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Abstract

We continue the study of freely braided elements of simply laced Coxeter groups, which we
introduced in a previous work. A known upper bound for the number of commutation classes of
reduced expressions for an element of a simply laced Coxeter group is shown to be achieved only
when the element is freely braided; this establishes the converse direction of a previous result. It is
also shown that a simply laced Coxeter group has finitely many freely braided elements if and only
if it has finitely many fully commutative elements.
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Introduction

In [5] we defined, for an arbitrary simply laced Coxeter group, a subset of “freely
braided elements”. Such elements include the fully commutative elements of Stembridge
[8] as a particular case. The idea behihd tefinition is that although it may be necessary
to use long braid relations in order to pass between two reduced expressions for a freely
braided element, the necessary long braid relations in a certain sense do not interfere with
one another.

Every reduced expression for a Coxeter group elemet¢termines a total ordering of
the set of positive roots made negativelyThese totally ordered sets are known as “root
sequences”. If a root sequence for an elemeif a simply laced Coxeter group contains
a consecutive subsequence of the farpa + 8, 8, then we refer to the set of these roots

* Corresponding author.
E-mail addressesmg@euclid.colorado.edu (R.M. Green), losonczy@e-math.ams.org (J. Losonczy).

0196-8858/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2003.09.003



R.M. Green, J. Losonczy / Advances in Applied Mathematics 33 (2004) 26—39 27

as a “contractible inversion triple” ab. A group element is said to be “freely braided” if
its contractible inversion triples are pairwise disjoint.

Let N(w) denote the number of contractible inversion triplesuoflt was shown in
[5] that the number of commutation classes (short braid equivalence classes of reduced
expressions) oy is bounded above by*?"), and that this bound is achievedifis freely
braided. In this paper, we prove that the bound can be achieved only for freely buaided
(Theorem 2.2.1). This was previously known in the typsetting [5, Theorem 5.2.1], but
the argument given here has the advantddeeing conceptual as well as more general.

The second main result of this paper is a classification of the simply laced Coxeter
groups having only finitely many freely braided elements. Note that it is possible for such
a group to be infinite. It turns out (see the discussion following Theorem 3.3.3) that this
guestion has the same answer as a classification question previously answered by others
[2,4,8]: we will show in Theeem 3.3.3 that a simply laced Coxeter group has finitely many
freely braided elements if and only if it hfimitely many fully commutative elements. One
implication here is easy, but the converse requires some effort. Our proof of Theorem 3.3.3
does not rely on a case analysis based on any classification result.

1. Preliminaries
1.1. Basic terminology and notation

Let W be a simply laced Coxeter group with distinguished generatesys;: i € I}
and Coxeter matrikm;;); jer. For the basic facts concerning Coxeter groups, see [1] or [6].
Denote byl * the free monoid od. We call the elements dflettersand those of * words
Thelengthof a word is the number of factors required to write the word as a product of
letters. Letp : I* — W be the surjective morphism of monoid structures satisfyitg =
s; foralli e I. Awordi € I'* is said torepresentits imagew = ¢ (i) € W; furthermore,
if the length ofi is minimal among the lengths of all the words that represgrthen we
call i areduced expressiofor w. Thelengthof w, denoted by (w), is then equal to the
length ofi.

Let V be a vector space over the field of real numbers with basisi € 7}, and
denote byB the Coxeter formon V associated tdV. This is the symmetric bilinear form
satisfyingB(«;, ;) = —cos(w/m;;) for all i, j € 1. We viewV as the underlying space
of a reflection representation 8f, determined by the equalitiesy; = o; — 2B(«, o;)a;
forall i, j € I. The Coxeter form is preserved By relative to this representation.

Denote by® theroot systenof W, i.e., the setwa;: w € W andi € I}. Let®* be the
setofallg € @ such thap is expressible as a linear combination of thevith nonnegative
coefficients, and lep~ = —® ™. We have® = &+ U @~ (disjoint). The elements ap™
(respectively@ ) are calledpositive(respectivelynegativé roots. Theay; are also referred
to assimpleroots. We define thkeightof any rootg to be the sum of the coefficients used
to expresg as a linear combination of the simple roots.

