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We study the graph on reduced words with edges given by 
the Coxeter relations for the symmetric group. We define a 
statistic on reduced words for a given permutation, analogous 
to Coxeter length for permutations, for which the graph 
becomes ranked with unique maximal element. We show this 
statistic extends naturally to balanced labellings, and use it 
to recover enumerative results of Edelman and Greene and of 
Reiner and Roichman.
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1. Introduction

The symmetric group Sn has a Coxeter presentation with generators si, the simple 
transpositions interchanging i and i + 1, and Coxeter relations

1. sisj = sjsi for |i − j| ≥ 2,
2. sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2,
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Fig. 1. The set of reduced words for 42153.

and s2
i is the identity. We call (1) a commutation relation and (2) a Yang–Baxter relation. 

Given any permutation w ∈ Sn, a reduced word for w is a sequence ρ = (ρ�(w), . . . , ρ1)
such that w = sρ�(w) · · · sρ1 , where �(w) is the length of w given by the number of pairs 
(i < j) such that wi > wj .

Tits [10] studied the graph with vertex set the reduced words and an edge connect-
ing two words that differ by a single Coxeter relation and showed that the subgraph 
on reduced words for a given permutation is connected. There has been much research 
on this graph, in particular for reduced words for the longest permutation w(n)

0 of Sn. 
In this paper, we add additional structure to this graph, making it into a ranked poset 
with canonical maximal element. From this we derive an explicit inversion statistic on 
reduced words for the same permutation that precisely gives the minimum number of 
Coxeter relations needed to transform one into another, along with how many are com-
mutations and how many Yang–Baxter moves. Dehornoy and Autord [4] considered a 
similar question, phrased as computing the diameter of the graph on reduced words for 
w

(n)
0 . They used techniques in group theory to give a series of bounds and asymptotics, 

results which can be made explicit with this new statistic.
Edelman and Greene [5] introduced balanced tableaux to prove bijectively a result of 

Stanley [9] equating reduced words for w(n)
0 with standard Young tableaux of staircase 

shape. The poset structure and inversion statistic extend naturally to balanced labellings 
of any Rothe diagram, where the constructions simplify greatly. We use this simplified 
statistic on balanced labellings to give a new, elementary proof of a result of Reiner and 
Roichman [8] computing the diameter of the graph on reduced words for w(n)

0 .

2. Reduced words

Let R(w) denote the set of reduced words for w, indexed from right to left to mirror 
the action of si as a function on permutations.

Example A (Reduced words). Take w to be the permutation 42153. Then the word 
(ρ5, ρ4, ρ3, ρ2, ρ1) = (1, 4, 2, 3, 1) is a reduced word for w since

s1s4s2s3s1 = s1s4s2s3s1 · 12345
= s1s4s2s3 · 21345
= s1s4s2 · 21435
= s1s4 · 24135
= s1 · 24153
= 42153

The 11 reduced words in R(42153) are shown in Fig. 1.
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Remark 2.1. A pair of indices (i < j) such that wi > wj is called an inversion of w, and 
the number of such pairs the inversion number of w. We avoid this terminology here, 
instead referring to the latter as the length of the permutation, to avoid confusion with 
the definition of inversions for reduced words.

Definition 2.2. The run decomposition of ρ, denoted by (ρ(k)| · · · |ρ(1)), partitions ρ into 
decreasing sequences (read from right to left) of maximal length.

Example B (Run decomposition). The word ρ = (5, 6, 3, 4, 5, 7, 3, 1, 4, 2, 3, 6), a reduced 
word for the permutation w = 41758236, has run decomposition

(
ρ(5)︷︸︸︷
5, 6 |

ρ(4)︷ ︸︸ ︷
3, 4, 5, 7 |

ρ(3)︷︸︸︷
3 |

ρ(2)︷︸︸︷
1, 4 |

ρ(1)︷ ︸︸ ︷
2, 3, 6)

The following definition for super-Yamanouchi words first appears in [2], where it is 
shown that the reduced word contributing the unique leading term to a Schubert polyno-
mial is precisely this super-Yamanouchi word. The terminology derives from Yamanouchi
words, which capture the unique leading terms for Schur polynomials.

Definition 2.3. A reduced word ρ with run decomposition (ρ(k)| · · · |ρ(1)) is super-
Yamanouchi if each ρ(i) is an interval and min(ρ(k)) > · · · > min(ρ(1)).

Example C (Super-Yamanouchi). The word ρ = (5, 6, 3, 4, 5, 7, 3, 1, 4, 2, 3, 6) from Exam-
ple B is not super-Yamanouchi since none of ρ(4), ρ(2), ρ(1) is an interval or since neither 
min(ρ(4)) > min(ρ(3)) nor min(ρ(2)) > min(ρ(1)) holds.

In contrast, the word ρ = (5, 6, 7, 4, 5, 3, 4, 5, 6, 1, 2, 3), another reduced word for the 
same permutation, is super-Yamanouchi, with run decomposition

(
ρ(4)︷ ︸︸ ︷

5, 6, 7 |
ρ(3)︷︸︸︷
4, 5 |

ρ(2)︷ ︸︸ ︷
3, 4, 5, 6 |

ρ(1)︷ ︸︸ ︷
1, 2, 3),

since each run is an interval and min(ρ(4)) > min(ρ(3)) > min(ρ(2)) > min(ρ(1)).

