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Abstract

We continue the study of freely braided elements of simply laced Coxeter groups, whi
introduced in a previous work. A known upper bound for the number of commutation clas
reduced expressions for an element of a simply laced Coxeter group is shown to be achiev
when the element is freely braided; this establishes the converse direction of a previous res
also shown that a simply laced Coxeter group has finitely many freely braided elements if an
if it has finitely many fully commutative elements.
 2003 Elsevier Inc. All rights reserved.
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Introduction

In [5] we defined, for an arbitrary simply laced Coxeter group, a subset of “fr
braided elements”. Such elements include the fully commutative elements of Stem
[8] as a particular case. The idea behind the definition is that although it may be necess
to use long braid relations in order to pass between two reduced expressions for a
braided element, the necessary long braid relations in a certain sense do not interfe
one another.

Every reduced expression for a Coxeter group elementw determines a total ordering o
the set of positive roots made negative byw. These totally ordered sets are known as “r
sequences”. If a root sequence for an elementw of a simply laced Coxeter group contai
a consecutive subsequence of the formα, α + β , β , then we refer to the set of these roo
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as a “contractible inversion triple” ofw. A group element is said to be “freely braided”
its contractible inversion triples are pairwise disjoint.

Let N(w) denote the number of contractible inversion triples ofw. It was shown in
[5] that the number of commutation classes (short braid equivalence classes of re
expressions) ofw is bounded above by 2N(w), and that this bound is achieved ifw is freely
braided. In this paper, we prove that the bound can be achieved only for freely braiw

(Theorem 2.2.1). This was previously known in the typeA setting [5, Theorem 5.2.1], bu
the argument given here has the advantage of being conceptual as well as more general

The second main result of this paper is a classification of the simply laced Co
groups having only finitely many freely braided elements. Note that it is possible for
a group to be infinite. It turns out (see the discussion following Theorem 3.3.3) tha
question has the same answer as a classification question previously answered b
[2,4,8]: we will show in Theorem 3.3.3 that a simply laced Coxeter group has finitely m
freely braided elements if and only if it hasfinitely many fully commutative elements. On
implication here is easy, but the converse requires some effort. Our proof of Theorem
does not rely on a case analysis based on any classification result.

1. Preliminaries

1.1. Basic terminology and notation

Let W be a simply laced Coxeter group with distinguished generatorsS = {si : i ∈ I }
and Coxeter matrix(mij )i,j∈I . For the basic facts concerning Coxeter groups, see [1] o
Denote byI∗ the free monoid onI . We call the elements ofI lettersand those ofI∗ words.
The lengthof a word is the number of factors required to write the word as a produ
letters. Letφ : I∗ → W be the surjective morphism of monoid structures satisfyingφ(i) =
si for all i ∈ I . A word i ∈ I∗ is said torepresentits imagew = φ(i) ∈ W ; furthermore,
if the length ofi is minimal among the lengths of all the words that representw, then we
call i a reduced expressionfor w. The lengthof w, denoted by�(w), is then equal to the
length ofi.

Let V be a vector space over the field of real numbers with basis{αi : i ∈ I }, and
denote byB theCoxeter formon V associated toW . This is the symmetric bilinear form
satisfyingB(αi ,αj ) = −cos(π/mij ) for all i, j ∈ I . We viewV as the underlying spac
of a reflection representation ofW , determined by the equalitiessiαj = αj − 2B(αj ,αi)αi

for all i, j ∈ I . The Coxeter form is preserved byW relative to this representation.
Denote byΦ theroot systemof W , i.e., the set{wαi : w ∈ W andi ∈ I }. Let Φ+ be the

set of allβ ∈ Φ such thatβ is expressible as a linear combination of theαi with nonnegative
coefficients, and letΦ− = −Φ+. We haveΦ = Φ+ ∪ Φ− (disjoint). The elements ofΦ+
(respectively,Φ−) are calledpositive(respectively,negative) roots. Theαi are also referred
to assimpleroots. We define theheightof any rootβ to be the sum of the coefficients us
to expressβ as a linear combination of the simple roots.

