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Let G b e a finite group. The eigenvalues of any g e G of or 
der m in a (complex) representation p may be expressed in the form
α/ 1 , α / 2 , . . . , with ω =  e

2πilm. We call the integers βj (mod m) the
cyclic exponents of g with respect to p. We give explicit combina 
torial descriptions of the cyclic exponents of the (irreducible) repre 
sentations of the symmetric groups, the classical Weyl groups, and
certain finite unitary reflection groups. We also show that for any
finite group G>  the cyclic exponents of the wreath product GI Sn can
be described in terms of the cyclic exponents of G. For each of the
infinite families of finite unitary reflection groups W, we also pro 
vide explicit, combinatorial descriptions of the generalized exponents
of W. These parameters arise in the symmetric algebra of the as 
sociated reflection representation, and by a theorem of Springer, are
closely related to the cyclic exponents of W.

0. Introduction. Let G be a finite group acting on a complex vector
space V. If g E G is an element of order ra, then the eigenvalues of
g on V are rath roots of unity, and may therefore be expressed in
the form α/ 1, α / 2 , . . . , with ω =  e2nιlm. We call the integers βj (mod
ra) the cyclic exponents of g with respect to V. This terminology is
partly inspired by the case in which G is a Weyl group and V carries
the reflection representation of G. If g e G is a Coxeter element, then
the corresponding cyclic exponents βj9 reduced mod ra to the form
0 < βj < ra, are the classical exponents of G [B].

The central objective of this paper is to provide explicit descriptions
of cyclic exponents for groups G whose irreducible representations
have intrinsic combinatorial structure. In the typical situation, we
have a group G acting (irreducibly) on some space V whose dimension
is in one to one correspondence with a set C of combinatorial objects.
(The prototype we have in mind is the case in which G =  Sn and C is
a set of standard Young tableaux.) The problem to be solved is to find,
for each ? G f f 5 a "natural" rule for attaching an exponent e =  eg(c)
to each of the combinatorial objects c e C, so that {ω^ ( c ) : c e C} is
the multiset of eigenvalues of g on V.
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In addition to the purely combinatorial interest in cyclic exponents,
there are a number of situations in which specific exponents for spe 
cific groups arise naturally. In the context of real or unitary reflection
groups G, there is an especially elegant example of this phenomenon
due to Springer [Sp]. For each irreducible character χ of G, there exist
n =  deg c integer parameters e\ 9... ,en called generalized exponents
that describe certain structural properties of the symmetric algebra of
the reflection representation of G. (See §2 for definitions). According
to Springer's work, if g e G is ω regular of order m (ω = elπilm),
then the cyclic exponents of g corresponding to χ are the generalized
exponents mod m.

In this paper we restrict our attention to two types of groups: (1)
The various classical series (i.e., infinite families) of real or unitary
reflection groups, and (2) wreath products of the form GlSn, where G
is an arbitrary finite group. The irreducible representations of these
groups do have intrinsic combinatorial structure, and so it is possible
to formulate the description of their cyclic exponents as a combina 
torial problem. Of course, a treatment of (1) independent of the clas 
sification of reflection groups would be desirable, but the irreducible
representations of the exceptional groups do not seem to be amenable
to combinatorial analysis.

A secondary objective of this paper will be to provide explicit de 
scriptions of generalized exponents for each of the classical series of
reflection groups. We will also give explicit formulas for the associ 
ated generating functions. In the Weyl group case, these generating
functions are the "fake degrees" of the corresponding finite Cheval 
ley groups [C, L], for which there are known formulas due to Stein 
berg [SI] (type A), and Lusztig [L] (types B and D). Also, we note
that the generalized exponents of type A are known and were originally
described by Stanley [Stl, 4.11].

The remainder of this paper is organized as follows. In §1 we give
a few general facts about eigenvalues and cyclic exponents in finite
groups. In §2 we outline the connections between cyclic and general 
ized exponents in reflection groups. Since the ideas behind Springer's
theorem will be useful later, we have included a sketch of the proof. In
§3 we construct the cyclic and generalized exponents of the symmetric
groups. Included is a proof of Stanley's description of the generalized
exponents since it plays a key role in the techniques that follow. In
§4 we consider the wreath products G\Sn\  the main results of this
section are Theorems 4.6 and 4.7 which provide explicit descriptions
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of the cyclic exponents of G I Sn in terms of those of G. In §5, we
consider the reflection groups CmlSn, where Cm denotes the cyclic
group of order m. Of course, the cyclic exponents in this case may be
obtained as a corollary of the results of §4, but a further problem to
be addressed is the description of the generalized exponents and the
associated generating functions. This will include the fake degrees of
type B mentioned above. In §6, we consider the remaining infinite
family of irreducible, unitary reflection groups; these are indexed by
three parameters d, m, n with d\m and may be realized as subgroups
of index m/d in Cm I Sn. (See §6 for definitions). We again give
descriptions and generating functions for the generalized exponents.
Included as a special case (m = 2,d = 1) are the fake degrees of type
D. We do not attempt a complete description of the cyclic exponents
of these groups, since the techniques we will develop would only pro-
duce an indirect description in these cases. However, for the special
case corresponding to the Weyl groups Dn, we have included a com-
plete description of the cyclic exponents since they have a relatively
simple form.

In the appendix (§7), we have included two theorems which we have
been unable to find in the literature: a recurrence for the evaluation of
irreducible characters of GlSn analogous to the Murnaghan-Nakayama
rule, and formulas that relate the so-called "difference characters" of
Dn to the character table of the symmetric group on n/2 letters. Al-
though the construction of the character table of Dn is attributed to
Young [Y], one finds that his description of the difference characters
is inaccurate, or at best, vague and misleading. (See especially p. 288
of QSA V).

Conventions. All vector spaces and algebras to be considered will
use the complex field. All groups to be considered will be finite and
all representations finite-dimensional (or at least graded). We use the
notation IG for the set of irreducible characters of the group G and CG
for the set of conjugacy classes. If the vector space V carries a linear
representation of (?, we write char V for the character of G on V. The
notation ( , )G is reserved for the usual Hermitian inner product on
the space of (7-class functions; namely,

1 ' xeG

The subscript G may be dropped if it is clear from the context.
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The notation 9° is used for the set of partition^  i.e., integer se 
quences of the form λ = (λ\  > λι > > A/  > 0) for some /  > 0 called
the length of λ. We write i(λ) =  / , |Λ| =  £Λ, , and if µ| =  n, then λ is
said to be a partition of n.

Acknowledgments. I would like to thank Professors R. Steinberg
and R. Stanley for valuable discussions. I would also like to credit the
manuscript of Kraskiewicz and Weyman [KW] for providing part of
the motivation for the questions addressed in this paper.

1. Preliminaries. Before beginning the combinatorial analysis of
the cyclic exponents of specific groups, we first collect a few general
observations valid for arbitrary finite groups. Continuing the setting
of the introduction, let g e G be of order ra, and let the eigenvalues
of the action of g on V be ωe\  ωe2,..., where ω = e2πίlm. Form the
generating function

for the cyclic exponents, where q is an indeterminate. N ote that Pγg

is well defined modi   qm. Since Pγg depends only on the character
χ of V (and the conjugacy class of g)9 we will usually write Pχg in
place of Pγg.

N ote that Pχ,g(ω) = x(g)  More generally, the eigenvalues of gr on
V are ωreι,ωre2,..., so we also have Pχ>g(ω

r) =  χ{gr). By reduction
of Pχ,g(q) mod 1 — qm, we may assume atgPxg < m, and therefore,
the values of Pχ,g{q) at q = ωr (0 < r < m) uniquely determine
Pχg. That is, we may regard the calculation of cyclic exponents as an
interpolation problem. In summary, we have

PROPOSITION 1.1. IfP(q) e C[q] satisfies P(ωr) = χ(gr)for 0 < r <
m, then P = Pχ,g mod (1   qm).

Another interpretation of the cyclic exponents of g can be obtained
via representations of G induced from the cyclic subgroup {g}. Let
<Pr  (s) —y C denote the irreducible (^ character defined by φr{g) =
α/ , and let ψr\G denote the resulting induced G character.

PROPOSITION 1.2.

ra l
Σ Qr(ψ G) =  £  Pχ,g(q)χ (mod 1   q").
r=0 χeIG
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Proof. We may assume d e gP ^ < m without loss of generality. In
that case, the coefficient of qr in PXtg is the dimension of the eigenspace
corresponding to ωr in the action of g on a G module of character χ.
However, by Frobenius reciprocity, the coefficient of χ in φr | G is
also the coefficient of φr in the restriction χt(g). Since (g^ modules
of character φr may be identified with ^/  eigenvectors of g, the claim
follows. D

This result shows that the multiplicity of χ in φr | G is the number
of times that r (mod m) occurs as a cyclic exponent of g (with respect
t o / ) .

It is interesting to note that in the case G = Sn, g = rc cycle, there
have been natural occurrences of Sn  modules isomorphic to φ ]Sn in
the recent literature. For example, Stanley [St2, §7] has shown that
such a structure occurs (modulo the sign character) in the homology
of the partition lattice Πn, and Joyal [J] and Garsia [G] have found
such a structure in the free Lie algebra on n generators.

2 Exponents in reflection groups. A reflection (or pseudo reflection)
is defined to be a linear transformation of finite order whose fixed
point set is a hyperplane; a reflection group is a (finite) subgroup of a
general linear group G L(F) generated by reflections. In this section
we consider the case in which G acts as a reflection group on V =  Cn.

Let S = Φk>o^k(^) d e n °t e the symmetric algebra of V9 and let
SG denote the graded subalgebra of (/  invariants. By a theorem of
Chevalley [Ch] (proved originally only for real reflection groups), it
is known that SG is a polynomial ring generated by n algebraically
independent homogeneous elements (see also [ST] and [Stl]). We
refer to the degrees du...,dnoithese generators as the homogeneous
degrees of the reflection group G. Among the many properties of these
degrees, we mention in particular the fact that

(2.1) \ G\  =  dιd2"dn.

