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Preface

Although the title of this book is “Computational Algebraic Geometry”, it could
also be titled “Snapshots of Commutative Algebra via Macaulay 2”. The aim
is to bring algebra, geometry, and combinatorics to life by examining the in-
terplay between these areas; it also provides the reader with a taste of algebra
different from the usual beginning graduate student diet of groups and field
theory. As background the prerequisite is a decent grounding in abstract al-
gebra at the level of [56]; familiarity with some topology and complex analysis
would be nice but is not indispensable. The snapshots which are included here
come from commutative algebra, algebraic geometry, algebraic topology, and
algebraic combinatorics. All are set against a backdrop of homological algebra.
There are several reasons for this: first and foremost, homological algebra is
the common thread which ties everything together. The second reason is that
many computational techniques involve homological algebra in a fundamental
way; for example, a recurring motif is the idea of replacing a complicated object
with a sequence of simple objects. The last reason is personal—I wanted to give
the staid and abstract constructs of homological algebra (e.g. derived functors)
a chance to get out and strut their stuff. This is said only half jokingly—in the
first class I ever had in homological algebra, I asked the professor what good
Tor was; the answer that Tor is the derived functor of tensor product did not
grip me. When I complained to my advisor, he said “Ah, but you can give
a two line proof of the Hilbert syzygy theorem using Tor—go figure it out”.
What an epiphany it was! Note to student: if you don’t know what homological
algebra and derived functors are, one point of this book is to give a hands-on
introduction to these topics.

Of course, to understand anything means being able to compute examples,
so oftentimes rather than dwelling on details best left to specialized texts (e.g.
showing simplicial homology is indeed a topological invariant) we plunge blithely
forward into computations (both by hand and by computer) in order to get a
feel for how things work. This engineering mentality may be bothersome to
the fastidious reader, but the first word in the title is not “Theoretical” but
“Computational”. We work mostly in the category of graded rings and modules,
so the geometric setting is usually projective space. One unifying theme is the
study of finite free resolutions; in particular, lots of the geometric invariants
we study can be read off from a free resolution. Advances in computing and
algorithms over the last twenty years mean that these gadgets are actually
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computable, so we can get our hands dirty doing lots of examples. By the
end of the book the reader should feel comfortable talking about the degree
and genus of a curve, the dimension and Hilbert polynomial of a variety, the
Stanley–Reisner ring of a simplicial complex (and simplicial homology) and
such abstract things as Ext, Tor, and regularity. Overall, the book is something
of an algebra smorgasbord, moving from an appetizer of commutative algebra
to homological methods. Of course, homological algebra would be less tasty
without a garnish of history, so we add a dash of algebraic topology and a
pinch of simplicial complexes and combinatorics. For dessert, we give Stanley’s
beautiful application of these methods to solve a combinatorial problem (the
upper bound conjecture for spheres).

One of the wonderful things about computational algebra is that it is very
easy to generate and test ideas. There are numerous exercises where the reader
is asked to write scripts to test open research conjectures; the idea is to get
folks thinking about open problems at an early stage. It is also exciting to find
(albeit a couple years too late!) a counterexample to a published conjecture; the
reader gets a chance to do this. In short, the exercises are geared at convincing
students that doing research mathematics does not consist solely of ruminating
alone in a darkened room, but also of rolling up ones sleeves, writing some code,
and having the computer do the legwork.

Rather than giving examples of scripts in pseudocode, I have chosen to use
a specific computer algebra package (Macaulay 2, by Dan Grayson and Mike
Stillman). Macaulay 2 is free, easy to use, fast and flexible. Another virtue
of Macaulay 2 is that the syntax is pretty straightforward. Thus, Macaulay 2
scripts look like pseudocode, but the reader can have the satisfaction of typing in
scripts and seeing them run. Macaulay 2 works over finite fields of characteristic
≤ 32749, also over Q and certain other fields of characteristic zero. The examples
in this book are often computed over finite fields. As Eisenbud notes in [32]
“Experience with the sort of computation we will be doing shows that working
over Z/p, where p is a moderately large prime, gives results identical to the
results we would get in characteristic 0”.

I include here a mea culpa. This book grew from a dilemma—to give students
a tapa of advanced algebra means that one would like to include snippets from

commutative algebraic topology and
algebra geometry combinatorics

Atiyah–Macdonald [3] Cox–Little–O’Shea [23] Fulton [41]
Balcerzyk–Jozefiak [6] Griffiths [48] Munkres [71]

Bruns–Herzog [21] Harris [52] Spanier [87]
Eisenbud [28] Hartshorne [53] Stanley [88]

Matsumura [64] Miranda [69] Sturmfels [92]
Sharp [84] Reid [78] Weibel [98]

Vasconcelos [95] Shafarevich [82] Ziegler [100]
...

...
...

This book should be thought of as an advertisement for other, more advanced
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texts (or, perhaps, texts where details omitted here are carefully worked out!);
there is nothing here that cannot be found elsewhere. What I hope is novel
is the emphasis on working with a keyboard at hand to try out computations,
the choice of topics, and the commingling of algebra, combinatorics, topology,
and geometry. There are all sorts of gaps (some even by design!); for example
the Nullstellensatz is not proved, nor is Nakayama’s lemma; and little is said
about smoothness. The most egregious example of this occurs in Chapter 9,
which gives a synopsis of algebraic curves. Since the sketch of Riemann–Roch
uses residues, a one-hour turbo lecture on complex analysis is included as an
appendix. But generally I have tried to resist the temptation to be completely
comprehensive, hoping rather to be convincing without bogging down in detail.
The two introductory algebraic geometry texts listed above (Cox–Little–O’Shea
and Reid) are nice complementary readings. A good way for readers to begin
this book is to flip to Appendix A, which gives a warm-up review of algebra
concepts and an introduction to basic Macaulay 2 commands.

These notes grew out of a class taught to junior mathematics majors at
Harvard in fall of 2000. I thank Harvard for providing a great postdoctoral
experience, the N.S.F. for providing funding, and my students for being such a
lively, engaged, hardworking and fun group; Richard Stanley was kind enough
to cap the course with a guest lecture. I also thank all the folks from whom I’ve
learned over the years—both in print (see above texts!) and in person. Many
people were kind enough to provide feedback on drafts of this book: Marcelo
Aguiar, Harold Boas, Al Boggess, Jorge Calvo, Renzo Cavalieri, David Cox, Jim
Coykendall, John Dalbec, Marvin Decker, Alicia Dickenstein, David Eisenbud,
Bahman Engheta, Chris Francisco, Tony Geramita, Leah Gold, Mark Gross,
Brian Harbourne, Mel Hochster, Morten Honsen, Graham Leuschke, Paulo
Lima-Filho, John Little, Diane Maclagan, Juan Migliore, Rick Miranda, Alyson
Reeves, Vic Reiner, Bill Rulla, Sean Sather-Wagstaff, Fumitoshi Sato, Jessica
Sidman, Greg Smith, Jason Starr, Peter Stiller, Emil Straube, Alex Suciu, Hugh
Thomas, Stefan Tohaneanu, Will Traves, Adam Van Tuyl, Pete Vermeire, Lau-
ren Williams, and Marina Zompatori. To them, many, many thanks. It goes
without saying that any blunders are a result of ignoring their advice. Updates
to reflect changes to Macaulay 2, corrections, and (eventually) solutions to the
problems will be posted at: http://us.cambridge.org/mathematics/

I owe much to Mike Stillman—teacher, mentor, and friend—who introduced
me to most of the material here. I hope that the notes convey some of the
enthusiasm and joy in mathematics that Mike imparted to me. To acknowledge
my debt (and pay back some small portion!), all author royalties from this book
go to the Cornell mathematics department graduate teaching excellence fund.





Chapter 1

Basics of Commutative

Algebra

Somewhere early in our mathematical career we encountered the equation

f(x, y) = y − x2 = 0,

and learned that the set of points in the plane satisfying this equation (the zero
locus of f) is a parabola.

The natural generalization of this problem is to find the solutions to a system
of polynomial equations, which is the realm of algebraic geometry. In this
chapter we give a whirlwind tour of the basics of commutative algebra. We
begin by studying the relationship between an ideal I in a polynomial ring R
over a field k, and the set of common zeroes of the polynomials defining I .
This object is called a variety, and denoted V (I). We prove the Hilbert Basis
Theorem, which shows that every ideal in R is finitely generated. Then we
tackle the task of breaking a variety into simpler constituent pieces; this leads
naturally to the concept of the primary decomposition of an ideal. You may
want to warm up by browsing through the algebra appendix if you are hazy on
the concepts of group, ring, ideal, and module.

Key concepts: Varieties and ideals, Hilbert Basis Theorem, associated
primes and primary decomposition, Nullstellensatz, Zariski topology.

9
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1.1 Ideals and Varieties

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Affine n-space kn is
the set of n-tuples of elements of k. An affine variety is the common zero locus
of a collection of polynomials fi ∈ R; the affine variety associated to the set
{f1, . . . , fm} is written V (f1, . . . , fm). For example, V (0) = kn and V (1) is the
empty set. If you have not done this sort of thing before, try working Exercise
A.2.5 in the appendix. Varieties arise quite naturally in many situations. Linear
algebra is one special case (the polynomials are all of degree one); other exam-
ples of applied problems which involve solving polynomial systems range from
computer vision and robot motion to understanding protein placement in cell
walls. In fact, this sentence involves varieties: in PostScript, letters are drawn
using Bezier cubics, which are parametric plane curves.

Exercise 1.1.1. [23] To define Bezier cubics, we need some terminology. A set
S ⊆ Rn is called convex if the line segment between any two points p, q ∈ S lies
in S. Prove that if S is a convex subset of R2 , and {p0, . . . , pn} ⊂ S, then any
convex combination

∑n
i=0 ti · pi with ti ≥ 0,

∑n
i=0 ti = 1 is in S. For four points

pi = (xi, yi) in R2 consider the parametric curve given by:

x = x0(1− t)3 + 3x1t(1− t)2 + 3x2t
2(1− t) + x3t

3

y = y0(1− t)3 + 3y1t(1− t)2 + 3y2t
2(1− t) + y3t

3

Prove that p0 and p3 lie on the parametric curve, and that the tangent line at p0

goes through p1 (chain rule flashback!). Given parametric equations, one might
want to find the implicit equations defining an object. These equations can be
found by computing a Gröbner basis, a technique we’ll learn in Chapter 4. 3

One important observation is that the variety V (f1, . . . , fm) depends only
on the ideal I generated by {f1, . . . , fm}. This ideal consists of all linear
combinations of {f1, . . . , fm} with polynomial coefficients; we write this as
I = 〈f1, . . . , fm〉. The variety V (f1, . . . , fm) depends only I because if p is a
common zero of f1, . . . , fm, then p also zeroes out any polynomial combination

m∑

i=1

gi(x1, . . . , xn) · fi(x1, . . . , xn).

Thus, we can choose a different set of generators for I without altering V (I).
This is analogous to writing a linear transform with respect to different choices
of basis. Consider the ideal I = 〈x2−y2−3, 2x2 +3y2−11〉. Take a minute and
find V (I) ⊆ R2 . You can do this by just drawing a picture, but you can also do
it by renaming x2 and y2 and using Gaussian elimination. Of course, this won’t
work in general. One of our goals will be to find a way to solve such problems
systematically, for example, we might want to find a generating set for I where
we can read off the solutions. For the ideal above, prove that I = 〈x2−4, y2−1〉.
This is a set of generators from which it is certainly easy to read off V (I)!
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Given an ideal J , we have the set of common zeroes V (J), which is a geomet-
ric object. Conversely, given S ⊆ kn, we can form the set I(S) of all polynomials
vanishing on S. It is easy to check (do so!) that this set is actually an ideal. If
S = V (J) for some ideal J , then it is natural to think that J = I(V (J)), but
this is not the case. For example, if J = 〈x2〉 ⊆ k[x], then I(V (J)) = 〈x〉. If
f ∈ J and p ∈ V (J) then by definition f(p) = 0. Hence f ∈ I(V (J)), so there
is a containment J ⊆ I(V (J)).

Exercise 1.1.2. Show that the process of passing between geometric and al-
gebraic objects is inclusion reversing: if I1 ⊆ I2 then V (I2) ⊆ V (I1), and if
S1 ⊆ S2, then I(S2) ⊆ I(S1). Use the set S = ∪{(0, i)|i ∈ Z} ⊆ R2 to show
that it can happen that S1 ( S2 but I(S1) = I(S2). 3

For a ring element f and ideal I , a natural algebraic question is: “is f ∈ I?”.
If we can answer this question on ideal membership, then the exercise above
shows that there is a geometric consequence: V (I) ⊆ V (f), and we can restrict
our search for points of V (I) to points on V (f). So one way to begin to get a
handle on a variety is to understand the hypersurfaces on which it sits. Another
natural thing to do is to try to break V (I) up into a bunch of more manageable
parts. What does “manageable” mean? Well, here is a first candidate:

Definition 1.1.3. A nonempty variety V is irreducible if it is not the union of
two proper subvarieties: V 6= V1 ∪ V2 for any varieties Vi with Vi ( V .

Theorem 1.1.4. I(V ) is prime iff V is irreducible.

Proof. First, we need to observe that if X is a variety, say X = V (J), then
V (I(X)) = X . As Exercise 1.1.2 shows, this need not be the case if we only
assume X is some set. The inclusion X ⊆ V (I(X)) is obvious. By construction
J ⊆ I(X), so again by Exercise 1.1.2, V (I(X)) ⊆ V (J) = X . We’re now
ready to prove the theorem. Suppose I(V ) is prime but V is reducible with
V = V1 ∪ V2. Let I1 = I(V1) and I2 = I(V2). So there is a point p ∈ V2 and
f ∈ I1 with f(p) 6= 0 (if every f ∈ I1 vanishes on every p ∈ V2, then I1 ⊆ I2,
and we’d have a contradiction). By symmetry, there is a g ∈ I2 and q ∈ V1 with
g(q) 6= 0. Clearly fg ∈ I(V ), with neither f nor g in I(V ), contradiction. We
leave the other direction for the reader.

As a last warm up before plunging into some proofs, we ask what happens
geometrically when we perform standard operations on ideals.

Exercise 1.1.5. Recall that if I and J are ideals, then the sum I + J =
{f + g|f ∈ I , g ∈ J} is an ideal, as are I · J = 〈f · g|f ∈ I , g ∈ J〉 and I ∩ J .
Show that

V (I + J) = V (I) ∩ V (J),

and that
V (I · J) = V (I ∩ J) = V (I) ∪ V (J).

3
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1.2 Noetherian Rings and the Hilbert Basis

Theorem

In the previous section we asked if it was possible to find a “nice” generating
set for an ideal. For example, since k[x] is a principal ideal domain, every
ideal I ⊆ k[x] has a single generator, which we can find by repeated use of the
Euclidean algorithm. So the question of ideal membership is easily solved: once
we have a generator for I , to see if g ∈ I = 〈h〉, we need only check that h
divides g. If we work in rings where ideals can have minimal generating sets
which are infinite, then finding a “nice” generating set or running a division
algorithm is problematic, so we should begin by finding a sensible class of rings.
In this book, ring always means commutative ring with unit.

Definition 1.2.1. A ring is Noetherian if it contains no infinite ascending
chains (infinite proper inclusions) of ideals, i.e. no sequences of the form

I1 ( I2 ( I3 ( · · ·
A module is Noetherian if it contains no infinite ascending chains of sub-

modules. Although this definition seems a bit abstract, it is in fact exactly the
right thing to make all ideals finitely generated.

Lemma 1.2.2. A ring is Noetherian iff every ideal is finitely generated.

Proof. First, suppose every ideal is finitely generated, but that there exists an
infinite ascending chain of ideals:

I1 ( I2 ( I3 ( · · ·
But (check!) J =

⋃∞
i=1 Ii is an ideal. By assumption, J is finitely generated, say

by {f1, . . . , fk}, and each fi ∈ Ili for some li. So if m = max{li} is the largest
index, we have Im−1 ( Im = Im+1 = · · · , contradiction. Now suppose that I
cannot be finitely generated. By taking a sequence of generators {f1, f2, . . .} for
I with fi 6∈ 〈f1, f2, . . . fi−1〉, we obtain

〈f1〉 ( 〈f1, f2〉 ( 〈f1, f2, f3〉 ( · · · ,
which is an infinite ascending chain of ideals.

Exercise 1.2.3. Let M be a module. Prove the following are equivalent:

1. M contains no infinite ascending chains of submodules.

2. Every submodule of M is finitely generated.

3. Every nonempty subset Σ of submodules of M has a maximal element (Σ
is a partially ordered set under inclusion).

This gives three equivalent conditions for a module to be Noetherian. 3
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Theorem 1.2.4 (Hilbert Basis Theorem). If A is a Noetherian ring, then
so is A[x].

Proof. Let I be an ideal in A[x]. By Lemma 1.2.2 we have to show that I is
finitely generated. The set of lead coefficients of polynomials in I generates an
ideal I ′ of A, which is finitely generated (A is Noetherian), say by g1, . . . , gk.
Now, for each gi there is a polynomial

fi ∈ I, fi = gix
mi + terms of lower degree in x.

Letm = max{mi}, and let I ′′ be the ideal generated by the fi. Given any f ∈ I ,
we can chop it down by the elements of I ′′ until its lead term has degree less
than m. Consider the A-module M generated by {1, x, . . . , xm−1}. It is finitely
generated, hence Noetherian. So the submodule M ∩ I is also Noetherian. Take
generators h1, . . . , hj , toss them in with the generators of I ′′, and we’re done.

Exercise 1.2.5. Prove that if A is Noetherian and M is a finitely generated
A-module, then M is Noetherian. Hint: for some n, An surjects onto M . What
would an infinite ascending chain of submodules of M imply? 3

In a Noetherian ring, no matter how complicated an ideal I appears to be,
there will always be a finite generating set for I . A field k is Noetherian, so
the Hilbert Basis Theorem and induction tell us that the ring k[x1, . . . , xn] is
Noetherian (of course, so is a polynomial ring over Z or any other principal ideal
domain). Thus, our goal of finding a nice generating set for an ideal does make
sense.

1.3 Associated Primes and Primary

Decomposition

Throughout this book, we will dwell on the following theme: “To understand a
complicated object, break it up into simpler objects”. In this section we’ll see
how to write an ideal in a Noetherian ring in terms of “nice” ideals.

Exercise 1.3.1. (Decomposition I)

1. Prove that 〈x2−4, y2−1〉 can be written as the intersection of four maximal
ideals in R[x, y]. (Hint: what is the corresponding variety?)

2. Prove that 〈x2 − x, xy〉 = 〈x〉 ∩ 〈x − 1, y〉, hence is the intersection of a
prime ideal and a maximal ideal in R[x, y].

3

The two ideals in Exercise 1.3.1 are intersections of prime ideals (by Exercise
A.2.6, maximal ideals are prime). By Theorem 1.1.4 we know that if X is an
irreducible variety then I(X) is prime. Since any variety can be written as
a union of irreducible varieties, it seems natural to hope that any ideal is an
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intersection of prime ideals. As 〈x2〉 ⊆ k[x] shows, this hope is vain. However, in
a Noetherian ring, any ideal can be written as a finite intersection of irreducible
ideals (an irreducible decomposition) or as a finite intersection of primary ideals
(a primary decomposition). Warning: don’t confuse an irreducible ideal with
an irreducible variety. In fact, it might be good to review the definitions of
irreducible and primary ideal at this point (Exercise A.2.5).

Lemma 1.3.2. In a Noetherian ring R, any ideal is a finite intersection of
irreducible ideals.

Proof. Consider the set Σ consisting of ideals which may not be written as
a finite intersection of irreducibles. Since R is Noetherian, Σ has a maximal
element I ′. But I ′ is reducible, so we can write I ′ = I1 ∩ I2, and by assumption
I1 and I2 are finite intersections (since they properly contain I ′, and I ′ is a
maximal element of Σ), a contradiction.

Lemma 1.3.3. In a Noetherian ring R, irreducible ideals are primary.

Proof. Let I be irreducible, and suppose fg ∈ I , with f 6∈ I . By passing to the
quotient ring A = R/I , we only need to show that gm = 0, for some m. There
is a chain of ideals in A:

0 ⊆ ann(g) ⊆ ann(g2) ⊆ · · · ,
where

ann(h) = {e ∈ A|eh = 0}.
Because A is Noetherian, there exists an n such that

ann(gn) = ann(gn+1).

Since the zero ideal is irreducible in A and f 6= 0, if we can show that 〈gn〉∩〈f〉 =
0, we’ll be done. So suppose a ∈ 〈f〉 ∩ 〈gn〉; a ∈ 〈f〉 implies ag = 0. But

a ∈ 〈gn〉 ⇒ a = bgn ⇒ bgn+1 = 0 ⇒ bgn = 0 ⇒ a = 0,

so indeed 〈gn〉 ∩ 〈f〉 = 0.

Primary decompositions are generally used more often than irreducible de-
compositions, in fact, some books ignore irreducible decompositions completely.
The treatment here follows that of [3]; it seems reasonable to include the ir-
reducible decomposition since the proof is so easy! It turns out that primary
ideals are very closely related to prime ideals. First, we need a definition:

Definition 1.3.4. The radical of an ideal I (denoted
√
I) is the set of all f

such that fn ∈ I for some n ∈ N; I is radical if I =
√
I.

Exercise 1.3.5. Prove that if Q is primary, then
√
Q = P is a prime ideal,

and P is the smallest prime ideal containing Q. We say that Q is P -primary.
Show that if Q1 and Q2 are P -primary, so is Q1 ∩ Q2. This is one reason for
preferring primary decomposition to irreducible decomposition: the intersection
of two irreducible ideals is obviously not irreducible. For the ideal I = 〈x2, xy〉,
show

√
I = 〈x〉 but I is not primary. 3
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A primary decomposition I =
n⋂
i=1

Qi is irredundant if for each j ∈ {1, . . . , n}

⋂

i 6=j

Qi 6= I

(there are no “extraneous” factors). By Exercise 1.3.5, we may assume that the
radicals Pi of the Qi are distinct; the Pi are called the associated primes of I .
An associated prime Pi which does not properly contain any other associated
prime Pj is called a minimal associated prime. The non-minimal associated
primes are called embedded associated primes. The reason for this terminology
is explained in the following example.

Example 1.3.6. Consider the two ideals

I1 = 〈x2, xy〉 and I2 = 〈x2 − x, xy〉.