Associated to eachw ∈ W is the inversion setΦ(w) = Φ+ ∩ w−1(Φ−). It has�(w)

elements and determinesw uniquely. Given any reduced expressioni1i2 · · · in for w,
we haveΦ(w) = {r1, r2, . . . , rn}, wherer1 = αin and rl = sin · · · sin−l+2(αin−l+1) for all
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l ∈ {2, . . . , n}. Form the sequencēr = (r1, r2, . . . , rn). We call r̄ the root sequenceof
i1i2 · · · in, or a root sequencefor w. Notice that any initial segment of a root sequen
is also a root sequence for some element ofW .

Let w ∈ W . Any subset ofΦ(w) of the form{α,β,α + β} will be called aninversion
triple of w. We say that an inversion tripleT of w is contractibleif there is a root sequenc
for w in which the elements ofT appear consecutively (in some order). The numbe
contractible inversion triples ofw will be denoted byN(w). If the contractible inversion
triples ofw are pairwise disjoint, thenw is said to befreely braided.

1.2. Braid moves

Given anyi, j ∈ I and any nonnegative integern, we write (i, j)n for the lengthn

word ij i · · · ∈ I∗. Let i, j ∈ I∗ and let i, j ∈ I with mij �= 1. We call the substitution
i(i, j)mij j → i(j, i)mji j abraid move, qualifying it shortor longaccording asmij equals 2
or 3.

Let w ∈ W . A well-known result of Matsumoto [7] and Tits [9] states that any redu
expression forw can be transformed into any other by applying a (possibly em
sequence of braid moves.

We say that two words arecommutation equivalentif one can be transformed int
the other by a sequence of short braid moves. The set of words that are comm
equivalent to a given word is called thecommutation classof that word. If the set o
reduced expressions for an elementw ∈ W forms a single commutation class, then
call w fully commutative, following [8, §1].

Applying a braid relation to a reduced expression corresponds to applying a permu
to the root sequence of that reduced expression. The following proposition makes this mo
precise.

Proposition 1.2.1 [5, Proposition 3.1.1].Letw ∈ W , let i, j ∈ I∗ and leti, j, k ∈ I . Denote
the length ofj byn.

(a) Assume thati ij j is a reduced expression forw, and letr̄ = (rl) be the associated roo
sequence.
(i) Supposemij = 2, so thatij ij is also a reduced expression forw. Then the root

sequencēr ′ of ij ij can be obtained from̄r by interchangingrn+1 andrn+2, which
are mutually orthogonal relative toB.

(ii) If rn+1 andrn+2 are orthogonal, thenmij = 2.
(b) Assume thati ijkj is a reduced expression forw, and let r̄ = (rl) be the associate

root sequence.
(i) Supposek = i, so thatmij = 3 and ij ij j is also a reduced expression forw.

Then the root sequencer̄ ′ of ij ij j can be obtained from̄r by interchangingrn+1
andrn+3. Furthermore, we havern+1 + rn+3 = rn+2.

(ii) If rn+1 + rn+3 = rn+2, thenk = i �= j andmij = 3.

Let r̄ andr̄ ′ be as in part (a)(i) (respectively, part(b)(i)) of Proposition 1.2.1. Employin
again the terminology used above for words, we say that the passage fromr̄ to r̄ ′ is obtained
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by ashort braid move(respectively,long braid move). Two root sequences are said to
commutation equivalentif one can be transformed into the other by applying a sequ
of short braid moves. The set of root sequences that are commutation equivalent to
root sequence is called thecommutation classof that root sequence.

Let w ∈ W . The recipe for associating a root sequence to a reduced expression d
a bijection from the set of reduced expressions forw to the set of root sequences forw,
and by Proposition 1.2.1, this bijection is compatible with the application of both lon
and short braid moves. Hence, by the result of Matsumoto and Tits cited above, any ro
sequence forw can be transformed into any other by applying a sequence of long and
braid moves. It also follows that there is a natural bijection between the set of commu
classes of reduced expressions forw and the set of commutation classes of root seque
for w.

A subwordof a wordi1i2 · · · in (eachil ∈ I ) is any word of the formipip+1 · · · iq , where
1 � p � q � n.

Proposition 1.2.2. Letw ∈ W . The following are equivalent:

(i) w is fully commutative.
(ii) w has no inversion triples.
(iii) w has no contractible inversion triples.
(iv) No reduced expression forw contains a subword of the formij i, wherei, j ∈ I .