Proposition 2.4. For any w, there exists a unique super-Yamanouchi reduced word π ∈
R(w).

Proof. Given w ∈ Sn, construct πw recursively as follows. For w the identity, πw is the 
empty word. Otherwise, find the final descent of w, say at position i, and then find the 
smallest index j > i for which wi < wj or take j = n + 1 if no such index exists. Then 
πw = i(i + 1) · · · (j − 2)πv, where v is the permutation sj−2 · · · si+1siw.

To see this is well-defined, referring to Algorithm 1, the set in line 5 is nonempty 
whenever �(v) > 0, the set in line 6 is nonempty by construction, and line 8 removes 
precisely (j−2) −i +1 = j−i −1 ≥ 1 inversions from v, ensuring that algorithm terminates. 
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Line 8 also ensures that the resulting word π will be a word for w and will be reduced 
since (j − 2) − i + 1 inversions are removed when appending (j − 2) − i + 1 letters to π. 
Each pass through line 7 appends an interval to π, so to check the super-Yamanouchi 
condition, we need only check that a subsequent pass chooses a smaller index at line 5. 
If i is chosen in line 5, then after line 8 v has no inversions weakly beyond index i, 
ensuring that the maximum in line 5 of the next iteration is strictly less than i. Thus 
πw is well-defined and is a super-Yamanouchi reduced word for w.

Now suppose that ρ �= π is another super-Yamanouchi reduced word for w. Let i
be the maximum index for which πi �= ρi. Clearly removing the prefix or suffix of 
a reduced word does not change that it is reduced. Moreover, this also preserves the 
super-Yamanouchi property since runs must still form intervals and only the leftmost 
run can have a changed minimum, which necessarily gets weakly larger. Furthermore, 
removing the same prefix or suffix for two reduced words for the same permutation results 
again in (shorter) reduced words for the new permutation. Therefore by removing the 
suffix π�π�−1 · · ·πi+1 from both π and ρ, we may assume i = �.

The interval condition for super-Yamanouchi words ensures that a letter in position 
i of w is moved by success sk’s to some position j > i, and the decreasing minimum 
condition ensures that the subsequent letter moved is strictly left of position i. In order 
to be a reduced word, we must have wρ�

> wρ�+1. Since π is constructed by choosing 
the maximum i such that wi > wi+1, we must have π� > ρ�. Since ρ first selects an 
index ρ� < π�, and since each run of ρ either fixes the position of the final descent or 
moves it one position to the left, based on whether or not that run crosses over the 
descent, there is no way to begin a new run with the final descent without violating the 
super-Yamanouchi condition. Thus π is the unique super-Yamanouchi word for w. �

Algorithm 1 Super-Yamanouchi reduced word
1: procedure super(w)
2: v ← w
3: π ← ()
4: while �(v) > 0 do
5: i ← max{k | wk > wk+1}
6: j ← min {{k | wi < wk} ∪ {n + 1}}
7: π ← (π, i, i + 1, . . . , j − 2)
8: v ← sj−2 · · · si+1siv
9: end while

10: return π
11: end procedure

Example D (Super-Yamanouchi word). We construct the super-Yamanouchi reduced 
word for the permutation w = 41758236 by Algorithm 1 as illustrated in Fig. 2. We 
initialize with v = 41758236 and π = (), and then

[loop 1:] i = 5, j = 8 + 1 = 9, and so π = (5,6,7) and v = 41752368;
[loop 2:] i = 4, j = 7, and so π = (5, 6, 7, 4,5) and v = 41723568;
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Fig. 2. An illustration of Algorithm 1 for the permutation 41758236.

Fig. 3. An illustration of the Coxeter moves on R(42153).

[loop 3:] i = 3, j = 8, and so π = (5, 6, 7, 4, 5, 3,4,5,6) and v = 41235678;
[loop 4:] i = 1, j = 5, and so π = (5, 6, 7, 4, 5, 3, 4, 5, 6, 1,2,3) and v = 12345678.

Having reached the identity, we terminate. Thus the unique super-Yamanouchi reduced 
word for w = 41758236 is π = (5, 6, 7, 4, 5, 3, 4, 5, 6, 1, 2, 3).

We define two involutions on reduced words for a given permutation based on the 
Coxeter relations for the simple transpositions.

Definition 2.5. Given w and 1 ≤ i < �(w), ci acts on ρ ∈ R(w) by commuting ρi and 
ρi+1 whenever |ρi − ρi+1| > 1 and the identity otherwise.

Definition 2.6. Given w and 1 < i < �(w), bi acts on ρ ∈ R(w) by braiding ρi−1ρiρi+1
to ρiρi±1ρi whenever ρi−1 = ρi+1 = ρi ± 1 and the identity otherwise.

We refer to ci as a commutation, to bi as a Yang–Baxter move, and to either as a 
Coxeter move. For examples of Coxeter moves on reduced words, see Fig. 3.

It follows from classical work of Tits [10] that the maps ci and bi are well-defined invo-
lutions on R(w) and that the graph on R(w) with edges given by ci and bi is connected. 
Pushing this further, Fig. 3 suggests a ranked poset structure on reduced words for w
with unique maximal element equal to the super-Yamanouchi reduced word for w. The 
following definition measures the minimum number of commutations and Yang–Baxter 
moves needed to get from a given reduced word to the super-Yamanouchi one.