Among the many sources for proofs, we cite [B, Ch, Stl,  ST].
The homogeneous degrees are also closely related to certain cyclic

exponents of G. Consider first the case of Coxeter elements in Weyl
groups. We recall that a Coxeter element g in a Weyl group G may
be defined as the product of the simple reflections, taken in any order;
all such products are conjugate in G (see [B, S2]). As we remarked
in the introduction, the classical exponents e\ 9...9en ofG are, in our
terminology, the cyclic exponents of such a g on F , reduced mod m to



358 JOHN R. STEMBRIDGE

the form 0 < e} < m. On a case by case basis, Coxeter [Co] observed
that βj = dj•    1. A uniform proof was later given by Coleman [Col].

Springer [Sp] found a generalization of this observation valid for
regular elements in arbitrary reflection groups. A vector v G  V is said
to be regular if it is not contained in any of the hyperplanes defined by
the reflections in G, and g e G is said to be regular if it has a regular
eigenvector. If g has a regular eigenvector with eigenvalue ω e C, then
g is said to be ω regular.

TH EOREM 2.1 {Springer [Sp, (4.2v)]). If g e G is ω regular, then the
eigenvalues of g on V are ω~^dχ~x\ ..., ω~(dn~ ι\

By a theorem of Coxeter [S2], one knows that a Coxeter element
has a regular eigenvector with eigenvalue e~2πι/ m, so this result does
generalize the fact that ej = dj   I in Weyl groups.

Springer has also shown that there is a more general relationship
between the G module structure of the symmetric algebra S — S(V)
and the cyclic exponents of regular g. To explain this relationship,
let /  =  Θ^>o Jk denote the graded, (/  stable ideal of S generated by
the invariants in SG of positive degree, and for each character χ e / G ,
let Gχ{q) denote the Poincare series of the χth isotypic component of
S/ J = ®k>0S

k/ Jk. One may obtain the generating functions Gχ(q)
via the expansion

(2.2) ]Γ qk charOSV^) =  Σ  GM* '>
&>0 χelG

i.e., the coefficient of qk in Gχ(q) is the multiplicity of χ in Sk/ Jk.
In case G is a Weyl group, the series Gχ(q) are the fake degrees of
the corresponding Chevalley groups; tables of these polynomials can
be found in [C, 13.8].

Define the generalized χ exponents of G to be the integers e\ (χ),
ei{χ)> ' that appear in the expansion

Gχ(q) = q«W + q«W +   .
The number of such exponents is degχ, since the G module struc 
ture of S/ J is isomorphic to the regular representation of G [Ch] (see
also [Stl, 4.10]).

We are now ready to state Springer's result.

TH EOREM 2.2 (Springer [Sp, (4.5)]). Let g e G be ωs regular of order
m, where ω = e2πιlm. We have
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In particular, if g is ω regular, then the generalized χ exponents ofG
(mod m) are the cyclic exponents of g with respect to χ.

REM ARKS. (1) This version is dual to the formulation in [Sp], since
we have chosen to work with the symmetric algebra of V rather than
the dual V\

(2) The eigenvalues corresponding to the regular eigenvectors of any
g G  G must have the same order as g [Sp, (4.2i)]. Consequently, if
g e G is ωs  regular, then some power gr is ω regular.

Sketch of Proof. The previous remark allows us to restrict our at 
tention to the case s = I; i.e., assume g is ω regular and ω =  e2πιlm.
In view of (2.2) and Proposition 1.2, it therefore suffices to show

m \

(2.3) £ ί*charOS*/ / *) =  Σ 9r(φ G) (mod 1   qm).
k>0 r= 0

To evaluate the (graded) character of S/ J at h e G, observe that
if the eigenvalues of h on V are α, =  α/(/z) (1 < i < ή)9 then the
eigenvalues of h on Sk are the monomials of degree fcinαi,...,α«.
Therefore,

where det(l   qh) is interpreted in E n d q ^ F ) . The various isotypic
components of S are known to be free as S^ modules (e.g., [Stl, 3.10]),
so we have

S = SG® S/ J
as graded (/  modules. Since the Poincare series of SG is ΠO   <3d')~ ι>
it follows that

(2.4) £ ** char(SV/*)W =  Π ϊ ^
k>0 ι= l

or equivalently via (2.2),

(2.5) Σ Gχ(q)χ(h) = det(l  
χeiG i= i

Now consider the induced character Σqr(φr T ί?) Evaluated at
q = ωj, the orthogonality relations for cyclic group characters imply

m if  j = i mod m
otherwise.r= 0
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Using standard properties of induced characters (e.g., [CR, (10.9)]), it
follows that

w "1 ' zh if h~g J
0 otherwise,

where q =  ωj, ~ denotes conjugacy in G, and zh denotes the size of
the G centralizer of h. Thus, to establish (2.3), it suffices to prove

(2.6a) γτ l qd' =  Γ zh if h ~  g'J
(2.6b) 1A 1   oti(h)q \  0 otherwise

for all h e G and all choices q =  ωj (0 < j < m).
For simplicity, we consider only the case q — ω.
The numerator of (2.4) has a zero of order |{/ : m\di}\  at q =  ω,

whereas the denominator has a zero of order dim V(h,ω~ ι), where
V(h,a) denotes the eigenspace of h on V corresponding to the eigen 
value a. Since (2.4) is a polynomial in q (recall that S/ J is isomorphic
to the regular representation of G ), it follows that

dimV(h,ω 1) < \ {i: m\ di}\ .

This observation is strengthened in [Sp, (4.2ii,iv)], where it is proved
that equality occurs iff h ~ g~ ι. This proves (2.6b).

Finally, note that the eigenvalues of g acting on ϊ
ω (dn i)9 by Theorem 2.1. Therefore,

However, the G centralizer Cβ(g) is itself a reflection group, act 
ing on V(g,ω), with homogeneous degrees {dii m\di) [Sp, (4.2iii)].
Thus, (2.6a) now follows from the application of (2.1) to the reflec 
tion group CG(g). D

3. The symmetric groups.
A. Background. The irreducible representations of Sn are indexed

by partitions of n [JK]. Associated with a partition λ is the diagram

Dλ =  {(/ , j) G  Z 2 : 1 < i < ί(λ), l<j< A, },

which we regard as an array of cells in the plane with matrix style
coordinates.
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1 1 2 4 8
2 4 5 5
8 9

FIG U RE 1

A tableau of shape λ is an assignment T: Dχ —•  P of positive integers
to the cells of Dλ so that

(1) T{iJ)< T(ίJ +  1) (nondecreasing rows),
(2) T{iJ) < T(i+ 1,7) (increasing columns).

A reverse tableau is an assignment T: Dλ —> P with the inequalities
reversed; i.e., nonincreasing rows and decreasing columns. A tableau
of shape (5,4,2) appears in Figure 1; a reverse tableau appears in Fig 
ure 2 (a). The content of a tableau T  is the sequence γ (7") =  (yi,72> )>
where

Λ =  | {( / j ) e D λ :Γ ( U ) =  k}|.
Recall that the Schur functions sχ may be described as generating func 
tions for tableaux. Specifically, we have

T: Dλ + F

summed over tableaux Γ, where xγ =  x^x^2 * [M l]. We remark
that since the Schur functions are symmetric with respect to permu 
tations of the variables Xi [M l], we may alternatively regard Sχ as the
analogous generating function for reverse tableaux.

In our description of the cyclic exponents of Sn, it will be conve 
nient to exploit properties of the ^ characters and tableaux indexed
by skew partitions. A general skew partition (of size n) is indicated
by the notation λ/ µ, where λ and µ are any pair of partitions with
Dι D Dµ (and \λ\    \µ\  — n). The diagram associated with λ/ µ is the
array Dλ/ µ := Dλ   Dµ, and a tableau of shape λ/ µ is an assignment
T: Dλjµ —> P satisfying the usual rules in (3.1). The corresponding
generating function for tableaux of shape λ/ µ, namely,

T: Dλίµ + P

is said to be a skew Schur function.
A tableau of content ( 1, 1, . . . ,1) is said to be standard; we use the

notation ^ λ (resp., grλl^) for the set of standard tableaux of shape λ
(resp., λ/ µ). If k + 1 appears in a row strictly below k in a standard
tableau T9 then k is said to be a descent of T, and we write D(T) for
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10 9 8 2 2 1 2 4 10 11
8 7 6 3 6 7
7 5 0 5 8 13
3 1 9 12

(a) reverse (b) standard
FIG URE 2

the set of descents in T. The index of T  is defined to be the sum of
the descents; i.e.,

indT= J2 k

keD(T)
In the example in Figure 2(b), the descent set is {2,4,7,8,11} and the
index is 32.

Let h/ µ{q) denote the generating function for the indices of the
standard tableaux of shape λ/ µ (possibly µ = 0) ; i.e.,

=  Σ
The following result connects the indices of standard tableaux of shape
λ/ µ to the principal specialization of Schur functions. Although it is
a straightforward application of Stanley's theory of P partitions (and
a proof may be found in [M l, pp.49 50]), we have included another
proof which will serve as a model for similar arguments we will use
in analyzing the generalized exponents of the reflection groups in §6.

LEMMA 3.1. Let λ/ µ be a skew partition ofn. We have

2)

where(q)n =  (l q)(l q2)  (l q»).