Clearly I1 = 〈x2, y〉 ∩ 〈x〉, and 〈x〉, 〈x2, y〉 are primary ideals. So I1 has one
minimal associated prime 〈x〉 and one embedded associated prime 〈x, y〉. By
Exercise 1.1.5, V (I ∩ J) = V (I) ∪ V (J). Thus,

V (I1) = V (x) ∪ V (x2, y) = V (x) ∪ V (x, y).

In the plane, V (x, y) corresponds to the origin, which is “embedded in” the line
V (x). Notice that we can write

〈x〉 ∩ 〈x2, xy, y2〉 = I1 = 〈x2, y〉 ∩ 〈x〉.

Verify that 〈x2, xy, y2〉 is a primary ideal. This shows that the Qi which appear
in a primary decomposition are not unique. Let’s ask the computer algebra
package Macaulay 2 to check our work. Appendix A.3 describes how to get
started with Macaulay 2; you should glance over the appendix (and, better still,
try running the commands) before proceeding.

i1 : R=QQ[x,y]

o1 = R

o1 : PolynomialRing

i2 : intersect(ideal(x),ideal(x^2,x*y,y^2))

2

o2 = ideal (x*y, x )

o2 : Ideal of R

i3 : intersect(ideal(x),ideal(x^2,y))
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2

o3 = ideal (x*y, x )

o3 : Ideal of R

i4 : o2==o3

o4 = true

In Macaulay 2, the command == tests for equality (of course, in this example we
could see that the two ideals are equal, but sometimes it won’t be so obvious).
In Exercise 1.3.12 you’ll prove that passing from I to

√
I causes embedded

components to disappear.

i5 : radical o2

o5 = ideal x

For the ideal I2 we obtain a primary decomposition

I2 = 〈x〉 ∩ 〈x− 1, y〉,

hence I2 has two minimal associated prime ideals, and the primary components
are actually prime already, so

√
I2 = I2.

i6 : primaryDecomposition ideal(x^2-x,x*y)

o6 = {ideal (y, x - 1), ideal x}

o6 : List

i7 : (radical ideal(x^2-x,x*y))==ideal(x^2-x,x*y)

o7 = true

The zero loci of all the primary components of I1 and I2 are shown below; the
pictures hint that while varieties capture all the geometry of the minimal primes,
they forget about embedded primes. Understanding the entire set of primary
components of an ideal is part of the motivation for studying schemes [34].

2
I 1 II 1
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Why bother worrying about the embedded primes? Well, for one thing, they
carry important information about I . In Chapter 4, we’ll learn how to define
an order on monomials in a polynomial ring, so that we can define the lead
monomial of a polynomial. The set in(I) of all lead monomials of elements of
I generates an ideal, and will often have embedded primes even if I did not.
So what? Well, the point is that many numerical invariants are the same for I
and for in(I), but in(I) is often much easier to compute. Punchline: embedded
primes matter.

Next we consider how to actually find associated primes and a primary
decomposition. A key tool is the operation of ideal quotient:

Definition 1.3.7. Let R be a ring and I, J ideals of R. Then the ideal quotient
I : J = {f ∈ R|f · J ⊆ I}.

As usual, you should take a minute and scrawl down a proof that I : J is an
ideal (it really will fit in the margin!).

Lemma 1.3.8. If Q is a P -primary ideal, and f ∈ R, then

f ∈ Q ⇒ Q : f = R
f 6∈ Q ⇒ Q : f is P -primary
f 6∈ P ⇒ Q : f = Q

Proof. The first statement is automatic, and for the second, if fg ∈ Q, then
since f 6∈ Q we must have gn ∈ Q so g ∈ P ;

Q ⊆ (Q : f) ⊆ P, so
√
Q : f = P,

and it is straightforward to show Q : f is P -primary. For the last statement, if
fg ∈ Q, then fn 6∈ Q (else f ∈ P ) so g ∈ Q and Q : f ⊆ Q.

Exercise 1.3.9. (Distributivity).

1. Show that if a prime ideal P = P1 ∩ P2, then P is one of the Pi.

2. Show that (I1 ∩ I2) : f = (I1 : f) ∩ (I2 : f).

3. Show that
√
I1 ∩ I2 =

√
I1 ∩
√
I2.

3

Lemma 1.3.8 and Exercise 1.3.9 show that in a Noetherian ring, the associ-
ated primes of an ideal are independent of the decomposition—in other words,
even though the Qi are not unique, the Pi are! To see this, write

I =

n⋂

i=1

Qi,

which we can assume is irredundant by the remarks following Exercise 1.3.5.
Now, since the decomposition is irredundant, for any j we can find fj 6∈ Qj
but which is in all the other Qi, i 6= j. By Lemma 1.3.8 and Exercise 1.3.9,
I : fj = Qj : fj is Pj-primary. In particular

√
Qj : fj = Pj , which proves:
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Lemma 1.3.10. The associated primes of I are contained in the set
{√I : f | f ∈ R}.

On the other hand, if P is a prime in the set {√I : f | f ∈ R}, then it must
be associated to I (hint: Exercise 1.3.9).

We can also define the associated primes of a module M . In this case, the set
of associated primes Ass(M) consists of primes P such that P is the annihilator
of some m ∈M .

Exercise 1.3.11. ([28], Proposition 3.4) Let M be an R-module, and S = {I ⊆
R|I = ann(m), some m ∈M}. Prove that a maximal element of S is prime. 3

By the previous exercise, the union of the associated primes of M consists
precisely of the set of all zero divisors onM . One caution—the associated primes
of the module R/I are usually referred to as the associated primes of the ideal I .
This seems confusing at first, but is reasonable in the following context: if R is a
domain, then no nonzero element of R has nontrivial annihilator. In particular,
if I ⊆ R a domain, then as a module I has no interesting associated primes.
For example, let R = k[x, y], and consider the R-module M = R/I1 with I1 as
in Example 1.3.6. The annihilator of x ∈ M is 〈x, y〉, and the annihilator of
y ∈M is 〈x〉, so {〈x〉, 〈x, y〉} ⊆ Ass(M). Is this everything?

Exercise 1.3.12. (Decomposition II).

1. Prove that
√
I is the intersection of the minimal primes of I .

2. Find (by hand) a primary decomposition for 〈y2 + yz, x2 − xz, x2 − z2〉

3. Find a primary decomposition for 〈xz − y2, xw − yz〉 as follows: First,
observe that when x and y both vanish then both generators of the ideal
vanish, so 〈xz−y2, xw−yz〉 ⊆ 〈x, y〉. Use ideal quotient to strip off 〈x, y〉.
You should find that 〈xz−y2, xw−yz〉 : 〈x, y〉 = 〈xz−y2, xw−yz, z2−yw〉.
It turns out (Deus ex machina!) that J = 〈xz − y2, xw − yz, z2 − yw〉 is
the kernel of the map

R = k[x, y, z, w] −→ k[s3, s2t, st2, t3]

given by

x→ s3, y → s2t, z → st2, w → t3.

Since R/J ≃ k[s3, s2t, st2, t3] ⊆ k[s, t] and a subring of a domain is a
domain, we see that J is a prime ideal, and we have found a primary
decomposition 〈xz − y2, xw − yz〉 = J ∩ 〈x, y〉.

3
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1.4 The Nullstellensatz and Zariski Topology

Varieties are geometric objects. Given two geometric objects X and Y , it is very
natural to ask if there is a map f : X → Y . In analysis we might stipulate that
f be continuous or differentiable; the notion of continuity depends on having a
topology. When X and Y are varieties, one reasonable class of maps to consider
are maps which are polynomial (or at least “locally” polynomial). It turns out
that there is a specific topology which gives us the right language to study these
maps. First, some terminology:

Definition 1.4.1 (Topology). A topology on a set X is a collection U of
subsets of X which satisfy:

1. ∅ and X are in U .

2. U is closed under finite intersection.

3. U is closed under arbitrary union.

Members of U are called the open sets of the topology. There is an equivalent
formulation using closed sets – a finite union of closed sets is closed, as is any
intersection of closed sets. By Exercise 1.1.5, a finite union of affine varieties
is itself an affine variety, as is any intersection of affine varieties. This shows
that we can define a topology on kn in which the closed sets are affine varieties.
This topology is called the Zariski topology, and for this reason the terms affine
variety and Zariski closed set are used interchangeably. If X is a variety in
kn, then X is endowed with the subspace topology – an open set in X is the
intersection of X with an open set in kn. Even though we may not always say
it, we’ll always have in mind the case where k is algebraically closed (despite the
fact that the computations we make are over Q or a finite field). In this book,
when you see A nk think “kn with Zariski topology”, and when you see the word
“point”, think of a point in the usual topology. If U ⊆ kn is the complement of
the vanishing locus of a polynomial f , then U is called a distinguished open set,
and written Uf .

Exercise 1.4.2. Show that the distinguished open sets Uf are a basis for the
Zariski topology on A nk : every Zariski open set can be written as a union of
distinguished open sets. 3

The Zariski topology is quasicompact: any cover of A nk has a finite subcover.
To see this, let {Ui}i∈S be a cover of A nk which does not admit a finite subcover.
The previous exercise shows that we may suppose the Ui are of the form Ufi

.
By assumption we can find an infinite sequence Uf1 ( (Uf1 ∪ Uf2) ( · · · . Then
taking complements of these sets yields an infinite descending chain of varieties
V (f1) ) V (f1, f2) ) · · · , which is impossible since k[x1, . . . , xn] is Noetherian.
A similar argument shows that any subvariety of A nk is quasicompact.

Polynomial functions on kn obviously restrict to give polynomial functions
on a variety X ⊆ kn, and any two polynomials which differ by an element
of I(X) define the same function on X . So polynomial functions on an affine
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variety X correspond to elements of the coordinate ring R/I(X). It will be
useful to have a local description for this; the reason is that later in the book
we shall be constructing objects by patching together Zariski open subsets of
affine varieties.

Definition 1.4.3. Let U be an open subset of an affine variety X ⊆ A nk , k
algebraically closed. A function f is regular at a point p ∈ U if there is a
Zariski open neighborhood V of p in X such that f = g

h on V , with g, h ∈
k[x1, . . . , xn]/I(X), and h(p) 6= 0. A function is regular on an open set U if it
is regular at every point of U .

A regular map is a map defined by regular functions. Two affine varieties X
and Y are isomorphic if there exist regular maps i : X −→ Y and j : Y −→ X
which compose to give the identity.

Exercise 1.4.4. Prove that affine varieties X and Y are isomorphic iff their
coordinate rings are isomorphic. (Hint: section 5.4 of [23]). 3

We’ll see shortly that if k is algebraically closed, then the ring of regular
functions on a distinguished open subset Uf of an affine variety X is isomorphic
to k[x1, . . . , xn, y]/〈I(X), yf−1〉. To prove this, we need to make a detour back
to algebra and understand better the relation between J and I(V (J)). In §1,
we found that J ⊆ I(V (J)), and saw that this containment could be proper.
From the definition of the radical,

√
J ⊆ I(V (J)). The precise relation between

J and I(V (J)) follows by first answering the following innocuous question:

When is the variety of an ideal empty?

It is clear that if 1 ∈ I then V (I) is empty, but notice that over a field which
is not algebraically closed, V (I) can be empty even if I is a proper ideal (e.g.
〈x2 + 1〉 ⊆ R[x]). However, there is a second beautiful theorem of Hilbert:

Theorem 1.4.5 (Weak Nullstellensatz). If k is algebraically closed and V (I)
is empty, then 1 ∈ I.

To prove the Nullstellensatz properly requires a fair amount of work and
is done in almost all books (save this one!) on algebraic geometry; there are
nice readable treatments in Chapter 2 of [78] and Chapter 4 of [23], and [28]
offers five (!) different proofs. Let’s use the Nullstellensatz to answer an earlier
question we had:

Theorem 1.4.6 (Strong Nullstellensatz). If k is algebraically closed and
f ∈ I(V (I)) ⊆ k[x1, . . . , xn] = R, then fm ∈ I, for some m. More tersely put,√
I = I(V (I)).

Proof. (The “trick of Rabinowitch”). Given I = 〈f1, . . . , fj〉 ⊆ R and f ∈
I(V (I)), put I′ = 〈I, 1 − y · f〉 ⊆ R[y]. Check that V (I ′) is empty. So by the
weak Nullstellensatz, we can write 1 =

∑
ai · fi + g(1− y · f). Now just plug in

y = 1/f to obtain 1 =
∑
ai(x1, . . . , xn, 1/f) · fi, and multiply by a high enough

power of f to clean out the denominators.
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With the Nullstellensatz in hand, we can show that if k is algebraically closed,
then the ring of regular functions on a distinguished open subset Xf = Uf ∩X of
an irreducible affine varietyX ⊆ A nk is isomorphic to k[x1, . . . , xn, y]/〈I(X), yf−
1〉. Let g be a regular function on Xf . By definition, for each point p ∈ Xf there

is a Zariski open neighborhood Up of p with g =
hp

kp
on Up, with hp and kp in

R/I(X) and kp nonzero at p. By Exercise 1.4.2 and quasicompactness, we
can assume that the cover of Xf is actually finite and given by distinguished
open sets Xfi

= X ∩ Ufi
, i = 1 . . . j with g = hi

ki
on Xfi

. The ki cannot
simultaneously vanish at any point p ∈ Xf , since p lies in someXfm

, and km 6= 0
on Xfm

. So V (k1, . . . , kj) ∩Xf is empty, hence V (k1, . . . , kj) ∩X ⊆ V (f). By

the Nullstellensatz, there exist li with fm =
∑j

i=1 liki (the equations defining
I(X) are implicit in this expression, because the ki are defined modulo I(X)).

Since hi

ki
=

hj

kj
on Xfi

∩Xfj
, on the common intersection of all the Xfi

we can

write

fm · g =

j∑

i=1

liki
hi
ki
.

By Lemma 1.3.8 and Lemma 1.4.7 (below), the common intersection of the Xfi

is Zariski dense (we assumed X irreducible). Thus, the expression above is
actually valid on all of Xf , so we can write g as an element of R/I(X) over fm,
as claimed. Setting f = 1 shows that the ring of functions regular everywhere
on a variety X ⊆ A nk is simply R/I(X). The hypothesis that X is irreducible
can be removed, but the proof is a bit more difficult: see [53], II.2.2.

For any set S ⊆ A nk , Exercise 1.1.2 shows that V (I(S)) is the smallest variety
containing S. So in the Zariski topology V (I(S)) is the closure of S; we write S
for V (I(S)) and call S the Zariski closure of S. For S ⊆ R2 as in Exercise 1.1.2,
S = V (x). A second nice application of the Nullstellensatz relates the Zariski
closure of a set and the ideal quotient. Lemma 1.3.8 tells us that ideal quotient
can be used to pull apart the irreducible pieces of an ideal. As an example,
compute 〈xy〉 : 〈x〉 and 〈x2, xy〉 : 〈x〉. What you should see is the following:

xy :

=

= yx

=

x,y=x:xy,x2

The picture on the left makes perfect sense, but the picture on the right is meant
to make you think. How does it relate to primary decomposition?

Lemma 1.4.7.
V (I)− V (J) ⊆ V (I : J),

and if k is algebraically closed and I is radical, then this is an equality.
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Proof. By Exercise 1.1.2, we need to show I : J ⊆ I(V (I) − V (J)). So let
f ∈ I : J , and take p ∈ V (I) − V (J). Since p 6∈ V (J), there is a g ∈ J
with g(p) 6= 0. From the definition of ideal quotient, f · g is in I , and so
p ∈ V (I) means f(p) · g(p) = 0, and we’re over a field, so this shows that
V (I)− V (J) ⊆ V (I : J). For the second part, since k must be algebraically
closed, you can guess that the Nullstellensatz plays a role. Figure it out!

Example 1.4.8. Let S = {p1, . . . , p4} = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ A 2
k be a

set of four points in the affine plane. Then

I(S) =

4⋂

i=1

I(pi) = 〈x2 − x, y2 − y〉.

To remove the points lying on the line V (x− y), we need to form I(S) : 〈x− y〉,
the result should be the ideal of the two remaining points.

- =

V(x+y-1) V(x-y) V(x-y) V(x+y-1)

(0,1) (1,1)

(0,0) (1,0)

(1,1)

(0,0) (1,0)

(0,1)

i8 : ideal(x^2-x,y^2-y):ideal(x-y)

2

o8 = ideal (x + y - 1, y - y)

o8 : Ideal of R

We’ve been computing radicals, intersections, quotients, and primary de-
compositions using Macaulay 2, with no discussion of the underlying algorithms.
Chapter 4 gives an overview of Gröbner basis techniques, which is the engine
behind the computations. For a comprehensive treatment we recommend [23].

This chapter covers the bare essentials of commutative algebra. It is not
a substitute for a course in commutative algebra, but rather attempts to hit
the high points we’ll need in the rest of the book. Good additional sources are
Atiyah–Macdonald [3] chapters 1,4,6,7, Cox–Little–O’Shea [23] chapters 1 and
4, Eisenbud [28] chapters 0,1,3, and Smith–Kahanpää–Kekäläinen–Traves [86]
chapters 1,2,4. To learn more about the Zariski topology and regular functions,
see [28], Exercise 1.24, Chapter 2 of [52], or Chapter 4 of [86].



Chapter 2

Projective Space and

Graded Objects

If f(x) is a polynomial with real coefficients, f(x) may have no real roots. We
remedy this by passing to the algebraic closure C ; since R ⊆ C we don’t lose
any information in doing so. A similar analogy can be used to motivate the
construction of projective space, which is a natural compactification of affine
space. If f and g are elements of C [x, y], V (f, g) ⊆ A 2C may be empty. For
example, this is the case if V (f) and V (g) are two parallel lines. On the other
hand, in the projective plane P2C , not only is V (f, g) nonempty, it actually
consists of exactly the right number of points. We’ll make all this precise in a
bit, but the idea is that from a geometric perspective, projective space is often
the right place to work.

In order to make sense of varieties in projective space, we have to study
homogeneous polynomials, so we introduce the concept of graded rings and
modules. Just as beautiful geometric theorems hold in projective space,
beautiful algebraic theorems hold for graded rings and modules, highlighting
the interplay between algebra and geometry. We define the Hilbert function
and Hilbert polynomial; a key tool in computing these objects is the notion of
an exact sequence, so we also take some first steps in homological algebra.

Key concepts: Projective space, graded module, chain complex, homol-
ogy, exact sequence, Hilbert function, Hilbert polynomial, Hilbert series.

2.1 Projective Space and Projective Varieties

Over an algebraically closed field (which is primarily what we’ll have in mind
throughout this book) n-dimensional affine space A nk can be thought of as plain
old kn. Projective n-dimensional space (denoted Pnk) is just A n+1

k minus the

23
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origin, modulo the relation

(a0, . . . , an) ∼ (b0, . . . , bn)⇔ (a0, . . . , an) = λ · (b0, . . . , bn), λ ∈ k∗.

In English, the relation simply says that we are identifying any two points
which lie on the same line through the origin. A point of Pnk has homogeneous
coordinates (a0 : . . . : an) defined up to nonzero scalar, in particular, points inPnk are in one to one correspondence with lines through the origin in A n+1

k . A
very useful way to think of Pnk is asA nk ∪ Pn−1

k .

To see this, take a line (a0 : . . . : an) := λ(a0, . . . , an). If a0 6= 0, then scale a0

to one and use (a1/a0, . . . , an/a0) as coordinates. The condition that a0 6= 0
means that we are on the complement of V (x0), which is a Zariski open set
of Pnk (see 2.1.3), isomorphic to A nk . The coordinates are exactly those above;
once we scale the first coordinate to one, the point is no longer free to move. If
a0 = 0, then we can forget it, and we’re on the Zariski closed set V (x0), where
a typical element may be written as (0 : b1 : . . . : bn). Of course, scaling can
never change the first coordinate of the corresponding line to a nonzero value,
so V (x0) corresponds to Pn−1

k . We can visualize the projective plane asP2
k = A 2

k ∪ P1
k.

The aesthete has already encountered P2
k in a first course in art history—a

nonmathematical motivation for the construction of the projective plane is
simply that it is how the world appears to us. Italian renaissance artists used
perspective to make their paintings more lifelike (perhaps foreshadowing Italian
virtuosity in algebraic geometry!). The idea is simple: if you stand on a set of
railroad tracks in the middle of the Kansas plains, you seem to be standing
on a flat plane; the railroad tracks appear to meet at the horizon. A perfectly
straight, infinite set of tracks would appear from outer space to be a great
circle. If you watch a train recede into the distance on such a set of tracks, then
that train will reappear directly behind you. So the vanishing point in front of
you and the point on the horizon behind you must be the same point. Since
you see the whole horizon by rotating through 360 degrees, the horizon forms a
circle, with antipodal points identified. In other words, in the projective plane,
two parallel lines meet at the horizon, and two antipodal points on the horizon
are identified.

How can we define a variety in projective space? Since every point on a line
through the origin in A n+1

k is identified, if we want a projective variety to be
the zero locus of a set of polynomials, we’ll need to restrict to polynomials f
such that for all λ ∈ k∗:

f(p) = 0⇒ f(λ · p) = 0.

A polynomial f is homogeneous if all the monomials appearing in f have the
same degree, so x3 + xyz + yz2 is homogeneous, and y − x2 is not. Take a
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minute to verify that if k is infinite, then the condition above is satisfied iff
f is a homogeneous polynomial. Of course, a homogeneous polynomial f ∈
k[x0, . . . , xn] describes a variety V (f) in both Pnk and A n+1

k . For example, when
n = 2, V (f) defines a curve in P2 or a surface in A 3—take a look at the picture
below to see why. At this point, it is reasonable to ask: why define projective
space? A nk seems natural, while Pnk seems contrived. Here is a beautiful theorem
that really requires that we work in projective space:

Theorem 2.1.1 (Bezout’s theorem). If k is an algebraically closed field and
f , g are homogeneous elements of k[x, y, z] of degrees d and e with no common
factor, then the curves in P2

k defined by f and g meet in d ·e points, counted with
multiplicity (ignore “multiplicity” for now–it is explained in Example 2.3.10).

