Interfaces

Vol. 35, No. 2, March-April 2005, pp. 140-151
1ssN 0092-2102 | e1ssN 1526-551X | 05| 3502 | 0140

[lorms}

por1 10.1287/inte.1040.0123
©2005 INFORMS

Developing and Assembling the
Law School Admission Test

Ronald Armstrong

Rutgers Business School, Rutgers University, 180 University Avenue, Newark, New Jersey 07102-1895,
r.d.armstrong@att.net

Dmitry Belov, Alexander Weissman

Psychometric Research Group, Law School Admission Council,
662 Penn Street, Box 40, Newtown, Pennsylvania 18940-0040 {dbelov@Isac.org, aweissman@Ilsac.org}

Standardized tests are useful for assessing an individual’s potential to succeed in various endeavors. In addition,
institutions use them to measure student achievement and to measure the efficacy of pedagogical approaches.
Operations research tools can help those developing rigorous standardized tests. Our mixed-integer program
(MIP) provides a model for assembling forms for the Law School Admission Test (LSAT). Since 2002, our
LSAT assembler—software we developed using a Monte Carlo approach—has produced test forms meeting all
specifications. This software has saved thousands of hours of personnel time.

Key words: programming: integer, applications; education systems.

History: This paper was refereed.

ver 148,000 potential law school students took
Othe Law School Admission Test (LSAT) between
June 2002 and February 2003. Most law schools in
the United States and Canada require applicants to
take the LSAT and consider the scores important in
admission decisions. The LSAT is designed to predict
the academic success of a student in the first year
of law school. The current LSAT has a linear paper-
and-pencil (P&P) format. The test consists of four
scored sections: two in logical reasoning (LR), one in
analytical reasoning (AR), and one in reading com-
prehension (RC), and an unscored 30-minute writing
sample. The LSAT is administered four times a year,
with all test takers receiving the same four scored
sections on any given administration. Across differ-
ent administrations, these sections differ; however, all
tests are intended to be parallel. Parallel test forms
are those that have the same measurement character-
istics, within some tolerance level, even though spe-
cific test forms differ in content. Those creating test
forms must meet these measurement characteristics,
and operations research tools are extremely useful for
these purposes.
All the test questions (items) on the LSAT are mul-
tiple choice. For some items, test takers must read a

140

passage before they can answer the items. A database
of items, passages, and their associated characteristics
is an item pool. If the passage and the item corre-
spond one to one, the item is called a discrete item.
Multiple items associated with a passage are called
set based. The AR and RC sections are set based with
four passages in each section, and the LR sections are
composed of discrete items. More information on the
LSAT can be found at http://www.lsac.org.

While analysts cannot solve most test-assembly
problems with polynomial algorithms, this does not
mean that assembling a single linear test form is diffi-
cult. Assembling most tests does not require optimiz-
ing objective functions. Any combination of items that
meets the defined test specifications yields an accept-
able test form. From a typical item pool, one can com-
bine items in many ways to make a form. Theunissen
(1985) and van der Linden (1998, 2000) propose using
a general MIP software package (Nemhauser and
Wolsey 1988) to assemble test forms. However, few
testing agencies are using this approach.

In 1997, the Law School Admission Council initi-
ated a project to automate the assembly of the LSAT.
We detailed all specifications and wrote software that

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

141

implemented a branch-and-bound algorithm during
the first year of the project. Since 1998, the MIP from
the LSAT specifications has been solved with our soft-
ware. In 2002, we implemented a new LSAT assembler
utilizing an adaptive stochastic search approach. Ana-
lysts have used adaptive stochastic search, including
simulated annealing (Spall 2003), genetic algorithms
(Spall 2003), tabu search (Glover et al. 1993), and
Monte Carlo methods (Spall 2003), such as random
search, and Markov chain simulation, to solve various
practical global optimization problems. They suc-
ceeded partly because the methods are easy to imple-
ment and adapt to complex problems. We use a Monte
Carlo approach along with tabu search to assemble
LSATs. The Monte Carlo approach can handle non-
linear extensions to the basic model and analyze the
properties of the item pool. The automated assembly
has provided test forms meeting all specifications and
has saved thousands of hours of personnel time.

Item Response Theory

Testing agencies commonly employ item response
theory (IRT) to measure the examinee’s abilities (trait
levels) and the items’ response properties. Of the var-
ious IRT models (Lord 1980, Hambleton et al. 1991),
we used the one-dimensional three-parameter logistic
(3PL) model for the LSAT items.

For a given item, the goal of IRT is to predict
the probability that an examinee with a specific abil-
ity level will correctly answer that item. In the 3PL
model, only two responses to an item are possible—
correct or incorrect. Thus, if we consider an arbi-
trary item i, we can define a Bernoulli random vari-
able U; such that U; =0 when an examinee responds
incorrectly, and U, =1 when he or she responds cor-
rectly. Further, a continuous random variable 0 repre-
sents the ability levels of the examinee population; for
convenience, 0 is usually standardized so that most
examinees’ abilities will fall between a low of § = —3
and a high of # =+3, with an ability of § =0 being
average for the group of examinees. Although IRT
does not require the ability distribution to be normal,
we can assume that 0 is distributed standard normal.