Proof. Interpret sχ/ µ{l,q,q2,...) as the generating function for re 
verse tableaux of shape λ/ µ, weighted according to the sum of the
entries, with 0 as an allowable entry. Given such a tableau Γ, linearly
order the cells of Dλ/ µ as follows:

, ,  i f f iT{iJ)>T{i'J% or
V,J) Ki,J) <y τ { i J ) =  τ{i,Jf) a n d j <  fm

By numbering the cells of Dλjµ from 1 to n according to this order,
we obtain a standard tableau S. For example, Figure 2(b) depicts the
standard tableau obtained via this process from the reverse tableau in
Figure 2(a).
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Let α; denote the entry of T  in the cell numbered /  by S. G iven S
and the sequence α, it is easy to recover T, so the map T  ι—•  (S, a) is
injective. For fixed S, the possible sequences a which arise from this
correspondence are characterized by the fact that a\  > > an > 0
and

<*k><*k+\  i f keD(S) (l<k<n).
Given such a sequence α, subtract 1 from each of a\ ,... , ak for each
k G  D(S). The result is a partition a* whose terms are characterized
by the fact that a * > > α* > 0, and whose size satisfies |α | =
|α*| ^ ind^. Thus, α* is an arbitrary partition of length at most n, and
we may conclude that the generating function for the reverse tableaux
T corresponding to a fixed S is of the form

J2 q\a \+indS _
{q)n

By adding the contributions corresponding to the various choices for
S, we obtain the desired result. D

B. Generalized exponents. Let χλ denote the irreducible ^ character
indexed by λ, and let Gχ(q) denote the associated generating function
for the generalized exponents corresponding to χλ, as in §2. The fol 
lowing result, due independently to Lusztig and Stanley, describes the
generalized exponents in combinatorial terms. We have included a
proof since it is difficult to find in the literature (although a statement
of the result can be found in [Stl, 4.11]).

TH EOREM 3.2. We have Gλ{q) =  Iχ(q)\  i.e., the indices of the stan 
dard tableaux of shape λ are the generalized exponents of Sn corre 
sponding to χλ.

Proof. Regard Sn as a reflection group acting on Cn by permuting
the standard coordinates. The homogeneous degrees with respect to
this (reducible) representation of Sn are 1,2,..., n, and so (2.5) may
be rewritten as

 < 3 2 > dSira
\λ\ —n

for any w e Sn.
N ote that if w is of cycle type µ =  (µ\ , µ^,...), then the character 

istic polynomial of w acting on Cn is of the form
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Using pr = pr(x\ , *2> ) =  x[ + *2 " t o denote the rth power sum,
(3.2) implies

\λ\=n

where pµ is an abbreviation for pµιpµ2 . One may deduce Gλ{q) =
(Q)nSλ(l,q,q2,...) by comparing this with the Frobenius expansion
[M l, (7.8)]

Pµ(Xl,X2, ) =

Apply Lemma 3.1 to complete the proof. D

We remark that the series sλ(\ ,q,q2,...) has an explicit factoriza 
tion of the form

nn(λ)

(3.3) sλ{\ ,q,q\ ...) =  j π  λ

where «(Λ) =  £), (/    l)λ, and /?(/ ,,/) is the hooklength at (/ ,y). (See
[M l, p.28] for details). Consequently, we have the explicit formula

C. Cyclic exponents. Let µ be a partition of n, and let m =
[µi, µ2, . . . ] (least common multiple) denote the order of any w G  Sn

of cycle type µ. Partition the integers 1,2,... , n into ^(µ) consecutive
blocks of sizes µi , µ2 ? . . . ? and let Z?̂  =  ( ^ ( 1) , . . . ,bµ(n)) denote the
sequence defined as follows. If j (1 < j < n) is the zth smallest ele 
ment assigned to the /cth block, we define bµ(j) =  im/ µk. Thus, we
have

7 / m 2m m 2m \

For example, £(4,4,3,2) =  (3,6,9,12,3,6,9,12,4,8,12,6,12). For any
standard tableau T, we define the µ index via

bµ{k) (mod m).
keD{T)

The (4,4,3,2) index of the tableau in Figure 2(b) is 3 mod 12.
Let P^µ(q) denote the cyclic exponent generating function corre 

sponding to any w G  Sn of cycle type µ, acting on the irreducible
^ m odule indexed by λ. The following result, conjectured by Stan 
ley [St3], describes these exponents in combinatorial terms.
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TH EOREM 3.3. We have

i.e., the cyclic exponents ofw with respect to λ are the µ indices of the
standard tableaux of shape λ.

As a first step towards the proof of Theorem 3.3, let χλlu denote the
character corresponding to the skew representation of Sn indexed by
λ/ v. If \λ\  =  n + k, \v\  =  k9 then χλlv may be characterized indirectly
via the branching rule

(3.4) xλiskχsn=
\ v\ = k

where X\xχ2 denotes the outer tensor product of 5^  and £„ characters.
One may take (3.4) as the definition of the skew characters, although
under these circumstances, one needs to verify that χλlv =  0 unless
λ/ v is a legitimate skew partition (i.e., Dλ D  Dv). Further details
regarding the skew characters of Sn can be found in [GW, JK, M l] .

LEMMA 3.4. If λ/ v is a skew partition ofn and w eSn is an n cycle,
then

hιΛQ) = Xλlu{™r) atq = e2πir/ " (0<r<n).

Proof. Let c(λ,µ,v) denote the multiplicity of χµ in χλlp (the
Littlewood Richardson coefficient), so that

(3.5) χλ^=
\ µ\ = n

It is well known [M l] that the multiplicities c(λ, µ, v) also describe the
Schur function expansion of syv\  i.e.,

\ µ\ = n

By Lemma 3.1, it therefore suffices to restrict our attention to the case
i/  =  0.

Since any n cycle w (acting on Cn via permutation of the natural co 
ordinates) is e2π/ / w regular, Theorems 2.2 and 3.2 immediately imply
h(Q) =  Pκw(<ϊ) m °d 1 " Qn Therefore,

h{e2nir/ n) =  pλw(e2*irln) =  X
λ{wr). D
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REM ARK. Although Lemma 3.4 is essentially a corollary of Theo 
rems 2.2 and 3.2, it is also possible to give an elementary proof which
does not require the invariant theory of reflection groups. To con 
struct such a proof, let ω = e2πiln, and fix r (0 < r < n). Let µ denote
the cycle type of wr (w =  fl cycle), and let zµ denote the size of the
S^ centralizer of wr. As a first step, show that

tiXΩ^MnPviUq, q2,. . . ) =  δµt,Zµ,

which is a simple calculation. Next, use the identity [M l, (7.10)]

to conclude that

(q)nSχ{\  , 4, 42 , . . . ) =  Xλ(wr) atq =  ω\
Lemma 3.4 may now be deduced from Lemma 3.1.

Proof of Theorem 3.3. Let /  =  i(µ) and let T  be a standard tableau
of shape λ. Let λj denote the shape of the diagram formed by the cells
of Dλ labeled < µ\  +    +µjby T. (In particular, λ° =  0.) We refer
to the partition sequence (λJ'': 0 < j < I) as a µ pαrtition of λ since
µ;'|   I*' 11 =  µj and Dλo C Dλι c . . . Dλl = Dλ.

The presence of µ\  Λ \   µj eD(T) will contribute m to indµ(Γ),
and so does not affect indµ(T) mod m. We therefore have

indµ(Γ) =  ] Γ — ind Tj (mod m),

where Tj denotes the restriction of T  to DλJ/ λJ \ , renumbered from 1
to µj, so that Tj is a legitimate standard tableau. It follows that

(3.6)

summed over all / /  partitions (λj: 0 < j < I) of λ.
Now consider the character values χλ(wr), where w is of cycle 

type µ. Let K; =  u>i u>/  be the factorization of w into commuting
cycles of lengths µ\ ,... , µ/, and regard w as an element of the Young
subgroup Sµι x x 5^,. By repeated application of (3.4), it follows
that

(3.7) χλ{wr) =

summed over all / /  partitions (λJ: 0 < j < I) of λ.
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At q =  ωr (ω = elπilm), we have qml^ = e2πir/ µ\  so Lemma 3.4
shows that the terms appearing in (3.6) and (3.7) are identical. Thus,

= χλ(wr) at q = ωr.

Apply Proposition 1.1 to complete the proof. D

4. Wreath products. Let G be a finite group. In this section, we will
show that the cyclic exponents of the wreath product GI Sn can be de 
scribed combinatorial^ in terms of the cyclic exponents of G. We first
give a brief survey (Part A) on the representations of wreath products,
and we give a recurrence for the irreducible characters analogous to
the Murnaghan Nakayama rule. Since this recurrence appears to be
new, we have included a proof in the Appendix (§7). In Part B, we
construct some statistical parameters based on the cyclic exponents of
G. These parameters will be used to describe the cyclic exponents of
G I Sn in Part C. For further details on the representation theory of
wreath products, the reader is referred to [JK, K, M2].

A. Background. Use Gn as an abbreviation for GlSn. (In particular,
GQ is the group with one element.) We may identify Gn informally as
the group of n x n pseudo permutation matrices in which the nonzero
entries are chosen from G. N ote that Sn is a natural homomorphic
image of Gn\  references to the cycle structure of any x G  Gn should
thus be interpreted with respect to the underlying Sn  image of x.

Suppose that (/ i, ..., / ^) is a cycle in (the Sn image of) some x G
Gn. If gi, . . . ,gk G  G are the corresponding nonzero entries in rows
z'i, ... , 4 of x, then the cycle product gk" g2g\  is well defined up to
G conjugacy (i.e., cyclic shifts of / \ , . . . , ik will not affect the conjugacy
class of the cycle product). We refer to this conjugacy class as the G 
class of the cycle. It will sometimes be preferable to abuse this notation
and label the G class of a cycle with any convenient element g in the
class.

Choose a fixed x G  Gn. For each conjugacy class c G  CQ, let µc

denote the partition formed by the lengths of the cycles of x with
G class c. We may thus associate with x a partition valued function
µ: CQ^> £P with \µ\  — n, where

\µ\  =
ceCG
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We will refer to µ as the type of x. Two elements of Gn are conjugate
iff they have the same type (cf. [M2, §9]), and so the conjugacy classes
of Gn are indexed by the partition valued functions µ.

Let U be a (7 module and let V be an Sn  module. The wreath prod 
uct UlV is the Gn  module whose vector space structure is (Um) ® F ,
and whose module structure may be described as follows. If
(£1 > >  gn) € Gn (the subgroup of diagonal matrices), then

(#1, > gn) o (Mi ® ® Un ® v)

and if w e 5  (the subgroup of permutation matrices), then

lϋ o (Mi ® ® MΛ ® l>) =  M w i( i

for all M, e U, v eV. Since Gn = Gn >\  Sn (semidirect product), this
completely defines the Gn  module structure of UI V.