Associated to each € W is theinversion set®(w) = @+ Nw=1(&7). It hast(w)
elements and determines uniquely. Given any reduced expressiai, - --i, for w,
we have®(w) = {r1,r2,...,r,}, Wherery = o, andr; = s;, -+ -8, (@i, _,.,) for all
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[ €{2,...,n}. Form the sequenceé= (r1,r2,...,r,). We call 7 the root sequencef
i1i2---iy, Or @ root sequenc®r w. Notice that any initial segment of a root sequence
is also a root sequence for some elemeriof

Letw € W. Any subset of® (w) of the form{w, 8, @ + 8} will be called aninversion
triple of w. We say that an inversion triplé of w is contractibleif there is a root sequence
for w in which the elements of appear consecutively (in some order). The number of
contractible inversion triples ab will be denoted byN (w). If the contractible inversion
triples ofw are pairwise disjoint, thew is said to bdreely braided

1.2. Braid moves

Given anyi, j € I and any nonnegative integer we write (i, j), for the lengthn
word iji--- € I*. Leti,j € I* and leti, j € I with m;; # 1. We call the substitution
i@, Imy;] = 1(j, D)m ;] @braid move qualifying it shortor longaccording as:;; equals 2
or 3.

Letw € W. A well-known result of Matsumoto [7] and Tits [9] states that any reduced
expression forw can be transformed into any other by applying a (possibly empty)
sequence of braid moves.

We say that two words areommutation equivalent one can be transformed into
the other by a sequence of short braid moves. The set of words that are commutation
equivalent to a given word is called tttemmmutation clas®f that word. If the set of
reduced expressions for an elemant W forms a single commutation class, then we
call w fully commutativefollowing [8, 81].

Applying a braid relation to a reduced expression corresponds to applying a permutation
to the root sequence of that reduced expmsst he following proposition makes this more
precise.

Proposition 1.2.1[5, Proposition 3.1.1JLetw € W, leti,j € I'* and leti, j, k € I. Denote
the length of byn.

(a) Assume thaitijj is a reduced expression far, and letr = (r;) be the associated root
sequence.

(i) Supposen;; = 2, so thatijij is also a reduced expression far. Then the root
sequencé’ ofijij can be obtained frorf by interchanging,+1 andr, 12, which
are mutually orthogonal relative t8.

(i) If r,41 andr,o are orthogonal, them:;; = 2.

(b) Assume thatijkj is a reduced expression fay, and letr = (r;) be the associated
root sequence.

(i) Supposeé: =i, so thatm;; = 3 andijijj is also a reduced expression far.
Then the root sequenééofijijj can be obtained from by interchanging;,+1
andry,4+3. Furthermore, we have, 11 + r,+3 = rp42.

(i) If ryp1 +rap3 =ruq2, thenk =i # j andm;; = 3.

Let7 andi’ be as in part (a)(i) (respectively, pdiod(i)) of Proposition 1.2.1. Employing
again the terminology used above for words, we say that the passagetwams obtained
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by ashort braid movdrespectivelylong braid move Two root sequences are said to be
commutation equivalerit one can be transformed into the other by applying a sequence
of short braid moves. The set of root sequences that are commutation equivalent to a given
root sequence is called tikemmutation clasef that root sequence.

Let w € W. The recipe for associating a root sequence to a reduced expression defines
a bijection from the set of reduced expressionsuioro the set of root sequences for,
and by Proposition 1.2.1, this bijection israpatible with the application of both long
and short braid moves. Hence, by the restiMatsumoto and Tits cited above, any root
sequence fow can be transformed into any other by applying a sequence of long and short
braid moves. It also follows that there is a natural bijection between the set of commutation
classes of reduced expressionsifoand the set of commutation classes of root sequences
for w.

A subwordof a wordiziz - - - i, (achi; € I) is any word of the formi,i, 1 - - - iy, where
1<p<g<n.