Proof.
(i) ⇒ (ii). This is the implication (a)⇒ (c) of [3, Theorem 2.4].
(ii) ⇒ (iii). This is immediate from the definitions.
(iii) ⇒ (iv). If w has a reduced expression with a subword of the formij i, then

Proposition 1.2.1(b)(i) shows thatw has a contractible inversion triple.
(iv) ⇒ (i). If w is not fully commutative, then there exists a pair of commuta

inequivalent reduced expressions forw. It follows by the result of Matsumoto and Ti
mentioned above thatw has a reduced expression to which a braid move can be ap
Thus,w does not satisfy (iv). �

2. Freely braided elements and commutation classes

2.1. The mapFw

Let w ∈ W . Fix an arbitrary antisymmetric relation	 on Φ(w) with the property tha
any two roots inΦ(w) are comparable relative to	. Let C(w) andI(w) denote the set o
commutation classes of root sequences forw and the set of contractible inversion tripl
of w, respectively. We define a map

Fw :C(w) → {0,1}I(w),
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depending on	, as follows. IfI(w) is empty, then{0,1}I(w) contains just the empty ma
and the setC(w) is also a singleton by Proposition 1.2.2. Thus, in this situation,Fw is
uniquely determined. Suppose thatI(w) is nonempty. LetC ∈ C(w) and let�C be the
partial ordering ofΦ(w) obtained by taking the transitive closure of the following relatio
α < β wheneverα lies to the left ofβ in some root sequence fromC andB(α,β) �= 0.
Note that�C is well-defined by [5, Proposition 3.1.5]. Given any{α,β,α + β} ∈ I(w),
we defineFw(C)({α,β,α + β}) to be 0 if α andβ are in the same relative order wi
respect to�C and	, and otherwise we defineFw(C)({α,β,α + β}) to be 1.

The mapFw is injective [5, Theorem 4.1.1].
It will be convenient to have the following terminology when determining

surjectivity, or otherwise, ofFw . Let w ∈ W and letT be a subset ofI(w). We say thatFw

separatesT if every map fromT to {0,1} is the restriction of some element ofFw(C(w)).
Clearly, if Fw fails to separate some nonempty subset ofI(w), thenFw is not surjective.

2.2. First main result

It was shown in [5, Corollaries 4.1.2, 4.2.4] that everyw ∈ W has at most 2N(w)

commutation classes, with equality ifw is freely braided. The following theorem show
that equality is achieved only ifw is freely braided. For the special case whereW is of
typeA, this was already done in [5, Theorem 5.2.1] using an ad hoc argument.

Theorem 2.2.1. If w ∈ W has2N(w) commutation classes, thenw is freely braided.

Proof. Let w be a non-freely-braided element. SinceFw is injective, it suffices to prove
thatFw is not surjective. Letα be a root belonging to at least two contractible invers
triples ofw, and assume that the height ofα is maximal with respect to this property. LetT

andT ′ be distinct contractible inversion triples ofw containingα. Note that|T ∩ T ′| = 1
(this follows easily from [5, Remark 2.2.2] and the contractibility of the triples).
symmetry, there are three cases to consider.

Case 1. T = {α,β,α + β} andT ′ = {α,γ,α + γ }.

By [5, Remark 2.2.2] and the contractibility ofT , w has a root sequence of the form

(. . . , α,α + β,β, . . . , α + γ, . . . , γ , . . .)

or

(. . . , γ , . . . , α + γ, . . . , α,α + β,β, . . .).

We assume the existence of a sequence of the former type, the argument for th
being similar. By our choice ofα, the rootsα + β andα + γ cannot belong to the sam
contractible inversion triple ofw. Suppose thatα + β is not orthogonal toα + γ . Then, by
[5, Proposition 3.2.2],α + β lies to the left ofα + γ in every root sequence forw, and so
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it is impossible forα to be at the same time to the left ofα + β and to the right ofα + γ .
Thus,Fw does not separate{T ,T ′}.

Suppose instead thatα + β is orthogonal toα + γ . Thenα + β andγ are not mutually
orthogonal, sinceα + β is not orthogonal toα. Furthermore,α + β andγ cannot belong
to the same contractible inversion triple ofw, by our choice ofα. It follows (again by
[5, Proposition 3.2.2]) thatα + β lies to the left ofγ in every root sequence forw. This
means that in any root sequence forw in which α lies to the left ofα + β , the rootγ
necessarily lies to the right ofα + γ (otherwise,γ lies to the left ofα + γ , which must
then be to the left ofα, which in turn is to the left ofα + β , a contradiction). Again,Fw

does not separate{T ,T ′}.