Definition 2.7. Given ρ ∈ R(w), define the inversion number of ρ by

inv(ρ) = �(v(ρ)) −
∑

(πi − ρi) , (2.1)

i
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where π ∈ R(w) is super-Yamanouchi and v(ρ) ∈ S�(w) is the permutation of ρ con-
structed as follows: for i from �(w) to 1, set k = πi and for j from �(w) to 1 if ρj is already 
paired then increment j to j + 1; otherwise if ρj = k then pair ρj and πi; otherwise if 
ρj = k− 1 then decrement k to k− 1 and increment j to j + 1; otherwise increment j to 
j + 1. Set vi = j whenever πi is paired with ρj .

Algorithm 2 Permutation of a reduced word
1: procedure perm(ρ)
2: π ← super-Yamanouchi reduced word for w
3: perm ← identity permutation of S�(w)
4: for i from �(w) to 1 by −1 do
5: k ← πi

6: for j from �(w) to 1 by −1 do
7: if ρj = k and is not already paired then
8: pair ρj with πi

9: permi ← j
10: break
11: else if ρj = k − 1 and is not already paired then
12: k ← k − 1
13: end if
14: end for
15: end for
16: return perm
17: end procedure

Example E (Inversions of reduced words). Let ρ = (5, 6, 3, 4, 5, 7, 3, 1, 4, 2, 3, 6). The 
super-Yamanouchi reduced word is π = (5, 6, 7, 4, 5, 3, 4, 5, 6, 1, 2, 3). Following Algo-
rithm 2, the first three iterations of the for loop on line 4 (i = 12, 11, 10) will be satisfied 
by the if condition of line 7, resulting in π12 = 5, π11 = 6, π10 = 7 paired with ρ12 = 5, 
ρ11 = 6, ρ7 = 7, respectively.

On the fourth iteration of the for loop on line 4 (i = 9), we set k = π9 = 4 on line 5, 
and on the third iteration of the for loop on line 6 (j = 10), the else if condition on line 
11 is met, and we decrement k = 3. Then, on the seventh iteration of the for loop on line 
6 (j = 6), the if condition of line 7 is met and we pair π9 = 4 with ρ6 = 3. Continuing 
thus, we pair values of π from left to right with values of ρ as illustrated in Fig. 4.

Therefore perm(ρ) = 2 3 5 1 8 9 1 0 4 6 7 1 1 1 2 and so inv(ρ) = 13 − 2 = 11. Note

ρ = c7 c8 c9 c4 c6 b8 b6 c7 c1 c2 c3 π,

which is a sequence of 11 involutions, exactly 2 of which are Yang–Baxter moves.

Theorem 2.8. For ρ ∈ R(w), inv(ρ) is a well-defined non-negative integer. Moreover, 
there exists a sequence f = finv(ρ) · · · f1 of Coxeter moves, i.e. fj = ci or bi, such that 
f(ρ) is super-Yamanouchi, and for any sequence g = gm · · · g1 of Coxeter moves such 
that g(ρ) is super-Yamanouchi, we have m ≥ inv(ρ).
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Fig. 4. An illustration of the pairings in Algorithm 2 for the reduced word ρ = (5, 6, 3, 4, 5, 7, 3, 1, 4, 2, 3, 6).

Proof. We claim the theorem holds for ρ if and only if it holds for ci(ρ). This is vacuously 
true if ci acts trivially on ρ. Otherwise, ci(ρ) will have permutation siperm(ρ), and, since 
the letters of ρ and ci(ρ) are the same, we have

inv(ciρ) = inv(siperm(ρ)) −
∑

(πj − (ciρ)j)

= inv(perm(ρ)) ± 1 −
∑

(πj − ρj) = inv(ρ) ± 1.

Furthermore, inv(ciρ) = inv(ρ) + 1 precisely when i is left of i + 1 in perm(ρ).
Next we claim the theorem holds for ρ if and only if it holds for bi(ρ). If bi acts trivially 

on ρ, the claim is vacuously true. Otherwise, bi(ρ) will have permutation sisi−1perm(ρ)
or si−1siperm(ρ), the former when ρi±1 = ρi + 1 and the latter when ρi±1 = ρi − 1. 
Assuming the former, we have

inv(biρ) = inv(si−1siperm(ρ)) −
∑

(πj − (biρ)j)

= inv(perm(ρ)) + 2 −
(∑

(πj − ρj) + 1
)

= inv(ρ) + 1,

and, by the same computation, inv(biρ) = inv(ρ) − 1 in the latter case.
Recall from earlier that any two reduced words for w can be transformed into one 

another by a sequence of Coxeter moves. Let m be the minimum number of Coxeter 
moves needed to transform ρ into the super-Yamanouchi reduced word. If m = 0, then ρ
is super-Yamanouchi, in which case the permutation for ρ is the identity and inv(ρ) = 0, 
so the theorem holds. Assume, for induction, that the theorem holds for any n < m, and 
suppose ρ = fm · · · f1π, where π is super-Yamanouchi and fj is ci or bi for some i. By 
induction, the result holds for fm−1 · · · f1π = fmρ, and so, by the claims, it holds for ρ
as well. �

Thus we may define the inversion poset for reduced words as follows.

Corollary 2.9. For w a permutation, the partial order on R(w) given by the transitive 
closure of covering relations

• ρ > ciρ if inv(ciρ) = inv(ρ) + 1, and
• ρ > biρ if inv(biρ) = inv(ρ) + 1

makes R(w) into a ranked partially ordered set with unique maximal element.
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Fig. 5. An illustration of the permutation of a pair of reduced words for w = 42153. Note this does not 
measure distance.