Proposition 1.2.2. Letw € W. The following are equivalent

() w is fully commutative.
(i) w has no inversion triples.
(iif) w has no contractible inversion triples.
(iv) No reduced expression far contains a subword of the foriyii, wherei, j € I.

Proof.

(i) = (ii). This is the implication (a}= (c) of [3, Theorem 2.4].

(i) = (iii). This is immediate from the definitions.

(i) = (iv). If w has a reduced expression with a subword of the fofin then
Proposition 1.2.1(b)(i) shows that has a contractible inversion triple.

(iv) = (i). If w is not fully commutative, then there exists a pair of commutation
inequivalent reduced expressions for It follows by the result of Matsumoto and Tits
mentioned above that has a reduced expression to which a braid move can be applied.
Thus,w does not satisfy (iv). O

2. Freely braided elements and commutation classes
2.1. The magF,

Let w € W. Fix an arbitrary antisymmetric relatior on @ (w) with the property that
any two roots in® (w) are comparable relative t8. Let C(w) andZ(w) denote the set of
commutation classes of root sequencesuiceind the set of contractible inversion triples
of w, respectively. We define a map

F, :C(w) — {0, 1}
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depending orx, as follows. IfZ(w) is empty, the{0, 1} contains just the empty map,
and the set(w) is also a singleton by Proposition212. Thus, in this situationt, is
uniquely determined. Suppose thatw) is nonempty. LetC € C(w) and let<¢ be the
partial ordering ofp (w) obtained by taking the transitive closure of the following relations:
a < B whenever lies to the left of 8 in some root sequence from and B(«, 8) # 0.
Note that< ¢ is well-defined by [5, Proposition 3.1.5]. Given afy, 8, « + B8} € Z(w),

we defineF,, (C)({«, B, @ + B}) to be 0 ifa and B are in the same relative order with
respect to<¢ and=, and otherwise we defing, (C)({«, 8, « + B}) to be 1.

The mapF,, is injective [5, Theorem 4.1.1].

It will be convenient to have the following terminology when determining the
surjectivity, or otherwise, of,,. Letw € W and let7 be a subset df (w). We say that,
separated if every map fromZ to {0, 1} is the restriction of some element Bf, (C(w)).
Clearly, if Fy, fails to separate some nonempty subsef@f), thenF,, is not surjective.

2.2. First main result

It was shown in [5, Corollaries 4.1.2, 4.2.4] that eveoye W has at most 2
commutation classes, with equality.f is freely braided. The following theorem shows
that equality is achieved only ib is freely braided. For the special case whé@éres of
type A, this was already done in [5, Theorem 5.2.1] using an ad hoc argument.

Theorem 2.2.1. If w € W has2V®) commutation classes, thenis freely braided.

Proof. Let w be a non-freely-braided element. SinEg is injective, it suffices to prove
that F,, is not surjective. Letr be a root belonging to at least two contractible inversion
triples ofw, and assume that the heightoofs maximal with respect to this property. LBt
andT’ be distinct contractible inversion triples of containinge. Note thatlT N 7’| =1

(this follows easily from [5, Remark 2.2.2] and the contractibility of the triples). By
symmetry, there are three cases to consider.

Cael. T ={a,B,a+BandT’ ={a,y,a + y}.
By [5, Remark 2.2.2] and the contractibility @f, w has a root sequence of the form
.o, a+B,8,...,0+Y,...,¥,...)
or
GC.o,¥Ysee,aty,...,,a+6,8,...).
We assume the existence of a sequence of the former type, the argument for the latter
being similar. By our choice at, the rootsx + 8 anda + y cannot belong to the same

contractible inversion triple ab. Suppose that + g is not orthogonal tec + y. Then, by
[5, Proposition 3.2.2]¢ + B lies to the left ofe + y in every root sequence far, and so
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it is impossible forx to be at the same time to the left@H 8 and to the right ot + y .
Thus, F,, does not separatd@’, T'}.