It is not hard to show that UlV is irreducible if both U and V are
irreducible; however, not all irreducible representations of Gn arise in
this fashion. To obtain a complete set of irreducible representations
(a problem originally solved by Specht [Spe]), one needs to consider
representations induced from wreath analogues of Young subgroups.

G iven nonnegative integers ri\ 9... ,nt such that n\  \  hnt = n, let
S(Π) denote any Young subgroup of Sn isomorphic to Snι x x Snt9

and let G(Λ) =  GIS^ denote the corresponding subgroup of Gn.

TH EOREM 4.1 {Specht). Let Uχ9... ,Ut be a complete list of irre 
ducible, inequivalent G modules. A complete list of irreducible, inequiv 
alent GI Sn modules consist of the representations

(4.1) (UxlVύQ' 'QiUtlVMGn

induced from the subgroups G^ny where ri\ 9... 9nt* range over all non 
negative integers with n\  \  h nt =  n and Vt ranges over a list of the
irreducible, inequivalent SHl modules.

We remark that in case n\  =  0, the factor UilVj should be interpreted
as a trivial one dimensional module.

Proofs of Specht's theorem can be found in [JK, K, M2, Spe].
In place of the indices /  =  1, ... J used in Theorem 4.1, we will

sometimes use the irreducible characters IQ. In particular, if θ —
char Ui9 we will write nβ =  Λ, and Vθ =  ^ . In these terms, observe
that (4.1) may be labeled by a partition valued function λ: IG —•  &9

where λθ is the partition of rte corresponding to the SHθ  module Vθ.
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* * * *
* * *
* *

* * * * * * *
* * *

F IG U RE 3 (a) F IG U RE 3(b)

Specht's theorem thus yields a natural bijection between the irre 
ducible Gn  modules and the functions λ: IG—>&> with |λ| =  w, where

θeh

In the following, it will be convenient to associate with λ a skew
partition of n obtained by translating the various component diagrams
Dχθ: θ G  IQ in the plane Z 2 so that the rows and columns occupied by
the Dµ*s are disjoint. The actual translations used are unimportant;
we only care that the resulting arrangement of cells forms a legitimate
skew diagram. For example, an appropriate arrangement for the parti 
tions (3,2), (1,1) and (3) appears in Figure 3(a). By abuse of notation,
we will refer to any such arrangement as the diagram of λ, and let <9Γ 
denote the collection of standard tableaux of this shape.

Let χ^  denote the irreducible Gn character indexed by λ. A further
consequence of Specht's theorem is the following.

COROLLARY 4.2 (cf. [M2, p.200]). If\λθ\  = nθ, then deg/ i =

Proof. The subgroup G(n) is of index n\ / Y\ θnθ\  in Gn. It follows
that the representation indexed by λ (cf. (4.1)) is of degree

θ

The result now follows from the fact that there is a simple bijection
(left as an exercise) which proves

Π ^ A   •

Let µ,λ: IQ —•  & be a pair of partition valued functions with |λ|  
\µ\  =  n and D µ (i.e., Dλβ 2 Dµθ for all θ € /<?). The collection
of skew partitions λ/ µ =  {λθ/ µθ: θ e IQ} may be used to index a
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skew representation of Gn\  namely, the G^ module of the form (4.1)
in which Vθ is the skew ^  m o d u le indexed by λθ/ µθ (nθ =  \λθ\  \µθ\ ).
Let χ lί denote the corresponding Gn  character.

The Murnaghan Nakayama rule is a combinatorial recurrence for
evaluating the Sn  characters χλ as well as the skew characters χλlµ [JK,
2.4]. To analyze the cyclic exponents of GI Sn, we will need a similar
recurrence for the irreducible characters χ  as well as the skew charac 
ters yβ . To describe this recurrence, we first recall that a skew hook
(also known as a rim hook [JK] or border strip [Ml]) is a rookwise
connected skew partition with no 2 x 2 square as a subdiagram. An
example appears in Figure 3(b). More generally, we define a skew
family λ/ µ to be a a skew hook if only one of the components λθ/ µθ

is nonempty and this one component is a skew hook. The character of
a skew hook λ/ µ is defined to be the unique θ e IQ for which λθ Φ µθ.

A partition of λ/ µ into skew hooks is a nested sequence

(4.2) µ = λ°Cλι C Cl/  = λ

of partition valued functions λι: IQ  > & such that each of λι/λι~ ι is
a skew hook (1 < i < / ). If \λ'\    lA'"1) =  βu then (4.2) is said to be a
β partition.

TH EOREM 4.3. Assume that the cycles ofx e Gn are of length β\ ,... ,
β\  and that the corresponding G classes are g\ 9... 9gι We have

summed over all β partitions (λι) of λ/ µ into skew hooks, where 0Z

denotes the character ofλι/λι~ ι and r, denotes the number of nonempty
rows in the θ[th component ofλι/λι~ ι.

The proof is given in §7A.

B. Parameters for the cyclic exponents ofG. For each θ e IQ, choose
a totally ordered alphabet AQ of size deg# . Using AQ as an index set,
let {eg(a): a G  AQ} denote the cyclic exponents of g G  G with respect
to θ. Following the conventions of §1, let

Pθ ΛQ)   T QeΛa)

aeλθ

denote the associated generating function.
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Indexing exponents with the letters of AQ induces a natural weight 
ing on words over AQ. Specifically, we define the g weight of any word
a = a\ (i2   am e Aff via

Observe that the cyclic group Cm acts on Aff via cyclic shifts. Let
fixα denote the order of the stabilizer of any α G  Aff. If /  =  fixα,
then the Cm orbit of α consists of m/ f distinct words; among these
words there must be a unique word that is lexicographically smallest
with respect to the ordering on AQ. Using σ to denote the basic shift
operation

we define the phase φ(a) to be the integer /  (0 < /  < m/ f) for
which σιa achieves this lexicographic minimum. For example, if
α =  acabacabacab and a < b < c, then fixα =  3 and φ(a) = 2.

More generally, if Cn is a subgroup of Cm (and hence, n\m), we
may interpret (n, fixα) as the order of the C^ stabilizer of α, and we
define the n phase φn(a) as above, but with respect to the Cn orbit
of a G  AQ1. Thus, φn(oί) is the integer /  (0 < /  < n/ (/ i,fixα)) for
which σimlna is the lexicographically smallest member of the Cn  orbit
of α. It will also be convenient to interpret (w,fixα) and extend the
notation φn(a) to situations in which n \  m. In such cases, we note
that (n, fixα) is the order of the C(^m) stabilizer of α, and we will use
φn(a) as an abbreviation for the (n, m) phase of α.

If g G  G is of order k and n is a positive integer, we define the cyclic
weight of α G  A% with respect to g and n via

cyc^(α) =  \a\ g + k(n,fϊxa)φn(a)9

and let

(4.3) c ί2 > M ( f f )= χ ;^; >ω
denote the associated generating function. We remark that if deg θ =
1, then there is a single exponent eg for each g G  G, and we have

LEMMA 4.4. If g e G is of order k and θ e IG, then

| () |
//  denotes the classical Mόbius function.
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Proof. Let d = (m,n). For any A c Aff, let G F [^] denote the
generating function for the ̂  weights in A; i.e.,

N ote that for any s\m, we have

G ̂ : * l f i x < * ! •
If s|d, then we have .s|(rf,fixα) iff s|fixα, and hence

G F [α eA™:s\ήxa] = Σ G F i a eA™:r = (d, fix a)].
s\r\d

An application of Mobius inversion therefore yields

G F[α eA™:r= (rf,fiχα)] =
r\ s\d

If r =  ( ί, fixα) then there are d/ r words in the C^ orbit of α, and
these words all have the same ^ weight. Consequently, the cyclic
weights of these words are of the form |α |^ +  kri (0 < /  < d/ r),
and we have

i kd
G F t α € Ao: r =2 τr& t o: r =

r\d q

kd

LEMMA 4.5. Let g9k9θ be as above, and let ω = e2πilkn. Let I =
n/ (n9j) denote the order ofωjk. Ifl\m, then

Proof. Let d = (m9n). We have l\m and l\n, so 1   qkd =  0 at
q = ωJ\  Since 1   qkr = 0 at q = ωJ iff / |r, it follows that

r l  ϊ w Γ 1 if/ |r
lim =   r

d 1 — # ^r \  0 otherwise.
Hence, Lemma 4.4 implies

= Σ
l\ r\ s\d
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However,

Ms T ^° o t h e r w i s e '
so we have

C. The cyclic exponents ofGlSn. Choose a fixed irreducible char 
acter χί  of Gn. Extending the notation of §3A, let Iχ{q) denote the
generating function for the indices of the standard tableaux of shape
λ. Let Pχ,x(q) denote the usual generating function for the cyclic ex 
ponents of x G  Gn with respect to χk We first consider ^ cycles.

TH EOREM 4.6. Let n$ — \λe\ . Ifx e Gn is an n cycle whose G class
g is of order k, then

PίxiQ) =  h{Qk)
θeiG

REM ARK. Using the constructions in Part B, it is easy to give a
combinatorial description of the cyclic exponents of x. Specifically,
they are of the form

k ind T + ]Γ cyc{g\aθ) (mod kn\
θ

where T  varies over the standard tableaux of shape A, and aθ varies
over the ^  words of length nβ.

Proof. The diagram of λ indexes both an irreducible character of
Gn and a skew character of Sn. In order to avoid ambiguity, we will
denote the latter character by χ$.

The cycles of xJ all have the same length /  =  n/ (n,j) and the same
G class, namely gJKn>J\  To partition a component λθ of λ into skew
hooks of size /  certainly requires 1\ΠQ. Therefore, if w is the Sn image
of x9 the character recurrences for Gn and Sn (Theorem 4.3) imply

unless 1\ΠQ for all θ G  IQ. Assuming this necessary condition is satis 
fied, then we have
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since ΠQ/ 1 counts the number of times a skew hook of size /  must be
removed from the component λθ.