Note the ranking is the co-inversion number, making the super-Yamanouchi word the 
unique maximal element in line with Schubert calculus.

From the proof of Theorem 2.8, one can count the minimum number of Yang–Baxter 
moves on any shortest path from a reduced word to the super-Yamanouchi word by 
considering the offset between the length of the permutation of ρ and the inversion 
number of ρ. More generally, we have the following.

Corollary 2.10. For ρ, σ ∈ R(w), and f = fk · · · f1 any minimal length sequence of 
Coxeter moves, i.e. fj = ci or bi, such that f(ρ) = σ, the number of Coxeter moves that 
are Yang–Baxter moves is given by

#{j | fj = bi for some i} =
∑
i

∣∣ρi − σ(perm(σ)perm(ρ)−1)i

∣∣ . (2.2)

While one can hope to define an explicit metric on reduced words analogous to 
Kendall’s τ metric on permutations [7] by

inv(ρ, σ) = �(perm(ρ, σ)) −
∑
i

∣∣ρi − σperm(ρ,σ)i
∣∣ , (2.3)

where perm(ρ, σ) = perm(σ)perm(ρ)−1, this does not always give the correct minimum 
distance between arbitrary reduced words.

Example F (Barrier to a metric on reduced words). Let ρ = (1, 2, 1, 3, 2, 1) and σ =
(1, 3, 2, 1, 3, 2), both reduced words for the long permutation w(4)

0 = 4321. Then π =
(3, 2, 3, 1, 2, 3) is the super-Yamanouchi word, and following Algorithm 2, we have the two 
pairings indicated on the left side of Fig. 5. Composing the diagram gives perm(ρ, σ) =
51234, and so we have

inv(ρ, σ) = �(51234) − |1 − 1| − |2 − 2| − |1 − 1| − |3 − 3| − |2 − 2| − |1 − 3| = 4 − 2 = 2.

Observe, from Fig. 6, any shortest path from ρ to σ has length 4 and uses exactly 2
Yang–Baxter moves. Thus the naive inversion number for arbitrary pairs does not work 
to give the correct minimum distance.

3. Balanced labellings

The calculation of the inversion number for a reduced word is admittedly complicated, 
made more so by the requirement that one first compute the super-Yamanouchi word. 
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Fig. 6. An illustration of the Coxeter moves on R(4321).

By shifting our paradigm to another model for reduced words, this statistic becomes 
more natural and much simpler to compute.

The Rothe diagram (also called the inversion diagram) of a permutation w, denoted 
by D(w), is the following subset of cells in the first quadrant,

D(w) = {(i, wj) | i < j and wi > wj} ⊂ Z
+ × Z

+. (3.1)

The Rothe diagram of w gives a graphical representation of the inversion pairs of w. In 
particular, the number of cells in D(w) is simply �(w).

Example G (Rothe diagram). To draw the Rothe diagram for w = 41758236, write w
vertically along the y-axis with wi at height i, and label the cells horizontally along the 
x-axis with positive integers, as illustrated in Fig. 7. When computing the cells in row 
3, for instance, consider w3 = 7 and place cells in columns 5, 2, 3, 6 since these occur to 
the right of and are smaller than 7.

The Rothe diagram of w provides an alternative method from that described in Propo-
sition 2.4 for computing the super-Yamanouchi reduced word for w.

Definition 3.1. For w a permutation, the row-interval filling of D(w) is the integer filling 
with entries i, i + 1, i + 2, . . . in row i, from left to right.

Example H (Row-interval filling). The row-interval filling for D(41758236) is shown in 
Fig. 8. Comparing with Ex. C, notice that the row reading word of this filling, i.e. the 
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Fig. 7. The Rothe diagram D(w) for w = 41758236.

Fig. 8. The row-interval filling of D(41758236).

word obtained by reading the rows from left to right beginning with the highest, is 
precisely the super-Yamanouchi word for w.

Proposition 3.2. The row reading word of the row-interval filling for w is precisely the 
super-Yamanouchi reduced word for w.

Proof. Following the procedure for computing π in Algorithm 1, the last descent of w
corresponds to the highest occupied row of D(w), and the number of positions the letter 
at that position must move to the right is precisely the number of entries in that row. 
Thus removing the final descent corresponds to removing the highest occupied row, and 
the same values are recorded for both. �

While this construction applies equally well to any diagram, for a Rothe diagram the 
columns will be integer intervals as well.

Proposition 3.3. The columns of the row-interval filling of a Rothe diagram of a permu-
tation form increasing intervals from bottom to top, beginning with i at the bottom of 
column i.

Proof. From (3.1), the Rothe diagram for w−1 is the transpose of the Rothe diagram for 
w. Moreover, transposing the row-interval filling for w results in the row-interval filling 
for w−1, so the columns must form intervals as well. �

Stanley [9] introduced a new family of symmetric functions indexed by permutations 
in order to enumerate reduced words. Edelman and Greene [5] introduced balanced 
labellings of Rothe diagrams in order to prove Stanley’s conjecture that his symmetric 
functions are Schur positive and to give a precise enumeration of reduced words. We 
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Fig. 9. Checking the balanced condition for a standard labellings.