Suppose instead that+ 8 is orthogonal tax 4+ y. Thena + 8 andy are not mutually
orthogonal, since: + 8 is not orthogonal te:. Furthermoreg + 8 andy cannot belong
to the same contractible inversion triple of by our choice ofx. It follows (again by
[5, Proposition 3.2.2]) that + 8 lies to the left ofy in every root sequence far. This
means that in any root sequence forin which « lies to the left ofa + 8, the rooty
necessarily lies to the right of + y (otherwise,y lies to the left ofe + y, which must
then be to the left of, which in turn is to the left ot + 8, a contradiction). AgainF,,
does not separatd, T'}.

Case2. T ={a, B, 0 — B}andT’' ={a,y,a — y}.
Here, we may assume without loss of generality thditas a root sequence of the form

..., ., Ba,a—8,...,0—y,...).

Note thaty cannot be orthogonal to boh anda — 8, or it would be orthogonal to
their sum. We may assume thais not orthogonal tg. If no contractible inversion triple
of w contains bothy andg, theny lies to the left of8 in every root sequence far, and
consequently there is no root sequenceufian which g lies to the left ofe andy lies to
the right ofa. It follows that F,, does not separatd’, T'}.

Suppose instead that there is a contractible inversion tfipleof w that contains
y and 8. We claim thatF,, does not separatel’, T’, T"}. To see this, observe that
if C is a commutation class relative to whighlies to the left of 8 (this determines
F,(C)(T")), and B lies to the left ofa (this determined,, (C)(T)), theny lies to the
left of o (so thatF,, (C)(T’) is also determined). (These conditions are well-defined by
[5, Proposition 3.1.5].)

Cae3. T ={a,B,a—B}andT’ ={a, y,a + y}.
In this situationw has a root sequence of the form

(., B,a—PB,...,a+y,....,v,...)

or

GC.o,¥Ysee,at+y,... . Ba,a—B,...).

We deal with the former sequence, the analysis of the latter being similar.

Note thate + y cannot be orthogonal to bothanda — 8, or it would be orthogonal to
their sum. We may assume that- y is not orthogonal t@. By our choice ofy, the roots
a + y andB cannot belong to the same contractible inversion triple ofience 8 lies to
the left ofa + y in every root sequence faw. It follows that there is no root sequence for
w in which « lies to the right ofx 4+ y andg lies to the right ofe. This means thaf,
does not separatd, T'}.
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We conclude thaf, is not surjective. O

Corollary 2.2.2. Everyw € W has at mos2¥®) commutation classes, with equality if
and only ifw is freely braided.

3. Freebraidedness and full commutativity

The goal of this section, achieved by Theorem 3.3.3, is to provéithas finitely many
freely braided elements if and only if it hiaitely many fully commutative elements.

3.1. Reduced expressions for freely braided elements

For the purposes of the proof of Theorem 3.3.3, we wish to have a clearer picture of the
nature of reduced expressions for freely braided elements.

Definition 3.1.1. Leti be a word in/* and suppose thatan be written aggbjuibous - - -
b,u,, where eachh; is of the formiji for somei, j € I with m;; = 3. Then we call
b1, bo, ..., b, abraid sequencéor i. If, furthermore|i is reduced and = ¢(i) is freely
braided, then we say thats contractedprovided there exists a braid sequenceifatith
p = N(w) terms.

Definition 3.1.2. Leti € I*. A wordj € I'* is said to becloseto i if there is a (possibly
empty) braid sequende, b, ..., b, for i such thaf is the word obtained by applying
a long braid move to each of thg. We also say that is close toi via the sequence
b1, b2, ..., bp.

Note that if two words are close to one anatttben they represent the same element
of W. Note also that any expression that is close to a contracted reduced expression is itself
contracted.

We say that, j € I arem-commutingor simplycommutingif m;; # 3.

Proposition 3.1.3. Letw € W be freely braided.

(i) There exists a contracted reduced expressimn w.
(i) The reduced expressions closei tavhich are also contracted reduced expressions,
form an irredundantly described set of commutation class representatives for
(iii) Any contracted reduced expression forhas a unigue braid sequence wit(w)
terms.