Now if ω =  e2πilkn and l\nθ, then Lemma 4.5 implies

and Lemma 3.4 implies

h{ωkj) = χl
so it follows that

χλ (xj) = h(ωkή Π CgΛ(α> 0 (0 < j < kn).
θ

Apply Proposition 1.1. D

We remark that Theorem 4.6 generalizes easily to the skew repre 
sentations of Gn\  the same proof holds verbatim.

Now consider the cyclic exponents of an arbitrary element x e Gn.
Let x = X\ ... X/  be a factorization of x into disjoint commuting cycles.
Assume that X[ is a cycle of length µf whose G class gι is of order k[
(1 < / < / ) . Let M = [k\µ\ ,...,kιµi\  denote the order of x and let
m =  [µi, . . . , ///] denote the order of the Sn  image of x.

If T  is a standard tableau of shape λ, let λι = λι(T) denote the shape
of the diagram formed by the cells of λ numbered < µ\  Λ h ///  by
Γ. We have

0 =  λ° c λι c . . . c λι =  λ
and lA'H A'"11 =  ///, so the sequence (λι: 0 < /  < / ) forms a / /  partition
of A, as in (4.2). G iven such a partition, define

(4.4)

and observe that Σ /  «/,0 =  «0> Σ e niβ = Vi

TH EOREM 4.7. In terms of the above notation, the cyclic exponents
ofx with respect to χ^ are of the form

K, ) (modM),

where T ranges over the standard tableaux of shape λ and aiiθ varies
over the Aθ~words of length niyQ(T).

Proof, Regard x as a member of the "Young" subgroup G^  (cf.
the paragraph preceding Theorem 4.1). By repeated application of
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Lemma 7.1, we have

summed over all  ̂ partitions (λι: 0 < i < / ) of λ.
Let ω =  e

2π'/ M. Since Px,y{ω
Mjlk) =  χ(yj) for any character χ and

any y of order k, Proposition 1.1 therefore implies

Pχ,M = Σ  pm * (qM/ kιµ>) •  ^ / a '  u

Hence, from Theorem 4.6 we may deduce

hAQ) =  Σ Π^ ' / i '  ^ "1 )Π^ L
(λι) / = 1 6>

In view of (3.6),

may be identified (mod 1   qM) as the generating function for
^ in d µ(Γ) , where T  ranges over the standard tableaux of shape λ
which produce the / /  partition (λι: 0 < / < / ) . To complete the proof,
recall (cf. (4.3)) that C{

Q
µgιne{q

Mlki^) is the generating function for

M (n)

where a varies over the ^  words of length riiβ(T). D
5. The reflection groups CmlSn. Let Cm denote the cyclic group

of order m. In this section we will illustrate the results of the pre 
vious sections for the reflection group Cm I Sn (sometimes known as
the generalized symmetric group). We will find that the description of
the cyclic exponents simplifies considerably from the general setting of
§4. Also, we will derive explicit formulas and combinatorial interpre 
tations for the generalized exponents; this will provide an opportunity
to illustrate a particular case of Springer's result (Theorem 2.2).

A. Cyclic exponents. Let θ be an irreducible Cm character. Since
deg0 =  1, there is only one word of each length over the alphabet
Aθ of §4B; the phase of such a word is clearly zero. Consequently, if
eg(θ) is the cyclic exponent of g e Cm with respect to 0, then we have
(cf. (4.3))
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Regard Cm as the group of mth roots of unity, let ω =  e2πilm, and
let φk denote the irreducible Cm character defined by φk(ω) — ωk.
The cyclic exponent of ωj with respect to φk is clearly jk (mod m).

In the following it will be convenient to index the irreducible char 
acters of Cm I Sn by the partition valued functions λ: Im  * & with
|Λ| =  «, where the index set Im :=  {0,1, . . . , m   1} is used in place of
{φ°,... , φm~1}. U nder this convention, we define

m l

(5.1) r(λ)=  Σ/ |Λ/ |,
ι=0

and we leave to the reader the easy task of verifying that the following
result is a direct corollary of Theorem 4.6.

TH EOREM 5.1. Ifx eCmlSn is an n cycle ofCm~class ω, then

PλAv) =  Qr®h(Qm) ( m o d i   Qmn)

In particular, the cyclic exponents ofx with respect to λ are of the form

r(λ) +  m ind T  (mod mn),

where T varies over the standard tableaux of shape λ.

For the general case, assume x eCmlSn has cycle lengths µ\ 9... , µ/
and corresponding Cm classes ωeι,... ,ωeι. Let fc/  =  m/ (m,ei) denote
the order of ωei, let M denote the order of x, and let mµ denote the
order of the S^ image of x. (To indicate the latter by "m " would
produce unfortunate confusion here.) For each standard tableau T  of
shape A, let Λ/  =  Λ/ (Γ): Im  •  & (0 < j < I) denote the / /  partition of
λ defined by Γ, as described in §4C. As a corollary of Theorem 4.7,
we have

TH EOREM 5.2. The cyclic exponents ofx with respect to λ are
i

— wdµ(T) +  Σ T—ΦUΪ)   ra' 1)) (mod M),

where λι =  λι(T) and T ranges over the standard tableaux of shape λ.

B. Generalized exponents. Following the notation of §4, write G =
Cm and Gn =  CmlSn. Since Cm has been identified as the group of
mth roots of unity, we may thus identify Gn as a subgroup of G LΠ(C)
consisting of pseudo permutation matrices. Via this representation,
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Gn acts as a reflection group on Cn. The corresponding ring of invari 
ants in S(Cn) may be identified with the symmetric polynomials in
the variables xψ9...,x%. In particular, the homogeneous degrees of
Gn are m, 2m , . . . , nm, as is well known.

For any λ: Im —> 3? with |A| =  «, let Gχ(q) denote the generating
function for the generalized exponents of~Gn corresponding to λ. If
x e Gn is an tf cycle of (? class ω = e2πi/ m, it is easy to check that
x is e27r/ / mw regular. Hence, Theorem 2.2 implies Gχ{q) = PχyX{q)
(mod 1  qmn). In fact, we claim that Gχ(q) agrees with the description
of P^x(q) in Theorem 5.1 without reduction mod 1   qmn\  i.e.,

TH EOREM 5.3. Gχ(q) = qr®Iχ(qm).

Proof, F rom (2.5) we have

for all x e Gn. Therefore, {qm)ήιGχ{q) is the (graded) multiplicity of
χ^ in the (graded) character ψn: Gn  > C[[^]] defined by

(5.2) Ψn(x) ι

Consider the special case in which χ^  is a pure wreath product of
the form φk I χλ (i.e., the character of a G Λ module of the form UI V,
where φk =  chart/  and χλ =  ch arF ) . Let F£(q) denote the graded
multiplicity of φk I χλ in ψn. We have

(5 3) i7/ / '~\  _ /~/c ̂  «.λ *.. \  _ * \  " Ψ ΪX \ XJ
det(l qx)'

where x indicates complex conjugation of the matrix x.

LEMMA 5.4. F£(q) = qkWsλ(l,q
m,q2m,...) =  qm{qm)nXh{Qm)

Proof. For each w e Sn, there are mn elements x e Gn whose
underlying Sn  image is w. The Cm  classes corresponding to each cycle
of w are independently and uniformly distributed on Cm among these
mn choices. Therefore, if w is of cycle type µ, Lemma 7.3 implies that
the contribution of these elements to (5.3) is of the form

1=1 7= 0
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However,

i Σ
since the inner product {φk, φr) of Cm characters vanishes unless k = r
mod m. Thus, (5.4) can be rewritten as

—}χ
λ{w)qkndεt{l qmw) \

if w is represented as a permutation matrix. Therefore, (5.3) becomes

F( a ) =  λa
kKq) nr ^  det(l  qmwY

wesn
 v * }

which is an 5^ character inner product. By comparison with (3.2), it
follows that

where Gχ(q) is the usual generating function for generalized exponents
of Sn. Apply Theorem 3.2. D

To complete the proof of Theorem 5.3, recall that the general irre 
ducible Gn  character is induced from one of the subgroups (?(„) (The 
orem 4.1). In particular, we note that

xλ  = (9° ιχλ°) x x (φm'x ιχλm~x) ΐ Gn.

Since ψn [ G^) =  Π/ lo1 Ψn,> a n application of Frobenius reciprocity
therefore yields

j m—\

™ >" i=0
By Lemma 5.4, it follows that

m \

/=0

Since Π/  sλι is the skew Schur function indexed by the diagram of A,
we may now deduce the desired result from Lemma 3.1. D

In view of (3.3) and the preceding remark, we have the identity

(5.6) Iχ{q) =  (q)n f j  ^Γ T T,
ι=0 λ'̂ q)

and hence, an explicit formula for the polynomials Gχ(q).
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For the hyperoctahedral group Bn = C2I Sn (i.e., m = 2), the
partition valued functions λ may be identified with ordered pairs of
partitions (λ,µ), and the polynomials G^(q) are the fake degrees
for the finite classical groups of type B. If we apply Theorem 5.3
and (5.6) to this case we obtain an explicit formula equivalent to
Lusztig's [L, (2.4)].

COROLLARY 5.5.

Gn

6. On reflection subgroups of CmlSn. Let δ: Cm I Sn —•  C* be the
one dimensional character defined so that for x e Cm iSn, δ(x) is the
product of the nonzero entries of the n x n matrix x. (As usual, the
nonzero entries are taken from the group of mth roots of unity.) For
any d\m, the kernel of δd forms a normal subgroup of index m/ d in
CmlSn. Throughout this section, m will be fixed. We will write Gn

for CmlSn and Gn(d) for kerδd . N ote that in case m =  2, Gn(l) may
be identified as the Weyl group Dn.

It is well known that as a matrix group, Gn(d) is generated by re 
flections acting (irreducibly, if m > 1) on Cn. In the classification of
finite reflection groups due to Shephard and Todd [ST], one finds that,
aside from the groups Gn(d) and Sn, only a finite number of other ir 
reducible reflection groups exist. Although Gn(d) is not a wreath prod 
uct, its irreducible representations still exhibit combinatorial structure,
and so one may expect that its cyclic and generalized exponents should
possess "natural" descriptions.