For any item i, based on IRT we model the proba-
bility of an examinee responding correctly to that item
as a function of that examinee’s ability and a set of
item parameters. We denote IRT parameters for item i
by a;, b;, and c;. The value of the pseudo-guessing

parameter, c;, gives the probability that a low-ability
examinee will answer the item correctly. The quality
of incorrect choices affects this parameter; for exam-
ple, a low-ability examinee may eliminate incorrect
choices, which will increase this value, or be drawn to
attractive incorrect choices, which can lower the value.
The value of b, is a measure of the difficulty of the item
and is on the same scale as 0; thus, easier items have a
lower b; and more difficult items have a higher b;. The
probability of a correct response to item i at ability b;
is (1 4 ¢;)/2. The value of a; measures the discrimi-
nation of the item, or how well the item can distin-
guish between lower- and higher- ability examinees.
The larger a;, the steeper the curve about 6 =b;,.
Equation (1) gives the probability that an examinee
with ability 6 responds correctly (Figures 1 and 2):

1—g¢;
M rexp(—17a,00-b))

P(U;=116)=p:(0)=c 1)

Related to the probability of correct response to an
item is an item’s information function, a measure of
the precision with which the item can measure an

—_
o
J

o
o
]

Prob=(1+c¢)2

o
(o2}
]

slope = 0.425a(1 - ¢)

Probability of correct response

0.4 |
|
b |
|
0.2 |
S __ L b
0 3 L4
-30-25-20-15-1.0-05 0 05 10 15 20 25 3.0
Ability level 6

Figure 1: The goal of item response theory (IRT) is to predict the probabil-
ity that an examinee with a specific ability level will correctly answer that
item. We model the probability of an examinee responding correctly to an
item as an item response function, which is a function of that examinee’s
ability level (6) and a set of item parameters, shown in the figure as a,
b, and c. The b parameter is a measure of the difficulty of the item and
is on the same scale as 6, with less difficult items having lower b values
and more difficult items having higher b values. The a parameter mea-
sures the discrimination of the item, or how well the item can distinguish
between lower- and higher-ability examinees; the larger the value of a,
the steeper the slope of the item response function as evaluated at ability
level 6 = b. The ¢ parameter, or pseudo-guessing parameter, gives the
probability that a low-ability examinee will answer the item correctly. The
probability of a correct response to an item for an examinee with 6 = b is
equal to (1+c¢)/2.

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

142

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

10 - ltem response

0.8
0.6 1
0.4 1
0.2 1

[e e S S e R B B S S S A
-30 -24-18-12-06 0 06 12 18 24 3.0
Ability

0.6 - ltem information

0.5
0.4
0.3
0.2
0.1
O 4
-30 24 -18-12-06 0 06 1.2
Ability

1.8 24 3.0

Figure 2: Related to the item response function (top) is the item informa-
tion function (bottom). The item information function indicates the preci-
sion with which an item can measure an examinee’s ability; thus, higher
information is associated with smaller measurement error. By comparing
the two figures, we see that an item provides greater measurement pre-
cision at those ability levels where the item response function is more
sloped. This item has IRT parameters a, =1, b, =0, and ¢; = 0.15, with
examinee ability levels 6 € [-3, 3].

examinee’s ability (Lord 1980, p. 73). Equation (2)
gives this function (Figure 2):

L,(6) = (1.7a,)> [1'0?;(5 ;’(0)} [’” "501; G T.)

The Life Cycle of an Item

We can best describe an item at its inception by
its qualitative attributes rather than its quantitative
attributes. Typically, items concern particular content
areas, such as trigonometry for a mathematics test
or analogies for a test of verbal ability. Test special-
ists develop taxonomies to categorize item attributes
as precisely as possible. For example, a trigonome-
try item may be classified as (a) using sine, cosine,
or tangent functions; (b) including no more than one
unknown quantity; (c) including or not including an
accompanying diagram. The specialists assemble test
forms according to test blueprints, which insure that
completed tests conform to desired specifications in
terms of number and types of items.

Before specialists include items on a test form, these
items must pass a series of quality-control checks.
For example, an item must have exactly one correct
answer. For multiple-choice items, the distractors, or
incorrect choices, must be both attractive to exami-
nees and incorrect. Occasionally a first draft of an
item includes a distractor that is attractive but cor-
rect under certain unintended interpretations. Con-
versely, the correct answer should be correct under all
reasonable interpretations. Specialists follow an item-
review process designed to detect and rectify errors.

Once an item has been reviewed, it is ready for
pretesting. In the pretesting stage, we assign items to
a nonscored section of the test. When they take the
test, examinees are not aware of which sections are not
scored and which are scored. Thus, we can collect reli-
able response data on the new items without affecting
examinees’ scores. We then calibrate the items to esti-
mate the item parameters a;, b;, and c; (Equation (1))
for each of the items i being pretested. In solv-
ing the calibration problem, a nonlinear optimization
problem, we obtain maximum likelihood estimates
for the parameters. If the item behaves as intended,
we move it to the next stage, called preoperational
assembly.