Example 2.1.2. Example 1.4.8, revisited. Let V = V (x(x − z), y(y − z)). If
we consider V as a variety in P2

k, then the projective curves V (x(x − z)) and
V (y(y − z)) intersect in four points, which lie on the affine plane where z = 1:

If instead we consider V as a variety in A 3
k , then V consists of four lines through

the origin, as below. The dots indicate where the four lines meet the plane
z = 1, i.e., how the affine picture below relates to the projective picture above:

x=0

x=z

y=0
y=z

Definition 2.1.3. A homogeneous ideal is an ideal which can be generated by
homogeneous elements. A variety in projective space (or projective variety) is
the common zero locus of a homogeneous ideal. The Zariski topology on Pn is
defined by making projective varieties the closed sets.
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We close by mentioning a nice way to visualize real projective space. Since
a line through the origin in A n+1R hits the unit n-sphere in two points, we can
also think of real projective n-space as the unit n-sphere with antipodal points
identified. For example, to see why two parallel lines in P2R meet, consider the
affine planes V (x) and V (x − z) (leftmost figure above). When we intersect
these two planes with the unit sphere, we obtain two great circles:

In A 3R, the common intersection of the two planes and the unit sphere consists
of the points (0, 1, 0) and (0,−1, 0); in P2R these two points are identical, and so
two parallel lines meet in a single point. Notice that the point lies on the line
at infinity V (z) ⊆ P2R.
2.2 Graded Rings and Modules, Hilbert

Function and Series

When someone mentions the degree of a polynomial, everyone knows what it is.
Let’s make it formal: A Z-graded ring R is a ring with a direct sum decompo-
sition (as an abelian group) into homogeneous pieces

R =
⊕

i∈ZRi,
such that if ri ∈ Ri and rj ∈ Rj , then ri · rj ∈ Ri+j . There are more general
definitions; for example, instead of using Z you can grade by an arbitrary group,
but when we talk about graded, we’ll assume the group is Z. Of course, if you
have a module M over a graded ring R, the module will be graded if

M =
⊕

i∈ZMi,

and if we multiply an element of Ri and an element of Mj , the result is in
Mi+j . An element of a graded module is called homogeneous of degree i if it
is an element of Mi. The most common examples of graded rings are R =
k[x1, . . . , xn] (where k is itself a ring, called the ring of coefficients), and any
quotient of R by a homogeneous ideal I . In k[x, y], is xy + y2 a homogeneous
element? How about x+1? Why is k[x, y]/〈y2−1〉 not a graded ring? If R0 = k
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is a field (which for us will always be the case unless otherwise noted), then
each graded piece of the ring is also a k-vector space, so it has a dimension. For
example, the dimension of k[x]i is one, for all i, and the dimension of k[x, y]i is
i+1. To see this, write out bases for the first few degree pieces; using monomials
makes the task easy.

Exercise 2.2.1. Prove that dimk(k[x0, . . . , xn]i) =
(
n+i
i

)
. If you know about

tensor products, see if you can relate this to them. If not, fear not. Tensors are
covered in Chapter 6. 3

Definition 2.2.2. The Hilbert function of a finitely–generated, graded module
M is HF (M, i) = dimkMi.

One of the most important examples of a graded module is just the ring
itself, but with the grading shifted. Let R(i) denote R (considered as a module
over itself), but where we think of the generator as being in degree −i. This
seems counterintuitive, but the notation works well, because R(i)j = Ri+j . For
example, k[x, y](−2) “looks like”

degree i = 0 1 2 3 . . .
basis of k[x, y]i = 1 x, y . . . . . . . . .

basis of k[x, y](−2)i = 0 0 1 x, y . . .

Example 2.2.3. Let R = k[x, y, z] and I = 〈x3 + y3 + z3〉. The dimension of
R/I in degree i will be the dimension of R in degree i minus the dimension of
I in degree i. I is a principal ideal, generated in degree 3, so the degree i piece
of I just looks like the degree i− 3 piece of R. Thus:

i 0 1 2 3 4 5 6 . . .
HF(R/I, i) 1 3 6 9 12 15 18 . . .

As i gets large (in fact, as soon as i ≥ 1), the dimension of (R/I)i is just

dimkk[x, y, z]i − dimkk[x, y, z]i−3 =

(
i+ 2

2

)
−

(
i− 1

2

)
= 3i.

Now let’s add a linear form to I—to make life easy, say the form is x, and put
J = I + 〈x〉. Since R/J ≃ k[y, z]/〈y3 + z3〉, the Hilbert function is:

i 0 1 2 3 4 . . .
HF(R/J, i) 1 2 3 3 3 . . .

By Bezout’s theorem, a line and a cubic curve in P2
k meet in three points. Do

you have a guess about how this relates to the dimension of a high degree piece
of the quotient ring? Try your guess on some other examples (pick equations to
minimize your work). Another way of encoding the data of the Hilbert function
is via a formal power series, called the Hilbert (or Hilbert–Poincaré) series:
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Definition 2.2.4. The Hilbert series of a finitely–generated, graded module M
is

HS(M, t) =
∑

i∈ZHF (M, i)ti.

We’ll see in the next chapter that if M is a finitely–generated, graded module
over k[x1, . . . , xn], then HS(M, t) = P (t)/(1 − t)n with P (t) ∈ Z[t, t−1]. In
Macaulay 2, the Hilbert function and Hilbert series are easy to compute. We
illustrate for the previous example:

i1 : R=ZZ/101[x,y,z];

i2 : I = matrix {{x^3+y^3+z^3}}

o2 = {0} | x3+y3+z3 |

1 1

o2 : Matrix R <--- R

i3 : hilbertFunction(3,coker I)

o3 = 9

The semicolon after the ring declaration prevents Macaulay 2 from echoing, so
the following output is suppressed:

o1 = R

o1 : PolynomialRing

The hilbertFunction command is self-explanatory: it expects as input a degree
and a finitely–generated, graded R-module M . If R = k[x1, . . . , xn], then the
command poincare M returns the numerator of the Hilbert series of M , but
in unsimplified form: the denominator of the Hilbert series is understood as
(1 − t)n. For example, if R = k[x, y, z], then HS(R, t) = 1

(1−t)3 (see next

exercise!), so poincare R returns 1.

i4 : poincare R

o4 = 1

o4 : ZZ[ZZ^1]

i5 : poincare coker I

3

o5 = 1 - $T



2.2. GRADED RINGS AND MODULES 29

o5 : ZZ[ZZ^1]

i6 : J = matrix {{x,x^3+y^3+z^3}}

o6 = | x x3+y3+z3 |

1 2

o6 : Matrix R <--- R

i7 : poincare coker J

3 4

o7 = 1 - $T - $T + $T

So

HS(R/J, t) =
1− t− t3 + t4

(1− t)3 =
1 + t+ t2

1− t .

Exercise 2.2.5. Hilbert series for k[x1, . . . , xn]. If n = 1, then each graded
piece has dimension one, so

HS(k[x], t) = 1 + t+ t2 + . . . =
1

1− t .

Prove that

HS(k[x1, . . . , xn], t) =
1

(1− t)n .

3

Recall that a ring (module) is Noetherian if there are no infinite proper
ascending chains of ideals (submodules). What about descending chains? A
ring (or module) is Artinian if there are no infinite proper descending chains of
ideals (submodules). Now, suppose we have a graded ring R. If it does not die
out in high degree, then we can cook up an infinite descending chain of ideals
by taking successive graded pieces of the ring:

〈R1〉 ) 〈R2〉 ) 〈R3〉 · · ·

In particular, if R is a polynomial ring and M a finitely–generated, graded
R−module, then M is Artinian iff Mi = 0 for i sufficiently large, so such a
module is Artinian iff the Hilbert series is actually a polynomial in N[t, t−1 ].
Consider R = k[x, y]/〈x2, y2〉. We have

degree i = 0 1 2 3 . . .
basis of Ri = 1 x, y xy 0 . . .

Thus, the Hilbert series of R is 1 + 2t+ t2.
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i1 : R=ZZ/31991[x,y];

i2 : poincare coker matrix {{x^2,y^2}}

2 4

o2 = 1 - 2$T + $T

i3 : factor o2

2 2

o3 = (- 1 + $T) (1 + $T)

i4 : Q = R/ideal(x^2,y^2)

R

o4 = --------

2 2

(x , y )

o4 : QuotientRing

i5 : poincare Q

2 4

o5 = 1 - 2$T + $T

So as expected

HS(R/I, t) =
1− 2t2 + t4

(1− t)2 = 1 + 2t+ t2.

We can compute this by considering R/I as an R-module or as a graded ring
in its own right.

Exercise 2.2.6. Compute the Hilbert series of

k[x, y, z]/〈x2, y3, z4〉.
Can you see how to compute the Hilbert series of

k[x1, . . . , xn]/〈x2
1, x

3
2, . . . , x

n+1
n 〉?

When is a quotient by a monomial ideal Artinian? 3

2.3 Linear Algebra Flashback, Hilbert

Polynomial

In the last section, in Example 2.2.3 we observed that the Hilbert function was
actually a polynomial function of i, at least when i was sufficiently large. This
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is no accident, and the proof is a very nice illustration of the reason that it
is important to study graded maps of graded modules. A homomorphism of

graded modules is called graded if it preserves the grading, i.e. M
φ−→ N is

graded if for all i
φ(Mi) ⊆ Ni.

The basic motivation is bookkeeping—by requiring maps to be graded, we obtain
sequences where it makes sense to look at what is happening in a single degree.
But the degree i piece of a graded module is simply a vector space, so we are
reduced to linear algebra! This is the raison d’ être of graded maps. We begin
with a quick linear algebra review. A sequence of vector spaces and linear
transforms

V : · · · φj+2−→Vj+1
φj+1−→Vj

φj−→Vj−1
φj−1−→ · · ·

is called a complex (or chain complex) if

image φj+1 ⊆ kernel φj .

The sequence is exact at position j if image φj+1 = kernel φj ; a complex which
is exact everywhere is called an exact sequence. We define the homology of the
complex V as

Hj(V ) = kernel φj/image φj+1.

Exercise 2.3.1. Complexes

1. Compute the homology of the complex

0 −→ V1
φ−→V0 −→ 0,

where V1 = V0 = k3 and φ is:




1 0 −1
−1 1 0
0 −1 1




2. Show that for a complex V : 0 −→ Vn −→ · · · −→ V0 −→ 0 of finite-
dimensional vector spaces,

n∑

i=0

(−1)idim Vi =

n∑

i=0

(−1)idim Hi(V ).

The alternating sum above is called the Euler characteristic of V , and
written χ(V ). So if V is exact then χ(V ) = 0.

3

The definitions above (complex, homology, exact) all generalize in the ob-
vious way to sequences of modules and homomorphisms; when working with
graded modules we require that the maps are also graded.
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Example 2.3.2. Let R be a polynomial ring (regarded as a module over itself),
and f ∈ Ri. Consider the map:

R
·f−→ R.

This is not a map of graded modules, because it sends 1 (a degree zero object)
to f (a degree i object). But, if we declare 1 to have degree i in our source
module, then we do have a graded map:

R(−i) ·f−→ R.

For emphasis, we say it again: when R is a polynomial ring over a field,
then studying graded maps between graded R-modules is nothing more than
linear algebra! Now we prove our earlier observation that the Hilbert function
becomes a polynomial, for i≫ 0.

Theorem 2.3.3. If M is a finitely generated, graded module, then there exists a
polynomial f(x) ∈ Q[x] such that for i≫ 0, HF (M, i) = f(i). The polynomial
f(i) is called the Hilbert polynomial of M , written HP (M, i).

Proof. Induct on the number of variables in the ring over which M is defined,
the base case being trivial. So, suppose it is true in n − 1 variables. We can
build an exact sequence:

0 −→ K −→M(−1)
·xn−→M −→ C −→ 0,

where K and C are the kernel and cokernel of the map given by multiplication
by xn. K and C are finitely generated, and since xn kills both K and C, they
are actually finitely generated modules over a polynomial ring in n−1 variables.
Thus HF (M, i)−HF (M, i− 1) ∈ Q[i], i≫ 0. Now do Exercise 2.3.4.

Exercise 2.3.4. A function P (i) such that ∆P (i) := P (i) − P (i − 1) is a
polynomial with rational coefficients (for i sufficiently large) is itself a poly-
nomial with rational coefficients, and has degree one greater than ∆P . Hint:
induct on the degree s of the difference polynomial. The base case is trivial. If
∆P (i) = asi

s + . . ., define h = ass!
(
i

s+1

)
, and compute ∆h. By construction,

∆P −∆h will have degree s− 1. 3

Exercise 2.3.5. (Hilbert polynomial for a set of points).

1. For a single point p ∈ Pnk , compute HP (R/I(p), i). Hint: you may as well
assume the point is given by (0 : . . . : 0 : 1).

2. If I(pi) denotes the ideal of a point, prove that the sequence

0 −→ I(p1) ∩ I(p2) −→ I(p1)⊕ I(p2) φ−→ I(p1) + I(p2) −→ 0,

is exact, where φ(f, g) = f − g.



2.3. LINEAR ALGEBRA FLASHBACK, HILBERT POLYNOMIAL 33

3. What is I(p1) + I(p2)? What is HP (R/〈I(p1) + I(p2)〉, i)? Use induction
to show that for distinct points {p1, . . . , pd} ∈ Pnk ,

HP (R/〈
d⋂

j=1

I(pj)〉, i) = d.

3

The main reason that the Hilbert polynomial of R/I is important is that
it contains all sorts of useful geometric information about V (I). We’ve seen
one simple instance of this above. If V (I) is a projective variety defined by a
homogeneous ideal I , then in Chapter 3 we’ll see that the Hilbert polynomial
of R/I can be written as an alternating sum of binomial coefficients. So there
will exist ai ∈ Z, am > 0 such that the Hilbert polynomial will have the form

am
m!

im +
am−1

(m− 1)!
im−1 + · · · .

Definition 2.3.6. For a homogeneous ideal I ⊆ k[x0, . . . , xn] with

HP (R/I, i) =
am
m!

im +
am−1

(m− 1)!
im−1 + · · · ,

we define the dimension of the projective variety V (I) ⊆ Pnk as m, the codimen-
sion of I as the complementary dimension of V (I) = n−m, and the degree of
V (I) as am.

We have an intuitive notion of dimension—basically, from vector calculus
and the implicit function theorem, the dimension of a geometric object is the
dimension of the tangent space at a smooth point. This point of view is very
important and is nicely explained in both [23] and [78]. But there is another nat-
ural way to think of dimension—if we slice an object with a generic hyperplane,
then the dimension of the slice should be one less than the dimension of the
object—if we slice a surface in three space with a generic plane, we get a curve.
Now, the dimension should be the number of times you can slice till you end up
with a collection of points. The degree of the variety is simply the number of
points, as counted by the Hilbert polynomial of the resulting zero-dimensional
object. This agrees with our notion of the degree of a curve in the projective
plane. This definition also works fine for projective space: from Exercise 2.2.1,Pn has dimension n and degree one. If HP (R/I, i) = 0 then R/I is Artinian; to
make the definition of codimension work out right we decree the zero polynomial
to have degree −1. In the next chapter we will show that the intuitive notion
corresponding to slicing down with hyperplanes and the algebraic formulation
in terms of the Hilbert polynomial coincide; for now we content ourselves with
an example.

Example 2.3.7. Consider the variety in P3 defined by the ideal

〈w2 − yw, xw − 3zw, x2y − y2z − 9z2w + zw2, x3 − 3x2z − xyz + 3yz2〉
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i1 : R=ZZ/101[x,y,z,w];

i2 : m=matrix{{w^2-y*w, x*w-3*z*w,

x^2*y-y^2*z-9*z^2*w+z*w^2,

x^3-3*x^2*z-x*y*z+3*y*z^2}}

o2 = | -yw+w2 xw-3zw x2y-y2z-9z2w+zw2 x3-3x2z-xyz+3yz2 |

1 4

o2 : Matrix R <--- R

i3 : hilbertPolynomial coker m

o3 = - P + 3*P

0 1

Macaulay 2 gives the Hilbert polynomial in terms of projective spaces: read Pn
as

(
n+i
i

)
. In this example, −P0 + 3 ∗ P1 = −1 + 3(i+ 1) = 3i+ 2.

i4 : I=ideal m;

o4 : Ideal of R

i5 : codim I

o5 = 2

i6 : degree I

o6 = 3

i7 : primaryDecomposition I

2

o7 = {ideal (w, x - y*z), ideal (y - w, x - 3z)}

V (I) has two irreducible pieces: the first is a plane conic curve lying in the
plane where w = 0, and the second is the projective line given by the vanishing
of two linear forms. Thus, this should have degree 3 and dimension 1, which is
indeed the case. We slice with a generic hyperplane to double check.

i8 : lin=ideal random(R^{1},R^1)

o8 = ideal(42x-50y+39z+9w)

o8 : Ideal of R
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i9 : slice=I+lin;

o9 : Ideal of R

i10 : hilbertPolynomial coker gens slice

o10 = 3*P

0

A few words are in order here: slice is an ideal, and to compute a quotient
(cokernel), Macaulay 2 expects a matrix. The gens command turns the ideal
into a matrix of elements, for which coker makes sense. Try the above sequence
without gens and see what happens.

Exercise 2.3.8. For R = k[x, y, z] and I = 〈x2−xz, y3− yz2〉, ask Macaulay 2
to compute the Hilbert polynomial of R/I . Draw a picture of the variety in P2

(work on the patch where z = 1), and verify that Bezout’s theorem holds. 3

The most naive possible generalization of Bezout’s theorem is false: suppose
{f1, . . . , fn} ⊆ k[x0, . . . , xn] are polynomials which have no pairwise common
factor; say degree fi = di. As the next example illustrates, it is not in general
true that

V (f1, . . . , fn) ⊆ Pn
is a set of d1 · d2 · · · dn points.

Example 2.3.9. (The twisted cubic, revisited) In Exercise 1.3.12 we en-
countered the ideal

I = 〈xz − y2, xw − yz, z2 − yw〉.

It is easy to check that these polynomials have no pairwise common factors. If
we work on the affine patch Ux where x = 1, then the equations are

z = y2, w = y3.

So on Ux the zero locus is given parametrically as (1, y, y2, y3); in particular
the zero locus is one (rather than zero) dimensional. Let’s see if we can guess
the Hilbert polynomial. On the patch Ux, a generic hyperplane will have the
form a0 + a1y + a2z + a3w = 0 (remember, we’re in affine space now), and the
common zero locus of the hyperplane and the curve is

a0 + a1y + a2y
2 + a3y

3 = 0.

As long as the ground field is algebraically closed, we expect the hyperplane to
meet the curve in three points, so we expect that

HP (R/I, i) = 3i+ a

for some constant a. Use Macaulay 2 to compute the Hilbert polynomial, and
then verify the computation by appealing to the isomorphism of 1.3.12.
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Example 2.3.10. (Nonreduced points) In k[x, y, z], the polynomials y2−xz
and x have no common factor, so Bezout’s theorem tells us that V (y2−xz) and
V (x) should meet in two points if we count with multiplicity. What does this
mean? Well, since I = 〈y2−xz, x〉 = 〈y2, x〉, we see that the Hilbert polynomial
of R/I is 2. The only point where the curves actually meet is (0 : 0 : 1);
draw a picture on the affine patch where z = 1 and you’ll see that the curves
are tangent at this point. Intuitively, if we perturb the line, it will meet the
conic in two distinct points. The key idea is that the Hilbert polynomial “sees”
this higher order of contact and counts it correctly; this is what counting with
multiplicity means. Here are two more examples of codimension two ideals in
k[x, y, z] whose underlying variety is a point in P2, but where that variety has
forgotten interesting structure–more supporting evidence for studying schemes!

First, consider the ideal

L = 〈y2, x2〉 ⊆ k[x, y, z].

It is clear that
√
L = 〈y, x〉. Again, it is easy to compute HP (R/L, i), since for

i ≥ 2 a basis for (R/L)i is

{zi, zi−1x, zi−1y, zi−2xy}.

If we think of V (x2) as two infinitesimally near parallel lines, and similarly for
V (y2), then we should see four points. This is exactly what Bezout’s theorem
tells us to expect, although we have to adapt our geometric intuition. L is an
example of a local complete intersection; we’ll meet it again in Chapter 6.

Next, consider the ideal

F = 〈y2, xy, x2〉 ⊆ k[x, y, z].

In this case, for i ≥ 2 a basis for (R/F )i is

{zi, zi−1x, zi−1y}.

Bezout’s theorem does not apply here, so we’re on our own. First, we dehomog-
enize to work on the affine patch z = 1. A polynomial f(x, y) will be in I iff
f, ∂f/∂x, and ∂f/∂y all vanish at (0, 0). So we are imposing three conditions
on the coefficients of f , and in Chapter 7 we’ll see that this is the reason that
HP (R/F, i) = 3. F is an example of a fatpoint ideal.

Exercise 2.3.11. Suppose a set of objects S has the structure of a variety. A
condition is called generic if it corresponds to a Zariski open subset of S. Show
that (up to multiplication by k∗) the set of homogeneous degree two polynomials
in k[x, y, z] can be identified with P5, so a point of P5 corresponds to a conic
curve in P2. Prove that a generic plane conic is smooth (Exercise A.3.2). 3

Supplemental reading: Hilbert functions and polynomials, Chapter 9 of Cox–
Little–O’Shea [23] and Chapter 13 of Harris [52] are good references.



Chapter 3

Free Resolutions and

Regular Sequences

Suppose we are handed a moduleM and asked to describe it. Heeding Thoreau’s
dictum to “Simplify, simplify!”, we might begin by trying to determine if M is
a direct sum of two other modules, M ≃M1 ⊕M2. Of course, usually this will
not be the case, so we should look for alternatives. A direct sum M ≃M1⊕M2

gives rise to a short exact sequence

0 −→M1 −→M −→M2 −→ 0.

Not every short exact sequence arises from a direct sum, so a reasonable sub-
stitute for a direct sum decomposition of M is an exact sequence

0 −→ N −→M −→M/N −→ 0.

This sequence is familiar to us from group theory, with the role of N played by
a normal subgroup. We can glean lots of information from such a short exact
sequence; for example, if the modules are graded (as in the last chapter), then
knowing the Hilbert functions of any two modules in the sequence will tell us
the Hilbert function of the third. In a nutshell, the idea is to understand an
arbitrary module M by fitting it into an exact sequence with modules which we
understand; for example, by fitting M into a sequence of free modules. Given
such a sequence of free modules, we can compute all of the invariants of M
introduced in the last chapter. Another way to obtain an exact sequence is to
map a module to itself via multiplication by a fixed ring element f :

m −→ f ·m.
When M is k[x0, . . . , xn]/I and f is a nonzero divisor on I , this corresponds to
slicing V (I) with a generic hypersurface. This yields a geometric interpretation
of the Hilbert polynomial, and leads us to study the notion of a regular sequence.