In Part B, we will derive explicit combinatorial interpretations for
the generalized exponents of Gn{d), as well as formulas for the asso 
ciated generating functions.

To describe the cyclic exponents of Gn(d) is more difficult in gen 
eral. Via standard techniques of Clifford Theory, one may obtain the
irreducible representations and characters of Gn(d) from those of Gn.
Through these techniques, one finds that the characters are described
most naturally in an indirect fashion via discrete Fourier transforms.
An outline that more fully explains this approach will be given in Part
A. (In the special case corresponding to the Weyl groups Dn, these
discrete Fourier transforms are the difference characters of Dn.)

The indirectness of this approach to the characters of Gn(d) forces
us to describe the cyclic exponents indirectly as well, and thus deviate
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from our original program. We therefore do not attempt to carry out
the techniques of Part A in their full generality. Instead, we restrict our
attention to the Weyl groups Dn (Part C). The cyclic exponents of these
groups have a level of complexity sufficient to convey the flavor of the
general case, but they are still simple enough to be comprehensible.

A. Clifford theory. Let H be a normal subgroup of a finite group G
such that G/ H is cyclic. Of course, the example we have in mind is
the case G =  Gn and H = Gn(d)9 but it will be convenient to begin in
this more general setting. Let C =  G/ H denote the (cyclic) group of
one dimensional (/  characters δ with ker£ D H. N ote that C acts on
(the isomorphism classes of) irreducible G modules via V \—•  δ ® V.
Two irreducible G modules are said to be associates if they appear in
the same C orbit.

Choose a fixed irreducible G module V, and let

denote the stabilizer of V. Let δ e C be a generator of Cγ. There must
exist linear transformations S e G L(F ) which explicitly demonstrate
the isomorphism V =  δ ® V\  i.e.,

(6.1) Sgv = δ(g)gSv

for all g € G, v G V. If \Cy\ = k, then δ is of order k, Sk commutes
with the action of G, and so Schur's Lemma implies that Sk is a scalar.
We will always assume S is normalized so that Sk =  1, and we call
S an associator for V. A further application of Schur's Lemma easily
shows that S is unique, aside from the fact that ωS, for any kth root
of unity ω, is also an associator for V.

Choose a fixed associator S for V, and let

V = Eo®Eϊ®  ®Ek_ ι

denote the eigenspace decomposition of S on V, where

(6.2) Ej = {veV:Sυ = ωjv}

and ω =  e2πι/ k. Since ker<5 3 H, (6.1) implies that each eigenspace is
an / /  module.

The following result summarizes the relationship between irreduc 
ible G modules and / /  modules. Since G/ H is assumed to be cyclic,
we may draw stronger conclusions than those that normally occur in
Clifford's Theorem (e.g. [CR, (11.1)]). Although these stronger con 
clusions are presumably a well known part of Clifford Theory, we have
included a proof since it is difficult to find in the literature.
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PROPOSITION 6.1. Let G, H and V be as above.
(a) G acts transitively on the eigenspaces Ej in (6.2).
(b) The Ej's are nonzero, inequivalent, irreducible H modules.
(c) Ej t G is the direct sum of the (distinct) associates ofV.

Proof, (a) This follows directly from (6.1).
(b) Since G acts transitively on the Ej% they must all be nonzero.

In particular, the / /  module structure of V has at least k irreducible
constituents. To prove that the E/ s are irreducible and inequivalent,
it therefore suffices to show \ \χ\ \ 2

H =  k, where χ =  ch a rF and || ||#
denotes the / /  character metric.

Since fc =  |CV|, it follows that V has \C\ / k distinct associates, and
each of these occur with multiplicity k among {ε ®  V: ε e C}. There 
fore,

(6.3)
εec

However, by the orthogonality of cyclic group characters,

εec 0 if gφH,

so we have

εec \G\ heH

U pon comparison with (6.3), we find \ \χ\ \ 2
H =  k.

(c) Frobenius reciprocity implies that Ej | G is a direct sum (possibly
with multiplicity) of irreducible G modules that include Ej as an / /  
submodule. We know that this list includes the \C\ / k associates of V,
since they are all identical as / /  modules. However,

ψ •  dim V =  \C\

so this list spans all of Ej \  G.

• j= dim(Ej1G),

π
REM ARK. AS a corollary to this result, we see that there is a one to 

one correspondence between the irreducible / /  characters and ordered
pairs (<f,έ) consisting of a C orbit (9 of irreducible G characters and
a character ε e C that stabilizes 0.
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Let χj denote the character of H on Ej. The discrete Fourier trans 
form (DFT) of χ =  char V with respect to S is the family of / /  class
functions Δ/ (Λ): H  * C* defined by

(6.4) Δ/(Λ) =  | κ
7=0

N ote that the Δ/ 's contain sufficient information to recover the χ/ s.
Specifically, we have

/ =0

by the orthogonality of cyclic group characters. In case the stabilizer
Cy is of order 2 (i.e., k =  2), we have Δ o =  χo + X\  and Δi is the
difference character. Δi = Xo — X\ .

The following result shows that to describe the D F T of a (/  character
X, it is sufficient to evaluate Δ/(Λ) for one element from each conjugacy
class of G in H (0 < /  < fc).

PROPOSITION 6.2. / / #  eG, heH, then A^ghg'1) = δi{g)Ai{h).

Proof. Let δ(g) = ωr. N ote that (6.1) implies gEj =  2s/ +Γ, and
hence

Therefore,
k \

j= 0
k \

7=0

In summary, to determine the irreducible characters of H from
those of G, it suffices to choose one irreducible (/  module V from each
C orbit, construct an associator S for V, and evaluate the D F T ΔZ (Λ) =
tτ(S ιh\ v) for one element from each G class in / / . This technique can
be carried out explicitly for the pair G = Gn, H = Gn(d); in §7B we
treat the case G = Bn, H = Dn in detail.

B. Generalized exponents. As in the introduction of §6, let δ(x)
denote the product of the nonzero entries of x e Gn c GL/ Z(C). Note
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that the character group C with respect to the normal subgroup Gn(d)
(cf. Part A) is in this case cyclic of order m/ d and generated by δd.
Recall (§5) that the irreducible Gn characters are indexed by partition 
valued functions λ: Im —•  iP with |λ| =  n. The action of C on irre 
ducible G modules therefore yields an action of C on the correspond 
ing indices L  If we regard λ as an m tuple (... ,λι,λ°) of partitions,
then the C orbit (9 of λ consists of the d fold cyclic shifts of λ. (We
choose to list the partitions λι in reverse order for reasons that will
become apparent later). The orbit (9 may be visualized as a necklace
of m/ d beads consisting of af tuples of partitions.

Let χ be an irreducible G w(rf) character, and let Gχ(q) denote the
usual generating function for the generalized /  exponents. According
to Proposition 6.1(c), there must be a C orbit (9 of irreducible Gn 
characters such that

(6.5)

The following result shows that Gχ(q) may be expressed in terms of
the generalized exponent polynomials Gχ(q) corresponding to the Gn 
characters indexed by λ e (9.

PROPOSITION 6.3. Ifχ is a Gn(d)~character associated with the orbit
(9, then

1 _ ndn

Proof. The reflection representation of Gn(d) on Cn is clearly a
restriction of the corresponding representation of Gn. The same is
true for the associated symmetric algebra S(Cn). If we identify S(Cn)
with C [xj, . . . ,xn], then the G Λ(rf) invariants may be identified as the
subalgebra generated by (x\   xn)

d and the elementary symmetric
polynomials in the variables x™,... 9x™. The homogeneous degrees
of Gn{d) are therefore m, 2 m , . . . , ( «  l)m, nd [ST]. Hence, we may
rewrite (2.5) in the form

where ψn is the graded G« character of S(Cn), as in (5.2). By Frobe 
nius reciprocity, (6.5) therefore implies

k\  ̂ r.)   ( ^( ^
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For each C orbit <9> let R#(q) denote the polynomial

where r(λ) is the statistic (5.1). Since Proposition 6.3 shows that Gχ

depends only on ff^  we may write G<?(q) as an unambiguous abbrevi 
ation for Gχ{q). Let {λ} denote the C orbit of λ. F rom Theorem 5.3
we may deduce

COROLLARY 6.4.

Since there is an explicit formula for Iχ(q) (viz., (5.6)), we now
have an explicit formula for G^(q). For the Weyl groups Dn (i.e.,
m =  2,d =  1), the C orbits consist of unordered pairs of partitions
{λ,µ} with |A| +  \µ\  =  n. The stabilizer of such an orbit is nontrivial
iff λ =  µ. If we specialize (5.6) and Corollary 6.4 to Dn, we obtain
a formula for the fake degrees for finite classical groups of type D
originally due to Lusztig [L, (2.4,5)].

COROLLARY 6.5. If\λ\  =  k, \µ\  =  n   k, then

  κλµq

where κλµ = 1/2 ifλ = µ; κλµ = \ ifλφ µ.

For any tableau T  of shape A, let Tj denote the restriction of T  to
the subdiagram of shape λj (0 < j < m), and identify T  with the
m tuple (... ,T\ , TQ). The group C clearly acts on the set of m tuples
of tableaux (of arbitrary shape) via d fold cyclic shifts; we will use
the notation {T} for the C orbit of Γ, and we will refer to {T} as a
tableau of shape {λ}.

In the following analysis, we will need to consider m tuples T  =
(... , T\ , TQ) of tableaux, possibly with repeated entries, in which any
given letter may appear in at most one component tableau. In that
case, there is a unique component Tk that contains the largest entry
of T. If k is minimal (i.e., the largest entry occurs as far as possible
to the right) among all candidates in the C orbit {Γ}, then T  is said
to be the canonical representative of {Γ}. For example, the tableau
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in Figure 4(c) is a canonical representative if d =  2 or 3, but not if
d=\ .