Case 2. T = {α,β,α − β} andT ′ = {α,γ,α − γ }.

Here, we may assume without loss of generality thatw has a root sequence of the for

(. . . , γ , . . . , β,α,α − β, . . . , α − γ, . . .).

Note thatγ cannot be orthogonal to bothβ andα − β , or it would be orthogonal to
their sum. We may assume thatγ is not orthogonal toβ . If no contractible inversion triple
of w contains bothγ andβ , thenγ lies to the left ofβ in every root sequence forw, and
consequently there is no root sequence forw in which β lies to the left ofα andγ lies to
the right ofα. It follows thatFw does not separate{T ,T ′}.

Suppose instead that there is a contractible inversion tripleT ′′ of w that contains
γ and β . We claim thatFw does not separate{T ,T ′, T ′′}. To see this, observe th
if C is a commutation class relative to whichγ lies to the left ofβ (this determines
Fw(C)(T ′′)), andβ lies to the left ofα (this determinesFw(C)(T )), thenγ lies to the
left of α (so thatFw(C)(T ′) is also determined). (These conditions are well-defined
[5, Proposition 3.1.5].)

Case 3. T = {α,β,α − β} andT ′ = {α,γ,α + γ }.

In this situation,w has a root sequence of the form

(. . . , β,α,α − β, . . . , α + γ, . . . , γ , . . .)

or

(. . . , γ , . . . , α + γ, . . . , β,α,α − β, . . .).

We deal with the former sequence, the analysis of the latter being similar.
Note thatα + γ cannot be orthogonal to bothβ andα − β , or it would be orthogonal to

their sum. We may assume thatα + γ is not orthogonal toβ . By our choice ofα, the roots
α + γ andβ cannot belong to the same contractible inversion triple ofw. Hence,β lies to
the left ofα + γ in every root sequence forw. It follows that there is no root sequence f
w in which α lies to the right ofα + γ andβ lies to the right ofα. This means thatFw

does not separate{T ,T ′}.



32 R.M. Green, J. Losonczy / Advances in Applied Mathematics 33 (2004) 26–39

if

of the

g
e

ent
is itself

ns,

ing
nce
We conclude thatFw is not surjective. �
Corollary 2.2.2. Everyw ∈ W has at most2N(w) commutation classes, with equality
and only ifw is freely braided.

3. Free braidedness and full commutativity

The goal of this section, achieved by Theorem 3.3.3, is to prove thatW has finitely many
freely braided elements if and only if it hasfinitely many fully commutative elements.

3.1. Reduced expressions for freely braided elements

For the purposes of the proof of Theorem 3.3.3, we wish to have a clearer picture
nature of reduced expressions for freely braided elements.

Definition 3.1.1. Let i be a word inI∗ and suppose thati can be written asu0b1u1b2u2 · · ·
bpup , where eachbl is of the form ij i for somei, j ∈ I with mij = 3. Then we call
b1,b2, . . . ,bp a braid sequencefor i. If, furthermore,i is reduced andw = φ(i) is freely
braided, then we say thati is contractedprovided there exists a braid sequence fori with
p = N(w) terms.

Definition 3.1.2. Let i ∈ I∗. A word j ∈ I∗ is said to becloseto i if there is a (possibly
empty) braid sequenceb1,b2, . . . ,bp for i such thatj is the word obtained by applyin
a long braid move to each of thebl . We also say thatj is close toi via the sequenc
b1,b2, . . . ,bp .

Note that if two words are close to one another, then they represent the same elem
of W . Note also that any expression that is close to a contracted reduced expression
contracted.

We say thati, j ∈ I arem-commuting, or simplycommuting, if mij �= 3.

Proposition 3.1.3. Letw ∈ W be freely braided.

(i) There exists a contracted reduced expressioni for w.
(ii) The reduced expressions close toi, which are also contracted reduced expressio

form an irredundantly described set of commutation class representatives forw.
(iii) Any contracted reduced expression forw has a unique braid sequence withN(w)

terms.