Fig. 10. The standard balanced labellings for 42153.

review balanced labellings here, but give independent, elementary proofs of their bijection 
with reduced words using the ranked poset structure.

Definition 3.4 ([5]). A standard balanced labelling is a bijective filling of a Rothe diagram 
with entries from {1, 2, . . . , n} such that for every entry of the diagram, the number of 
entries to its right that are greater is equal to the number of entries above it that are 
smaller.

Denote the set of standard balanced labellings on D(w) by SBT(w).

Example I (Balanced labellings). For w = 42153, the filling of D(w) on the left of Fig. 9
is balanced since for each cell (indicated in bold), the cells above and to the right have 
the same number of entries above that are greater (indicated in circles) as entries to the 
right that are smaller (also indicated in circles).

The 11 balanced labellings in SBT(42153) are shown in Fig. 10.

To prove standard balanced labellings are in bijection with reduced words, first observe 
there is a canonical super-Yamanouchi standard balanced labelling.

Definition 3.5. A standard balanced labelling R is super-Yamanouchi if its reverse row 
reading word (right to left from bottom to top) is the identity.

The balanced condition is immediate for the super-Yamanouchi labelling since entries 
increase in columns from bottom to top and in rows from left to right. For example, the 
super-Yamanouchi balanced labelling for 41758236 is shown in Fig. 11.

We next define simple analogs of the Coxeter moves for balanced labellings, where the 
commutations involve two consecutive values and the Yang–Baxter moves involve three 
consecutive values. Both act only in certain circumstances.
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Fig. 11. The super-Yamanouchi balanced labelling for D(w).

Fig. 12. An illustration of the Coxeter moves on SBT(42153).

Definition 3.6. Given w and 1 ≤ i < inv(w), ci acts on SBT(w) by exchanging i and i +1
if they are not in the same row or column and by the identity otherwise.

Definition 3.7. Given w and 1 < i < inv(w), bi acts on SBT(w) by exchanging i − 1 and 
i +1 if one is in the same column and above i and the other is in the same row and right 
of i and by the identity otherwise.

For examples of Coxeter moves on balanced labellings, see Fig. 12. Comparing this 
with Fig. 3 suggests a poset-preserving bijection between reduced words and balanced 
labellings, and indeed we will demonstrate this bijection below.

Lemma 3.8. The maps ci and bi are well-defined involutions on SBT(w).

Proof. For R ∈ SBT(w), if i and i + 1 are not in the same row or same column, then 
interchanging them cannot unbalance the labelling since all other entries compare the 
same with i and with i +1. Thus ci(R) ∈ SBT(w). If i ±1 is in the same row as i and i ∓1
is in the same column, then swapping them maintains the balance since, again, every j
less than i − 1 or greater than i + 1 compares with same with both, the two cannot be 
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Fig. 13. The inversion pairs for a standard balanced labelling.

in the same row or same column as one another, and i has traded the two to maintain 
its balance. �
Remark 3.9. When w is a permutation with a unique descent, D(w) has the form of the 
Young diagram (in English notation) for a partition, and standard balanced labellings 
for w are precisely the standard reverse Young tableaux. In this case, the poset structure 
on SBT(w) where we consider only the Coxeter–Knuth relations coincides with the dual 
equivalence graph [1] on standard reverse Young tableaux. For details on this connection 
and its combinatorial consequences, see [3].

Parallel to the case of reduced words, we introduce a simple statistic on standard 
balanced labellings that gives the minimum distance from a standard balanced labelling 
to the super-Yamanouchi one.

Definition 3.10. For R ∈ SBT(w), the inversion number of R is

inv(R) = #{(i < j) | i lies in strictly higher row, different column than j}.

We call such a pair an inversion of R.

Example J (Inversion number of balanced labellings). The standard balanced labelling 
in Fig. 13 has 11 inversion pairs as listed to the right. Notice that (6, 9) and (4, 8) are 
not inversions since these pairs occur in the same column.

Theorem 3.11. Let Pw ∈ SBT(w) be the unique super-Yamanouchi labelling. Then for 
any R ∈ SBT(w), there exists a sequence f = finv(R) · · · f1 of Coxeter moves such that 
f(Pw) = R, and, for any sequence g = gm · · · g1 of Coxeter moves with g(Pw) = R, we 
have m ≥ inv(R).

Proof. We proceed by induction on inv(R). Clearly inv(Pw) = 0 since it is the unique 
balanced filling such that all larger entries occur weakly above smaller entries, and the 
result holds for this case. Moreover, if R has some i < j with i above j and in the same 
column, then the balanced condition ensures that there is some k > j in the same row 
as j, and so i < k with i and k not in the same column. In particular, inv(R) > 0 for 
R �= Pw. This establishes the base case.

Let R ∈ SBT(w) with inv(R) > 0. We claim that there is a pair (i, i +1) with i above 
i +1. If not, then for any pair (i < j) with i above j (such a pair exists since inv(R) > 0), 
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Fig. 14. Constructing the permutation of a standard balanced labelling.

there exists k with i < k < j and neither (i < k) nor (k < j) has the smaller strictly 
above the larger. Thus k is weakly above i and weakly below j, an impossibility since i
is strictly above j. Therefore we may take i such that i + 1 lies in a strictly lower row.

If i and i +1 are not in the same column, then ci acts non-trivially on R. Furthermore, 
inv(ci(R)) = inv(R) − 1 since the pair (i, i +1) is removed from the set of inversions and 
all other pairs remain but with i and i + 1 interchanged. By induction, the result holds 
for ci(R), and so, too, for R.

