pole at x = 1/� 3, it follows that |FFCn | ⇠ c � 3n , where

c = lim
x!1/� 3

(1� � 3x)x2G(x) = � �3 10� 5(1+ 1/� 3)/�
4+ 2/� 3

= 7� � 11,

using (3.7), together with the relations � 2 = � + 1 and R(1/� 3) � 1 = 1/� .
In the case of En , we see from (3.11) that the singularities of G(x) consist of a branch

cut at x = 1/4, together with simple poles at x = ±1 and the zeroes of 1 � x � x3,
1� 4x + 5x2 � 3x3, and 1� 7x + 14x2 � 9x3. These polynomials are related by the fact
that if ↵ is any zero of 1� x � x3, then 1� 4x + 5x2 � 3x3 is the minimal polynomial of
↵/(1+↵), and 1�7x+14x2�9x3 is the minimal polynomial of ↵/(1+↵)2. (The fact that
such a simple relationship exists is not coincidental; see Remark 5.3 below.) The smallest
of the nine zeroes of these polynomials (in absolute value) is � = ↵/(1 + ↵)2

.
= 0.241,

where ↵
.
= 0.682 is the real zero of 1� x� x3. Equivalently, we have 1/� = �2+2, where

� = 1/↵ is the real root of x3 = x2 + 1. Since � < 1/4, the asymptotic behavior of |EFCn |

is once again governed by the local behavior of G(x) near a simple pole. In this case, we
obtain |EFCn | ⇠ c��n

= c (�2 + 2)n , where

c = lim
x!�

(1� ��1x)x3G(x) = �2
16� 52� + 45�2 � ↵/�

7� 28� + 27�2
=

1
31

(25� 9� � 4�2),

using (3.11) and the fact that R(�) � 1 = ↵. 2

Remark 5.2 For the sake of completeness, it is natural also to consider the asymptotic
number of fully commutative elements in An , Bn , Dn , and Hn . Given the explicit formulas
(3.1), (3.2), (3.3), and (3.4), it is easily established that

��AFCn ��
⇠

4
p

⇡
n�3/24n,

��BFCn ��
⇠

1
p

⇡
n�1/24n,

��DFCn ��
⇠

1
2
p

⇡
n�1/24n,

��HFC
n

��
⇠

4
p

⇡
n�1/24n,

using Stirling’s formula. In each of these cases, the dominant singularity in the correspond-
ing generating function is the branch cut at x = 1/4.

Remark 5.3 If ↵ is a pole of f (x), then ↵/(1+↵) is a pole of f (x/(1�x)) and ↵/(1+↵)2

is a pole (of some branch) of f (R(x) � 1). On the other hand, from Theorem 2.6, we
see that aside from the branch cut at x = 1/4 and a pole at x = 1, the singularities
of G(x) =

P
n�0 |W FC

n |xn are limited to those of C2(x), Ci (x/(1 � x)) (i = 1, 2), and
Ci (R(x) � 1) (i = 0, 1, 2). Thus, unless there is unexpected cancellation, for each pole ↵

of C2(x), there will be a triple of poles at ↵/(1+ ↵)i (i = 0, 1, 2) in G(x).



P1: PMR
Journal of Algebraic Combinatorics KL559-05-Stem February 15, 1998 13:27

318 STEMBRIDGE

Nowconsider the asymptotic enumeration of fully commutative involutions. Again, given
the explicit formulas (4.2), (4.3), (4.4), and (4.5), it is routine to show that

�� ĀFCn ��
⇠

r
8
⇡
n�1/22n,

��B̄FCn ��
⇠ 2n,

��D̄FCn ��
⇠ 2n�1,

��H̄FC
n

��
⇠ 2n+1.

In the following, � and � retain their meanings from Theorem 5.1.

Theorem 5.4 We have
(a) |ĒFC2n | ⇠

1
31 (20� � + 3�2)(�2 + 2)n.

(b) |ĒFC2n+1| ⇠
3
31 (9� 2� + 6�2)(�2 + 2)n.

(c) |F̄FC2n | ⇠ � 3n+1.
(d) |F̄FC2n+1| ⇠ (2+ � )� 3n.