Let T  be a standard tableau of shape λ, and assume Γ is the canon 
ical representative of the orbit {Γ}. We write r{T} as an abbreviation
for r(λ). If j appears in a column to the right of j + 1, or in the same
column as j +  1 in the ra tuple Γ =  (... , Γ1? 7Q), then y is said to be
a descent in {Γ}. We use the notation £>{Γ} for the set of descents in
Γ, and the index of the orbit {T} is defined via

in d{Γ}=

We remark that if T  is embedded in Z 2 so that the columns of T
appear in the same order as the columns in (... , T\ , Γo), then these
descent sets and indices coincide with those of §3A. In the example
in Figure 4(c), we have D{T} =  {1,4,5,7,10}, ind{Γ} =  27, and
r{T} = 28, assuming d =  2 or 3.

TH EOREM 6.6. 77ze generalized exponents ofGn(d) corresponding to
{λ} are

r{Γ} +  m ind{Γ},
where {T} ranges over the standard tableaux of shape {λ}.

Proof. Let λ be an m tuple of partitions with \λ\  = n. It will be
convenient to regard the diagram Dχ as a subset of Z 3 ; i.e.,

Dχ = {(iJ,k): (i,j)eDλk, 0<k<m}.

We will use this version of Dχ as the domain for tableaux of shape λ.
In view of (5.5), we have

Gk

[ q ) n k= o

Therefore, (qm)~ ιGλ(q) may be interpreted as the generating func 
tion for tableaux T  of shape λ satisfying T(i9j9k) — k mod m and
T(i,j,k) > 0. As in the proof of Lemma 3.1, it will be necessary
to modify this interpretation slightly by using reverse tableaux. If we
apply this interpretation to Proposition 6.3, we discover that if & is
any C orbit of partitions, then

( 6  6 ) ( , . ) . , ( ,  ^



386 JOHN R. STEMBRIDGE

summed over all reverse tableaux {T} of shape 0 satisfying
(1) T(i,j,k) T(i'J',kf) =  k kf (modm),
(2) T(i,j9k) >  0 and T(i,j,k) =  k (mod d),

where | T\  denotes the sum of the entries of T. An example with m =
6, d =  2, and shape A =  (1,21,11,1,21,11) appears in Figure 4(a).

N ote that properties (1) and (2) are invariant under the action of
C, so they may be imposed on any member of the orbit {T} without
conflict. Henceforth, we will always assume that T  is chosen to be
the canonical representative of {T}. (Note that since we are using
reverse tableaux, the position of the numerically smallest entry of T
determines whether T  is canonical.) G iven such a tableau Γ, define a
new tableau t of the same shape by setting T(i,j,k) =  T(i,j,k)   k,
and observe that the entries of t are characterized by

(j) T(i,j\ k) =  f(i',f,k') (modm),
(2) t(i,j,k) >  0 and f(i,j,k) =  0 (mod d).

The weight of f is clearly \T\    r{T}.
Assuming T  is of shape λ, define a total order on the cells of Dχ as

follows:

III

where <£ denotes the following lexicographic order:
k >  k\  or

U , k ) < L U ' Λ ' ) i ff , , , , , . . ,
t / c =  fc' a n d 7 < 7 ' .

Use this total order to number the cells of Dλ from 1 to n, and thus
produce a standard tableau S of shape A. In Figures 4(a) 4(c) is an
illustration of the operations T * > t and f * + S. N ote that S is the
canonical representative of {S}.

Let αf denote the entry of Γ in the cell numbered /  by S. G iven
S and α, one may easily recover t (and hence, Γ), so the map T  ^
Γ » •  (5, a) is injective. For a fixed choice of S, the possible sequences
α that arise in this fashion are characterized by (cf. the proof of
Lemma 3.1):

(1) OL\ >   > an > 0,

(3) αi =  =  an (mod m), an =  0 (mod d).
Therefore, if we subtract m from α j , . . . ,α^ for each /c G  / ^ί^}, we
obtain a partition a* whose terms are characterized by (1) and (3),
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55 66 18 35 16 39 27 38
6 29 3 8

F IG U RE 4(a)

50 62 14 32 14 38 26 38
2 26 2 8

F IG U RE 4(b)

2 1 8 5 9 3 7 4
11 6 12 10

F IG U RE 4(C)

and whose weight satisfies

|α*| =  |α | — w i

Since the generating function for a* is (qm)~[{(l   qdn)~ ι, it follows
that for fixed S,

τ^.) 1? [Qm)n x{\    QdnY

Apply (6.6) to complete the proof. D

C. The cyclic exponents of Dn. According to Proposition 6.1, an
irreducible character χ^ λ^  of the hyperoctahedral group Bn =  Cι I Sn

is either an irreducible D rt character (the case λ Φ µ), or the sum of
two such characters (the case λ = µ). In the latter case, we will use
the notation {λ,λ}±  to index the two irreducible constituents, so that

This indexing scheme is slightly ill defined at present, since we have
made no attempt to distinguish between the two constituents. An
explicit choice will be made in §7B. G iven such a choice, let

denote the associated difference character. In Theorem 7.5, we show
that Δ ; is closely related to the symmetric group character χλ.

Since Dn is a subgroup of Btu it follows that the cyclic exponents
of Dn with respect to χ{λ4ί) may be obtained as mere special cases of
the results in tj5A (with m — 2). Therefore, to assemble a complete
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description of the cyclic exponents of Dn, we need only to determine
how to distribute the (known) eigenvalues of the 2?,, module indexed
by (λ,λ) between the two ZVmodules indexed by {λ,λ}± . In short, it
suffices to determine the polynomials

for each x eDn.
Henceforth, it will be more convenient to assume that |λ| =  n, so

that the indices {λ,λ}±  label representations of D2n. Likewise, we
insist that x eD2n.

To describe the QχfX% define a sequence of polynomials cn{q) via

(6.7) Cn{q) = {\

and extend the notation to partitions µ by defining

where m = [jUi,jί/2, ] (least common multiple). Recall (§3) that
Pχ,µ{Q) denotes the cyclic exponent polynomial for any w G  Sn of
cycle type µ with respect to the £ π module indexed by λ.

TH EOREM 6.7. Let \λ\  =  n, x G  D2n

(a) Qλ,χ{Q) — 0 unless every cycle ofx is of even length and C2 class
+  1.

(b) If x is a permutation matrix of cycle type 2µ, then

<2u(<7) =  cµ(q)Pλ,µ(q
2) (mod 1   qlm\

where 2m = [2µiy2µ2,... ] denotes the order ofx.

Proof, (a) N ote that Proposition 6.2 implies

for y G  B2n, x G  D2n. If the centralizer C# 2π(x) includes an element y
with δ(y) =   1 , it follows that Aλ = 0 on (x), and hence, Q^x(q) — 0.
Since Cβln{

χ) includes the cycles ofx, the existence of such y is clear
if any cycle of x is of C2 class — 1. If some cycle XQ is of odd length,
take y G  Cβ2n(x) to be the diagonal matrix which acts as  1 on the
domain of Xo and as 1 on the elements outside the domain of XQ
Thus (a) follows.

(b) Let x G  D2n be a permutation matrix of order 2m and cycle type
2µ. Set ω =  eπilm.
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LEMMA 6.8. Ifxj is a product of I disjoint cycles, then cµ{ω
j) =  2ι

if every cycle ofxj is of even length, otherwise, cµ(ω
j) = 0.

Proof. F rom the multiplicative definition of cµ, it is easy to reduce
to the case in which x is a 2n cycle. U nder this assumption, there are
/  =  (2n,j) cycles in xJ, and they are all of the same length, namely,
k = 2n/ (2n,j). If k is odd, then ωJ is a 2nth root of unity of odd
order, and the definition (6.7) shows cµ{ω

j) — 0 in that case. If k is
even, say k =  2r, we have

c (a) _ tihn _ Γ^hrV _ r(g)2r ll ,  d , IT,
Cn{q)   WTn   [ψTr\ ~ mrA (m od ι  q }

Since ωJ is a primitive 2rth root of unity, we have {q)2r \  =  2r and
(q2)r~\  = r at q = ωJ\  and therefore, cµ(ω

J) = 2ι. D
To complete the proof of (b), note that Proposition 1.1 shows that

it suffices to prove
(6.8) A\χJ) = cµ(ωJ)Pλ,µ(ω

2J)
for 0 < j < 2m. In case any cycle of xJ is of odd length, the proof
of (a) shows that Aλ(xJ) = 0, and Lemma 6.8 shows that cµ(ω

J) — 0,
so (6.8) is verified. In the remaining case, we may assume that xJ

is of cycle type 2u for some partition v. In that case, any w e Sn

of cycle type µ has the property that wJ is of cycle type v. Hence,
Pλ,µ(ω2j) =  Xλ(v), and to prove (6.8) reduces to verifying

Aλ(xj) = 2ί^χλ{y),
which is a consequence of Theorem 7.5. D

7. Appendix.
A. A Murnαghαn Nαkαyαmα rule for Gl Sn. In this section, we

prove the recurrence for evaluating characters of Gn = GlSn stated in
Theorem 4.3. As a first step, we generalize the branching rule (3.4).