In preoperational assembly, we create a complete
section of a test that conforms to both qualitative
and quantitative test specifications. Furthermore, we
assemble the preoperational section as part of an entire
operational test form. After we assemble a preopera-
tional section, we administer it again to examinees in
an unscored section. We conduct another IRT calibra-
tion to estimate the item parameters 4;, b;, and c;, and
compare these estimates to those obtained when the
items were administered at the pretesting stage. If at
this point the test specialists accept the preoperational
section, it is ready for operational use. To assemble an
operational test, we combine the successful preopera-
tional test sections into one operational form.

Examiners score all items on an operational test
form and report these scores to examinees. Although
test specialists try to insure that test forms do not
vary substantially in difficulty from one administra-
tion to the next (the LSAT is administered four times
per year), small fluctuations in test-form difficulty
are inevitable. The examiners use a procedure called
equating to correct for these fluctuations and to insure

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

143

that score scales remain stable (Kolen and Brennan
1995). By equating after each test administration, they
ensure that one can compare scores across various
administrations.

Typically, an item’s life cycle ends with its opera-
tional use (Figure 3). Once they have been used on an
operational test, items may be disclosed to the public
(to appear in test-preparation booklets, for example).

Write and edit
item

Fail

Pretest item

.
Fail

Pass
S . v
Other pretested Assemt.)le
i items preoperational
................................... SeCtion
Other | Assemble
preoper.atlona operational form
i sections
\ 4
Administer
operational
test form

Figure 3: We illustrate the life cycle of an item in this flowchart. Test spe-
cialists first write an item and then review and edit it until it passes a
series of quality-control checks. Once an item has been reviewed, it is
ready for pretesting, where we assign it to a nonscored section of the test.
(Examinees are not aware of which sections are not scored and which are
scored.) After pretesting, we estimate item response theory (IRT) param-
eters for the item. If the item’s IRT parameter estimates and other statis-
tical characteristics behave as intended, we move to the next stage where
we assemble it with other successfully pretested items into a preopera-
tional section, conforming to both qualitative and quantitative test speci-
fications. We then administer this preoperational section in an unscored
section of the test, re-estimate IRT parameters, and compare these new
estimates to those obtained at the pretesting stage. If test specialists
accept the preoperational section, we assemble this section with other
successful preoperational sections to create an operational form. After
administration, examiners score all items on an operational test form and
report these scores to examinees. We then retire the item once it has been
administered operationally.

LSAT Assembler

The LSAT assembler is a part of an integrated system,
supporting the full life cycle of an item (Figure 4).

The test assembler reads the properties of pas-
sages and items, and the test-assembly specifications
from the database. It assembles LSAT forms that
satisfy these specifications and saves the forms in
the database. The test specialists can use the form
reviewer to check forms against additional constraints
that were not coded or could not be coded in the
test-assembly specifications. Based on this review, the
specialists may flag items as inappropriate for a form,
calling for reassembly to replace the flagged items.

The pool analyzer reads properties of items and
passages, and test-assembly specifications from the
database and extracts multiple LSAT forms. It then
identifies properties of items that should be devel-
oped to create additional LSAT forms.

The Test-Assembly Problem

An item pool consists of pretested items, and the
test-assembly process creates test sections for the pre-
operational stage. After a successful preoperational
administration, the sections are combined to form an
operational test form. The following constraints are
considered for the assembly.

—No duplication: Test forms include items and
passages at most once.

— Pretest positioning: Items appearing in an oper-
ational section are constrained by the position of the
items in pretesting.

— Cognitive skill content: The test form must sat-
isty a specific distribution of the cognitive skills being
tested.

—Item-set specifications: The number of items
associated with a passage must fall between a lower
bound and an upper bound. Some items must always
appear with a passage.

— Word count: The number of words in each sec-
tion must fall between lower and upper limits.

— Answer-key-count distribution: The distribution
of the multiple-choice answer keys is constrained for
each section.

—Topic: AR and RC sections must have specified
numbers of passages on each topic.

— Diversity: Every RC section must have a speci-
fied diversity representation.

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

144

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

— Targets: Each section has specified ranges for
information functions and response curves based on
IRT.

— Enemies: Some item pairs and passage pairs
must not be included on the same test.

— Predicted mean test score and standard devia-
tion: The mean and the standard deviation of the pre-
dicted score distribution for the test should be within
a specified range.

— Number of items: The number of items on a test
form must be within a specified range.

The mixed-integer programming (MIP) model for
the assembly of a single LSAT test form is provided
in the appendix. Item responses conditional on ability
are assumed to be independent.

Monte Carlo Test Assembler

The Monte Carlo test assembler is straightforward in
concept:

Step 1. Generate a random sequence of the ques-
tions (items).

Step 2. Make sure this sequence satisfies all the con-
straints, and if it does, save it as a new test; otherwise,
return to Step 1.

The challenge with the Monte Carlo technique
is to avoid generating many “useless” sequences
in Step 1. We have developed several strategies to
shrink the search region. We exploit the properties of
the constraints, using a divide-and-conquer technique
and tabu search, and we prioritize constraint check-
ing based on computational complexity (Appendix).
We implemented the search in C/C++ using STL
(Musser et al. 2001) as part of the test assembler and
item-pool analyzer (Figure 4).