Proof: Consider the generating series Ḡ(x) =

P
n�0 |W̄ FC

n |xn of Theorem 4.3.
In the case of Fn , we see from (4.8) that the singularities of Ḡ(x) consist of branch cuts

at x = ±1/2, together with simple poles at x = 1 and ±� �1/2, ±(�� )1/2 (the zeroes of
1� x2 � x4), and ±� �3/2, ±(�� )3/2 (the zeroes of 1� 4x2 � x4). In absolute value, the
smallest of these occur at x = ±� �3/2. Since � �3/2 < 1/2, it follows that the asymptotic
behavior of |F̄FCn | is determined by the local behavior of Ḡ(x) at x = ±� �3/2. More
specifically, we have |F̄FC2n | ⇠ c

+
� 3n and |F̄FC2n+1| ⇠ c

�
� 3n+3/2, where

c
±

= lim
x!� �3/2

x2(1� � 3/2x)(Ḡ(x) ± Ḡ(�x)).

Using (4.8) and the fact that Q(� �3/2) = � 4, we obtain

c
+

= lim
x!� �3/2

x2(1� � 3/2x)
8+ 4x2 + x2(2+ 6x2)Q(x)

1� 4x2 � x4

=

8+ 4/� 3 + (2+ 6/� 3)�
8+ 4/� 3

= � ,

and a similar calculation (details omitted) yields c
�

= (2+ � )� �3/2.
In the case of En , we see from (4.10) that the singularities of Ḡ(x) consist of branch

cuts at x = ±1/2, together with simple poles at x = 1, ±
p

�1 and the square roots of
the zeroes of 1 � x � x3 and 1 � 7x + 14x2 � 9x3. Continuing the notation from the
proof of Theorem 5.1, the poles occurring closest to the origin are at x = ±�1/2, where
� = 1/(�2 + 2). Thus we have |ĒFC2n | ⇠ c

+
(�2 + 2)n and |ĒFC2n+1| ⇠ c

�
(�2 + 2)n+1/2,

where

c
±

= lim
x!�1/2

x3(1� ��1/2x)(Ḡ(x) ⌥ Ḡ(�x)).

Using (4.10) and the fact that Q(�1/2) = 1/�(� � 1), we obtain
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c
+

= lim
x!�1/2

x3(1� ��1/2x)
(2� 3x2)(10x � 18x3) + Q(x)(2x � 6x3)

1� 7x2 + 14x4 � 9x6

=

(2� 3�)(10� � 18�2) + (2� 6�)/(� � 1)
14� 56� + 54�2

=

1
31

(20� � + 3�2),

and a similar calculation can be used to determine c
�
; we omit the details. 2

Appendix

Table 1. The number of fully commutative elements.⇤

n An Bn Dn En Fn Hn

1 2 (2) (2)
2 5 7 (4) (5) 9
3 14 24 (14) (10) (24) 44
4 42 83 48 (42) 106 195
5 132 293 167 (167) 464 804
6 429 1055 593 662 2003 3185
7 1430 3860 2144 2670 8560 12368
8 4862 14299 7864 10846 36333 47607
9 16796 53481 29171 44199 153584 182720
10 58786 201551 109173 180438 647775 701349
11 208012 764217 411501 737762 2729365 2695978
12 742900 2912167 1560089 3021000 11496788 10384231
⇤The parenthetical entries correspond to cases in which the group in question is either reducible or
isomorphic to a group listed elsewhere.

Table 2. The number of fully commutative involutions.

n An Bn Dn En Fn Hn

1 2 (2) (2)
2 3 5 (4) (3) 5
3 6 10 (6) (6) (10) 12
4 10 21 16 (10) 18 27
5 20 41 25 (25) 48 58
6 35 83 61 42 89 121
7 70 162 98 106 220 248
8 126 325 232 178 405 503
9 252 637 381 443 968 1014
10 462 1275 889 756 1785 2037
11 924 2509 1485 1858 4195 4084
12 1716 5019 3433 3194 7758 8179
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Note

1. It should be noted that when n = �1, the coefficient of cl,2 in (2.1) is zero. Thus the range of summation for
this portion of the generating function can be extended to n � �1.

References

1. S. Billey, W. Jockusch, and R. Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg.
Combin. 2 (1993), 345–374.
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