Key concepts: Free module, free resolution, Hilbert syzygy theorem, regular
sequence, mapping cone.

37
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3.1 Free Modules and Projective Modules

In a sense, free modules are the nicest of all possible modules. For example,
every module is the homomorphic image of a free module—if we don’t mind
extravagance, we can take a generator for every element of the module. For a
finitely-generated, graded, free module over a polynomial ring, we have a nice
formula for the dimension of each graded piece. As it turns out, free modules
fit into a somewhat broader class of modules—projective modules.

Definition 3.1.1. An R-module P is a projective module if for any surjection of

R-modules A
f−→ B and homomorphism P

g−→ B there exists a homomorphism
h : P → A making the diagram below commute:

P
↓

A −→ B −→ 0

(A diagram is called commutative if following arrows different ways gives the
same result; in the above case this says g = fh).

The following lemma gives three different characterizations of projective
modules:

Lemma 3.1.2. The following are equivalent:

1. P is projective.

2. Every exact sequence 0 −→ N −→ M
f−→ P −→ 0 splits: there exists

h : P →M such that fh is the identity on P .

3. There exists K such that P ⊕K ≃ F for some free module F .

Proof. 1 ⇒ 2 is easy, and 2 ⇒ 3 is basically Exercise 8.1.3. For 3 ⇒ 1, take a
free module F such that P ⊕K ≃ F and make a commutative diagram

F
↓
P
↓

A −→ B −→ 0

Since F is free, we can map F to A in a way which makes the diagram commute,
but then since K goes to zero in B, it must be in the kernel of the map from
A to B. In other words, we get a map from P to A which makes the diagram
commute.

Since it is often necessary to find objects or maps which make a diagram
commute, projective modules are very important. In the next exercise, you’ll
prove that over a local ring (a ring with a unique maximal ideal) a projective
module must be free. Polynomial rings behave like local rings, for the following
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reason: any homogeneous ideal in a polynomial ring is necessarily contained
in the ideal m generated by the variables, so m will play the role of maximal
ideal. In particular ([28], Exercise 4.11), a finitely-generated, graded projective
module over k[x1, . . . , xn] is actually a graded free module!

Exercise 3.1.3. The Jacobson radical J (R) of a ring R is the intersection of
all the maximal ideals of R. For I ⊆ J (R) and M a finitely generated R-
module, Nakayama’s lemma tells us that IM = M ⇒ M = 0. For a local ring
J (R) is just the maximal ideal. Use Nakayama’s lemma to prove that a finitely
generated projective module over a local ring is in fact free. You can check your
proof in the hints and solutions section of [28] (Exercise 4.11). 3

3.2 Free Resolutions

For the remainder of this chapter, R will denote a polynomial ring over a field.
In Chapter 2 we studied the graded module R/I where R = k[x, y, z], I =
〈x3 + y3 + z3〉. I being principal, it followed easily that

HF (R/I, i) = dimkRi − dimkRi−3.

Put another way, there is a graded exact sequence

0 −→ R(−3)
·(x3+y3+z3)−→ R −→ R/〈x3 + y3 + z3〉 −→ 0.

What about when we added 〈x〉 to the ideal? In that case we just used x to kill
a variable and computed for a ring with two variables. But we could also write
down another graded exact sequence:

0 −→ R(−4) −→ R(−1)⊕R(−3)
[x,x3+y3+z3]−→ R −→ R/〈x, x3 + y3 + z3〉 −→ 0.

Recall that we have to shift the gradings in the above sequence in order to make
the maps in the complex have degree zero. The map

[x, x3 + y3 + z3]

from R2 to R sends one generator of R2 (call it ǫ1) to x, and the other generator
of R2 (call it ǫ2) to x3 + y3 + z3. Since x is a degree one element of R, ǫ1 must
have degree one, and since x3 + y3 + z3 is of degree three, ǫ2 must have degree
three. It is easy to check (do so!) that the kernel of the map is generated by
(x3 + y3 + z3)ǫ1 − xǫ2. So the kernel is a free module, generated in degree four.
The payoff for our careful bookkeeping is that the complex of graded modules
is also exact at the level of vector spaces. We can now compute the dimension
of the degree i piece of R/I as an alternating sum of the degree i pieces of the
exact sequence. By Exercises 2.2.1 and 2.3.1, we know

HP (R/I, i) = HP (R, i)−HP (R(−1), i)−HP (R(−3), i) +HP (R(−4), i)



40 CHAPTER 3. FREE RESOLUTIONS AND REGULAR SEQUENCES

= HP (R, i)−HP (R, i− 1)−HP (R, i− 3) +HP (R, i− 4)

=

(
i+ 2

2

)
−

(
i+ 1

2

)
−

(
i− 1

2

)
+

(
i− 2

2

)

Exercise 3.2.1. Recall that if I = 〈f, g〉 ⊆ k[x, y, z] where f and g are ho-
mogeneous polynomials of degrees d, e having no common factors and k is
algebraically closed, then Bezout’s theorem says V (I) consists of d · e points
in P2. Prove this by finding a graded free resolution for R/I and computing
HP (R/I, i). 3

The amazing fact is that we can always “approximate” a finitely generated
graded module (over the polynomial ring) with a finite exact sequence of free
modules (a finite free resolution):

Theorem 3.2.2 (Hilbert Syzygy Theorem). If M is a finitely generated
graded module over the polynomial ring R = k[x1, . . . , xn], then there exists a
graded exact sequence of modules:

0→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→M −→ 0,

where the Fi are finitely generated and free.

Given a module M , the res command computes a free resolution and dis-
plays the modules (without shifts) in the resolution (M itself is not displayed).
Once the resolution is in hand, you can see all the differentials by adding the
suffix .dd to the name of a resolution.

i2 : Mr = res coker matrix {{x,x^3+y^3+z^3}}

1 2 1

o2 = R <-- R <-- R

0 1 2

o2 : ChainComplex

i3 : Mr.dd

1

o3 = -1 : 0 <----- R : 0

0

1 2

0 : R <------------------- R : 1

{0} | x y3+z3 |

2 1

1 : R <------------------ R : 2

{1} | -y3-z3 |

{3} | x |
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Notice that Macaulay 2 used x to prune the x3 term from x3 + y3 + z3. Print-
ing out all the differentials can be cumbersome, because in many interesting
examples the matrices can be quite large. But there is a happy medium: the
command betti gives a concise encoding of the numerical information in the
free resolution. If Mr is the name of a resolution, then betti Mr prints a dia-
gram where the numbers on the top row are the ranks of the modules in the
resolution. In the ith column, the number aij in the row labeled with a j : indi-
cates that Fi has a summand of the form R(−i− j)aij . Notice that the module
itself is not displayed in the free resolution. For example, if we included shifts,
the free resolution above could be written as R←− R(−1)⊕R(−3)←− R(−4).

i4: betti Mr

o4 = total: 1 2 1

0: 1 1 .

1: . . .

2: . 1 1

Let’s see the betti diagram for the twisted cubic:

i2 : N=res coker matrix {{z^2- y*w, y*z - x*w, y^2 - x*z}}

1 3 2

o2 = R <-- R <-- R <-- 0

0 1 2 3

o2 : ChainComplex

i3 : N.dd

1 3

o3 = 0 : R <------------------------- R : 1

| y2-xz yz-xw z2-yw |

3 2

1 : R <----------------- R : 2

{2} | -z w |

{2} | y -z |

{2} | -x y |

2

2 : R <----- 0 : 3

0

o3: ChainComplexMap

i4 : betti N
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o4 = total: 1 3 2

0: 1 . .

1: . 3 2

It is easy to see that free resolutions exist: if M is a finitely generated, graded
module over R (paradigm: M = R/I) with generators m1, . . . ,mk0 , then we
may define a map:

Rk0
φ0−→M −→ 0,

where φ : ǫi → mi. Of course, we can complete the diagram to a short exact
sequence by adding the kernel K of φ on the left.

Lemma 3.2.3. If R is Noetherian, then K is finitely generated.

Proof. First, a submodule N of a Noetherian module M is Noetherian (obvious
since any infinite chain of submodules ofN is also an infinite chain of submodules
of M). So the result holds if R Noetherian ⇒ Rk Noetherian. This follows by
induction, and the following lemma.

Lemma 3.2.4. For a short exact sequence 0 → M1 → M2 → M3 → 0, if M1

and M3 are Noetherian, then so is M2.

Proof. Suppose we have an infinite chain of submodules of M2. If we map them
forward to M3, we get a chain of submodules of M3, which must stabilize, say at
m3, and if we intersect the chain with M1, we get a chain of submodules of M1,
which must stabilize, say at m1. Put m2 = max(m1,m3) and we’re done.

Thus, if M is finitely generated we have an exact sequence 0→ K → Rk0 →
M → 0 where K is also finitely generated. So K is also the image of a free

module Rk1 , and we can splice to obtain an exact sequence Rk1
φ1→ Rk0 →M →

0. Repeating the process yields a free resolution of M ; if at some point φi is
injective then the process stops and the resolution is called finite. The key point
of the Hilbert syzygy theorem is that a graded module M over a polynomial
ring has a finite free resolution. This is simply not true over a non-polynomial
ring. Over the ring T = k[x]/〈x2〉, a free resolution of 〈x〉 is

· · · −→ T (−2)
·x−→ T (−1)

·x−→ 〈x〉−→0.

A free resolution of a graded moduleM is called minimal if there are no constant
terms in any of the maps; if a constant entry occurs then the maps can be pruned.
For R = k[x, y] the maps defined by matrices

φ1 = [x2, yx2] and φ2 = [x2]

have the same image I , but the matrices correspond to different free resolutions:

0 −→ R(−3)

24 y
−1

35
−→ R(−2)⊕R(−3)

[x2,yx2]−→ I −→ 0.
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0 −→ R(−2)
[x2]−→I −→ 0.

The point is that φ1 corresponds to a non-minimal choice of generators for I .
As another example, the sequence

0 −→ R
1−→R −→ 0

is exact, so if we graft this onto an exact sequence · · · −→ Fi
di−→ Fi−1 −→ · · ·

then we obtain another exact sequence:

· · · −→ Fi+1 −→ R⊕ Fi

24 1 0
0 di

35
−→ R ⊕ Fi−1 −→ Fi−2 −→ · · · .

The matrices in the minimal free resolution obviously cannot be unique. For
example, if I = 〈x2, y2〉, then in the exact sequence

−→ R2(−2)
φ−→ I −→ 0

φ could be defined by either [x2, y2] or [x2 − y2, x2 + y2] (well, if char(k) 6= 2).
However, the free modules which appear in a minimal free resolution are unique
([28], Theorem 20.2). You should prove this for yourself after working Exercise
8.2.2! We will prove the Hilbert Syzygy Theorem in Chapter 8 using the tools
of homological algebra; in fact, the proof is a beautiful illustration of what the
machinery of derived functors can do. For the moment, we take the theorem on
faith and derive some corollaries. So, let R = k[x0, . . . , xn], and suppose M has
free resolution

0 −→ Fn+1 −→ · · · −→ F0 −→M −→ 0,

where Fk has rank rk and

Fk ≃
rk⊕

l=1

R(−akl).

We obtain another explanation of why the Hilbert function becomes a polyno-
mial in large degrees—it is simply a sum of binomial coefficients:

HP (M, i) =

n+1∑

j=0

(−1)jHP (Fj , i) =

n+1∑

j=0

(−1)j
rj∑

l=1

(
n+ i− ajl

n

)
.

The Hilbert series for R is 1/(1− t)n+1, so

HS(R(−a), t) =
ta

(1− t)n+1
.

Thus

HS(Fk, t) =

rk∑
l=1

takl

(1− t)n+1
.

This proves the assertion following Definition 2.2.4 that HS(M, t) =
P (M, t)/(1− t)n+1 where P (M, t) ∈ Z[t, t−1].
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3.3 Regular Sequences, Mapping Cone

In Chapter 2, we claimed that slicing with a generic hyperplane dropped the
dimension of V (I) by one (as long as V (I) is nonempty). Of course, slicing with
a generic hypersurface would yield the same result.

Exercise 3.3.1. Prove that for a homogeneous ideal I ⊆ R and homogeneous
polynomial f of degree d that there is a graded exact sequence

0 −→ R(−d)/〈I : f〉 −→ R/I −→ R/〈I, f〉 −→ 0.

Hint:
0 −→ 〈I, f〉/I −→ R/I −→ R/〈I, f〉 −→ 0

is clearly exact. How can you get a graded map from R to 〈I, f〉/I? What is
the kernel? 3

Recall that f ∈ R is a nonzero divisor on M if f · m 6= 0 for all nonzero
m ∈ M ; in particular, f is a nonzero divisor on R/I iff I : f = I . Suppose we
write

HP (R/I, i) =
am
m!

im + . . .

If f is a homogeneous linear form which is a nonzero divisor on R/I , then from
Exercise 3.3.1 we obtain

HP (R/〈I, f〉, i) = HP (R/I, i)−HP (R/I, i− 1) =
am

(m− 1)!
im−1 + . . .

So just as we claimed, slicing with such a hyperplane causes the dimension
to drop, while preserving the degree. In fact, requiring that the hyperplane
correspond to a nonzero divisor turns out to be too restrictive. You may be
thinking that this is because it is possible to have I : f 6= I , but nevertheless

dim V (I, f) = dim V (I)− 1.

For example, if V (I) consists of a curve C and some isolated points, then we can
choose a hyperplane V (f) which does not contain any component of C (C could
have several pieces), but which picks up some isolated points. Then V (I, f)
will indeed have dimension one less than V (I). The problem is that the degree
will change to reflect the number of isolated points which lie on V (f)—here’s
the simplest possible case; V (I) is the union of the line {x = 0} and the point
(1:0:0).

V(x)

V(y)

V(z)
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i1 : R=ZZ/101[x,y,z];

i2 : I=ideal(x*y,x*z);

o2 : Ideal of R

i3 : codim (I + ideal(y))

o3 = 2

i4 : degree (I + ideal(y))

o4 = 2

i5 : codim I

o5 = 1

i6 : degree I

o6 = 1

Of course, this computation simply reflects the fact that our chosen hyperplane
V (y) met V (x) in one point (as required by Bezout), but also contained the
point (1 : 0 : 0). The point is that the chosen hyperplane was not generic.

The real reason that requiring a hyperplane correspond to a nonzero divisor
is too restrictive a condition is that if the primary decomposition of I has a
component Q which is primary to the maximal ideal, then there can be no
nonzero divisors on R/I . But this component is geometrically irrelevant (in
projective space, V (Q) is empty), so we want to ignore Q. This is easily justified
by an exact sequence argument as in Exercise 2.3.5. We need a lemma:

Lemma 3.3.2 (Prime Avoidance). If I ⊆
n⋃
i=1

Pi, with Pi prime, then I ⊆ Pi
for some i.

Proof. We prove the contrapositive: I 6⊆ Pi ∀i ⇒ I 6⊆
n⋃
i=1

Pi. Induct on n, the

base case being trivial. We now suppose that

I 6⊆ Pi ∀i, and I ⊆
n⋃

i=1

Pi,

and arrive at a contradiction. From our inductive hypothesis, for each i, I 6⊆⋃
j 6=i

Pj . In particular, for each i there is an xi which is in I but is not in
⋃
j 6=i

Pj .

Notice that if xi 6∈ Pi then xi 6∈
n⋃
j=1

Pj , and we have an immediate contradiction.
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So suppose for every i that xi ∈ Pi. Consider the element

x =

n∑

i=1

x1 · · · x̂i · · ·xn.

By construction, x ∈ I . We claim that x 6∈
n⋃
i=1

Pi. To see this, observe that

x1 · · · x̂i · · ·xn 6∈ Pi, because for each index k 6= i, xk is not in
⋃
j 6=k

Pj , so in

particular is not in Pi. Since Pi is prime, this proves that x1 · · · x̂i · · ·xn 6∈ Pi.
But every other monomial of x is in Pi, since every other monomial contains xi.

This shows that x 6∈ Pi for any i, hence x 6∈
n⋃
j=1

Pj , a contradiction.

With prime avoidance in hand, we can finish our justification that the Hilbert
polynomial does indeed give the “geometrically correct” values for dimension
and degree. If I has a primary component primary to the maximal ideal, we
can remove it, since it is irrelevant for computing the Hilbert polynomial. Call
the new ideal I ′. By prime avoidance, the union of the associated primes of I ′

cannot contain the maximal ideal, so there must be a (homogeneous) linear form
f not in the union of the associated primes. By Lemma 1.3.8, f is a nonzero
divisor on R/I ′, and we have found a way to chop down the dimension of V (I ′),
and hence V (I), while preserving the degree. Notice that when we add f to
I , all the primary components will increase codimension. We can repeat the
process exactly dim(V (I)) times, and at the end we are left with an ideal with
Hilbert polynomial a constant equal to the degree of V (I).

We return now to the situation I : f = I , which we saw was synonymous with
saying that f is a nonzero divisor on R/I and hence V (I, f) has dimension one
less than V (I). It is natural to start from scratch with a single polynomial, and
iterate this process; while we’re at it, we generalize from R/I to an arbitrary
module. For a graded module M , we define a regular sequence on M as a
sequence of (non-constant) homogeneous polynomials

{f1, f2, . . . , fm},

such that f1 is a nonzero divisor on M , and fi is a nonzero divisor on
M/〈f1, . . . , fi−1〉M . For example if R = k[x, y], then {x, y} is a regular se-
quence on R, since x is a nonzero divisor on R and y is a nonzero divisor on
R/〈x〉 ≃ k[y]. It is easy to see that in a polynomial ring R, the variables (ac-
tually, any subset of the variables) are a regular sequence on R. See if you can
find some other regular sequences on R (hint: what about powers of variables).
Check what happens when you compute a free resolution for an ideal generated
by a regular sequence. What you should see is that the only relations that occur
in the free resolution are the obvious ones, for example, if I = {f1, f2, f3} is a
regular sequence on R, the free resolution of R/I will be (in Macaulay 2 format):



3.3. REGULAR SEQUENCES, MAPPING CONE 47

1

R/I <------------------------ R

1 3

R <------------------------ R

| f_1 f_2 f_3 |

3 3

R <------------------------ R

| -f_2 -f_3 0 |

| f_1 0 -f_3 |

| 0 f_1 f_2 |

3 1

R <------------------------ R

| f_3 |

| -f_2 |

| f_1 |

An ideal generated by a regular sequence on R is called a complete intersection.
One way of stating Bezout’s theorem is to say that the ideal generated by two
polynomials with no common factor is a complete intersection. Let’s see what
happens for a regular sequence of three polynomials in P3. Suppose the complete
intersection shown above is sitting in R = k[x0, . . . , x3], with degree fi = di.
Thus, the Hilbert polynomial of R/I is

dimkRi−
3∑

j=1

dimkR(−dj)i+
∑

1≤j<k≤3

dimkR(−dj−dk)i−dimkR(−d1−d2−d3)i.

Grinding through the computation, we obtain

HP (R/I, i) = d1 · d2 · d3.

This means that the hypersurfaces defined by the three polynomials intersect
in d1 · d2 · d3 points, so each polynomial chops dimension down by one. This is
where the terminology complete intersection comes from: we go from the surface
in P3 defined by V (f1) to the curve defined by V (f1, f2) to the set of points
V (f1, f2, f3). We can use Exercise 3.3.1 to obtain a free resolution for an ideal
generated by a regular sequence {f1, f2, f3} as follows: first, let I = 〈f1, f2〉. By
Exercise 3.2.1 we know what a free resolution for R/I looks like:

0 −→ R(−d1 − d2) −→ R(−d1)⊕R(−d2) −→ R −→ R/I −→ 0.

Since f3 is a nonzero divisor on R/I , this means that 〈I : f3〉 is simply I , so
that

R(−d3)/〈I : f3〉 = R(−d3)/I.
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Thus, just shifting the degree of the free resolution of R/I gives us a free reso-
lution for R(−d3)/〈I : f3〉. We have a diagram:

0
↓

0 → R

�
−

3P
i=1

di

� 24 f2

−f1

35
−−−→

R(−d1 − d3)
⊕

R(−d2 − d3)

[f1,f2]
−−−→ R(−d3) → R(−d3)/I → 0

·f3 ↓

0 → R(−d1 − d2)

24 f2

−f1

35
−−−→

R(−d1)
⊕

R(−d2)

[f1,f2]
−−−→ R → R/I → 0

π ↓
R/〈I, f3〉 → 0

↓
0

It is obvious how to make a vertical map φ0 from R(−d3) to R so that the
rightmost square above commutes: φ0 is just multiplication by f3. In fact, by
defining vertical maps further back in the resolution as f3 times the identity
map, we can make each square commute. Let’s call these vertical maps φi. For
simplicity, rename the horizontal maps ψi and ξi. We have:

0
↓

F : 0 → R

�
−

3P
i=1

di

�
ψ2→

R(−d1 − d3)
⊕

R(−d2 − d3)

ψ1→ R(−d3)
ψ0→ R(−d3)/I → 0

φ2 ↓ φ1 ↓ φ0 ↓ ·f3 ↓

G : 0 → R(−d1 − d2)
ξ2→

R(−d1)
⊕

R(−d2)

ξ1→ R
ξ0→ R/I → 0

π ↓
R/〈I, f3〉 → 0

↓
0

How do we get a free resolution for R/〈I, f3〉? You might think that we could
just take the cokernels of the vertical maps, but a moment of thought shows
that it is not this simple. Notice we have a map from G0 ≃ R onto R/〈I, f3〉
via π ◦ ξ0; the kernel of this map is generated by the images of φ0 and ξ1. Thus,
there is a map from F0 ⊕G1 to G0 = R which is the start of a free resolution
for R/〈I, f3〉.
Exercise 3.3.3. Verify that the kernel of π ◦ ξ0 is as claimed. Show that there
is a complex

Fi−1 ⊕Gi ∂i−→ Fi−2 ⊕Gi−1,
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with ∂0 = π ◦ ξ0 mapping G0 to R/〈I, f3〉, ∂1 mapping F0 ⊕G1 to G0 via

∂1 =
[
φ0 ξ1

]

and for i > 1:

∂i =

[
ψi−1 0

(−1)i−1φi−1 ξi

]

This construction is an instance of a mapping cone. If the fi are a regular
sequence prove that the resulting complex is actually exact. In particular, this
gives a resolution for the residue field of a polynomial ring. Even if the fi are
not a regular sequence we still obtain a complex, called the Koszul complex.
If this was too easy, try writing down a mapping cone resolution for the short
exact sequence of Exercise 3.3.1 when I : f 6= I . For more details or a hint if
you get stuck, see Eisenbud A3.12. 3

So, now we know how to find the free resolution of a complete intersection.
We’ll prove shortly that the length of a maximal regular sequence in k[x1, . . . , xn]
is n, and that n generic homogeneous polynomials form a regular sequence.