If i and i + 1 are in the same column for every pair with i above i + 1, then take i
maximal among all such pairs. We claim that i + 2 must lie in the same row and to the 
right of i +1. If not, then i +2 must lie strictly above i +1, and, by the choice of i, k+1
must lie weakly above k for all k > i + 2. However, this would mean no larger entry was 
in the row of i + 1, contracting the balanced condition since i is in the same column and 
above it. Therefore i + 2 does lie in the same row as i + 1, and so bi+1 acts non-trivially 
on R by interchanging i and i +2. Furthermore, inv(bi+1(R)) = inv(R) −1 since the pair 
(i, i + 2) is removed from the set of inversions and all other pairs remain but with i and 
i + 2 interchanged. By induction, the result holds for bi+1(R), and so for R. �

Parallel to Corollary 2.10, we can refine inversion to count only the number of Yang–
Baxter moves by considering column inversions.

Corollary 3.12. For R ∈ SBT(w) and f = fk · · · f1 any minimal length sequence of 
Coxeter moves, i.e. fj = ci or bi for some i, such that f(R) is super-Yamanouchi, the 
number of Coxeter moves that are Yang–Baxter moves is equal to the number of column 
inversions of R, i.e.

#{j | fj = bi some i} = #{(i < j) | i in higher row, same column as j}.

Computing the permutation of a balanced labelling is also far simpler.

Definition 3.13. Given R ∈ SBT(w), define the permutation of R, denoted by perm(R), 
by sorting the rows of R to be decreasing (read left to right) and taking the reverse row 
reading word of the result.

Example K (Permutation of balanced labellings). Letting R be the balanced labelling in 
Fig. 14, we have perm(R) = 2 3 5 1 8 9 1 0 4 6 7 1 1 1 2.

Note that while R has 11 inversions, its associated permutation has length 13. The 
difference is precisely the number of steps needed to sort the rows of the labelling. 
Moreover, letting P be the super-Yamanouchi filling, we have
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R = c7 c8 c9 c4 c6 b8 b6 c7 c1 c2 c3 P,

which is a sequence of 11 involutions, exactly 2 of which are Yang–Baxter moves.

Theorem 3.14. For R ∈ SBT(w), we have

inv(R) = �(perm(R)) −
∑
r

coinv(rowr(R)), (3.2)

where coinv(rowr(R)) is the number of entries i < j with i left of j in row r.

Proof. Let I be defined by the right hand side of (3.2). Let R ∈ SBT(w) and suppose ci
acts non-trivially on R. Then i and i +1 lie in different rows and different columns in R, 
so sort(R) and sort(ciR) differ exactly in that i and i + 1 have been exchanged, and so 
perm(ciR) = siperm(R). Further, since all letters other than i, i + 1 compare the same 
with i and i + 1, R and ciR have the same number of row (co)inversions. In particular, 
we have

I(ciR) = �(siperm(R)) −
∑
r

coinv(rowr(R)) = I(R) ± 1,

and, moreover, I(ciR) = I(R) + 1 precisely when i is left of i + 1 in v.
Next suppose that bi acts non-trivially on R, exchanging i − 1 and i + 1 when i lies 

directly below the one and directly left of the other. The permutation exchanging i −1 and 
i +1 is given by si−1sisi−1 = sisi−1si, but since i −1 and i +1 compare differently with i, 
when the rows are sorted the one in the row of i will flip to the other side of it. Therefore 
perm(biR) = sisi−1perm(R) if i + 1 is above i − 1, and perm(biR) = si−1siperm(R)
otherwise, and in the former case we have

I(biR) = �(sisi−1perm(R)) −
∑
r

(coinv(rowr(R)) + 1) = I(R) + 1,

and, by the same computation, I(biR) = I(R) − 1 in the latter case.
By Theorem 3.11, inv(R) = 0 if and only if R is super-Yamanouchi, in which case 

perm(R) is the identity and R has decreasing rows, thus giving I(R) = 0 as well. Con-
versely, if we consider v̂ to be the permutation obtained by following Definition 3.13
without first sorting the rows of R, then we have �(v̂) = �(v) +

∑
r coinv(rowr(R)). In 

particular, I(R) = 0 if and only if v is the identity, in which case R is super-Yamanouchi. 
Therefore inv(R) = I(R) whenever either is 0. By Theorem 3.11, for any R ∈ SBT(w), we 
may write R = finv(R) · · · f1(P ), where P is super-Yamanouchi and each fi is a Coxeter 
move. The result for R now follows from the analysis of Coxeter moves above. �

Comparing Theorem 2.8 with Theorem 3.11, one anticipates a bijection between re-
duced words and standard balanced labellings preserving the permutation and inversion 
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number. Indeed, given the permutation v, one can recover the rows for the corresponding 
balanced labelling, if it exists. The following result shows there is at most one balanced 
labelling with the given row entries.

Lemma 3.15. For R, S ∈ SBT(w), if R and S both row sort to T , then R = S.