Proof. By [5, Theorem 4.2.3], there is a root sequencer̄ for w such that the roots in
any given contractible inversion triple ofw appear consecutively in̄r . Part (i) follows
by applying Proposition 1.2.1(b)(ii): takei to be the reduced expression correspond
to r̄, and note that theN(w) contractible inversion triples correspond to a braid seque
for i with N(w) terms. In view of Proposition 1.2.1(b)(i), the expressioni, or any
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contracted reduced expression forw, has at most one braid sequence withN(w) terms.
This proves (iii).

If i′, i′′ ∈ I∗ are distinct and close toi, theni′ is not commutation equivalent toi′′ (to
see this, observe that the sequence of occurrences of any pair of non-m-commuting letters
in a word is an invariant of the commutation class of that word). Therefore, since
are 2N(w) expressions close toi, and sincew has exactly 2N(w) commutation classes (b
Corollary 2.2.2), part (ii) is proved.�
Remark 3.1.4. Let w ∈ W . From the proof of Proposition 3.1.3(ii), we see that if a redu
expression forw has a braid sequence withp terms, thenw has at least 2p commutation
classes.

Definition 3.1.5. Let i be a contracted reduced expression for a freely braided elemen
w ∈ W , and write

i = u1b1u2b2 · · ·uN(w)bN(w)q,

whereb1,b2, . . . ,bN(w) is the unique braid sequence fori with N(w) terms. IfN(w) > 0,
then we defineD(i) = D1(i) to be the word inI∗ obtained fromi by deleting the rightmos
letter in bN(w). We do not defineD(i) if N(w) = 0. By induction, we writeDn(i) for
D(Dn−1(i)) if n > 1 and the composition is defined. We agree thatD0(i) = i, regardless
of the value ofN(w).

Our strategy for the proof of Theorem 3.3.3 will be to argue that ifi is a contracted
reduced expression for a freely braided elementw ∈ W , then DN(w)(i) is a well-
defined reduced expression for some fully commutative element. This will require s
intermediate steps. One of these is the following technical lemma.

Lemma 3.1.6. Maintain the notation of Definition3.1.5. Suppose thatD(i) is a reduced
expression for a freely braided elementw′ ∈ W with N(w′) = N(w) − 1. Then any
expression close toD(i) is of the formD(j), wherej is a reduced expression forw that is
close toi via a braid sequence not involvingbN(w).

Proof. The hypotheses onD(i) imply that it is a contracted reduced expression forw′, and
that b1,b2, . . . ,bN(w)−1 is a braid sequence forD(i) with N(w′) terms. The conclusio
follows. �
3.2. Freely braided elements and theN -statistic

The following lemma describes what happens when one goes up in the weak
order from a freely braided element.

Lemma 3.2.1. Suppose thatw ∈ W is freely braided, and that�(wsi) > �(w) for some
i ∈ I . As usual, we denote the simple root corresponding toi byαi .
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(a) Assume thatαi does not lie in any contractible inversion triple ofwsi .
(i) The roots occurring beforeαi in any root sequence forwsi are orthogonal toαi .
(ii) The contractible inversion triples ofwsi are precisely those of the formsi (T ),

whereT is a contractible inversion triple ofw.
(iii) The elementwsi is freely braided andN(wsi) = N(w).

(b) Assume thatαi lies in some contractible inversion triple ofwsi .
(i) There is a reduced expressioni for w of the formu ijv, wherej ∈ I does not

commute withi and where each letter inv commutes withi.
(ii) Any reduced expression forw that is commutation equivalent to the reduc

expressioni in (i) must be of the formu′iv1jv2, where each letter inv1 and
each letter inv2 commutes withi.

Note. We do not require above thatwsi be freely braided.

Proof. We first prove (a). Since there is a reduced expression forwsi in which si appears
last, there is a root sequencer̄ for wsi in whichαi is the first root. Let̄r ′ be an arbitrary roo
sequence forwsi . By the discussion following Proposition 1.2.1,r̄ ′ may be obtained from
r̄ by applying a sequence of braid moves. Since none of these braid moves can be
braid move involvingαi , we find that all the roots occurring beforeαi in r̄ ′ are orthogona
to αi . This proves (i).

Suppose thatT is a contractible inversion triple ofw, and letr̄0 be a root sequence fo
w in which the elements ofT appear consecutively. Since(αi , si (r̄0)) is a root sequenc
for wsi (recall the definition of root sequence in Section 1.1), it follows thatsi (T ) is a
contractible inversion triple ofwsi .