Example 3.3.4. What happens if we take more than n such polynomials, i.e.
what is the free resolution for I = 〈f1, . . . , fk〉 ⊆ k[x1, . . . , xn] when k > n and
the fi are generic and homogeneous? If n > 3, this is an open research problem!
Go to

http://www.ams.org/mathscinet,

(you’ll probably need to be on a university machine) and do a search on Ralf
Fröberg to learn more—Fröberg made a conjecture about this problem in [39]
and proved the conjecture in the case n = 2. Let’s code it up in Macaulay 2!
Open a file called, e.g., “randform” and type in the little script below:

Resrandform=(n,l)->(R=ZZ/31991[x_1..x_n];

I=ideal(0_R);

scan(l,i->(I=I+ideal random(R^{i},R^1)));

print betti res coker mingens I)

--script to print resolution of random forms. Input is n=number of

--variables and l=a list of the degrees of the forms.

The script starts by creating a ring in the specified number of variables. Then
it loops through the list l of degrees, generating a random form of the specified
degree for each list element, and adding it to the ideal. When the loop ends, it
prints out the betti diagram of the ideal.

Of course, there is never just one way to code a problem. For example, we
could cut out the scan loop with the following syntax:

Resrandform2=(n,l)->(R=ZZ/31991[x_1..x_n];

I=ideal random(R^l,R^1);

print betti res coker mingens I)
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We now try the code:

i1: load "randform";

i2 : Resrandform(4,{6,6,6,6,7,7,7,7})

total: 1 8 105 164 66

0: 1 . . . .

1: . . . . .

2: . . . . .

3: . . . . .

4: . . . . .

5: . 4 . . .

6: . 4 . . .

7: . . . . .

8: . . . . .

9: . . . . .

10: . . 105 164 66

Exercise 3.3.5. When you type Resrandform(3,2,2,2,2,2,2) and
Resrandform(3,2,2,2,2,2,2,2), you get the same output. Why is this to
be expected? 3

Supplemental reading: For free resolutions, see Chapter 19 of Eisenbud [28]
or Chapter 5 of the second Cox–Little–O’Shea book [24]. For more on the
current status of the problem on random forms, go to

http://xxx.lanl.gov/archive/math

or

http://front.math.ucdavis.edu/

and check out the paper of Migliore and Miro-Roig [66]; another recent preprint
is that of Pardue and Richert [76], available at the authors’ website.



Chapter 4

Gröbner Bases and the

Buchberger Algorithm

This chapter gives a “look under the hood” at the algorithm that actually
lets us perform computations over a polynomial ring. In order to work with
polynomials, we need to be able to answer the ideal membership question. For
example, there is no chance of writing down a minimal free resolution if we
cannot even find a minimal set of generators for an ideal. How might we do
this? If R = k[x], then the Euclidean algorithm allows us to solve the problem.
What makes things work is that there is an invariant (degree), and a process
which reduces the invariant. Then ideal membership can be decided by the
division algorithm. When we run the univariate division algorithm, we “divide
into” the initial (or lead) term. In the multivariate case we’ll have to come
up with some notion of initial term—for example, what is the initial term of
x2y + y2x? It turns out that this means we have to produce an ordering of the
monomials of R = k[x1, . . . , xn]. This is pretty straightforward. Unfortunately,
we will find that even once we have a division algorithm in place, we still cannot
solve the question of ideal membership. The missing piece is a multivariate
analog of the Euclidean algorithm, which gave us a good set of generators
(one!) in the univariate case. But there is a simple and beautiful solution to
our difficulty; the Buchberger algorithm is a systematic way of producing a
set of generators (a Gröbner basis) for an ideal or module over R so that the
division algorithm works. The Buchberger algorithm and Gröbner bases are
covered with wonderful clarity in the book [23] of Cox, Little, and O’Shea, so
the treatment here is terse. We study three key byproducts of the Buchberger
algorithm: computation of numerical invariants by passing to the initial ideal,
Gröbner bases for modules and computation of syzygies, and determination of
the equations of the projection of a variety (elimination).

Key concepts: Monomial order, initial ideal, Gröbner basis, Buchberger
algorithm, elimination, computation of syzygies.
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4.1 Gröbner Bases

In order to decide ideal membership, we want a division algorithm, so we need
to order the monomials of R. An order > on a set S is a total order if for
two elements α, β ∈ S, one and only one of the following possibilities occurs:
{α > β, α < β, α = β}.
Definition 4.1.1. Associate to a monomial xα1

1 · · ·xαn
n the exponent vector

α = (α1, . . . , αn). A monomial order on R = k[x1, . . . , xn] is a total order on
n-tuples of nonnegative integers, which also satisfies

1. For any γ, if α > β, then α+ γ > β + γ.

2. Any nonempty subset has a smallest element (> is a well-ordering).

Example 4.1.2. (Examples of monomial orders): Let |α| = ∑
αi

1. Pure Lexicographic (the phone book order): α > β if the leftmost nonzero
entry of α− β is positive.

2. Graded Lexicographic: α > β if |α| > |β| or |α| = |β| and the leftmost
nonzero entry of α− β is positive.

3. Graded Reverse Lexicographic: α > β if |α| > |β| or |α| = |β| and the
rightmost nonzero entry of α− β is negative.

For example, in k[x, y, z], we associate the vector (1, 0, 0) to the monomial
x and the vector (0, 1, 2) to the monomial yz2. Then in pure lex, x > yz2 since
(1, 0, 0)− (0, 1, 2) = (1,−1,−2) has leftmost nonzero entry positive. In graded
lex, yz2 > x since |x| = 1 but |yz2| = 3.

Exercise 4.1.3. Order the variables x, y, z with respect to the above orders.
Do the same for the monomials

x2, y2, z2, xy, xz, yz.

3

Assume we have chosen a monomial order on R, and write f ∈ R as

f =
∑

cα 6=0

cαx
α.

The initial monomial in(f) of f is the largest (with respect to our chosen order)
xα which appears in this expression. If we are not working over a field, then
it is important to distinguish between in(f) and the initial term of f , which is
cαx

α, with xα = in(f). Since we will always work over a field, we can be cavalier
about this distinction, because we can always assume f is monic. Given f ∈ R
and set of polynomials

{f1, . . . , fm},
we can run a division algorithm to try to write f as a combination of f1, . . . , fm.
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Algorithm 4.1.4. The Division Algorithm

div := 0;

rem := 0;

While f <> 0 do

if in(f_i)*a_i = in(f) then{

div := div + a_i*f_i;

f :=f-a_i*f_i}

else{

rem := rem + in(f);

f :=f-in(f)}

So, we can write

f =
∑

ai · fi + r,

where no monomial of r is divisible by any in(fi). Of course, this does not
produce unique output, because at any step, we might have several different fi
whose initial terms divide the initial term of f . On the other hand, the algorithm
does terminate, because at each step, the initial term of f decreases, and by the
well ordering property, such a process cannot go on indefinitely. Suppose we
want to decide if

x2 − y2 ∈ 〈x2 + y, xy + x〉.
Using graded lex order, we divide by x2 +y, and obtain a remainder of −y2−y.
Since neither x2 nor xy divides y2, we’re done. The problem is that

x2 − y2 = x(xy + x)− y(x2 + y).

So we seem to have failed miserably. But we can salvage something—notice that
the reason the division algorithm didn’t work is that the polynomial x2 − y2

can be written as a combination of the two generators by canceling out their
leading terms. So of course in a situation like this the division algorithm is
inadequate. To remedy this, we may as well enlarge our generating set to
include all polynomials that arise from canceling initial terms. At first it seems
bad to enlarge a generating set, but this is really what makes things work!

Definition 4.1.5 (Gröbner basis). A subset {g1, . . . , gn} of an ideal I is a
Gröbner basis for I if the ideal generated by initial monomials of elements of I
(denoted in(I)) is generated by {in(g1), . . . , in(gn)}.

It is easy to show (do so!) that if G is a Gröbner basis for I then 〈G〉 = I .

Definition 4.1.6 (Syzygy pairs). For f, g monic polynomials, put

S(f, g) :=
LCM(in(f), in(g))

in(f)
· f − LCM(in(f), in(g))

in(g)
· g

Theorem 4.1.7. G is a Gröbner basis iff S(gi, gj) reduces to zero mod G for
all pairs gi, gj ∈ G.
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Proof. ⇒ is obvious. We sketch⇐. For a detailed proof see [23]. Let f ∈ I and
suppose we have a set {g1, . . . , gk} where all S-pairs reduce to zero. We want to
show that in(f) ∈ 〈in(g1), . . . , in(gk)〉. We know we can write

f =
∑

aigi.

When we do this, two things can happen. Either in(f) is the initial monomial
of one of the aigi (in which case we’re done), or we had some cancellation of
initial terms. But cancellation means we had an S-pair, and since S-pairs reduce
to zero, we can replace the S-pair with a new combination of the gi.

Algorithm 4.1.8. The Buchburger Algorithm

Input: G:={f_1,...,f_k}

Repeat

G’:= G

for each pair p,q in G’ do

{S := reduce S(p,q) mod G’;

if S <> 0 then G:= G + S}

Until G’ = G

Notice that if we add elements on a pass through the for loop, then we make
the ideal generated by G larger: in(G′) ( in(G). But since the polynomial
ring is Noetherian, there are no infinite ascending chains of ideals. Hence, the
algorithm must terminate!

Example 4.1.9. We compute a Gröbner basis of 〈x2− y2, xy− 1〉 with respect
to lex order with x > y (call the generators f1, f2). The first S-pair computation
yields

S(f1, f2) = y(x2 − y2)− x(xy − 1) = x− y3 = f3.

Notice that the initial term of this polynomial is x (we’re using lex!), so we
cannot reduce it mod f1, f2. On the next pass through the loop, we compute

S(f1, f3) = 1(x2 − y2)− x(x − y3) = xy3 − y2,

which does reduce to zero (by running the division algorithm with f1, f2, f3 as
potential divisors), and

S(f2, f3) = 1(xy − 1)− y(x− y3) = y4 − 1 = f4,

which we cannot reduce. On the final pass, we obtain S-pairs which all reduce
to zero (running the division algorithm with f1, f2, f3, f4 as potential divisors),
so we’re done.

You may have noticed that f1 appeared with coefficient 1 in the computation
of S(f1, f3). Combined with the fact that S(f1, f3) reduces to zero, this means
that the generator f1 is superfluous in the Gröbner basis. A similar argument
shows that f2 is also redundant. A Gröbner basis {g1, . . . , gk} is called minimal
if for all i, 〈in(g1), . . . , in(gi−1), in(gi+1), . . . , in(gk)〉 6= 〈in(g1), . . . , in(gk)〉.
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Exercise 4.1.10. The fastest order (generally, see [12] for details) is graded
reverse lex, which is the default order in Macaulay 2. Find (by hand) a Gröbner
basis for the ideals 〈x2 + y, xy+x〉 and 〈x+ y+ z, xy+xz+ yz, xyz〉, using the
three orders we’ve defined. Then check your work in Macaulay 2. 3

i1 : R=QQ[x,y, MonomialOrder=>GLex]; --set order to graded lex

i2 : gb ideal(x^2+y,x*y+x)

o2 = | y2+y xy+x x2+y |

Exercise 4.1.11. [24] Let X be a finite subset of d points in Qn . Show that
after a general linear change of coordinates, we may assume that the nth coordi-
nates of these points are distinct. In this situation show that the Lexicographic
Gröbner basis for I(X) is of the form

〈x1 − p1(xn), x2 − p2(xn), . . . , xn−1 − pn−1(xn), pn(xn)〉,

where pn is of degree d and the other pi are all of degree at most d − 1. Hint:
Lagrange interpolation. Here is an example for the points

{(0, 0), (1, 1), (3, 2), (5, 3)} ∈ Q2 :

i1 : R=QQ[x,y, MonomialOrder=>Lex];

i2 : I=gb intersect(ideal(x,y),ideal(x-1,y-1),

ideal(x-3,y-2), ideal(x-5,y-3))

o2 = | y4-6y3+11y2-6y x+17y3-y2-17y |

o2 : GroebnerBasis

Do we really need Q? 3

4.2 Monomial Ideals and Applications

In Chapter 2, we saw that the Hilbert polynomial of a finitely generated, graded
R-module M could be computed by finding a free resolution of M . This is
actually a very bad way to solve the problem; the right (fastest!) way to compute
the Hilbert polynomial is via Gröbner bases. We now do this in the case where
M = R/I , but first we need three little lemmas:

Lemma 4.2.1 (Macaulay). Let R be a polynomial ring and I a homogeneous
ideal. Then the Hilbert function of I is the same as the Hilbert function of in(I).

Proof. For a graded piece Ii of the ideal we have a vector space basis given by
{f1, . . . , fj}. We can assume that in(f1) > in(f2) . . . > in(fj), so the in(fj) are
linearly independent. If they don’t span in(I)i, pick m ∈ in(I)i which is not in
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the span, such that in(m) = m′ is minimal with respect to the term order. Of
necessity, there is a polynomial g ∈ I with in(g) = m′. Since g is a k-linear
combination of the fj, m

′ must be one of the in(fj) (since no cancellation can
occur), contradicting the choice of m′ minimal. Notice that choice of monomial
order is irrelevant.

Lemma 4.2.2. Let I = 〈xa1 , . . . , xaj 〉 be a monomial ideal, and xa a monomial.
Then xa ∈ I ⇐⇒ xai divides xa for some i.

Proof. ⇐ is obvious. For ⇒, if xa ∈ I , then xa =
∑
fjx

aj . Since each term
on the right hand side is divisible by an xai , so is each term on the left hand
side.

Lemma 4.2.3. Let I = 〈xa1 , . . . , xaj 〉 be a monomial ideal, and xa a monomial.
Then 〈

xa1

GCD(xa1 , xa)
, . . . ,

xaj

GCD(xaj , xa)

〉
= I : xa.

Proof. Obviously we have ⊆. The other containment follows from the previous
lemma.

By Macaulay’s lemma, HP (R/I, i) = HP (R/in(I), i). So in order to com-
pute HP (R/I, i), we compute a Gröbner basis and work with in(I). If I is a
monomial ideal, and f 6∈ I is a monomial of degree d, then I : f and I both
have fewer generators than 〈I, f〉. This means we can compute the Hilbert
polynomial inductively using Lemma 4.2.3 and the exact sequence

0 −→ R(−d)/〈I : f〉 ·f−→ R/I −→ R/〈I, f〉 −→ 0.

This method is also fast, see [11] or [14]. Let’s work an example by hand:

Example 4.2.4. For R = k[x, y, z, w], check that

I = 〈yz − xw, z2 − yw, y2 − xz〉
is a Gröbner basis in graded reverse lex order, so

in(I) = 〈y2, yz, z2〉.
Since

〈y2, z2〉 : yz = 〈y, z〉,
the exact sequence

0 −→ R(−2)/〈y, z〉 ·yz−→ R/〈y2, z2〉 −→ R/〈y2, yz, z2〉 −→ 0.

shows that

HP (R/I, i) = HP (R/〈y2, z2〉, i)−HP (R(−2)/〈y, z〉, i).
Obviously 〈y2〉 : z2 = 〈y2〉, so HP (R/〈y2, z2〉, i) = 4i and
HP (R(−2)/〈y, z〉, i) = i− 1. Putting the pieces together, we have

HP (R/I, i) = 4i− (i− 1) = 3i+ 1.
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Let’s double check that Macaulay 2 is computing the Hilbert polynomial
intelligently, rather than using a free resolution. If you precede a Macaulay 2
command with time, you will get the result of the computation, as well as the
time it took.

i1 : R=ZZ/101[x_1..x_16];

i2 : genericMatrix(R,x_1,4,4)

o2 = {0} | x_1 x_5 x_9 x_13 |

{0} | x_2 x_6 x_10 x_14 |

{0} | x_3 x_7 x_11 x_15 |

{0} | x_4 x_8 x_12 x_16 |

4 4

o2 : Matrix R <--- R

i3 : I = minors(2,o2);

o3 : Ideal of R

i4 : time hilbertPolynomial coker gens I

-- used 0.05 seconds

o4 = - P + 12*P - 30*P + 20*P

3 4 5 6

o4 : ProjectiveHilbertPolynomial

i5 : time res coker gens I

-- used 0.77 seconds

1 36 160 315 388

o5 = R <-- R <-- R <-- R <-- R ......

0 1 2 3 4

We close this section with a fun example/exercise, which shows that for mono-
mial ideals there are very nice descriptions of ideal theoretic properties:

Example 4.2.5. A monomial ideal I is irreducible iff it is generated by powers
of the variables.

Proof. First, suppose I is irreducible, but not generated by pure powers. Let
{m,m1, . . . ,mk} be a set of minimal monomial generators for I , and sup-
pose m = xa1

1 x
a2
2 · · ·xan

n is such that no xbi

i ∈ I divides m. Without loss
of generality we may assume a1 6= 0. Put I1 = 〈m1, . . . ,mk, x

a1
1 〉 and
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I2 = 〈m1, . . . ,mk,m/x
a1
1 〉. I is properly contained in both I1 and I2, and

is equal to the intersection, which contradicts the hypothesis that I is irre-
ducible. Now suppose I is generated by pure powers xa1

1 , x
a2
2 , . . . , x

an
n , and

that I = I1 ∩ I2. Choose monomials n1 = xc11 · · ·xcn
n ∈ I1 but not in I ,

n2 = xd11 · · ·xdn
n ∈ I2 but not in I . Since I1I2 ⊆ I , n1n2 ∈ I , and since

n1, n2 6∈ I , ci, di < ai. But x
max(c1,d1)
1 · · ·xmax(cn,dn)

n ∈ I , so some xai

i divides
it, hence also divides either n1 or n2, a contradiction.

Exercise 4.2.6. For a monomial ideal I , prove

1. I is prime iff I can be generated by a subset of the variables.

2. I is radical iff I can be generated by square-free monomials.

3. I is primary iff every variable which appears in some minimal monomial
generator of I also appears in I as a pure power.

3

4.3 Syzygies and Gröbner Bases for Modules

In Chapter 3, we saw that if M is a finitely generated module over a polynomial
ring with M generated by elements m1, . . . ,mj , then we could define a map:

Rj
φ−→M −→ 0,

which was the beginning of a free resolution for M . To actually write down the
entire free resolution, we need to find the kernel of this map, and then iterate
the process. Gröbner bases allow us to do this! For M ⊆ Rp, we may write each
generator mi as

∑p
i=1 hiǫi. So to define the initial term of mi, we need to order

the ǫi, and we can (almost) treat them like another set of variables. Then to
compute a Gröbner basis forM , we take pairsmi, mj whose initial term involves
the same basis element ǫk, and form the syzygy pair, repeating until all syzygy
pairs reduce to zero. The Buchberger algorithm and criterion may be applied
exactly as in the ideal case. If you object to the condition that M ⊆ Rp, just
stop for a moment and notice that a finitely generated module M is determined
exactly like a finitely generated group—by generators and relations. So a finitely
generated module M with n generators is given by a sequence:

Rm
φ−→ Rn −→M −→ 0,

where the columns of φ generate all relations on the generators of M (Note: we
proved last chapter that the kernel of φ is Noetherian, hence finitely generated).

Algorithm 4.3.1. (Buchberger algorithm for modules) Suppose M ⊆ Rp,
where Rp has basis ǫ1, . . . , ǫp. For pairs i, j such that in(mi) = fiǫk, in(mj) =
fjǫk, put

mij =
LCM(fi, fj)

fj
.
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Write

mjimi −mijmj =
∑

akmk + r

(i.e. kill initial entries, and reduce what is left as much as possible by the other
mi). Then the mi are a Gröbner basis for M iff all the r are zero.

It is worth emphasizing that there is nothing fancy going on here—this is
simply the usual Buchberger algorithm, where we only form S-pairs for those
generators of M whose initial entries appear in the same position. If we choose
a kind of “induced order” on the ǫi, then the Buchberger algorithm also gives
us the syzygies on M for free!

Theorem 4.3.2 (Schreyer). Suppose g1, . . . , gn is a Gröbner basis for M .
Let Rn have basis e1, . . . , en and define an order on Rn via aiei > ajej if
in(aigi) > in(ajgj) in the order on M , or if in(aigi) = in(ajgj) and i < j.
Then the elements

mjiei −mijej −
∑

akek

are a Gröbner basis for the syzygies on M with respect to the above order on
Rn.

The proof of this theorem is not too bad but a bit lengthy; a good reference
for this and other aspects of Gröbner bases for modules is [28].

Example 4.3.3. (The twisted cubic, again) The generators of I = 〈y2 −
xz, yz − xw, z2 − yw〉 = 〈f1, f2, f3〉 are a Gröbner basis with respect to graded
reverse lex order, and the initial monomials are (respectively) {y2, yz, z2} =
{in(f1), in(f2), in(f3)}. I is a submodule of R1, so we compute:

m12 = LCM(y2,yz)
yz = y m21 = LCM(yz,y2)

y2 = z

m13 = LCM(y2,z2)
z2 = y2 m31 = LCM(z2,y2)

y2 = z2

m23 = LCM(yz,z2)
z2 = y m32 = LCM(z2,yz)

yz = z

Now, we form

m21m1 −m12m2 = z(y2 − xz)− y(yz − xw) = xyw − xz2 = −x(z2 − yw),

which yields a syzygy

ze1 − ye2 + xe3.

Exercise 4.3.4. Finish the previous example by computing the entire free res-
olution of I . You’ll need to compute the other two potential first syzygies
(one will be redundant), and then show there are no second syzygies. Now try
another example—verify that the Koszul complex is a resolution of the ideal
〈x, y, z〉 ⊆ k[x, y, z]. 3
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4.4 Projection and Elimination

One way to approach solving systems of equations is to project down to a lower
dimensional space, find solutions there, and then try to extend them; in linear
algebra this is familiar as Gaussian elimination. A very similar idea works when
solving systems of polynomials, and Gröbner bases play a central role.

Definition 4.4.1. Let I ⊆ k[x1, . . . , xn] = R. The mth elimination ideal mI is
I ∩ k[xm+1, . . . , xn].