Proof. We will show there is at most one ordering on the rows of a filling T such that T
is balanced. Beginning with the top row, we must place entries in decreasing order from 
left to right. Assuming all higher rows have been uniquely balanced, begin balancing row 
r from left to right. If the available entries for cell x are x1 > · · · > xk, then let ci be the 
number of cells above x that are smaller than xi, and let ri = i − 1, which is the number 
of entries right of x that will be greater than xi should it be placed into cell x. Note that 
c1 ≥ · · · ≥ ck and r1 < · · · < rk. Thus there is at most one index i for which ri = ci, i.e. 
there is at most one entry that can be placed into cell x for which the resulting labelling 
will be balanced. �

We can now establish the following isomorphism of posets.

Theorem 3.16. We have a poset isomorphism ϕ : R(w) ∼→ SBT(w) such that ϕ(ρ) = R

if and only if perm(ρ) = perm(R).

Proof. Fix a permutation w. Set π ∈ R(w) to be the super-Yamanouchi reduced word, 
and set P ∈ SBT(w) to be the super-Yamanouchi balanced labelling. In this case both 
π and P have inversion number 0 and permutation equal to the identity. Moreover, 
since π is comprised of runs of intervals, ci(π) �= π if and only if ρi+1 − ρi > 1, and 
this happens if and only if i + 1 is at the end of a row of P and i does not lie in the 
same column. In particular, ci(π) �= π if and only if ci(P ) �= P . Similarly, bi(π) �= π

if and only if ρi±1 = ρi + 1 since the other Yang–Baxter relation would violate the 
super-Yamanouchi condition on the relative order of the minima of the increasing runs. 
In the Rothe diagram, this happens if and only if i + 1 is in the column above i with 
i − 1 in the same row and right of i, which is if and only if bi(P ) �= P . We now proceed 
by induction, assuming that ϕ is a perm-preserving poset isomorphism for all elements 
up to and including rank k ≥ 0 that intertwines the Coxeter moves on reduced words 
and balanced labellings for ranks up to k.

Let ρ ∈ R(w) be of rank k. Consider some index i for which inv(ci(ρ)) = k+1. From the 
proof of Theorem 2.8, we have perm(ciρ) = siperm(ρ). From the proof of Theorem 3.14, 
we have perm(ciϕ(ρ)) = siperm(ϕ(ρ)), so by the uniqueness of Lemma 3.15, we may set 
ϕ to map ciρ to ciϕ(ρ). Now consider some index i for which inv(bi(ρ)) = k + 1. From 
the proof of Theorem 2.8, we have perm(biρ) = sisi−1perm(ρ), and from the proof of 
Theorem 3.14, we have perm(biϕ(ρ)) = sisi−1perm(ϕ(ρ)). So again by Lemma 3.15, we 
may set ϕ to map biρ to biϕ(ρ). Thus the isomorphism extends down to rank k+1, and 
the result follows by connectivity of the poset. �
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Fig. 15. The flip map applied to a standard balanced labelling.

Example L (Poset isomorphism R(w) ∼→ SBT(w)). The running examples in R(w)
and SBT(w) for the permutation w = 41758236 both have associated permutation 
2 3 5 1 8 9 1 0 4 6 7 1 1 1 2, and so correspond under the bijection.

As a consequence, we recover the result of Edelman and Greene [5] for the long element 
and of Fomin, Greene, Reiner, and Shimozono [6] in general.

Corollary 3.17. The number of reduced words for w is equal to the number of standard 
balanced labellings of shape D(w).

4. Involutions and the long permutation

It is easy to see that if ρ is a reduced word for w, then the reversal of ρ is a reduced 
word for w−1. We give the analogous involution on balanced labellings.

Definition 4.1. Define the flip map ϕ on standard balanced labellings by setting ϕ(R)
to be the transpose of R composed with replacing entry i with � − i + 1, where � is the 
number of cells of R.

Example M (Flip map). The flip map applied to R ∈ SBT(41758236) from Exam-
ple J results in ϕ(R) ∈ SBT(26714835) shown in Fig. 15. As R corresponds to 
ρ = (5, 6, 3, 4, 5, 7, 3, 1, 4, 2, 3, 6) in Example E, we may also consider the reversal of 
ρ given by rev(ρ) = (6, 3, 2, 4, 1, 3, 7, 5, 4, 3, 6, 5). We compute

perm(ϕ(R)) = 8 1 4 7 10 2 5 9 11 3 6 12

from Fig. 15, and less easily compute by Algorithm 2 that this coincides with 
perm(rev(ρ)), indicating that ϕ(R) corresponds to rev(ρ).

Proposition 4.2. The flip map ϕ is a well-defined involution that maps SBT(w) to 
SBT(w−1) such that ϕ(ci(R)) = c�−i(ϕ(R)) and ϕ(bi(R)) = b�−i+1(ϕ(R)).

Proof. By (3.1), the Rothe diagram for w−1 is the transpose of the Rothe diagram for w, 
and so the flip map ϕ is a well-defined into SBT(w−1) if its image is balanced. A filling 
R is balanced if and only if for each cell y of R we have

#{x ∈ R | x < y and x above y} = #{z ∈ R | z > y and z right of y},



18 S. Assaf / Advances in Applied Mathematics 107 (2019) 1–21
where x is in the same column and z is in the same row as y. Transposing R to RT

results in a filling such that each cell y satisfies

#{x ∈ RT | x < y and x right of y} = #{z ∈ RT | z > y and z above y},

where x is now in the row of y and z is in the column of y. Replacing i with � − i + 1
reverses the relative order of entries, so that each cell y, we have

#{x ∈ ϕ(R) | x > y and x right of y} = #{z ∈ ϕ(R) | z < y and z above y},

where x is in the row of y and z is in the column of y, i.e. ϕ(R) is balanced.
Since i and i +1 are not in the row or column in R if and only if � − i +1 and � − i are 

not in the row or column in ϕ(R), we have ϕ(ci(R)) = c�−i(ϕ(R)). Similarly, i −1, i, i +1
form a braid pattern in R if and only if � − i + 2, � − i + 1, � − i form a braid pattern in 
ϕ(R), showing ϕ(bi(R)) = b�−i+1(ϕ(R)). �

Using the ranked poset structure on reduced words and balanced labellings together 
with the observations that rev(ci(ρ)) = c�−i(rev(ρ)) and rev(bi(ρ)) = b�−i+1(rev(ρ)), we 
have the following equivalence of involutions.