The problem is to assemble a single form from an
item pool that has, for example, 1,350 discrete LR
items, 110 AR passages with 950 items, and 110 RC
passages with 1,030 items. The MIP problem has
about 5,050 variables and 2,000 constraints. To solve
this problem, we used a desktop personal computer
with a Pentium 4 CPU, 2.00 GHz, 1.00 GB of RAM,
and Windows XP operating system. The solution
time to assemble one test is generally less than two
minutes, which matches the performance of a lead-

LSAT Assembler:
Test assembler
Item and passage
Database: properties;
1. Items and their Test assembly
properties; specifications;
2. Passages and their LSAT forms. Forms reviewer
properties;
3. Test assembly
specifications;
4. LSAT forms.
Item pool
LSAT forms. analyzer

Figure 4: Here we show the general architecture of the LSAT assembler. Our software consists of two major com-
ponents, the database and the LSAT assembler. The database manages information about items (IRT parameters,
cognitive skills, etc.), passages (number of words, topic, etc.), test-assembly specifications, and assembled
LSAT forms. The LSAT assembler includes three applications: (1) the test assembler to assemble LSAT forms,
(2) the form reviewer to analyze assembled forms, and (3) the item pool analyzer to generate multiple nonover-
lapping forms and to identify properties of new items. The two arrows show the direction and type of information

flow.

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

145

ing commercial MIP package, CPLEX (ILOG 2002).
However, the Monte Carlo approach can easily han-
dle nonlinear constraints and various problems of
pool analysis and design that are intractable for an
MIP package.

Assembly of Multiple Test Forms

Test specialists often want to assemble many test
forms from a single pool of items. Tests that have
items or passages in common are called overlapping.
In practice, we want to find multiple (ideally, the
maximum number of) nonoverlapping tests from the
item pool. One approach is to assemble test forms
sequentially, with the Monte Carlo approach, while
removing any previously used items and passages
from the problem. When we used this approach,
we obtained, after repeated attempts, at most nine
nonoverlapping tests from our item pool. We devel-
oped a better approach.

A viable approach for assembling multiple tests is
to create many nonoverlapping sections first and then
combine them into complete test forms, ensuring that
each test satisfies the constraints. Suppose that we
can determine the maximum number of nonoverlap-
ping sections for each item type (AR, RC, or LR). Let
max,g, Maxgc, and max;y represent these numbers.
If the number of nonoverlapping test forms equals
min(max,g, MaXgc, Mmax; g /2), we will have assem-
bled the maximum number of nonoverlapping forms
from the item pool. We can then assemble multiple
nonoverlapping versions of the LSAT and in some
cases verify that we have obtained the maximum
number.

We can assemble a large number of feasible over-
lapping sections from the item pool. However, if we
obtain all the feasible sections with unique passage
combinations, we can extract the maximum number
of nonoverlapping sections from this set of overlap-
ping sections as follows (Figure 5):

(1) Assemble all or many overlapping sections that
satisfy the constraints on each of the three item types
and save the sections in the database.

(2) Extract the maximum number of nonoverlap-
ping sections from the sections assembled in Step 1.
Because several section groupings may yield the max-
imum number of nonoverlapping sections, we may
extract more than one maximum group. Perform

Figure 5: In this diagram for assembling multiple nonoverlapping LSAT
forms, the ellipses show overlapping (OL) sections or tests, and the cir-
cles show nonoverlapping (NOL) sections or tests. The arrows show the
direction of data flow. Each solid arrow indicates solving a corresponding
maximum-set-packing problem; each broken arrow indicates assembling
sections or composing overlapping tests.

this grouping for all three item types and save the
extracted sections in a separate database table.

(3) Combine the nonoverlapping sections to create
the complete set of feasible overlapping test forms
using these sections.

(4) Extract the maximum number of feasible non-
overlapping test forms from the set of forms created
in Step 3.

In each step, we solve multiple discrete-optimi-
zation problems. We developed an integer-program-
ming (IP) model for extracting the maximum num-
ber of nonoverlapping sections (or tests) from a set
of overlapping sections (or tests) (appendix). This IP
problem is a maximum-set-packing problem (MSP)
(Nemhauser and Wolsey 1988). We transform the MSP
to a maximum clique problem and solve it with a
graph branch-and-bound algorithm (Wood 1997). We
implemented this approach as a part of the item-
pool analyzer (Figure 4). By solving this problem,
we obtained 16 test forms from our pool as opposed
to the nine obtained using a sequential-assembly
approach.

Model Extensions

Although we could use a commercial MIP solver
to assemble tests, it has disadvantages. Problems

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

146

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

often become intractable when one enforces nonlinear
constraints or we require certain types of analyses. We
find Monte Carlo methods beneficial in two selected
situations:

(1) A common method for appraising the quality
of a test is to measure its reliability, that is, the corre-
lation between the examinee’s true ability and his or
her observed test score. We can measure the score in
various ways, but in practice, we must use a nonlin-
ear expression to derive the correlation. For example,
suppose that the score is simply the number of cor-
rect responses. To obtain the covariance of the score
and true ability, we need the score distribution, which
requires a nonlinear function.