Conversely, suppose thatT ′ is a contractible inversion triple ofwsi , and letr̄1 be a root
sequence forwsi in which the elements ofT ′ appear consecutively. By hypothesis,αi does
not appear inT ′, and by (i), the elements appearing beforeαi in r̄1 are orthogonal toαi .
Hence, we may apply short braid moves if necessary to obtain a root sequencer̄ ′

1 for wsi
in which αi appears first and in which the elements ofT ′ still appear consecutively. Now
r̄ ′
1 is of the form(αi , si(r̄

′′
1 )), wherer̄ ′′

1 is a root sequence forw in which the elements o
si (T

′) occur consecutively. This proves (ii).
By (ii), we haveN(wsi ) = N(w). Let r̄2 be a root sequence forw of the form specified

in [5, Theorem 4.2.3]. Using (ii) again, we see that the contractible inversion tripl
wsi , the roots in each of which appear consecutively in the root sequence(αi, si (r̄2)), are
pairwise disjoint. Hence,wsi is freely braided, and (iii) is proved.

We turn to (b). Let̄r be a root sequence forwsi in which αi appears first, and consid
a sequence of braid moves of minimal length subject to the condition that applyin
sequence tōr results in a root sequencēr ′ in which the elements of some contractib
inversion triple containingαi appear consecutively. Denote byT the contractible inversion
triple that containsαi and is consecutive in̄r ′. By the minimality assumption, none o
the braid moves in the above sequence is a long braid move involvingαi . Hence, every
root occurring beforeαi in r̄ ′ is orthogonal toαi , and we may therefore apply a sequen
of short braid moves tōr ′ to obtain a root sequencēr ′′ in which αi appears first and in
which the other elements ofT appear consecutively. By Proposition 1.2.1, the sequencr̄ ′′
corresponds to a reduced expression forwsi of the formu ijvi, where all of the letters in
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v commute withi. Deleting the rightmosti, we obtain a reduced expression forw of the
required form, thus proving (i).

To prove (ii), we note that the reduced expression obtained in (i) is of the stated
takingu′ = u, v1 = ∅ andv2 = v. The result follows, once we observe that applying a s
braid move to a reduced expression of the form given in (ii) produces another expr
of the same form. �

The next result describes what happens when one goes down in the weak Bruha
from a freely braided element.

Lemma 3.2.2. Suppose thatw ∈ W is freely braided and thati ∈ I satisfies�(wsi) < �(w).
Thenwsi is freely braided, and we have

N(wsi ) =
{

N(w) − 1 if αi lies in a contractible inversion triple ofw,

N(w) otherwise.

Proof. If r̄ is a root sequence forwsi , then(αi , si (r̄)) is a root sequence forw. Therefore,
every contractible inversion tripleT of wsi yields a contractible inversion triplesi (T ) of w.
This givesN(w) � N(wsi ). The inequality is strict ifαi lies in a contractible inversio
triple of w.

By the Exchange Condition for Coxeter groups (see [6, §5.8]),w has a reduce
expressioni ending with i, and by Proposition 3.1.3(ii), there is a contracted redu
expressionj for w that is commutation equivalent toi. Write j = v1iv2, where each
letter in v2 commutes withi. Suppose thatαi lies in a contractible inversion triple ofw.
Then N(wsi ) � N(w) − 1 by the first paragraph. On the other hand, it is clear
v1v2, a reduced expression forwsi , has a braid sequence withN(w) − 1 terms; hence
N(wsi ) � N(w) − 1 by Proposition 1.2.1(b)(i). Further, by Remark 3.1.4,wsi has at
least 2N(wsi) commutation classes. It now follows from Corollary 2.2.2 thatwsi is freely
braided.

Suppose instead thatαi does not belong to a contractible inversion triple ofw. Then, by
Proposition 1.2.1(b)(i),v1v2 has a braid sequence withN(w) terms. It follows by the sam
proposition together with the first paragraph thatN(wsi) = N(w). As above, we find tha
wsi has at least 2N(wsi) commutation classes, and so is freely braided.�
Remark 3.2.3. If w ∈ W is freely braided and�(wsi) > �(w) with wsi non-freely-braided
it may happen thatN(wsi ) > N(w)+1. For example, ifW is of typeA3 andw = s2s1s3s2
(using the obvious indexing), thenN(w) = 0 butN(ws3) = 2.

3.3. Groups with finitely many freely braided elements

The following lemma is a crucial ingredient in the proof of Theorem 3.3.3.