To understand why we need this, let’s consider some geometry. Write πm
for the projection: A n πm−→ A n−m ,

πm(a1, . . . , an) = (am+1, . . . , an).

The projection of a variety need not be a variety, but it has a Zariski closure
which is a variety. Here is what the definition buys us:

Theorem 4.4.2. If k is algebraically closed, then πm(V (I)) = V (mI).

Proof. Let (am+1, . . . , an) ∈ πm(V (I)), (am+1, . . . , an) = πm(a1, . . . , an) for
(a1, . . . , an) ∈ V (I). For f ∈ mI , since f ∈ I , f(a1, . . . , an) = 0. But f ∈
k[xm+1, . . . , xn] so 0 = f(a1, . . . , an) = f(am+1, . . . , an) = f(πm(a1, . . . , an)).
Hence πm(V (I)) ⊆ V (mI). For the other containment, g ∈ I(πm(V (I))), re-
garded as an element of R, vanishes on V (I). By the Nullstellensatz gp ∈ I .
Since gp ∈ k[xm+1, . . . , xn], we see that gp ∈ mI . So g ∈ √mI and
I(πm(V (I))) ⊆ I(V (mI)). Passing to varieties yields V (mI) ⊆ πm(V (I)).

Well, this does us no particular good unless we can find mI . And naturally,
Gröbner bases ride to the rescue:

Theorem 4.4.3. Let I ⊆ k[x1, . . . , xn], and let G = {g1, . . . , gj} be a Gröbner
basis for I with respect to lex order, x1 > x2 > . . . > xn. Then mG := G ∩
k[xm+1, . . . , xn] is a Gröbner basis for mI.

Proof. It is immediate that mG ⊆ mI . Take f ∈ mI and write it as

f =
∑

higi.

If some gl which appears in this expression is not in mI , then in(gl) is not in

mI (this is where lex is used!), so when we run the division algorithm to write
f as a combination of the gi, gl will not appear, contradiction. Thus

mI = 〈mG〉.

To see that mG is actually a Gröbner basis, we only need to check that the
S-pairs reduce to zero, but this is automatic since the original S-pairs reduced
to zero using the division algorithm with lex order.
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Exercise 4.4.4. Describe what is happening in Exercise 4.1.11 in terms of
projection. Can you see why distinct nth coordinates were necessary? 3

Example 4.4.5. A very important application of elimination consists of finding
the equations of the image of a polynomial map. Consider the affine version of
the twisted cubic. Map A 1 φ−→ A 3

via φ(p) = (p, p2, p3). To find the equations of the image of this map, we form
the graph

Γ = (p, φ(p)) ⊆ A 1 × A 3 .

The equations of the graph are easy to write down, they are

x− t, y − t2, z − t3.
Of course, the image of φ is simply the projection of Γ onto A 3 , so to find the
equations of it, we need to take a lex Gröbner basis with t > x, y, z.

i1 : R=ZZ/101[t,z,y,x, MonomialOrder=>Lex];

i2 : I=ideal(x-t,y-t^2,z-t^3)

2 3

o2 = ideal (- t + x, - t + y, - t + z)

o2 : Ideal of R

i3 : gb I

o3 = | y-x2 z-x3 t-x |

o3 : GroebnerBasis

In this example it is easy to see what the equations are directly. Try the
following (by hand first, then check with your computer)

Exercise 4.4.6. Find equations for the image of the mapA 2 φ−→ A 5

via φ(p, q) = (p, q, p2, pq, q2). 3

Supplemental reading: On Gröbner bases for ideals, Chapter 2 of [23] is
simply unbeatable, for modules, see Chapter 15 of [28] or Chapter 5 of [24].
Other texts on Gröbner bases are Adams-Loustaunau [1] (which has many nice
exercises - check out the one from Dave Bayer’s thesis [7] on graph colorings) and
Becker-Weispfenning [13]. For those interested in computational complexity,
there are many issues which were not discussed here, but which are of real
practical importance; two starting points are the papers of Mayr-Meyer [65]
and Bayer-Stillman [12].





Chapter 5

Combinatorics, Topology

and the Stanley–Reisner

Ring

In the late 1800’s the Italian mathematician Enrico Betti had the idea of model-
ing a surface by joining together a collection of triangles. This is sensible, since
from a topological viewpoint there is no difference between the two-sphere S2

and the boundary of a tetrahedron:

This simple idea turns out to be extremely fruitful, and generalizes naturally—
we try to approximate a general topological space X using simplices, which
are higher dimensional analogs of triangles. While this is not always possible,
it works in many cases of interest. The union of the simplices is a simplicial
complex ∆, which is a combinatorial approximation toX . From the data of ∆ we
can build a chain complex C(∆). As you might expect, C(∆) gives an algebraic
encoding of information about X . In Chapter 2 we used free resolutions to
understand graded modules, which showed how useful exact complexes are.
One point of this chapter is that the failure of exactness can also be quite
interesting. The homology (recall this measures failure of exactness) of C(∆) is
what captures nontrivial topological behavior.

There is also a beautiful connection between simplicial complexes and com-
mutative rings. Given a simplicial complex ∆, we can build a commutative ring
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(the Stanley–Reisner ring), which knows everything about ∆! This means we
can translate combinatorial problems into algebraic ones, which Stanley did to
spectacular effect, as we’ll see in Chapter 10. It also turns out that many essen-
tial algebraic theorems have pleasing combinatorial interpretations; the primary
decomposition of the Stanley–Reisner ideal is purely combinatorial.

Key concepts: Simplex, simplicial complex, homology with coefficients, face vec-
tor, polytope, Stanley–Reisner ring.

5.1 Simplicial Complexes and Simplicial

Homology

We begin with the definition of an abstract n-simplex:

Definition 5.1.1 (Abstract simplex). Let V be a set of n+1 elements. The
n-simplex on V is the set of all subsets of V .

If V = {v1, v2, v3}, then the two-simplex on V is simply

{{v1, v2, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, {v3}, ∅}.

We now describe a geometric way to think of a simplex:

Definition 5.1.2 (Geometric simplex). A set of n+1 points {p0, . . . , pn} ⊆Rn is geometrically independent if the vectors {p1− p0, p2− p0, . . . , pn− p0} are
linearly independent. The set of all convex combinations (see Exercise 1.1.1) of
n+ 1 geometrically independent points is called a geometric n-simplex.

In Rn the origin and the points corresponding to the coordinate unit vectors
are geometrically independent. The resulting n-dimensional simplex is called
the standard unit n-simplex. We can associate to any abstract n-simplex the
standard unit n-simplex, so for example we can think of an abstract two-simplex
geometrically as a triangle and all its faces, or a singleton set as a vertex. An
oriented simplex is a simplex together with an ordering of the vertices; we define
two orientations to be equivalent if they differ by an even permutation. We
picture the orientation above as:

v

v

1 3

v 2

v

2

v
v

1
v

1

{v  ,v  }1 2{v  ,v  ,v  }1 2 3 {v  }1

Notice that the edges are themselves simplices, so also have orientations.
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Definition 5.1.3. An abstract simplicial complex ∆ on a vertex set V is a set
of subsets of V such that

• {vi} ∈ ∆ if vi ∈ V
• if σ ⊆ τ ∈ ∆, then σ ∈ ∆

The dimension of ∆ is the dimension of the largest simplex it contains.

If an (i + 1)-set τ is in ∆, then we call τ an i-face of ∆. The definition
above just says that every vertex is a face of ∆, and that the relation “is a face
of” is transitive. An abstract simplicial complex ∆ gives a recipe for building a
topological object |∆|, called the geometric realization of ∆: go to the simplex
store, buy the number of standard unit n-simplices on your list, and attach them
to each other as directed. See [71] for formalities on stretching and pasting these
geometric objects so that they fit together.

Given a simplicial complex ∆ and ring R, we define R-modules Ci as follows:
the generators of Ci are the oriented i-simplices of ∆, and the relations are
{vj0 , . . . , vji} = (−1)sgn(σ){vjσ(0)

, . . . , vjσ(i)
} for σ ∈ Si+1. Notice this captures

the equivalence we defined earlier; Ci is free of rank equal to the number of
i-faces of ∆. Technically, ci ∈ Ci is defined as a map from the oriented i-
simplices to R which is zero except on finitely many simplices, and such that
ci(δ) = −ci(δ′) if δ and δ′ differ by an odd permutation. Since we’ll always work
with finite ∆, we don’t need this level of formality. Recall from Chapter 2 that
a chain complex is a sequence of objects and maps

· · ·Fi+1
di+1−→Fi di−→Fi−1

di−1−→· · ·

with image di+1 ⊆ kernel di. One of the most important ways in which a chain
complex arises is from a simplicial complex. The boundary of an oriented sim-
plex {vi0 , . . . , vin} is defined via

∂({vi0 , . . . , vin}) =
n∑

j=0

(−1)j{vi0 , . . . , v̂ij , . . . , vin}.

For example, ∂({v1, v2, v3}) = {v2, v3} − {v1, v3}+ {v1, v2}.

v v

v
v

v v v v

v

1

2

3

2

3 1 3 1

2

Exercise 5.1.4. Show that
∂∂ = 0.

3
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Define a map

Ci
∂−→ Ci−1,

by extending the ∂ map on oriented i-simplices via linearity. Elements of R are
called coefficients, so we’ll speak of computing homology with Z,Z/2Z, or Q
coefficients (Z is the default). By convention, Ci = 0 for i > dim ∆ and for
i < −1. For i = −1, C−1 is a rank one free module, corresponding to the empty
face. The homology of the resulting chain complex is called reduced homology,
and is written H̃i(∆). If we instead define C−1 = 0, then (check) we still have

a chain complex, whose homology is written Hi(∆). H̃i and Hi only differ at
i = 0, where

rank H̃0(∆) + 1 = rank H0(∆).

Exercise 5.1.5. Prove that rank H0(∆) is the number of connected components
of ∆. Thus,

rank H̃0(∆) = 0⇐⇒ ∆ connected.

Hint: if vi and vj lie in the same connected component, then there is a sequence
of edges connecting them. 3

The rank of Hi(∆) is called the ith Betti number of ∆. To avoid confusion,
we will use lower case betti when referring to the ranks of the graded modules
in a free resolution. The reason the Betti numbers are important is that they
are topological invariants of |∆|. Munkres notes that proving this is “a reason-
ably arduous task”; a key ingredient is showing that the Betti numbers don’t
change under the operation of subdivision. The technical details can be found
in Chapter 2 of [71]. Let’s get our hands dirty with some examples.

Example 5.1.6. Let R = Q and consider the simplicial complex

∆ = {{v1, v2}, {v2, v3}, {v3, v1}, {v1}, {v2}, {v3}, ∅},

v v

v

1

2

3

Then the vector spaces C1 and C0 are both three-dimensional. With respect to
ordered bases {v1, v2}, {v2, v3}, {v3, v1} and {v1}, {v2}, {v3}, the differential ∂1

is just −1 times the matrix which appeared in Exercise 2.3.1 (try writing down
∂1 yourself before checking). In particular, dimH1(∆) = 1, dimH0(∆) = 1.

Exercise 5.1.7. Let ∆ be a solid square, triangulated with a
crossing diagonal, with triangles {{v1, v2, v3}, {v1, v4, v2}} and edges
{{v1, v2}, {v1, v3}, {v2, v3}, {v1, v4}, {v2, v4}}:
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v 4

v
3 2

v

v 1

The chain complex with Q coefficients is:

0 −→ Q2 ∂2−→Q5 ∂1−→Q4 −→ 0,

and the boundary maps (with respect to bases ordered as above) are given by

∂2 =




1 −1
−1 0
1 0
0 1
0 −1




∂1 =




−1 −1 0 −1 0
1 0 −1 0 −1
0 1 1 0 0
0 0 0 1 1




1. For ∆ as above, check that H2 = H1 = 0, and rankH0 = 1.

2. Now remove {v1, v2, v3} and {v1, v4, v2} from ∆ and compute homology.

3

Macaulay 2 actually has a command called chainComplex. The command
expects a series of matrices, which are the differentials of the complex. Since
matrices have sources and targets, the modules in the complex are defined im-
plicitly. Warning: when doing this with graded objects, care must be exercised
to insure gradings agree. If we have a matrixM over R and a ring map R −→ S,
then we can turn M into a matrix over S by tensoring (discussed in the next
chapter). In Macaulay 2, the tensor command is **. We illustrate for the
previous exercise:

i1 : R = QQ;

i2 : C=chainComplex(

matrix{{-1,-1,0,-1,0},{1,0,-1,0,-1},{0,1,1,0,0},{0,0,0,1,1}}**R,

matrix{{1,-1},{-1,0},{1,0},{0,1},{0,-1}}**R)

4 5 2

o2 = QQ <-- QQ <-- QQ
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o2 : ChainComplex

i3 : C.dd

4 5

o3 = 0 : QQ <---------------------- QQ : 1

| -1 -1 0 -1 0 |

| 1 0 -1 0 -1 |

| 0 1 1 0 0 |

| 0 0 0 1 1 |

5 2

1 : QQ <------------- QQ : 2

| 1 -1 |

| -1 0 |

| 1 0 |

| 0 1 |

| 0 -1 |

o3 : ChainComplexMap

i4 : C.dd_1 * C.dd_2 --we check that the maps compose to 0

o4 = 0

The command HH can be applied to a chain complex to compute the homology.
We check one of the computations of the previous exercise:

i5 : rank HH_0 C

o5 = 1

Exercise 5.1.8. Identify the (outer) parallel edges of a rectangle as below:

v

v

v v v

v

v v 98

7

021v 0

3

4

v
5

v 6

v v

v

v

v

v

1

0

4

3

2

0

Then we obtain a triangulation of the torus:
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Orient the triangles counterclockwise (all the triangles are part of the complex
∆, so we omit shading), and the “interior” edges however you wish.

1. Compute homology with Z/2Z coefficients, and with Q coefficients. Now
change ∆ so that on the right side of the rectangle the arrows point down-
ward and vertices v3 and v4 are swapped. The geometric realization of this
object is the Klein bottle. Try writing down ∂2; you should get something
just a bit different from the previous case. Again, compare Q and Z/2Z
coefficients. Check your answers in Chapter 1 of [71].

2. It would be quite a bit simpler if we could triangulate as below:

θ

ε εε

ε

ε
v

v

v

33

0
1

0

v
1

00

2

1θ
2

Of course, this would be cheating: the definition of a simplicial com-
plex does not permit us to identify vertices in this way. Suspending our
reservations for a moment and pretending all is well, we compute that
∂(θ1) = −ǫ1 + ǫ2 − ǫ3 and ∂(θ2) = ǫ1 − ǫ2 + ǫ3. This yields the chain
complex (remember the vertices are all identified)

0 −→ R2 ∂2−→ R3 ∂1−→ R −→ 0,

where ∂1 = 0 and

∂2 =



−1 1
1 −1
−1 1




Compute the homology and compare your answers with the first part of
the exercise. What just happened is that we used a cellular complex
instead of a simplicial complex to compute homology. Notice (it is hard
not to!) that the simplicial complex is quite a bit more complicated than
the cellular complex. We won’t say more about cellular complexes here,
except to point out when you do see the definition of cellular homology,
it looks complicated. As this exercise illustrates, there is a nice payoff.

3
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5.2 The Stanley–Reisner Ring

Given a simplicial complex ∆ on n vertices, we associate to it a ring (the Stanley-
Reisner ring)

k[∆] = k[v1, . . . , vn]/I∆,

where the vi are the vertices of ∆ and I∆ is the ideal generated by monomials
corresponding to nonfaces of ∆.

Example 5.2.1. Examples of Stanley–Reisner rings

1. If ∆ is an n-simplex, then k[∆] = k[v1, . . . , vn+1]

2. Take ∆ as in Exercise 5.1.7.1. Then every nonface includes v3v4, so k[∆] =
k[v1, . . . , v4]/〈v3v4〉

3. Take ∆ as in Exercise 5.1.7.2. Then I∆ = 〈v3v4, v1v2v3, v1v2v4〉.

4. If ∆ is the boundary of an octahedron, then I∆ is generated by the three
edges vivj which do not lie on the boundary.

Exercise 5.2.2. Prove that if {vi1 , . . . , vik} is not a face of ∆, then no superset
of {vi1 , . . . , vik} is a face of ∆. 3

The Stanley–Reisner ring of ∆ encodes lots of useful topological and com-
binatorial information about ∆. One really important combinatorial invariant
of a simplicial complex is the f -vector. The letter f stands for face: fi is the
number of i-dimensional faces of ∆; by convention there is one empty face, so
the f -vector starts with a 1 in position −1. For example, the f -vector of a line
segment connecting two vertices would be (1, 2, 1).

One much studied class of simplicial complexes are simplicial polytopes. A
polytope P on n vertices is the set of all convex combinations (convex hull) of
n points in some Euclidean space (assuming no vertex is a convex combination
of the other vertices). We say that P is d-dimensional if Rd is the smallest
Euclidean space containing P (so P is topologically a d-ball) and that P is
simplicial if all the faces of the boundary ∂P are simplices; by convention “the f -
vector of P” means f(∂P ). An octahedron is a simplicial polytope, whereas the
cube and pyramid with a rectangular base are non-simplicial. If we fix a number
of vertices, what f -vectors can arise as the f -vector of a simplicial polytope?
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What is the (componentwise) biggest f -vector that can occur? Should a biggest
f -vector even exist? The answers use the Stanley–Reisner ring! We’ll return to
this question in Chapter 10.

Exercise 5.2.3. For a three-dimensional simplicial polytope, prove that the
following two relations hold:

f0 − f1 + f2 = 2, and 3f2 = 2f1.

So if we know f0, then we know the f -vector. Hint: for the first relation (known
as Euler’s relation) get really close to the polytope and peer through one of the
faces—you see a planar graph (technically, this is called a Schlegel diagram),
so just run an induction (don’t forget to include the face you peered through!).
For the second relation, count edge/triangle pairs two different ways. A really
cool proof of Euler’s relation (using the Poincaré-Hopf index theorem!) can be
found in [41]. 3

It turns out that it is often useful to rewrite the f -vector of a d− 1 complex
in terms of the h-vector:

hj =

j∑

i=0

(−1)j−i
(
d− i
j − i

)
fi−1, and fj =

j+1∑

i=0

(
d− i

j + 1− i

)
hi.

This seems confusing, but there is a nice trick of Stanley which makes it quick
to compute by hand (we illustrate for ∆ two-dimensional). Draw a triangle,
with the f -vector down the right side, and ones on the left:

1
1 f0

1 f1

1 f2

1

At an interior position p in the triangle we define p = (value immediately to the
Northeast of p) − (value immediately to the Northwest of p). For example, in
the third row, we put f0 − 1 in the middle position. For the boundary of the
octahedron we have:

1
1 6

1 5 12
1 4 7 8

1 3 3 1

The h-vector appears in the bottom row. As usual, we might well ask why the
h-vector is useful. Let’s first find a free resolution of the Stanley–Reisner ring;
label the picture on the previous page and do so; you should be able to do it
faster by hand than by computer (don’t peek at the solution below till you’ve
tried it!).

0 −→ R(−6) −→ R(−4)3 −→ R(−2)3 −→ R −→ R/I∆ −→ 0.
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If we compute the Hilbert series for R/I∆, we obtain

1− 3t2 + 3t4 − t6
(1− t)6 =

1 + 3t+ 3t2 + t3

(1− t)3 .

So hi is the coefficient of ti in the numerator of the simplified Hilbert series!

i6 : R=ZZ/101[v_1..v_6];

i7 : i = matrix{{v_1*v_4, v_2*v_5,v_3*v_6}}

o7 = {0} | v_1v_4 v_2v_5 v_3v_6 |

1 3

o7 : Matrix R <--- R

i8 : res coker i

1 3 3 1

o8 = R <-- R <-- R <-- R

0 1 2 3

o8 : ChainComplex

i9 : o8.dd

1

o9 = -1 : 0 <----- R : 0

0

1 3

0 : R <-------------------------------- R : 1

{0} | v_1v_4 v_2v_5 v_3v_6 |

3 3

1 : R <----------------------------------- R : 2

{2} | -v_2v_5 -v_3v_6 0 |

{2} | v_1v_4 0 -v_3v_6 |

{2} | 0 v_1v_4 v_2v_5 |

3 1

2 : R <------------------- R : 3

{4} | v_3v_6 |

{4} | -v_2v_5 |

{4} | v_1v_4 |

o9 : ChainComplexMap
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i11 : poincare coker i

6 4 2

o11 = - $T + 3$T - 3$T + 1

o11 : ZZ[ZZ^1]

i12 : factor o11

3 3

o12 = ($T - 1) ($T + 1) (- 1)

Exercise 5.2.4. Prove that for a simplicial three-polytope, the h-vector is the
numerator of the Hilbert series. Use the relation between the f and h-vectors
and the lemma below. 3

Lemma 5.2.5. The Hilbert polynomial of the Stanley–Reisner ring of a (d−1)-
dimensional simplicial complex ∆ is:

HP (R/I∆, i) =

d−1∑

j=0

fj

(
i− 1

j

)
.

Proof. We count monomials in the Stanley–Reisner ring in terms of their sup-
port (the support of a monomial m is just the set of indices k such that vk
divides m nontrivially, e.g., the support of v2

1v
3
4 is {1, 4}). The point is that

a monomial which is not in I∆ must be supported on one of the faces of ∆.
So, say we want to count the degree i monomials. If a monomial is supported
on a vertex vk, and is of degree i, then it must just be vik, hence there are f0

monomials supported only on vertices. For an edge vkvl, the monomial must
be of the form vakv

i−a
l and both a and i − a must be bigger than one, i.e. we

have i − 2 degrees to distribute into two boxes, which is
(
i−2+1

1

)
(in general,

think of adding spaces where we will place dividers), so we have f1

(
i−1
1

)
mono-

mials supported only on edges. Continue in this way up to the maximal faces,
done.

There are other reasons why the h-vector is a nice object. For a simplicial
polytope, we saw in Exercise 5.2.3 that there are relations between the fi. When
expressed in terms of the h-vector these relations are very simple.

Exercise 5.2.6. Use Exercise 5.2.3 and Stanley’s trick to prove that the h-
vector of a simplicial three-polytope is symmetric. 3

The relations hi = hd−i hold for any simplicial d-polytope, and are called the
Dehn–Sommerville relations. The proof of this is quite beautiful and elementary,
and can be found in Chapter 8 of [100]. These relations also have another
interpretation. A simplicial polytope gives rise to an object called a toric variety.
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A fundamental result in homology theory is Poincaré duality, which says that
the vector of Betti numbers of a connected, compact, oriented n-manifold is
symmetric. The complex toric variety X(∆) associated to a simplicial polytope
∆ is compact and close enough to being an oriented manifold that Poincaré
duality holds; the hi of ∆ are also the even Betti numbers H2i of X(∆)!