Proof. By [5, Theorem 4.2.3], there is a root sequemctr w such that the roots in
any given contractible inversion triple af appear consecutively in. Part (i) follows

by applying Proposition 1.2.1(b)(ii): takieto be the reduced expression corresponding
to 7, and note that th&/ (w) contractible inversion triples correspond to a braid sequence
for i with N(w) terms. In view of Proposition 1.2.1(b)(i), the expressiomor any
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contracted reduced expression foy has at most one braid sequence witkw) terms.
This proves (iii).

If i’,i” € I* are distinct and close tg theni’ is not commutation equivalent i6 (to
see this, observe that the sequence of occurrences of any pair ef4sommuting letters
in a word is an invariant of the commutation class of that word). Therefore, since there
are 2™ expressions close 1o and sincew has exactly 2™ commutation classes (by
Corollary 2.2.2), part (i) is proved. O

Remark 3.1.4. Letw € W. From the proof of Proposition 3.1.3(ii), we see that if a reduced
expression forw has a braid sequence withterms, thenw has at least 2 commutation
classes.

Definition 3.1.5. Let i be a contracted reduced expressior a freely braided element
w € W, and write

i =u1buzb2 - Uy () BN (W) A,

whereby, by, ..., by is the unique braid sequence fawith N (w) terms. If N (w) > O,
then we defined (i) = D(i) to be the word i * obtained froni by deleting the rightmost
letter in by (). We do not defineD(i) if N(w) = 0. By induction, we writeD" (i) for
D(D"1(i)) if n > 1 and the composition is defined. We agree thiti) =i, regardless
of the value ofNV (w).

Our strategy for the proof of Theorem 3.3.3 will be to argue thati#f a contracted
reduced expression for a freely braided element W, then DY®™) (i) is a well-
defined reduced expression for some fully commutative element. This will require several
intermediate steps. One of these is the following technical lemma.

Lemma 3.1.6. Maintain the notation of Definitio®.1.5 Suppose thab(i) is a reduced
expression for a freely braided elemewt € W with N(w’) = N(w) — 1. Then any
expression close t® (i) is of the formD(j), wherej is a reduced expression far that is
close toi via a braid sequence not involvitmgy ) .

Proof. The hypotheses oD (i) imply thatitis a contracted reduced expressionigrand
thatby, bo, ..., byu)—1 is @ braid sequence fap(i) with N(w’) terms. The conclusion
follows. O

3.2. Freely braided elements and testatistic

The following lemma describes what happens when one goes up in the weak Bruhat
order from a freely braided element.

Lemma 3.2.1. Suppose thatv € W is freely braided, and that(ws;) > £(w) for some
i € I. As usual, we denote the simple root correspondingpo; .
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(a) Assume thak; does not lie in any contractible inversion triple of; .
(i) The roots occurring before; in any root sequence favs; are orthogonal tay; .
(i) The contractible inversion triples abs; are precisely those of the form(7),
whereT is a contractible inversion triple ab.
(iii) The elements; is freely braided anaV (ws;) = N (w).
(b) Assume that; lies in some contractible inversion triple afs;.
(i) There is a reduced expressiotior w of the formuijv, wherej € I does not
commute withi and where each letter m commutes with.
(i) Any reduced expression far that is commutation equivalent to the reduced
expression in (i) must be of the formi'ivyjv,, where each letter irvy and
each letter invo commutes with.

Note. We do not require above thats; be freely braided.

Proof. We first prove (a). Since there is a reduced expressiowfpin which s; appears

last, there is a root sequenectr ws; in whiche; is the first root. Lef’ be an arbitrary root
sequence fows;. By the discussion following Proposition 1.2r1,may be obtained from

r by applying a sequence of braid moves. Since none of these braid moves can be a long
braid move involvingy;, we find that all the roots occurring befaxein 7’ are orthogonal

to «;. This proves (i).

Suppose thal is a contractible inversion triple af, and letrg be a root sequence for
w in which the elements of appear consecutively. Since;, s; (fp)) is a root sequence
for ws; (recall the definition of root sequence in Section 1.1), it follows théf) is a
contractible inversion triple als; .