(2) The responses to items are not always indepen-
dent. In particular, items relating to the same passage
may be interdependent. The correlation matrix for the
item response probabilities creates nonlinearity if we
must calculate the expected score or test-information
function.

The Monte Carlo test assembler we developed eas-
ily supports nonlinear constraints, and we can use it
for various analyses of a given item pool and test-
form constraints, for example, to extract multiple test
forms, to calculate the selection frequency of each item
and passage in the overlapping sections, to find the
most difficult constraint(s) for test assembly, and to
count the violations of the most difficult constraint(s).
Test developers rely on all of these analyses to make
more robust and productive item pools. A side ben-
efit of the random-search technique is that conver-
gence times are directly related to the match between
characteristics of the item pool and specifications for
test forms. Because faster assembly times are associ-
ated with the presence of greater numbers of potential
tests, a comparison of assembly times can be used to
appraise different pools as well as test specifications.

Computerized Adaptive Testing

During the 1990s, paper-and-pencil (P&P) tests were
supplemented or entirely replaced by computerized
adaptive tests (CATs) within many large-scale stan-
dardized testing programs, such as the Graduate
Record Examination (GRE). CATs have advantages
over conventional P&P tests. CAT assemblers deter-
mine the items to administer in real time, tailoring

each test form to an examinee’s ability level. That is,
an examinee’s responses to items are input to a CAT
assembler, and this assembler updates an estimate of
the examinee’s ability regularly. It can then choose
subsequent items that closely match the examinee’s
ability. By adapting the test to an individual, CAT
uses fewer items to acquire more information than a
traditional test. Other potential advantages of CATs
are immediate scoring, frequent or flexible adminis-
trations, monitoring item-response latencies, and the
means to implement innovative item formats and
types, for example, items employing video and audio
technologies. Wainer et al. (1990) provide a general
review of CATs.

Although each examinee faces fewer items on a
CAT than on an equivalently reliable P&P test, exam-
iners have more serious concerns about item expo-
sure with CATs than with P&P assessments. A typical
P&P test form is exposed to many examinees at one
administration, then disclosed and not used again.
CAT administrations are typically spread over longer
periods of time, and items, although not disclosed,
are continuously exposed. Therefore, high-stakes CAT
administrations may be more vulnerable to compro-
mise than their P&P counterparts.

A conventional CAT form is highly personalized
because an adaptive testing algorithm chooses items
from an item pool during the test. Because a CAT
given to an individual examinee might never be
administered again, test scores from different exam-
inees are difficult to equate. Testing agencies con-
struct multiple P&P forms for a standardized test to
be parallel and can easily make adjustments for small
differences between forms after each administration
because of the large number of examinees respond-
ing to each form. In addition, the number of correct
responses to a conventional CAT has little meaning,
and examiners may have difficulty explaining ability
estimates to examinees. Before each P&P test adminis-
tration, test specialists have the opportunity to review
the P&P test form. Reviewing a conventional CAT
would be infeasible because the number of possible
exams increases exponentially with the number of
items in the pool. For example, even a 10-item exam
from a 20-item bank would give rise to almost 200,000
possible forms without considering item sequencing.
In a CAT environment, a testing agency must rely

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

147

5-7 items per bin
35-37 items per path

Stage: (i) (ii) (iii) @iv)) (vi)

Figure 6: A multiple-stage test (MST) is an ordered collection of testlets,
or sets of items bundled together, that allows for adaptation based on
an examinee’s ability while exposing a predefined number of items and
providing a reasonable number of possible forms. In this example of an
MST, we show six stages, 12 bins, and four paths. An algorithm makes
routing decisions after bins 2, 5, and 6. We assign a testlet of five, six,
or seven items to each bin. We constrain the total number of items along
any path to be between 35 and 37 items.

on a computer item-selection algorithm to construct
exams, which as a result may have subtle similarities
or clueing across items.

A multiple-stage adaptive test (MST) (Figure 6) alle-
viates some of the difficulties described above. An
MST is an ordered collection of testlets (sets of items
bundled together; see Wainer and Kiely 1987) that
allows for adaptation based on an examinee’s ability
while exposing a predefined number of items and pro-
viding a reasonable number of possible forms. This
test structure is a hybrid between the conventional
P&P and CAT formats. The Law School Admission
Council has evaluated the MST approach to testing as
a part of its research effort to explore computerized
testing for LSAT.

Within a stage, we index the bins using the con-
vention that the lower index number corresponds to
a lower ability group. For discussion purposes, we
assume that every testlet for our example MST design
(Figure 6) contains five to seven items, and each path
contains 35 to 37 items. The first two stages (Bin 1
and Bin 2) contain two testlets (of five to seven items
each) designed for the complete ability range of the
test-taking population. The examinee advances to one
of the two bins in the third stage based on the number
of correct responses in the first two testlets. A possi-
ble method for routing out of Stage (ii) is the follow-
ing. Proceed to Bin 3 if the total number of correct

responses to the items in Bins 1 and 2 is less than 7,
and proceed to Bin 4 otherwise. The routing can be
based on an estimate of ability instead of the number
of correct responses.