5.3 Associated Primes and Primary

Decomposition

Stanley–Reisner rings have particularly pretty primary decompositions:

Example 5.3.1. If ∆ is the complex of Exercise 5.1.7.2, then

I∆ = 〈v3v4, v1v2v3, v1v2v4〉,

and we can write

I∆ = 〈v1, v3〉 ∩ 〈v1, v4〉 ∩ 〈v2, v3〉 ∩ 〈v2, v4〉 ∩ 〈v3, v4〉.

Check this using the Macaulay 2 command intersect—your output should look
like:

i13 : intersect(ideal(v_1,v_3),ideal(v_1,v_4),ideal(v_2,v_3),

ideal(v_2,v_4),ideal(v_3,v_4))

o13 = ideal (v v , v v v , v v v )

3 4 1 2 4 1 2 3

Try some more examples for Stanley–Reisner rings, and see if you can come
up with a nice description of the primary decomposition. Hint: first, see if
you can find some relation involving cofaces (a coface is a set of vertices whose
complement is a face). The following lemma from Chapter 1 may also be useful:

Lemma 5.3.2. For R Noetherian, if I = ∩Qi, with Qi primary to Pi, then the
Pi are the prime ideals occurring in {√I : f |f ∈ R}.

Don’t read further until you have run some experiments and come up with
a conjecture (or better, proof!)

Theorem 5.3.3. Let ∆ be a simplicial complex. Then

I∆ =
⋂

vi1 ···vik
a minimal coface

〈vi1 , . . . , vik〉.

Proof. First, if σ = vj1 · · · vjn is a maximal face, then vj1 · · · vjnvk is a nonface
for any k 6∈ {j1, . . . , jn}, i.e. for σ as above

I∆ : vj1 · · · vjn = 〈vk|k 6∈ {j1, . . . , jn}〉.
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This is prime by Exercise 4.2.6, so by Lemma 5.3.2 we have

I∆ ⊆
⋂

vi1 ···vik
a minimal coface

〈vi1 , . . . , vik〉.

On the other hand, if a monomial is in the ideal on the right, then by the way
we built it, it is not supported on any maximal face (it has a variable in every
coface), hence not supported on any face, so lies in I∆.

Example 5.3.4. Consider the simplicial complex consisting of all the edges of
a tetrahedron, and a single triangle:

v
v

v

v

1
3

2

4

∆ = {{v1, v2, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v4}, {v2, v4}, {v3, v4},
{v1}, {v2}, {v3}, {v4}, ∅}.

Then the maximal faces are

{{v1, v2, v3}, {v1, v4}, {v2, v4}, {v3, v4}},

so the minimal cofaces are

{{v4}, {v2, v3}, {v1, v3}, {v1, v2}}.

Thus, the primary decomposition of I∆ is

I∆ = 〈v4〉 ∩ 〈v2, v3〉 ∩ 〈v1, v3〉 ∩ 〈v1, v2〉 =

〈v4〉 ∩ 〈v1v2, v1v3, v2v3〉 = 〈v1v2v4, v1v3v4, v2v3v4〉,
as expected.

i14 : decompose(ideal(v_1*v_2*v_4, v_1*v_3*v_4, v_2*v_3*v_4))

o14 = {ideal v , ideal (v , v ), ideal (v , v ), ideal (v , v )}

4 1 2 3 2 3 1

Exercise 5.3.5. Write a Macaulay 2 script which takes as input a list of the
maximal simplices of a simplicial complex ∆, and which returns as output the
Stanley–Reisner ideal and the chain complex C(∆). 3
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Supplemental reading: For simplicial complexes and the Stanley–Reisner
ring, see Stanley [88], for polytopes, see Ziegler [100], and for homology, see
Munkres [71]. For associated primes and primary decomposition, Chapter 4 of
[3] or Chapter 3 of [28] are good, and also section 4.7 of [23]. There is quite a bit
of current research activity in this area, especially related to understanding the
free resolution of R/I∆. This started in [55], where Hochster gave a beautiful
combinatorial interpretation for the betti numbers. Recently Eagon and Reiner
[27] showed that the betti numbers appear on a single row (of the Macaulay
2 betti diagram) iff the Alexander dual of ∆ is arithmetically Cohen-Macaulay
(the Cohen-Macaulay property is discussed in Chapter 10, see Miller [68] for
Alexander duality). For other recent progress see papers [4], [5] of Aramova,
Herzog, and Hibi, and for work on monomial ideals which are not square-free
see Bayer-Charalambous-Popescu [8] and Bayer-Peeva-Sturmfels [10]. Work on
simplicial polytopes (with fixed h-vector) having maximal betti numbers appears
in [67]. The books [92], [93] of Sturmfels describe many other connections
between algebra and combinatorics not discussed here, and are also filled with
interesting open problems.



Chapter 6

Functors: Localization,

Hom, and Tensor

A really important idea in mathematics is to try to use techniques from one
area to solve problems in another area. Of course different areas speak different
languages, so we need a translator. Such a translator is called a functor, and
in this lecture we’ll study the three most important functors in algebra: local-
ization, hom, and tensor. When we translate problems, there are basically two
things to take into account: what the objects are, and what the maps between
objects are. Formally, a category consists of objects and morphisms between the
objects, and a functor is a rule which sends objects/morphisms in a category C
to objects/morphisms in another category D. If we lose too much information,
then the translation is useless, so we very reasonably require that a functor
preserve identity morphisms and compositions. If M1 and M2 are objects in C,
and f is a morphism

M1
f−→M2,

then a functor F from C to D is covariant if

F (M1)
F (f)−→ F (M2),

and contravariant if the direction of the map gets switched:

F (M1)
F (f)←− F (M2).

For example, let R be a ring and C the category of R-modules and R-module
homomorphisms. If N is a fixed R-module, HomR(•, N) is a contravariant
functor from C to C, whereas HomR(N, •) is covariant. Since functors deal
with objects and morphisms, it is natural to ask how a functor transforms a
short exact sequence. The three functors we study in this section provide three
important examples of the possibilities.

Key Concepts: Functor, left exact, right exact, covariant, contravariant, local-
ization, Hom, ⊗.

77
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6.1 Localization

One way to simplify an algebraic object (be it vector space, group, ring, or
module) is to quotient out by a subobject. If we’re interested in an object
M , and we have a subobject M ′, then we can (via an exact sequence) hope to
understand M by understanding M ′ and M/M ′. In a sense, when we quotient
by M ′, we erase it. Localization is a way of simplifying an object, but instead
of zeroing out some set, we make the objects in the set into units. Here is the
formal definition:

Definition 6.1.1. Let R be a ring, and S a multiplicatively closed set containing
1. Define an equivalence relation on

{
a
b |a ∈ R, b ∈ S

}
via

a

b
∼ c

d
if (ad− bc)u = 0 for some u ∈ S.

Then the localization of R at S is

RS =
{a
b
|a ∈ R, b ∈ S

}
/ ∼ .

Example 6.1.2. Let R = Z, and let S consist of all nonzero elements of R.
Clearly RS = Q, so RS is in fact a ring, with a very natural ring structure.

There are two very common cases of sets which play the role of S in this
construction. The first is when S is the complement of a prime ideal, and the
second is when S = {1, f, f 2, . . .} for some f ∈ R; it is easy to see these sets are
multiplicatively closed. In the first case, if the prime ideal is P , we often write
RP for RS , notice that by construction RP has a unique maximal ideal so RP is
a local ring. For an R-module M , there is an obvious way to construct MS; in
particular, localization is a functor from (R-modules, R-hom’s) to (RS-modules,
RS-hom’s). A very nice property of localization is that it is exact:

Theorem 6.1.3. Localization preserves exact sequences.

Proof. First, suppose we have a map of R-modules M
φ−→ M ′. Since φ is R-

linear, this gives us a map MS
φS−→ M ′

S via φS(ms ) = φ(m)
s . Now suppose we

have an exact sequence

0 −→M ′ φ−→M
ψ−→M ′′ −→ 0.

It is easy to check that
ψSφS = 0,

so suppose that m
s′ ∈ ker ψS , so that ψ(m)

s′ ∼ 0
s′′ , hence there is an s ∈ S

such that sψ(m) = 0 in R. But sψ(m) = ψ(sm) so sm ∈ ker ψ = im φ, i.e.,

sm = φ(n). Thus, we have m = φ(n)
s and

m

s′
=
φ(n)

ss′
.
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Exercise 6.1.4. Let M be a finitely generated R-module, and S a multiplica-
tively closed set. Show that MS = 0 iff ∃s ∈ S such that s ·M = 0. 3

The support of an R-moduleM consists of those primes P such that MP 6= 0.

Exercise 6.1.5. The annihilator of an R-module M is {r ∈ R|r ·M = 0}. If
M is finitely generated, show that P is in the support of M iff ann(M) ⊆ P . 3

Example 6.1.6. Let A be an arrangement of d distinct lines in P2Q. For each
line λi of A, fix li ∈ R = Q[x, y, z] a nonzero linear form vanishing on λi, put

f =
∏d
i=1 li, and let Jf be the Jacobian ideal of f

Jf = 〈∂f
∂x
,
∂f

∂y
,
∂f

∂z
〉.

It follows from Example A.3.2 that p ∈ V (Jf ) iff p is a point where the lines of A
meet. The ideal Jf is not generally radical, so if we want to compute the Hilbert
polynomial of R/Jf , we must do more than just count the points of intersection.
Recall from Chapter 3 that a complete intersection ideal is an ideal generated
by a regular sequence; a homogeneous ideal I is a local complete intersection if
IP is a complete intersection in RP for any prime ideal P corresponding to a
point of V (I).

Exercise 6.1.7. Prove that the Jacobian ideal of a line arrangement is a local
complete intersection. Hint: let p be a point where some of the lines meet; we
may assume p is the point (0 : 0 : 1) so P = 〈x, y〉. Write f = LpL0, with Lp
the product of those linear forms passing through (0 : 0 : 1) and L0 the product
of the remaining forms. Differentiate using the product rule (enter localization:
after differentiating, you can considerably simplify the result since in the local
ring RP any polynomial involving a monomial zn is invertible). Finally, apply
Euler’s relation: if F ∈ Q[x1 , . . . , xn] is homogeneous of degree α, then

αF =

n∑

i=1

xi
∂F

∂xi
.

3

A consequence of the preceding exercise is that the P -primary component
Q in the primary decomposition of Jf is given by 〈∂Lp

∂x ,
∂Lp

∂y 〉; since Lp has
no repeat factors, this is a complete intersection, hence the Hilbert polynomial
HP (R/Q, i) = (deg Lp − 1)2. If we write the primary decomposition of Jf as⋂
j Qj

⋂
n, where

√
n = 〈x, y, z〉, then a slight modification of Exercise 2.3.5

shows that
HP (R/Jf , i) =

∑

j

HP (R/Qj, i).

For a point pj where tj lines meet, define µ(pj) = tj−1. Then we have just shown
that the Hilbert polynomial of R/Jf is the sum over all points of µ(pj)

2. Here
is an example: take the lines {x = 0}, {y = 0}, {z = 0}, {x+z = 0}, {y+z = 0}.
So if we draw the lines in P2 with {z = 0} as the line at infinity, this is:
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As we see from the picture, there are four points where two lines meet, and two
points where three lines meet (remember, antipodal points are identified!), so
we expect

HP (R/Jf , i) = 1 + 1 + 1 + 1 + 22 + 22 = 12.

We check with Macaulay 2:

i1 : R=QQ[x,y,z];

i2 : f = ideal(x*y*z*(x+z)*(y+z));

o2 : Ideal of R

i3 : J = jacobian f

o3 = {1} | 2xy2z+2xyz2+y2z2+yz3 |

{1} | 2x2yz+x2z2+2xyz2+xz3 |

{1} | x2y2+2x2yz+2xy2z+3xyz2 |

3 1

o3 : Matrix R <--- R

i4 : hilbertPolynomial coker transpose J

o4 = 12*P

0

We close by mentioning a famous open question on line arrangements: do the
combinatorics of the set of lines determine when the free resolution of R/Jf has
length two? Check that the example above does have a free resolution of length
two (by the Hilbert syzygy theorem the resolution has length at most three),
and that moving the lines (holding the combinatorics fixed) does not alter this.
For more on the problem, see Orlik-Terao, [75].

Exercise 6.1.8. Which of the following ideals of Q[x, y, z] are local complete
intersections?

1. 〈xy, xz, yz〉
2. 〈x2z + xy2, xyz + 2y3, y2z + x3〉
3. 〈x2, xy, y2〉

3
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6.2 The Hom Functor

Suppose we have a homomorphism of R-modules

M1
φ−→M2,

and
α ∈ HomR(M2, N).

Then we can cook up an element of HomR(M1, N), simply by composing α
with φ.

M1
φ−→ M2

↓ α
N

In other words, we have a map:

HomR(M2, N) −→ HomR(M1, N),

where α −→ α · φ. In particular, HomR(•, N) is a contravariant functor from
the category of R-modules and R-module homomorphisms to itself. Notice that
if we instead fix the first “coordinate” we also obtain a functor HomR(N, •),
which (check!) is covariant.

Exercise 6.2.1. Show that a short exact sequence of R-modules

0 −→ A1
a1−→ A2

a2−→ A3 −→ 0

gives rise to a left exact sequence:

0 −→ HomR(A3, N) −→ HomR(A2, N) −→ HomR(A1, N)

3

Here is an easy example showing that the rightmost map may not be sur-
jective. In other words, unlike localization, which preserves exact sequences,
HomR(•, N) does not.

Example 6.2.2. Let 1 6= p ∈ Z, and consider the following exact sequence ofZ-modules:
0 −→ Z ·p−→ Z−→ Z/pZ−→ 0.

Let’s apply HomZ(•,Z) to this sequence. Remark: if F is a free Z-module, then
HomZ(F,Z) is isomorphic to F , because the only elements of HomZ(Z,Z) are
multiplication by an element of Z. We have

0 −→ HomZ(Z/pZ,Z)−→ HomZ(Z,Z)−→ HomZ(Z,Z),

where the rightmost map ism→ pm. But this cannot be surjective; in particular
the identity map is not of this form.
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If G is an Abelian group and

G ≃ Zn⊕Gtorsion,
then

HomZ(G,Z)≃ Zn.
In other words, HomZ(•,Z) kills torsion. In light of this, let’s reexamine the
sequence above: obviously every element of Z/pZ is torsion, so

HomZ(Z/pZ,Z)≃ 0,

and in the exact sequence of Hom modules, we obtain:

0 −→ HomZ(Z/pZ,Z)≃ 0 −→ HomZ(Z,Z)≃ Z ·p−→ HomZ(Z,Z)≃ Z
−→ coker(·p) ≃ Z/pZ−→ 0.

So we have another way to see that the sequence

0 −→ HomZ(Z/pZ,Z)−→ HomZ(Z,Z)−→ HomZ(Z,Z),

is not exact: the rightmost map has a cokernel, in particular it is not surjective.
Who cares? What good is Hom? Well, let’s flashback to the last chapter: one
place where applying the Hom functor has nice consequences is in the case of
simplicial homology. Recall that Ci(∆) is a free R-module (R the coefficient
ring) with basis the oriented i-simplices of ∆. We define a new chain complex
(with arrows going in the opposite way) as

Ci(∆) = HomR(Ci(∆), R).

Exercise 6.2.3. Verify that the C i(∆) form a chain complex. The differential,
of course, comes from the beginning of this section. 3

The really neat thing is that the homology of the new chain complex (which
is called simplicial cohomology) has important additional structure, which is
not shared by the homology of the original chain complex. In particular, the
simplicial cohomology is a ring!

Definition 6.2.4. The multiplicative structure (called cup product) on simpli-
cial cohomology is induced by a map on the cochains:

Ci(∆)× Cj(∆)
∪−→ Ci+j(∆);

it is defined by saying how a pair (ci, cj) ∈ Ci(∆) × Cj(∆) acts on an element
of Ci+j(∆): if (v0, . . . vi+j) ∈ Ci+j(∆), then

(ci, cj)(v0, . . . vi+j) = ci(v0, . . . , vi) · cj(vi, . . . , vi+j).
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Exercise 6.2.5. Compute the simplicial cohomology ring of the two-sphere S 2

(hint: the simplicial complex with maximal faces {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4} corresponds to a hollow tetrahedron ∆ whose geometric realization
|∆| ≃ S2). Next, determine the multiplicative structure of the cohomology ring
of the torus. If you get stuck, you can find the answer in [71]. 3

Of course, the case of most interest to us is the situation where R is a
polynomial ring. To give a homomorphism between finitely generated modules
M1 and M2, we first need to say where the generators of M1 go. Of course, a
homomorphism of R-modules must preserve relations on the elements of M1.
In sum, given presentations

Ra1
α−→ Ra0 −→M1 −→ 0,

and

Rb1
β−→ Rb0 −→M2 −→ 0,

an element of HomR(M1,M2) may be thought of as a map Ra0
γ−→ Rb0 ; to

encode the fact that relations in M1 must go to zero we require that if cα is in
the image of α, then γ(cα) is in the image of β. So the image of the composite
map

Ra1
γ·α−→ Rb0

is contained in the image of β.

Example 6.2.6. Here is how to have Macaulay 2 find the entire module of
homomorphisms between two modules.

i1 : R=ZZ/101[x,y,z];

i2 : M = coker matrix {{x,y},{y,z}};

i3 : N = coker matrix {{y}};

i4 : Hom(M,N)

o4 = subquotient (0, | 0 y |)

| y 0 |

2

o4 : R-module, subquotient of R

i5 : prune o4

o5 = 0

For matrices f and g with the same target, subquotient(f,g) is a module
representing the image of f in the cokernel of g. This module may not be
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minimally presented; the prune command finds a minimal presentation. So
Hom(M,N) is zero. To check this, let R2 have basis ǫ1, ǫ2. If γ is an element
of Hom(M,N), then in M , xǫ1 + yǫ2 and yǫ1 + zǫ2 are both zero, so that
0 = γ(xǫ1 + yǫ2) = xγ(ǫ1) + yγ(ǫ2). Now y is zero in N , so we get 0 = xγ(ǫ1).
It is obvious that x is a nonzero divisor on N , hence γ(ǫ1) = 0. Argue similarly
for γ(ǫ2) to see that γ must be the zero map.

Exercise 6.2.7. In the category of graded R = k[x1, . . . , xn]-modules, show
that HomR(R(−a), R) ≃ R(a) (see Example 2.3.2). 3

6.3 Tensor Product

We begin by quickly reviewing tensor product. Suppose we have two R-modules
M and N .

Definition 6.3.1. Let A be the free R-module generated by {(m,n)|m ∈M,n ∈
N}, and let B be the submodule of A generated by

(m1 +m2, n)− (m1, n)− (m2, n)
(m,n1 + n2)− (m,n1)− (m,n2)

(rm, n) − r(m,n)
(m, rn)− r(m,n).

The tensor product is the R-module:

M ⊗R N := A/B.

We write m⊗ n to denote the class (m,n).

This seems like a nasty definition, but once you get used to it, tensor product
is a natural thing. The relations (rm, n) ∼ r(m,n) and (m, rn) ∼ r(m,n) say
that tensor product is R-linear, and turn out to be very useful.

Example 6.3.2. What is Z/3Z⊗ZZ/2Z?

If we have a zero in either coordinate, then we can pull zero out, so the only
potential nonzero elements of this Z-module are

2⊗ 1, 1⊗ 1.

But 2⊗1 = 2(1⊗1) = 1⊗2 = 1⊗0 = 0, so both these elements are zero. Hence
the Z-module Z/3Z⊗ZZ/2Z is zero.

Exercise 6.3.3. Generalize the above: for a, b ∈ Z, show thatZ/aZ⊗ZZ/bZ≃ Z/GCD(a, b)Z.
3
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If M and N are R-modules, then a map

M ×N f−→ P

is bilinear if f(rm1 +m2, n) = rf(m1, n)+f(m2, n), and similarly in the second
coordinate. Tensor product converts R–bilinear maps into R–linear maps, and
possesses a universal mapping property: given a bilinear map f , there is a unique
R–linear map M ⊗R N −→ P making the following diagram commute:

M ×N f−→ P
↓

M ⊗N
Exercise 6.3.4. Prove the universal mapping property of tensor product. 3

The most common application of tensor product is extension of scalars–we first

set the stage. If A
f−→ B is a ring homomorphism, and M is a B-module, then

we can make M an A-module in the obvious way: a ∈ A acts on m ∈M via

a ·m = f(a) ·m.

This is usually called restriction of scalars. What if we have an A-module? How
can we make it a B-module? Well, B is itself an A-module via a · b = f(a) · b,
so we have a pair of A-modules. Tensor them! The module B ⊗AM is an A-
module, but also a B-module. Extension of scalars is a common and important
construction. Caution: in this book, R is always a commutative ring; care must
be exercised when using tensor product over a noncommutative ring.

Exercise 6.3.5. Let k →֒ k[x] play the role of A
f−→ B, and let M be the

k-module k2 . Describe the k[x]-module k[x]⊗k k2. 3

As in the last section, suppose we have a short exact sequence of R-modules:

0 −→ A1 −→ A2 −→ A3 −→ 0,

and let M be some other R-module. When we apply • ⊗RM to the sequence,
what happens? Well, this time we get an exact sequence

A1 ⊗RM −→ A2 ⊗RM −→ A3 ⊗RM −→ 0.

Exercise 6.3.6. Prove this, and find an example showing that the leftmost
map need not be an inclusion. 3

Exercise 6.3.7. For R–modules M ,N , and P , prove that

HomR(M ⊗R N,P ) ≃ HomR(M,HomR(N,P )).

Hint: Let φ ∈ HomR(M ⊗R N,P ). Given m ∈ M , we want to produce an
element of HomR(N,P ). This is relatively easy: φ(m⊗ •) expects elements of
N as input and returns elements of P as output. Formalize this, and check that
it is really an isomorphism. 3
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Given R-modulesM1 andM2 and presentations as in the paragraph following
Exercise 6.2.5, how do we obtain a presentation matrix for M1⊗RM2? Clearly
we have

Ra0 ⊗R Rb0 −→M1 ⊗RM2 −→ 0,

so the question is how to compute the kernel. There are some obvious compo-
nents, for example the submodules im(α)⊗RRb0 and Ra0 ⊗R im(β). Can there
be more?