Lemma 3.3.1. Let i be a contracted reduced expression for a freely braided elementw ∈ W

with N(w) > 0. ThenD(i) is a contracted reduced expression for a freely braided elem
w′ with N(w′) = N(w) − 1.
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Proof. We start by writing

i = c1b1c2b2 · · ·cN(w)bN(w)q,

whereb1,b2, . . . ,bN(w) is the unique braid sequence fori with N(w) terms. Letiq be
the expression obtained fromi by deleting fromq all but its firstq letters. We thus hav
i = il , wherel is the length ofq. If r̄ is the root sequence ofi, then the firstl roots in r̄

are not involved in any contractible inversion triple ofw, and it follows from repeate
applications of Lemma 3.2.2 that for eachq , the reduced expressioniq represents a freel
braided elementyq with N(yq) = N(w). Moreover, ifq > 0, then the first root in the roo
sequence ofiq does not lie in any contractible inversion triple ofyq .

We will prove by induction onq thatD(iq ) is a reduced expression for a freely braid
elementwq with N(wq) = N(w) − 1. (These properties imply thatD(iq ) is contracted.)
Denote the letter that is deleted fromi to formD(i) by j .

Base case (q = 0). In this case,D(i0) is obtained fromi0 by removing the last letter,j . It is
clear thatD(i0) is a reduced expression for some group elementw0, which is freely braided
by Lemma 3.2.2. The first three roots in the root sequence ofi0 comprise a contractibl
inversion triple containingαj . Hence, by Lemma 3.2.2 again,N(w0) = N(y0)−1, and the
latter equalsN(w) − 1 by the first paragraph.

Inductive step ( proof thatD(iq ) is reduced). Suppose that the statement is true for aq
with 0 � q � k < l. Let q = k + 1, and leti be the(k + 1)st factor ofq. By the inductive
hypothesis,D(ik) is a contracted reduced expression for a freely braided elementwk with
N(wk) = N(w) − 1. Assume toward a contradiction thatD(ik+1) is not reduced. Then b
the Exchange Condition for Coxeter groups, there is a reduced expressioni′ for wk ending
in i. According to Proposition 3.1.3(ii), thereis a unique contracted reduced expressioi′′
for wk that is both close toD(ik) and commutation equivalent toi′. We may write

i′′ = p′′ic′′,

where all of the letters inc′′ commute withi.
By Lemma 3.1.6,i′′ must be of the formD(j), wherej is close toik . The expressionj

is thus obtainable fromi′′ by inserting the letterj at some point into the word. Sinceik+1
is reduced, this insertion must take place to the right of the indicated occurrence ofi in i′′.
Therefore,j i, which is a reduced expression foryk+1, is of the form

p′′ic′′
1jc′′

2i,

where each letter inc′′
1 and each letter inc′′

2 commutes withi. Applying short braid move
if necessary, we obtain

p′′c′′
1ij ic′′

2,

and it follows from Proposition 1.2.1(b) that the first root in the root sequence ofj i belongs
to a contractible inversion triple. Now,j (respectively,j i) is a reduced expression foryk
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(respectively,yk+1), andN(yk) = N(yk+1) = N(w). This contradicts Lemma 3.2.2, takin
w = yk+1.

We conclude thatD(ik+1) is reduced.

Inductive step ( proof thatwq is freely braided andN(wq) = N(w) − 1). By the above
we havewk+1 = wksi with �(wksi) > �(wk). If αi does not lie in any contractible inversio
triple of wksi , then the inductive step follows from Lemma 3.2.1(a)(iii) (withwk playing
the role ofw). Assume instead that we are in case (b) of Lemma 3.2.1, which is the
alternative.

By Lemma 3.2.1(b)(i), the elementwk has a reduced expression of the formu ii ′v,

wherei ′ ∈ I does not commute withi and every letter inv commutes withi. Recall that
D(ik) is contracted by the inductive hypothesis.Hence, by Proposition 3.1.3(ii), there
a contracted reduced expressiondk for wk that is both close toD(ik) and commutation
equivalent tou ii ′v. According to Lemma 3.2.1(b)(ii), we havedk = u′iv1i

′v2, where
every letter inv1 and every letter inv2 commutes withi. Becausedk is close toD(ik)
andN(wk) = N(yk) − 1, Lemma 3.1.6 implies thatdk is of the formD(i′k), wherei′k is a
reduced expression foryk that is close toik by a sequence of braid relations not involvi
bN(w). There is no loss in generality in assuming thatik is equal toi′k , so we will do this in
order to make the arguments clearer.