Stages (i) and (ii) contain testlets intended for
100 percent [0,100] of the test-taking population.
Stage (iii) has two bins. The testlet in Bin 3 is intended
for examinees with ability levels in the bottom 50th
percentile [0, 50] of this population and the testlet
in Bin 4 is intended for examinees with ability lev-
els in the top 50th percentile [50, 100]. Stage (v) has
three bins, 7, 8, and 9, intended for testlets that tar-
get people of progressively increasing ability. In other
words, the testlets assigned to Bin 7 could be created
for examinees in the lowest 33rd percentile [0, 33],
Bin 8 for the middle 34th percentile [33, 67], and Bin 9
for the top 33rd percentile [67, 100] of the test-taking
population.

While we will not describe the MIP model for MST
assembly, it follows along the lines of the P&P model,
but with constraints imposed along the paths of the
MST. The advantages of an MST over a P&P test are
similar to those of a CAT over a P&P test, but they
are not as pronounced because adaptation occurs less
often.

Conclusions

Testing agencies are increasing their use of operations
research tools. The Law School Admission Council
(LSAC) has used our Monte Carlo assembler since
2002. In addition to saving thousands of personnel
hours, all of the test forms assembled meet LSAT
specifications. LSAC is a nonprofit organization and
is concerned with benefits beyond monetary savings.
It has improved the quality of the LSAT and uses the
resources previously devoted to manually assembling
the LSAT for other services. In addition, the software
has greatly improved the usability of the item pool.
The LSAC is using Monte Carlo methods to assem-
ble tests and to analyze item pools. Monte Carlo
optimization provides advantages over standard MIP
optimization in terms of flexibility for handling non-
linear constraints and monitoring the strengths and
weaknesses of an item pool. Testing agency admin-
istrators can then direct item writers to focus on
creating more items that will allow the assembler to

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

148

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

generate more test forms. In this manner, a testing
agency may use its item pool more efficiently.

The wide availability of computers and the abil-
ity to adapt tests to examinees make computer-based
testing the method of the future. We are studying
various designs for multiple-stage adaptive tests. Our
analysis of these designs uses mathematical program-
ming to assemble tests, and stochastic techniques to
develop routing rules and evaluate the designs. We
are using simulations to define the path IRT targets.

Many problems in testing and educational measure-
ment can be addressed by using operations research
techniques. We used operations research techniques
to assemble test forms. However, analysts can also
use operations research in designing tests, calibrating
items, and sampling examinees from populations of
interest.

Appendix

The MIP Model for Assembling a Single LSAT

x; is a binary variable; x; =1 if item i is assigned to
the test, and x; = 0 if item i is not assigned to the
test. There are two logical reasoning sections; thus,
each logical reasoning item is conceptually duplicated
to allow a distinct index for assigning an item to a
section.

y; is a binary variable; y; =1 if passage j is assigned
to the test, and yi= 0 if it is not assigned to the test.
The logical reasoning items are discrete items, and
y; = x; for these items.

SET is the index set of passages and ITEM is the
index set of items. ITEM(s) is the index set of items
eligible to be assigned to section s.

LS; and US; are the lower and upper limits on the
number of items related to passage j that must be
used on a test if passage j is used. The set I(j) gives
the indices of items related to passage j.

I*(j) is a subset of I(j); at least one item from I*(j)
must be used if passage j is chosen for the test.

LCOG; and UCOG; are the lower and upper limits
on cognitive skill k. CITEM(k) is the index set of items
testing cognitive skill k, and NCOG gives the number
of cognitive skills.

LPRE, and UPRE, are the lower and upper lim-
its on pretest position k. PSET(k) is the index set
of passages pretested at a position sufficiently close

to k, and NPRE gives the number of pretest positions
restricted.

LTOP, and UTOP, are the lower and upper lim-
its on topic k. TSET (k) is the index set of passages
with topic k, and NTOP gives the number of topics
restricted.

LDIV, and UDIV, are the lower and upper limits
on diversity type k. DSET (k) is the index set of pas-
sages with diversity type k, and NDIV gives the num-
ber of diversity types.

LWOR, and UWOR, are the lower and upper word
limits on section s. WSET(s) is the index set of pas-
sages eligible for section s.

LKEY, and UKEY, are the lower and upper limits
on the number of correct responses for any answer
key in section s. KITEM(s, £) is the index set of items
having answer key ¢ and eligible for section s.

E1A(k) and E1B(k) are enemy item pairs, and
E2A(k) and E2B(k) are enemy passage pairs. The
duplicated LR item pairs automatically become ene-
mies of each other. NEN1 and NEN2 are the number
of item and passage enemy pairs, respectively.

UIL(6,) and LI (6,) are, respectively, the upper and
lower information function limits for the section s
at 0. UR,(6;) and LR(6;) are, respectively, the upper
and lower response function limits for the section s
at 6. The value of [;(6;) and p;(6,) are, respectively,
the information and probability of a correct response
for the item associated with item i conditioned on 6,
for the IRT model.

The total number of items on the test is a fixed
value given by NTEST. Also, the mean score on the
test should be in the interval [LSCORE, USCORE].
The probability of a correct response to item i, p;, is
calculated numerically assuming a normal distribu-
tion of ability.