Conversely, suppose that is a contractible inversion triple abs;, and letr; be a root
sequence fows; in which the elements df’ appear consecutively. By hypothesisdoes
not appear irl”’, and by (i), the elements appearing befayen 1 are orthogonal tey;.
Hence, we may apply short braid moves if necessary to obtain a root seqyeocevs;
in which «; appears first and in which the elementJ6fstill appear consecutively. Now,
ry is of the form(a;, s; (7])), wherer] is a root sequence fav in which the elements of
s; (T") occur consecutively. This proves (ii).

By (ii), we haveN (ws;) = N(w). Leti2 be a root sequence far of the form specified
in [5, Theorem 4.2.3]. Using (ii) again, we see that the contractible inversion triples of
ws;, the roots in each of which appear consecutively in the root sequence(r2)), are
pairwise disjoint. Henceys; is freely braided, and (iii) is proved.

We turn to (b). Letr be a root sequence fars; in which «; appears first, and consider
a sequence of braid moves of minimal length subject to the condition that applying the
sequence t@ results in a root sequencé in which the elements of some contractible
inversion triple containing; appear consecutively. Denote BHythe contractible inversion
triple that containsy; and is consecutive in’. By the minimality assumption, none of
the braid moves in the above sequence is a long braid move invalyingence, every
root occurring before; in 7’ is orthogonal tax;, and we may therefore apply a sequence
of short braid moves t@’ to obtain a root sequend€ in which «; appears first and in
which the other elements @f appear consecutively. By Proposition 1.2.1, the sequ&hce
corresponds to a reduced expressiondey of the formuijvi, where all of the letters in
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v commute withi. Deleting the rightmost, we obtain a reduced expression forof the
required form, thus proving (i).

To prove (ii), we note that the reduced expression obtained in (i) is of the stated form,
takingu’ = u, v1 = ¥ andvy = v. The result follows, once we observe that applying a short
braid move to a reduced expression of the form given in (ii) produces another expression
of the same form. O

The next result describes what happens when one goes down in the weak Bruhat order
from a freely braided element.

Lemma 3.2.2. Suppose thab € W is freely braided and thate I satisfied (ws;) < £(w).
Thenws; is freely braided, and we have

N(ws;) = { N(w) —1 if o; liesin a contractible inversion triple ab,

! N(w) otherwise.
Proof. If 7 is a root sequence fars;, then(w;, s; (7)) is a root sequence fav. Therefore,
every contractible inversion triplE of ws; yields a contractible inversion tripke(7') of w.
This givesN (w) > N(ws;). The inequality is strict iy; lies in a contractible inversion
triple of w.

By the Exchange Condition for Qeter groups (see [6, §85.8])y has a reduced
expression ending withi, and by Proposition 3.1.3(ii), there is a contracted reduced
expressiony for w that is commutation equivalent o Write j = vi1ivo, where each
letter invo commutes withi. Suppose thak; lies in a contractible inversion triple af.
Then N(ws;) < N(w) — 1 by the first paragraph. On the other hand, it is clear that
V1Vo, a reduced expression fars;, has a braid sequence witti(w) — 1 terms; hence,
N(ws;) =2 N(w) — 1 by Proposition 1.2.1(b)(i). Further, by Remark 3.1u4; has at
least 2'™s) commutation classes. It now follows from Corollary 2.2.2 that is freely
braided.

Suppose instead that does not belong to a contractible inversion triplewfThen, by
Proposition 1.2.1(b)(in1v2 has a braid sequence wit(w) terms. It follows by the same
proposition together with the first paragraph thatws;) = N (w). As above, we find that
ws; has at least®™s) commutation classes, and so is freely braided.