Corollary 4.3. Given a permutation w, if R ∈ SBT(w) corresponds to ρ ∈ R(w), then 
ϕ(R) ∈ SBT(w−1) corresponds to rev(ρ) ∈ R(w−1).

While these involutions respect the graph structure on reduced words and balanced 
labellings, they do not respect the ranking. When w is particularly nice, or rather, when 
the Rothe diagram of w is particularly nice, there is a different involution that respects 
the poset structure.

Theorem 4.4. For the longest permutation w(n)
0 = n(n − 1) · · · 21 of Sn, the map ψ

sending an entry i to 
(
n
2
)
− i + 1 is an order-reserving involution on SBT(w(n)

0 ). In 

particular, SBT(w(n)
0 ) has a unique minimal element B with

inv(B) = (n− 2)(n− 1)(n)(3n− 5)/24.

Proof. The Rothe diagram D(w(n)
0 ) is the staircase diagram δn−1 of left-justified rows of 

lengths 1, 2, . . . , n −1 from top to bottom. Thus every cell y of D(w(n)
0 ) has as many cells 

above it as to its right. For y a cell of D(w(n)
0 ), let leg(y) denote the set of cells above y

in the same column and let arm(y) denote the set of cells to the right of y in the same 
row. Then

#{x ∈ leg(y) | x < y} = #leg(y) − #{x ∈ leg(y) | x > y},

#{z ∈ arm(y) | z > y} = #arm(y) − #{z ∈ arm(y) | z < y}.
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Fig. 16. An illustration of the Coxeter moves on SBT(4321).

For R ∈ SBT(w(n)
0 ), since #leg(y) = #arm(y) for every y, this implies

#{x ∈ leg(y) | x > y} = #{z ∈ arm(y) | z < y},

from which it follows that ψ(R) is balanced.
For every pair of cells x, y neither in the same row nor same column, say with x above y, 

the pair (x, y) is an inversion in R if and only if it is not an inversion in ψ(R). In particular, 
every such pair is an inversion only for ψ(P ), where P is the super-Yamanouchi labelling. 
To compute the number of such pairs, notice that there are 

(
k
2
)

cells above the cell in 
the kth row from the top, and we should not have counted k−1 cells in the first column, 
k − 2 in the second, and so on, giving

n−1∑
k=1

k

(
k

2

)
−

n−1∑
k=1

(
k

2

)
= 1

4(3n− 1)
(
n

3

)
−
(
n

3

)
= (n− 2)(n− 1)(n)(3n− 5)

24 ,

where the leftmost summation is the (signless) Stirling numbers of the first kind s(n, n −2)
and the rightmost is the tetrahedral numbers. �
Example N (Minimal element of SBT(w(n)

0 )). The ranked poset on SBT(w(4)
0 ) is shown 

in Fig. 16. Notice that the unique minimal element is given by
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ψ

( )
=

and the number of inversions for this minimum is 11 − 4 = 7.

The graph on reduced words for w(n)
0 is of particular interest and relates directly to the 

balanced tableaux of staircase shape considered by Edelman and Greene [5]. Dehornoy 
and Autord [4] proved that the diameter of the graph for w(n)

0 grows asymptotically 
like n4. Reiner and Roichman [8] used hyperplane arrangements to prove an exact formula 
for the diameter that coincides with inv(B) in Theorem 4.4. We give a new, elementary 
proof using the inversion statistic on balanced labellings.

Corollary 4.5. The maximum distance between two reduced words for w(n)
0 is

max
ρ,σ∈R(w(n)

0 )
dist(R,S) = (n− 2)(n− 1)(n)(3n− 5)

24 . (4.1)

Proof. Let P denote the super-Yamanouchi balanced tableau for w(n)
0 , and let B = ψ(P ). 

Given any balanced tableau R ∈ SBT(w(n)
0 ), there is an inv-increasing path from P to R

and, by considering the reversed poset assured by Theorem 4.4, an inv-decreasing path 
from R to B. Therefore we have

dist(P,R) + dist(R,B) = dist(P,B). (4.2)

For R, S ∈ SBT(w(n)
0 ), the triangle inequality gives

dist(R,P ) + dist(P, S) ≥ dist(R,S) ≤ dist(R,B) + dist(B,S).

Combining this with Eq. (4.2) for both R and S, we have

2 dist(R,S) ≤ dist(R,P ) + dist(P, S) + dist(R,B) + dist(B,S) = 2 dist(P,B).

Thus dist(R, S) ≤ dist(P, B) = inv(B) for all R, S ∈ SBT(w(n)
0 ). In particular, the 

diameter of the graph is inv(B), so the result follows from Theorem 4.4. �
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