The constraints for the problem of assembling a sin-
gle LSAT follow:

y;=0or1, jeSET, icITEM, (3)
LSy; < dox< us;y;, jeSET, 4)
iel(j)
yi— > %<0 Vj where I*(j) Zempty set, (5)
el (j)

LCOG,< Y

ieCITEM (k)

x;=0or1,

x; <UCOG, k=1,...,NCOG, (6)

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

149

LPRE,< Y y,<UPRE,, k=1,..,NPRE, (7)
jePSET (k)
LTOP,< Y y,<UTOP, k=1,...,NTOP, (8)
JETSET(k)
LDIV,< Y y,<UDIV,, k=1,..,NDIV, (9)
jeDSET (k)
LWOR,< Y wy,<UWOR,, s=1,2,3,4, (10)
JEWSET(s)
LKEY,< Y x,<UKEY,,
ieKITEM(s, £)
s=1,2,3,4, ¢=1,2,3,4,5, (11)

k=1,...,NEN1, (12)
k=1,...,NEN2, (13)

Xerag) T Xe18g <1,

Ye2am T Ve <1,

LI(6,) < Y L(6)x, <UL(6,),
ieITEM(s)
s=1,2,3,4, k=1,2,...,KQ, (14)
LR(6)< > pi(6)x; <UR(6),
ieITEM(s)
s=1,2,3,4, k=1,2,...,KQ, (15)
> x;=NTEST, (16)
ieITEM
LSCORE<) p;x;<USCORE. (17)

ielTEM

Various objective functions could be considered.
A commonly used objective for linear tests is to
minimize the distance that the test-information and
response functions are from the middle of the lower
and upper acceptable limits. Minimizing the sum of
the absolute deviations and minimizing the maxi-
mum absolute deviation both give rise to linear objec-
tive functions. CPLEX and our Monte Carlo approach
both have the capability to solve MIPs with quadratic
objective functions; therefore, the squared deviation
could be considered. Weights could be allocated to the
deviations to give less importance to the extreme abil-
ity values. However, any solution to the constraints
yields an acceptable test in terms of the test specifi-
cations. The purpose of the assembly is to produce
as many nonoverlapping tests as possible that meet
the specifications. The objective function used in the
following analysis assigns random costs to the items.
The objective function is the following;:

Minimize) u;x;, (18)

ielTEM

where u; is a uniform random number between 0
and 1.

The Maximum Set Packing (MSP) Model

An MSP model extracts the maximum number of
nonoverlapping sections from n overlapping sections.
The variable a; =1 if section j is included in the
set of nonoverlapping sections and «; =0 otherwise.
There are m passages in the pool, and the index
set JS(i) gives the overlapping sections containing
passage i.

Maximize) a; (19)

j=1

subject to) <1, i=1,...,m, (20)
jeJs()
a;j=00r1, j=1,...,n (21)
When the problem is to extract the maximum num-
ber of nonoverlapping tests from a set of overlapping
tests, n is the number of overlapping tests assembled
from the nonoverlapping sections, m is the number
of nonoverlapping sections, and [S(i) gives the tests

containing section i.

Methods to Improve Random Search

The simple idea of a pure random search hints at
possible improvement strategies. Consider two sets A
and B C A (Figure 7), where set A (the search region)
consists of all possible combinations of items that sat-
isfy constraint (16), and its subset B consists of all
combinations of items resulting in a test form. The
pure random search is based on the uniform dis-
tribution and converges to a test form with prob-
ability p = |B|/|A|, where | | denotes the size of a

Figure 7: A is the set of all possible combinations of items (search
region), and B is the set of all comhinations from A resulting in a test
form.

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

150

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

Figure 8: We can reduce A into search regions for the sections of each type
(AR,RC, LR). Search region AR(RC,LR) consists of all combinations of
analytical reasoning (reading comprehension, logical reasoning) items,
where each combination must include a bounded number of items, |A| >
|AR|+|RC| + |LR].

set. Thus, if we shrink set A without losing combi-
nations from B, then we will increase p and conse-
quently increase the speed of the Monte Carlo test
assembly.

We can use three methods to shrink set A:

(1) A test form consists of sections that are
sequences of passages, and each passage introduces a
group of items that can also be grouped. Taking into
account this hierarchical structure of a test form and
the divide and conquer principle, we can substantially
reduce the size of the search region. This allows us to
handle constraints (3-6), (8), and (16) (Figures 8 and 9).

(2) For computationally easy constraints (3—-13) and
(16), we developed a simple greedy heuristic based on
tabu search (Glover et al. 1993). If a random combi-
nation of passages/items does not satisfy (3-13) and
(16), we move this combination from the passage/item
pool to the passage/item tabu region. After we find
a combination obeying (3-13) and (16) or exhaust
the pool, we move all passages/items from the tabu
region back to the passage/item pool (Figure 10).

Figure 9: We can reduce search region LR into search regions for the
groups of items corresponding to the cognitive skills constraint (6). Here
subregion S; has all combinations of logical reasoning items for the cog-
nitive skill /, and each combination includes a bounded number of items,
ILRI>> Y7 ISil-

Iteration n /
\ Tteration 1 o e
[¢]

o

\ / Iteration 3
_ ()

Iteration 2

Figure 10: We employ a greedy algorithm to shrink the search region A
until we find a combination from B or until A becomes empty.