LEMMA 7.1. Let λ: IG  > 9° and |λ| =  n. We have

χtίGrxGn r=ΣxίixχλJlί>
\ / A=r

s u m m e d o v e r µ : I G —•  &> w i t h µ C l

Proof. Let \µ\  = r, \ v\  = n — r, and let c(λ9µ,v) denote the multi 
plicity of /   in χ ^. From the definition of χ ^9 we have

c(λ,µ,v)=
θeiG
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where c(λθ,µθ,vΘ) denotes the multiplicity of (the symmetric group
character) χµθ in χχθlµ\  as defined in (3.5). We claim that c{λ,µ,u)
is also the multiplicity of χ  in the character (χ£ x /  ) | Gn induced
from Gr x Gn r. If so, then an application of Frobenius reciprocity
would yield

\ µ\ = r\ v\ = n r

=  Σ* * * 7 >
\ µ\ = r

and thus prove the lemma.
To prove the claim, we may suppose that

χϋ = c h a r t s I Vx) ® •  ® {Utl Vt)ϊGr],
χ^ = char[(t/ i \W λ) ® ® (Ut I Wt) T Gn r]

for suitable symmetric group modules V^ Wf (cf. (4.1)). Since outer
tensor products commute with induction [CR, (10.7)], we have

χϋχχu  = char[(U{ l(Vι®W ι))®...®(Utl (Vt ®  Wt))]Gr x Gn rl

Using the transitivity of induction [CR, (10.6)] and the fact that

for SV modules V and S^ r modules W  [M2, (6.8)], it follows that

(χ!Lχχ^Gn = ch2ir[{Uλl{Vλ®Wx] Snχ))® ^Utl{Vt®Wt] Snt))] Gnl

where rti =  \µθ\  + \vθ\  if θ =  char £//. Therefore, the multiplicity of χ 

where ( , •) denotes the inner product of symmetric group characters.
This multiplicity is indeed c(λ9µ,v), since (3.4) and Frobenius reci 
procity imply

(Xλ'Λxµβ xχu')ϊSnβ) = c(λΘ,µθ
9v

Θ). D

COROLLARY 7.2. Let A, v\  IG —•  «̂ , |A| =  «, \ v\  =  5,

summed over µ: I a  * & with v c /z c λ.
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Proof. By Lemma 7.1, we have

If we apply Lemma 7.1 to χ [Gs x Gr S, we obtain

XH Gs X Gr S X GH r =  £  Σ *" X * " X *"•
\ v\ = s \ µ\ = r

However, if we apply Lemma 7.1 to χ [Gs x Gn S, we find

χίϊGs X Gr s X Gn r = Σ * " X ( ^ " i ^ X G/i r

Compare the coefficients of χ . D

If ^ =  chart /  is a (/  character and χ = ch arF is an £„ character,
let θ I χ := char(C/  ι V) denote the corresponding Gn character. To
describe θ I χ directly in terms of θ and χ is an easy exercise in linear
algebra; one finds

L E M M A 7.3. If the cycles of x e Gn are ofG class g\ 9... ,gι and w
is the Sn image ofx, then

Proofs may be found in [JK, K].

LEMMA 7.4. Let x e Gn be an n cycle of G class g. We have
) = 0 unless λ/ µ is a skew hook of size n. In that case, if the

character of λ/ µ is θ, then

where r is the number of nonempty rows in the diagram of λ/ µ.

Proof. Recall that χ ^  is obtained via induction from a "Young"
subgroup (?(„). Using standard techniques for computing induced
characters (e.g., [CR, (10.3)], it follows that χ ^(x) = 0 unless some
(/ ^ conjugate o fx meets G(ny However, no such (proper) subgroup
includes an n cycle, so we only need to consider the case G^  =  Gn.
In that case, λ and µ must be identical in every component but one,
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say the # th, and we have χ ^ = θ I χ, where /  is the ^ character
indexed by λθ/ µθ.

Let w G  Sn be an n cycle. According to the Murnaghan Nakayama
rule [JK, 2.4], we have χ(w) = 0 unless λθ/ µθ is a skew hook, and
in that case, χ(w) — (  I ) ' " 1 , where r is the number of rows in the
diagram of λθ/ µθ. Apply Lemma 7.3. D

Finally, to prove Theorem 4.3, let x = X\  X\  be a factorization of
x e Gn into cycles of length βu... ,βι and G class g\ 9... ,gι If we
regard x as a member of the subgroup G ( ^ , repeated application of
Corollary 7.2 yields

summed over all ^ partitions (A': 0 < i < I) of λ/ ϊ/ . The values of
skew characters on the cycles X[ may be evaluated via Lemma 7.4,
thus yielding the description in Theorem 4.3.

B. The difference characters ofDn. Continuing the notation of §6C,
let λ be a partition of n, and let Aλ denote the difference character
corresponding to the pair of irreducible D2n constituents of the B2n 
module indexed by (A, λ). The objective of this section is to derive the
following explicit description of the ΔΛ's, thus providing a rectification
of Young's remarks in QSA V [Y].

TH EOREM 7.5. Let x e D2n.

(a) Aλ(x) =  0 unless every cycle ofx is of even length and ofC2 class
+  1.

(b) Ifx is a permutation matrix of cycle type 2µ, then

To describe a difference character Δ, it suffices to specify A(x) for
one element x e D2n from each 2?2« conjugacy class (Proposition 6.2).
Thus, the description of Aλ given above is indeed complete.

Our proof follows the program outlined in §6A. We first find a basis
for the B2n module indexed by (A, A), and construct an associator S
(cf. (6.1)). The difference character may then be obtained from a
straightforward trace calculation (cf. (6.4)). Using similar techniques
it is possible to show that the D F T's of the irreducible characters of
the reflection groups Gn(d) (G =  Cm) may be expressed in terms of
the character tables of the reflection groups Cm/ r I Sn/ r for r|(m, n).
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A basis for (λ,λ). Let V be an S^ module. Eventually we will take V
to be the irreducible module indexed by λ9 but this distinction will not
be significant until later. Regard V as a Bn  module via the obvious
homomorphism Bn —•  Sn, and use Vδ as an abbreviation for the Bn 
module δ ® F . (Recall that δ is the product of signs character from
§6C).

Regard Bn x Bn as the subgroup of B2n consisting of signed permu 
tations of {1, . . . ,n} and {n + 1, ... ,2n}.

A permutation t e Sιn whose one line notation t\  tιn obeys t\  <
•  < tn and tn+\  <   < tin will be called a tabloid, and we may
depict these permutations as 2 x n arrays:

(7.1) P
L ^ l ^ 2 hn

Let Γ denote the abstract (2^) dimensional vector space spanned by
tabloids. Since the tabloids form a set of coset representatives for
Bin/ Bn x β«5 we may identify the vector space structure of (V®  Vδ) |
Bm with T  ® F (8) F . To transport the 2?2>τmociule structure to T  ®
F ® F , choose a tabloid ί, let x G  ̂ 2,2, and suppose xί =  ^(xi,X2)?

where {x\ ,Xι) e Bn x Bn and ί' is the unique tabloid in the coset
xt(BnxBn). Via the standard construction of induced representations,
we may describe the action of x on T  ® F ® F as follows:

(7.2) x( ί ® i i ® ̂ 2) =  δ{xι)tl ® X\V\  ® ̂ 2^2 

In case F is the irreducible Sn  module indexed by λ, this construc 
tion yields the irreducible i^  m odule indexed by (λ9λ) as defined in
Theorem 4.1.

The associator. Let ί « •  f denote the involution on tabloids obtained
by swapping rows in (7.1), and define S e G L(Γ® F <g> V) as follows:

(7.3) ^ ( ί ® vi ® ̂ 2) =  ί ® t>2 ® ̂ i

N ote that f =  ts, where 5 is the involution (1, n+1)(2, n +  2) (n, 2π).

LEMMA 7.6. 5 /s α« associator for ( F <g> Vs)]Bιn.

Proof. Clearly 5 is an involution. To prove that the defining condi 
tion (6.1) is satisfied, first consider the action of the diagonal matrix
y =  d iag( l, . . . , 1,  1) e B2n on T  ® F ® F . If 2« occurs in row 1 of
ί, then (7.2) and (7.3) imply

Sy{t ®v\
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and if In occurs in row 2 of ί, then

Sy (t ® ΐ i i ®  V2) =  —ί <8> v2 ® ^ 1 .

Since the row of 2« changes under the operation t h > f, it follows that
(Sy)2 =   l (or equivalently, Sy =  —yS) on Γ®  V ® F , as desired.

Now consider the action of permutations x e S2/1 C #2/? on T® V®
F . In that case, note that xt =  t!{x\ ,X2) for some tabloid f, where
*i,2 € 5/1, and we have

Since xt = xts = ^(xi,x2)^ = ί^fe Ki) = ( O ' t e^ O ^ it follows that

and therefore 5JC =  xS on Γ ® F ®  V. Since 52« is generated by the
permutations x and the diagonal matrix y9 the lemma follows. D

We are now ready to give the

Proof of Theorem 7.5. Part (a) follows from Theorem 6.7(a), so we
need only to consider the case in which x e Dm is a permutation
matrix of cycle type 2µ. For convenience, we assume that the cycles
of x permute consecutive positions. For example, if µ =  (3,1), we

As discussed above, if we take V to be the irreducible £„ module
with character χλ, then (6.4) implies

To evaluate this trace, choose a tabloid t and a basis v\ 9V29... for V.
Let Pij(w) denote the matrix entries of the action of w e Sn on V
with respect to V\ ,V2, Since x is a pure permutation, we have
xt =  tf(x\ ,X2) for some tabloid t1 and some X\^ e Sn. Moreover, (7.2)
and (7.3) imply

Sx(t ®  Vi ®  Vj) =  ( ί ; )Λ ®  X2vj ®  1̂ v ι

Therefore, in order for the basis vector ί ® v, ® v7 to contribute to the
trace, we must necessarily have t =  (/ ')Λ; i e., ^ =  ί. Assuming t to be
such a tabloid, observe that the subspace Cί ® F ® F contributes

(7.4)

to the trace.
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To understand the condition f =  ί, suppose, for example, that
Xo =  (1, 2, . . . , 6) is a cycle of x. In that case, it is not hard to see
that t' = i forces {1,3, 5} and {2,4,6} to appear in opposite rows of
t. In particular, there are only two possible choices for the subtabloid
to occupied by {1, . . . ,6}: either t0 =  | 2 4 6 |, or ί0 =  | x 3 51 Further 
more, in these respective cases, we find either XQΪQ = ?o(l>(321)) or

In general, there are a total of 2£^  tabloids t such that t' = U and
each cycle of x, say (2a+1,... , 2b), contributes a cycle [b, b 1,..., α+
1) to either x{ or Jt2 Regardless of how the cycles are distributed to
Xi or x2, it follows that X\X2 G  S« is of cycle type µ. Hence, (7.4)
shows that each of the 2*M choices for t contributes χλ(µ) to Aλ(x)n

We remark that the vectors t ® Vi ® Vj ± t ® Vj ®  Vi are clearly
eigenvectors for 5, and thus provide explicit bases for the irreducible
Z>2^ πiodules indexed by {λ,λ}± .
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