Remark 3.2.3. If w € W is freely braided and(ws;) > ¢(w) with ws; non-freely-braided,
it may happen tha¥ (ws;) > N(w) + 1. For example, iW is of type Az andw = s2s15352
(using the obvious indexing), thevi(w) = 0 but N (ws3) = 2.
3.3. Groups with finitely many freely braided elements

The following lemma is a crucial ingredient in the proof of Theorem 3.3.3.
Lemma 3.3.1. Leti be a contracted reduced expression for a freely braided elementv

with N(w) > 0. ThenD(i) is a contracted reduced expression for a freely braided element
w’ with N(w') = N(w) — 1.
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Proof. We start by writing

i =C1b1Cob2 - - - Cy ()P () T,

whereby, b, ..., by is the unique braid sequence fowith N (w) terms. Leti, be
the expression obtained fronby deleting fromq all but its firstg letters. We thus have
i =i;, wherel is the length ofg. If 7 is the root sequence of then the first roots in7
are not involved in any contractible inversion triple ©f and it follows from repeated
applications of Lemma 3.2.2 that for eaghthe reduced expressionrepresents a freely
braided elemeng, with N(y,) = N(w). Moreover, ifg > 0, then the first root in the root
sequence af, does not lie in any contractible inversion tripleof.

We will prove by induction ory that D(i,) is a reduced expression for a freely braided
elementw, with N(w,) = N(w) — 1. (These properties imply thd(i,) is contracted.)
Denote the letter that is deleted frarto form D(i) by ;.

Basecase (¢ = 0). Inthis casep(ip) is obtained fronig by removing the last lettey.. Itis
clear thatD(ip) is a reduced expression for some group elernagptvhich is freely braided
by Lemma 3.2.2. The first three roots in the root sequende cdmprise a contractible
inversion triple containing ;. Hence, by Lemma 3.2.2 agaiN(wo) = N (yo) — 1, and the
latter equalsV(w) — 1 by the first paragraph.

Inductive step (proof thatD(i,) is reduced. Suppose that the statement is true forgall
with0< g <k <l.Letq =k +1, and leti be the(k 4 1)st factor ofg. By the inductive
hypothesisD(iy) is a contracted reduced expression for a freely braided elemewith
N(wg) = N(w) — 1. Assume toward a contradiction thati,1) is not reduced. Then by
the Exchange Condition for Coxeter groups, there is a reduced exprédsiom; ending
in i. According to Proposition 3.1.3(ii), thei® a unique contracted reduced expression
for wy that is both close t®(i;) and commutation equivalent to We may write

4 Er i
I"=pic,

where all of the letters in” commute withi.

By Lemma 3.1.6i” must be of the fornD(j), wherej is close toi;. The expression
is thus obtainable frort by inserting the lettej at some point into the word. Sinég, 1
is reduced, this insertion must take place to the right of the indicated occurrenieitf
Thereforej i, which is a reduced expression fgy; 1, is of the form

p”ic] jcyi,

where each letter in] and each letter in; commutes with. Applying short braid moves
if necessary, we obtain

A

P/
p Cq1jiCy,

and it follows from Proposition 1.2.1 ()&t the first root in the root sequencg dbelongs
to a contractible inversion triple. Noy,(respectivelyj i) is a reduced expression fog
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(respectivelyyr11), andN (yx) = N (yk+1) = N (w). This contradicts Lemma 3.2.2, taking

W = Yk+1-
We conclude thaD(ix+1) is reduced.

Inductive step (proof thatw, is freely braided andv(w,) = N(w) — 1). By the above,
we havewy 11 = wgs; With £(wgs;) > £(wg). If @; does not lie in any contractible inversion
triple of wys;, then the inductive step follows from Lemma 3.2.1(a)(iii) (with playing
the role ofw). Assume instead that we are in case (b) of Lemma 3.2.1, which is the only
alternative.

By Lemma 3.2.1(b)(i), the element; has a reduced expression of the fomn'v,
wherei’ € I does not commute with and every letter irv commutes withi. Recall that
D(iy) is contracted by the inductive hypotheditence, by Proposition 3.1.3(ii), there is
a contracted reduced expressinfor wy that is both close td(ix) and commutation
equivalent touii’v. According to Lemma 3.2.1(b)(ii), we hawdy = u’iv1i'vo, where
every letter inv1 and every letter irv, commutes withi. Becausely is close toD(iy)
andN (wi) = N(yx) — 1, Lemma 3.1.6 implies thal; is of the formD(i} ), wherei) is a
reduced expression foy. that is close ta; by a sequence of braid relations not involving
by ). There is no loss in generality in assuming th&s equal ta;, so we will do this in
order to make the arguments clearer.