(3) The third method is based on a constraint-
enumeration principle. Let us assume that R ={r,, 1,
..., Ty} and each 7; € R is a range r; = [r}, r{']. We
introduce a function Enumeration(R, s) that generates
a vector L of sequences L, = {i;, 1,, ..., i3;} such that

M
Y ij=s and Vi,el,—ier.
j=1

In the application, all elements are integer and the
resulting vector L has a reasonable size. We auto-
matically satisfy constraints (3-6), (8), (11), and (16)
by using Enumeration(R, s). We will use a nonrealistic
example to illustrate this principle:

NTEST =10 — number of items per test form. (22)
M =2 —number of sections in a test form. (23)

R, =[4, 8] — allowed number of items
in a first section. (24)

R, =13, 7] — allowed number of items
in a second section. (25)

Calculate C = Enumeration({R,,R,},NTEST) = ({4, 6},
{5,5}, {6,4}, {7,3}). By randomly selecting element
{i;,1,} from C, we satisfy constraints (22-25) and
reduce the search region to a set of tests consisting
of two sections with i; and i, numbers of items,
respectively.

These three methods provide a combination that
satisfies constraints (3—-13) and (16); then the algo-
rithm checks this combination versus constraints (14),
(15), and (17).

Armstrong, Belov, and Weissman: Developing and Assembling the Law School Admission Test

Interfaces 35(2), pp. 140-151, ©2005 INFORMS

151

Acknowledgments

This research was partially funded by a grant from the Law
School Admission Council. Discussions with numerous Law
School Admission Council employees led to the model pre-
sented here. All authors contributed equally.

References

Glover, E, M. Laguna, E. Taillard, D. de Werra. 1993. Tabu search.
Ann. Oper. Res. 41(1) 4-32.

Hambleton, R. K., H. Swaminathan, H. Rogers. 1991. Fundamentals
of Item Response Theory. Sage Publications, Newbury Park, CA.

ILOG. 2002. CPLEX 8.0 User’s Manual. Incline Village, NV.

Kolen, M. J., R. L. Brennan. 1995. Test Equating Methods and Practices.
Springer, New York.

Lord, E. 1980. Applications of Item Response Theory to Practical Testing
Problems. Lawrence Erlbaum, Hillsdale, NJ.

Musser, D. R., G.]J. Derge, A. Saini. 2001. STL Tutorial and Refer-
ence Guide: C++ Programming with the Standard Template Library,
2nd ed. Addison-Wesley, Boston, MA.

Nembauser, G., L. Wolsey. 1988. Integer and Combinatorial Optimiza-
tion. John Wiley and Sons, New York.

Spall, J. C. 2003. Introduction to Stochastic Search and Optimiza-
tion: Estimation, Simulation, and Control. John Wiley and Sons,
Hoboken, NJ.

Theunissen, T. J. J. M. 1985. Binary programming and test design.
Psychometrika 50(4) 411-420.

van der Linden, W. J. 1998. Optimal assembly of psychological and
educational tests. Appl. Psych. Measurement 22(3) 195-211.

van der Linden, W. J. 2000. Optimal assembly of tests with item
sets. Appl. Psych. Measurement 24(3) 225-240.

Wainer, H., G. L. Kiely. 1987. Item clusters and computerized adap-
tive testing: A case for testlets. J. Educational Measurement 24(3)
185-201.

Wainer, H., H. Wagner, N. J. Dorans, R. Flaugher, B. E. Green, R.].
Mislevy, L. Steinberg, D. Thissen. 1990. Computerized Adaptive
Testing: A Primer. Lawrence Erlbaum Associates, Hillsdale, NJ.

Wood, D. 1997. An algorithm for finding a maximum clique in a
graph. Oper. Res. Lett. 21(5) 211-217.

Peter]. Pashley, Principal Research Scientist and Direc-
tor of Testing and Research, Law School Admission
Council, Box 40, Newtown, Pennsylvania 18940-0040,
writes: “This letter is an endorsement of the paper
‘Developing and Assembling the Law School Admis-
sion Test” by Ronald Armstrong, Dmitry Belov, and
Alexander Weissman. We have been using a mixed-
integer programming technique to help assemble the
Law School Admission Test (LSAT) for the past five
years, saving many hours of personnel time. Although
test specialists review the assembled tests before
administration, typically only minor modifications are
necessary. When assembled, these tests match the tech-
nical specifications set for the LSAT. The mixed-integer
programming approach also assists in this review
process by identifying acceptable changes. In addi-
tion, we are currently exploring the use of multiple
stage adaptive tests as a potential computer-based
testing approach. These investigations use operations
research techniques such as mixed-integer program-
ming, simulation, and stochastic processes.

“While it is difficult to place a monetary value
on the increased efficiency obtained by using these
operations research methods, it is substantial. These
methods have expanded our ability not only to
assemble tests, but also to evaluate them and explore
possible future administration methods and testing
designs.”