Let dk+1 = dki = u′iv1i
′v2i. Since dk = D(ik), we havedk+1 = D(ik+1). Hence,

by appropriately insertingj in dk+1, we obtain ik+1. The insertion must take plac
immediately to the right of a subword ofdk+1 of the form jj ′, wherej ′ ∈ I does not
commute withj .

We know from the first paragraph of the proof thatαi does not lie in a contractibl
inversion triple ofyk+1. The only way this can happen is if the letterj is inserted indk+1
somewhere between the two indicated occurrences ofi, and ifj does not commute withi.
Since the letter sitting two places to the left of the insertion site is also an occurrencj ,
the latter occurrence ofj must either occur to the left of the leftmost indicated occurrenc
of i in dk+1, or must be the indicated occurrence ofi ′ in dk+1. We consider each of thes
two cases in turn.

In the first case,ik+1 can be written as

u′′j ijv1i
′v2i,

wherev1 andv2 are as before andu′′j = u′. Applying a long braid move, we obtain th
following reduced expression foryk+1:

u′′ij iv1i
′v2i.

This contradicts the fact (mentioned in the first paragraph of the proof) thatyk+1 is freely
braided, because Proposition 1.2.1 can now be used to show that the middle of th
indicated occurrences ofi corresponds to a root that lies in two different contract
inversion triples.

In the second case,i ′ = j andik+1 can be written as

u′iv1jj
′jv′

2i,
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wherev1 is as above andj ′v′
2 = v2, meaning thati commutes withj ′. Applying a long

braid move and commutations, we obtain

u′v1ij
′jj ′iv′

2.

This again leads to a contradiction because the indicated occurrence ofj corresponds to a
root that belongs to two different contractible inversion triples ofyk+1.

We have completed the inductive step by showing that case (b) of Lemma 3.2.1 c
occur. �
Corollary 3.3.2. Let i be a contracted reduced expression for a freely braided elem
w ∈ W , and maintain the notation of Definition3.1.5, so that

i = u1b1u2b2 · · ·uN(w)bN(w)q.

Then the expression obtained by omitting the rightmost letter in each of the wordsbl is a
reduced expression for a fully commutative element.

Proof. By applying Lemma 3.3.1,N(w) times, we find thatDN(w)(i), which is the
expression described in the conclusion, is a reduced expression for a freely braided e
w′ with N(w′) = 0. By Proposition 1.2.2,w′ is fully commutative. �
Theorem 3.3.3. A simply laced Coxeter groupW has finitely many freely braided elemen
if and only if it has finitely many fully commutative elements.

Proof. By Proposition 1.2.2, any fully commutativew ∈ W satisfiesN(w) = 0, and so is
freely braided for vacuous reasons. This proves the “only if” part of the theorem.

Conversely, suppose thatW has finitely many fully commutative elements. B
Corollary 3.3.2, there is a map from the set of contracted reduced expressions for
braided elements ofW to the set of reduced expressionsfor fully commutative element
of W , given by

i �→ DN(φ(i))(i).

Any element in the fibre overDN(φ(i))(i) can be recovered fromDN(φ(i))(i) by making
appropriate insertions of generators after certain subwords of the formij , wherei, j ∈ I

are noncommuting. Hence, the fibres of the above map are all finite. Since the
finitely many fully commutative elements and each of these has finitely many reduce
expressions, there are finitely many fibres. It follows thatW has finitely many freely
braided elements.�

Independently of one another, Graham [4] and Stembridge [8] have classifie
Coxeter groups with finitely many fully commutative elements. The classification has
been worked out in the simply laced case by Fan [2]. It turns out that a simply lace
Coxeter group has finitely many fully commutative elements if and only if each connect



R.M. Green, J. Losonczy / Advances in Applied Mathematics 33 (2004) 26–39 39

ts,
ents,

esis,

98.
of

64)

3–

.,
component of its Coxeter graph is of typeAn, Dn or En for arbitraryn. In particular,
Coxeter groups of typeEn for n > 8 have finitely many fully commutative elemen
although the groups are infinite. This classification carries over for freely braided elem
by the above theorem.
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