Let dr1 = dri = U'ivii'vai. Sinced; = D(ix), we havedii1 = D(ix+1). Hence,
by appropriately inserting/ in dyy1, we obtainiy,1. The insertion must take place
immediately to the right of a subword af, 1 of the form j;’, wherej’ € I does not
commute withj.

We know from the first paragraph of the proof thatdoes not lie in a contractible
inversion triple ofyx+1. The only way this can happen is if the letters inserted indy11
somewhere between the two indicated occurrencésarfd if j does not commute with
Since the letter sitting two places to the left of the insertion site is also an occurrepgce of
the latter occurrence gf must either occur to the left of éheftmost indicated occurrence
of i in dx11, or must be the indicated occurrence oin di1. We consider each of these
two cases in turn.

In the first casei;1 can be written as

u” jijvii'vai,

wherev; andv; are as before and’j = u’. Applying a long braid move, we obtain the
following reduced expression fof41:

u”ijivii'vai.

This contradicts the fact (mentioned in the first paragraph of the proofythatis freely
braided, because Proposition 1.2.1 can now be used to show that the middle of the three
indicated occurrences af corresponds to a root that lies in two different contractible
inversion triples.

In the second casé,= j andi;+1 can be written as

u'ivajj'jvai,
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wherev; is as above ang'v, = vz, meaning thai commutes with;". Applying a long
braid move and commutations, we obtain

u'vaij’jj'ivs.

This again leads to a contradiatibecause the indicated occurrencg abrresponds to a
root that belongs to two different contractible inversion triplesafs .

We have completed the inductive step by showing that case (b) of Lemma 3.2.1 cannot
occur. O

Corollary 3.3.2. Leti be a contracted reduced expression for a freely braided element
w € W, and maintain the notation of Definitidh1.5 so that

i =u1buzb2 - - - Un(w) DN (w) Q.

Then the expression obtained by omitting the rightmost letter in each of the tyoisla
reduced expression for a fully commutative element.

Proof. By applying Lemma 3.3.1N(w) times, we find thatD™®) (i), which is the
expression described in the conclusion, is a reduced expression for a freely braided element
w’ with N(w") = 0. By Proposition 1.2.2y" is fully commutative. O

Theorem 3.3.3. A simply laced Coxeter grouly has finitely many freely braided elements
if and only if it has finitely many fully commutative elements.

Proof. By Proposition 1.2.2,ay fully commutativew € W satisfiesN (w) =0, and so is

freely braided for vacuous reasons. This proves the “only if” part of the theorem.
Conversely, suppose tha¥ has finitely many fully commutative elements. By

Corollary 3.3.2, there is a map from the set of contracted reduced expressions for freely

braided elements di to the set of reduced expressidos fully commutative elements

of W, given by

i > DNOO) ),

Any element in the fibre oveb™ @) (i) can be recovered from¥@®) (i) by making
appropriate insertions of generators after certain subwords of theifgwherei, j € 1

are noncommuting. Hence, the fibres of the above map are all finite. Since there are
finitely many fully commutatie elements and each of tleehas finitely many reduced
expressions, there are finitely many fibres. It follows tHathas finitely many freely
braided elements. O

Independently of one another, Graham [4] and Stembridge [8] have classified the
Coxeter groups with finitely many fully commutative elements. The classification has also
been worked out in the simply laced case BnH2]. It turns out that a simply laced
Coxeter group has finitely many fully commtitee elements if and only if each connected
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component of its Coxeter graph is of typsg,, D, or E, for arbitraryn. In particular,
Coxeter groups of typ&, for n > 8 have finitely many fully commutative elements,
although the groups are infinite. This classification carries over for freely braided elements,
by the above theorem.
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