Exercise 6.3.8. Given presentations for two R-modules M1 and M2, find a
presentation for M1 ⊗RM2. First look at the example below. 3

Example 6.3.9.
i1 : R=ZZ/101[x,y,z];

i2 : M1 = coker matrix {{x,0,0},{0,y,0},{0,0,z}}

o2 = cokernel | x 0 0 |

| 0 y 0 |

| 0 0 z |

3

o2 : R-module, quotient of R

i3 : M2=coker transpose matrix {{x^3,y^3}}

o3 = cokernel {-3} | x3 |

{-3} | y3 |

2

o3 : R-module, quotient of R

i4 : M1**M2

o4 = cokernel {-3} | x3 0 0 x 0 0 0 0 0 |

{-3} | y3 0 0 0 0 0 x 0 0 |

{-3} | 0 x3 0 0 y 0 0 0 0 |

{-3} | 0 y3 0 0 0 0 0 y 0 |

{-3} | 0 0 x3 0 0 z 0 0 0 |

{-3} | 0 0 y3 0 0 0 0 0 z |

6

o4 : R-module, quotient of R

Supplemental Reading: Atiyah–Macdonald is good for all these topics, I also
like Munkres treatment of tensor product. As always, Eisenbud has everything.



Chapter 7

Geometry of Points and the

Hilbert Function

Suppose that X consists of three distinct points in P2. For i≫ 0 we know that

HF (R/I(X), i) = HP (R/I(X), i) = 3.

The Hilbert polynomial tells us both the dimension and degree of X . However,
there may be interesting geometric information “hiding” in the small values
of the Hilbert function, that is, in those values where the Hilbert polynomial
and Hilbert function don’t agree. For example, we can’t tell from the Hilbert
polynomial if the three points are collinear or not. This is where the Hilbert
function comes into its own. In particular, if the three points are collinear,
then HF (R/I(X), 1) = 2, whereas if the three points are not collinear, then
HF (R/I(X), 1) = 3. To see this, just note that if the points are collinear,
then there is a linear form that vanishes on X , so the degree one piece of
I(X) has dimension one. On the other hand, if the points are not collinear,
clearly the degree one piece of I(X) is empty. In fact, this is just the tip of the
iceberg; there are many beautiful connections between the Hilbert function and
geometry, which we explore in this chapter.

Key concepts: Independent conditions, regularity, H1, Macaulay–Gotzmann
theorems, saturation, Hilbert difference function.

7.1 Hilbert Functions of Points, Regularity

To streamline notation, in the remainder of this chapter we write IX for I(X).
For an arbitrary X ⊆ Prk, HF (IX , i) = dimk(IX)i, which is the dimension of
the vector space of degree i polynomials vanishing on X . If we are given a set of
distinct points X , how can we compute the Hilbert function? Let’s try another
example in P2–in fact, let’s find HF (IX , 2) when X consists of two points. A

87



88 CHAPTER 7. GEOMETRY OF POINTS

quadratic polynomial will have the form

f(x0, x1, x2) = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2.

If X = {(b0 : b1 : b2), (c0 : c1 : c2)}, then f(b0 : b1 : b2) = 0 if and only if

a0b
2
0 + a1b0b1 + a2b0b2 + a3b

2
1 + a4b1b2 + a5b

2
2 = 0,

and similarly for (c0 : c1 : c2). So f ∈ IX if and only if (a0, a1, a2, a3, a4, a5) is
in the kernel of the matrix

[
b20 b0b1 b0b2 b21 b1b2 b22
c20 c0c1 c0c2 c21 c1c2 c22

]
.

In other words, finding HF (IX , i) for a given set of points X = {p1, . . . , pn}
comes down to computing the rank of a matrix φ, where φ maps the vector
space Ri to kn by evaluation. If we choose a basis for Ri, the mth row of φ
corresponds to evaluating the basis elements on pm. The kernel of φ is (IX)i,
so there is an exact sequence of vector spaces:

0 −→ (IX)i −→ Ri
φ−→ kn −→ H1(IX(i)) −→ 0,

where H1(IX(i)) denotes the cokernel of φ. We know that when i ≫ 0 the
Hilbert function of R/I is n, so this means that eventually (remember Exercise
2.3.1!) H1(IX(i)) must vanish. In math lingo, we say that a set X of n points
imposes m conditions on polynomials of degree i if the rank of φ is m; if n = m
then we say that X imposes independent conditions on polynomials of degree i.

Exercise 7.1.1. Write a Macaulay 2 script (without using the command
hilbertFunction!) which takes a set of points in P2 and a degree i , and com-
putes the Hilbert function. Hint: determine the rank of the matrix obtained by
evaluating the monomials of degree i at the points. To get the monomials of
degree i, use the command basis(i,R). To evaluate at a point (b0 : b1 : b2) you
may find the command map(R,R,{b0, b1, b2}) useful. 3

Exercise 7.1.2. Do three collinear points in P2 impose independent conditions
on linear forms? What if the points are not collinear? For 4, 5, and 6 points inP2, write down all possible Hilbert functions (up to i = number of points). As
an example, here are some of the cases that arise for 5 points:

Five collinear points:

degree i = 0 1 2 3 4 5
HF (R/I, i) = 1 2 3 4 5 5

dimkH
1(IX(i)) = 4 3 2 1 0 0

Four points on a line L, one point off L:

degree i = 0 1 2 3 4 5
HF (R/I, i) = 1 3 4 5 5 5

dimkH
1(IX(i)) = 4 2 1 0 0 0
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Five generic points:

degree i = 0 1 2 3 4 5
HF (R/I, i) = 1 3 5 5 5 5

dimkH
1(IX(i)) = 4 2 0 0 0 0

When there are six points and the degree is 2, there are configurations X where
no three points are collinear but the rank of φ is less than six. Describe this
case. Find a configuration of points which has the same Hilbert function as X ,
but where some points are collinear. This exercise can be done by hand, but
you will save time by using a computer. The scripts below (contained in a file
called points) expect a set of points X as input; they return the ideal IX . We
demonstrate how to do the case of five collinear points.

pointideal1 = (m)->(v=transpose vars R;

minors(2, (v|m)))

--return the ideal of the point (represented by a column matrix)

pointsideal1 = (m)->(t=rank source m;

J=pointideal1(submatrix(m, ,{0}));

scan(t-1, i->(J=intersect(J,

pointideal1(submatrix(m, ,{i+1})))));

J)

--for a matrix with columns representing points,

--return the ideal of all the points.

i1 : load "points";

i2 : R=ZZ/31991[x,y,z];

i3 : s1=random(R^2,R^5)

o3 = | 9534 14043 363 405 -10204 |

| 7568 11665 5756 -6195 156 |

2 5

o3 : Matrix R <--- R

i4 : s2=matrix{{0,0,0,0,0}}**R;

1 5

o4 : Matrix R <--- R

i5 : s1||s2
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o5 = | 9534 14043 363 405 -10204 |

| 7568 11665 5756 -6195 156 |

| 0 0 0 0 0 |

3 5

o5 : Matrix R <--- R

i6 : I = pointsideal1 o5

5 4 3 2 2 3 4

o6 = ideal (z, x + 2461x y + 3083x y - 15951x y + 4853x*y +

5

9253y )

o6 : Ideal of R

i7 : apply(10, i->hilbertFunction(i, coker gens I))

o7 = {1, 2, 3, 4, 5, 5, 5, 5, 5, 5}

i8 : betti res image gens I

o8 = total: 2 1

1: 1 .

2: . .

3: . .

4: . .

5: 1 1

3

It turns out that the vector spaces H1(IX(i)) are related in a fundamental
way to the free resolution of IX , so it is important to determine when they
vanish. Go back and compute the free resolutions for the ideals you found in
the previous exercise and see if you can come up with a conjecture relating the
number of rows in the Macaulay 2 betti diagram to the vanishing of H 1(IX(i)).

Lemma 7.1.3. A set of points X = {p1, . . . , pn} ⊆ Pr imposes m conditions on
polynomials of degree i iff there exists Y ⊆ X, |Y | = m such that for each p ∈ Y
there exists a polynomial of degree i which vanishes on Y − p but is nonzero on
p. Such polynomials are said to separate the points of Y .

Proof. X imposes m conditions when the rank of φ is at least m. But we can
just do a column reduction (which corresponds to choosing a new basis for the
space of degree i polynomials) and then permute rows so that φ has upper left
block an m by m identity matrix, done.
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Lemma 7.1.4. If X = {p1, . . . , pn} ⊆ Pr imposes m < n conditions on polyno-
mials of degree i, then X imposes at least m + 1 conditions on polynomials of
degree i+ 1.

Proof. Let Y ⊆ X be as in the previous lemma. Pick p ∈ X − Y , and set
Y ′ = Y + p. Pick a linear form l such that l(p) = 0, l(q) 6= 0 for all q ∈ Y
(we can do this if our field is reasonably big relative to the number of points–
intuitively, for a finite set of points, you can always find a hyperplane through
one and missing the rest–draw a picture!). If {f1, . . . , fm} are the polynomials
of degree i which separate the points of Y , then {l · f1, . . . , l · fm} still separate
the points of Y , and are all zero on p. So we need a polynomial of degree i+ 1
which is zero on Y and not at p. Since p 6∈ Y we can find a polynomial which is
zero on Y and nonzero on p. But the ideal of Y is generated in degree at most
i, so we can actually find such a thing of degree i+ 1.

Exercise 7.1.5. Prove that the ideal of Y is generated in degree at most i. 3

Lemma 7.1.6. If H1(IX(i − 1)) is nonzero, then dimkH
1(IX(i − 1)) >

dimkH
1(IX(i)). H1(IX(i)) = 0 if i ≥ |X | − 1.

Proof. The first part follows immediately from the previous lemma. For the
second part, just observe that the biggest possible value for H 1(IX(1)) is |X |−2,
which occurs only if the points of X are all collinear.

Definition 7.1.7. Let M be a finitely generated, graded module over R =
k[x0, . . . , xr] with minimal free resolution

0 −→ Fr+1 −→ · · · −→ F0 −→M −→ 0,

where

Fi ≃
⊕

j

R(−ai,j).

The regularity of M is

sup
i,j
{ai,j − i}.

For example, the regularity of the ideal IX of five points on a line in P2 is
five since the free resolution of IX is given by:

0 −→ R(−6) −→ R(−5)⊕R(−1) −→ IX −→ 0.

Flip back and look at the output of the Macaulay 2 command betti for this
example: the regularity of IX is displayed as the number at the left of the
bottommost row. We defer the proof of the following theorem till Chapter 10:

Theorem 7.1.8. For a set of points X in Pn, the regularity of IX is the smallest
i such that H1(IX(i− 1)) vanishes.
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Exercise 7.1.9. Prove that for a generic set of n points X in Pr, the betti
diagram has at most two nonzero rows, which are adjacent. Phrased a bit
differently, if i is the largest integer such that

n >

(
r + i− 1

i− 1

)
,

then IX is i+ 1 regular. Lets check the example of 5 points in P2:

5 >

(
2 + 2− 1

2− 1

)
, 5 6>

(
2 + 3− 1

3− 1

)
,

so the ideal of five generic points in P2 is 2+1 = 3 regular. How about 20 =
(
3+3
3

)

generic points in P3? The points impose 20 conditions on cubics, so (since there
are no cubics in the ideal) IX is first nonzero in degree four. On the other hand,
the map φ is full rank (20) when i = 3, so four is also the smallest i such that
H1(IX(i − 1)) = 0. Thus, for this example, we expect the resolution to occur
in a single row. Here is the resolution for I :

i1 : R=ZZ/31991[x,y,z,w];

i2 : M = random(R^4,R^20);

4 20

o2 : Matrix R <--- R

i3 : I = pointsideal1 M;

o3 : Ideal of R

i4 : betti res coker gens I

o4 = total: 1 15 24 10

0: 1 . . .

1: . . . .

2: . . . .

3: . 15 24 10

i5 : betti res image gens I

o5 = total: 15 24 10

4: 15 24 10

Hint: from the definition of generic, how many conditions does X impose in
each degree, and what does this mean about the rank of φ? Also, notice that
the regularity of I is one more than the regularity of R/I . Using Definition
7.1.7, prove this is always the case. 3
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Exercise 7.1.10. Write a program which takes two parameters n and r, and
generates the betti numbers of a set of i generic points in Pr, for all r ≤ i ≤ n.
You will need to use a loop structure (try either apply or scan), and the random
command. By the previous exercise there will only be two nonzero rows in the
betti diagram for I . Run your program for n = 12 and all r ≤ 5, and make a
conjecture about the shape of the free resolutions. You should come up with
the minimal resolution conjecture—see Lorenzini [62]. Now do this for r = 6.
What happens? In [36] Eisenbud and Popescu use Gale duality to understand
this example (due to Schreyer) and in fact provide infinite families with similar
behavior. 3

7.2 The Theorems of Macaulay and Gotzmann

We now record two fundamental theorems on Hilbert functions:

Theorem 7.2.1 (Macaulay). Let {h0, h1, . . .} be a sequence of non-negative
integers, and write the i-binomial expansion of hi as

hi =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · ·

There is a unique way to do this if we require that ai > ai−1 > · · · . Define

h
〈i〉
i :=

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · · .

Then {h0, h1, . . .} is the Hilbert function of a Z graded algebra over a field iff

for all i ≥ 1 hi+1 ≤ h〈i〉i and h0 = 1.

Macaulay says in his paper that the proof is “too long and complicated to
provide any but the most tedious reading”; a shorter and simpler proof may be
found in [46].

Example 7.2.2. The 5-binomial expansion of 75 is

75 =

(
8

5

)
+

(
6

4

)
+

(
4

3

)
.

Suppose h5 = 75, then

h
〈5〉
5 =

(
9

6

)
+

(
7

5

)
+

(
5

4

)
= 110.

So if the Hilbert function of a Z graded k-algebra A satisfies HF (A, 5) = 75,
then HF (A, 6) ≤ 110.

A theorem of Gotzmann says what happens when we have an equality in the
above theorem:
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Theorem 7.2.3 (Gotzmann). If I is generated in degree i, and if hi+1 = h
〈i〉
i ,

then for any j ≥ 1

hi+j =

(
ai + j

i+ j

)
+

(
ai−1 + j − 1

i+ j − 1

)
+ · · · .

The condition that hi+1 = h
〈i〉
i means that I grows as little as possible in

going from degree i to degree i + 1. Roughly speaking, Gotzmann’s theorem
says that if an ideal generated in degree i has stunted growth in degree i + 1,
then it is forever stunted. Notice that Gotzmann’s theorem also gives us the
Hilbert polynomial of R/I .

Exercise 7.2.4. Which of the following are Hilbert functions of Z graded k-
algebras?

1. (1,4,6,8,19,4,5,1,0)

2. (1,16,15,14,13,12,6,0)

3. (1,3,6,4,1,2,1)

3

7.3 Artinian reduction and hypersurfaces

Suppose a set of points X contains a large subset Y lying on a hypersurface
of low degree. If L is a generic linear form, then the Hilbert function of the
Artinian reduction R/〈IX , L〉 can often “see” Y . We begin with an example:

Example 7.3.1. Let X consist of 24 points in P2. Suppose twenty of the points
lie on the conic C:

xz − y2 = 0,

and the remaining four points are in generic position. On the open patch Ux
we can set x = 1, hence a point on the conic will have coordinates (1 : y : y2).
We can use our code from section one to obtain IX :

i1 : R=ZZ/31991[x,y,z];

o2 : VDM = (a,b)-> (map(ZZ^a,ZZ^b, (i,j)-> (j+1)^i))

--return an a by b Van Der Monde matrix

i3 : A=VDM(3,20)**R

o3 = {0} | 1 1 1 1 1 1 1 ... 1 |

{0} | 1 2 3 4 5 6 7 ... 20 |

{0} | 1 4 9 16 25 36 49 ... 400 |
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3 20

o3 : Matrix R <--- R

i4 : B= random(R^3,R^4)

o4 = {0} | 9534 11665 405 156 |

{0} | 7568 363 -6195 -14844 |

{0} | 14043 5756 -10204 -2265 |

3 4

o4 : Matrix R <--- R

i5 : betti res coker gens pointsideal1 (A|B)

o5 = total: 1 3 2

0: 1 . .

1: . . .

2: . . .

3: . 2 .

4: . . 1

5: . . .

6: . . .

7: . . .

8: . . .

9: . 1 .

10: . . 1

o5 : Net

i6 : apply(12, i->hilbertFunction(i, coker gens pointsideal1 (A|B)))

o6 = {1, 3, 6, 10, 13, 15, 17, 19, 21, 23, 24, 24}

i7 : K = (pointsideal1 (A|B))+ideal random(R^1,R^{-1})

--add a random linear form

i8 : apply(12, i-> hilbertFunction(i, coker gens K))

o8 = {1, 2, 3, 4, 3, 2, 2, 2, 2, 2, 1, 0}

The long string of twos in the Hilbert function of R/〈IX , L〉 looks interesting.
What is happening is the following: the four generic points of X impose four
conditions on conics, so there are two conics Q1, Q2 passing through those four
points. Hence, the quartics CQ1, CQ2 pass through all the points, and as we see
from the betti diagram (IX)4 contains two elements, which are the quartics we
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found. The long string of two’s in the Hilbert function of R/〈IX , L〉 is closely
related to the fact that the Hilbert function of R/IX has maximal growth in
passing from degree eight to degree nine. These numerical phenomena reflect
the fact that the elements of (IX)4 have a greatest common divisor (the conic
C).

So a natural question is: what conditions force Id to have a greatest common
divisor? Consider three quadratic polynomials in three variables: if they are
general, then the syzygies are Koszul, so that HF (R/I, 3) = 1. On the other
hand, if the quadratics share a common factor, say I = 〈x2, xy, xz〉, then there
are 3 linear syzygies, so HF (R/I, 3) = 4. Check that this is the maximal
possible growth of R/I in passing from degree two to degree three. This suggests
that the existence of a GCD for Id might be linked to the maximal growth of
the Hilbert function in degree d. In what follows we describe results of Davis
[25], and generalizations due to Bigatti, Geramita and Migliore [15], which also
has an excellent exposition and description of the history of this problem. We
begin with the observation that if g ∈ k[x0, . . . , xr]j , then

HF (k[x0, . . . , xr]/〈g〉, d) =

(
d+ r

r

)
−

(
d− j + r

r

)
=: fr,j(d).

Exercise 7.3.2. Prove that fr,j(d) =
(
d+r−1
r−1

)
+

(
d+r−2
r−1

)
+ · · ·+

(
d+r−j
r−1

)
. 3

Definition 7.3.3. Let I ⊂ k[x0, . . . , xr] = R be a homogeneous ideal with
Id 6= 0. The potential GCD degree of Id is

sup{j|fr,j(d) ≤ HF (R/I, d)}.

Theorem 7.3.4. Let I ⊂ k[x0, . . . , xr] be a homogeneous ideal with Id 6= 0, and
suppose 0 < j is the potential GCD degree of Id. If R/I has maximal growth in
degree d, then both Id and Id+1 have a GCD of degree j.

Proof. From the exercise above, the first j terms of fr,j(d) and fr,j+1(d) (ex-
panded as binomial coefficients with r − 1 “denominator”) are equal. Since

fr,j(d) ≤ HF (R/I, d) < fr,j+1(d),

we can write

HF (R/I, d) =

(
d+ r − 1

r − 1

)
+

(
d+ r − 2

r − 1

)
+ · · ·+

(
d+ r − j
r − 1

)
+ terms

(
c

i

)
,

where i < r − 1 and c < d + r − (j + 1). But now from the maximal growth
assumption, Gotzmann’s theorem implies that the Hilbert polynomial of R/I≤d
has degree r − 1 and lead coefficient j

(r−1)! , which is the Hilbert polynomial of

a degree j hypersurface. This also forces a GCD in degree d + 1 because the
minimal growth of I in passing to degree d+ 1 means that Id+1 is generated by
Id. So there can be no new minimal generators of I in degree d+ 1 and a GCD
for Id forces a GCD for Id+1.



7.3. ARTINIAN REDUCTION AND HYPERSURFACES 97

It is important to note that if Id has a GCD g, this need not imply that
V (I) ⊆ V (g)—this is illustrated by the example at the beginning of the section.
However, what it does do is give us a natural way to “split” V (I) into two
parts: the part which is contained in the hypersurface V (g), and the part off
the hypersurface. As we just proved, the maximal growth of the Hilbert function
is related to the existence of a GCD, but our example also showed that the GCD
manifested itself in the Hilbert function of a hyperplane section. We now explore
this more carefully. Recall that if I ⊆ k[x0, . . . , xr] is a homogeneous ideal, the
dimension and degree of the projective variety V (I) may be defined in terms of
the Hilbert polynomial of R/I . For example, a curve in Pr is an object V (I)
such that

HP (R/I, i) = ai+ b,

for some constants a and b. In Chapter 3, we saw that if the maximal ideal is
not an associated prime of I , then there is a linear form L which is a nonzero
divisor on R/I , so we obtain an exact sequence

0 −→ R(−1)/I
·L−→ R/I −→ R/〈I, L〉 −→ 0.

Thus,
HP (R/〈I, L〉, i) = ai+ b− (a(i− 1) + b) = a,

which means that V (L) meets the curve in a points. We underscore the idea: it
is often possible to understand an object by slicing it with hyperplanes, and then
examining what those slices look like (remember level curves from calculus!). On
the other hand, if V (I) is a zero dimensional object in Pr, then it might seem
that this technique is useless: there is nothing left when we slice with a generic
hyperplane, since

V (I, L) = ∅.
Although there is indeed no geometric object left, there is a little Artinian
“residual” algebra

A = k[x0, . . . , xr]/〈I, L〉.
It turns out that lots of wonderful information is hiding in A! First, we need
some background and notation. For a graded R-module M , define

∆H(M, i) = HF (M, i)−HF (M, i− 1),

so that if L is a non-zero divisor on M , ∆H(M, i) = HF (M/LM, i). Next, we
say a few words about a particularly important case of ideal quotient:

Example 7.3.5. Saturation

Consider the ideals

I = 〈x〉 and J = 〈x3, x2y, x2z, xy2, xyz, xz2〉.

A quick check shows that the primary decomposition of J is

〈x〉 ∩ 〈x, y, z〉3.
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As we remarked earlier, the variety defined by any ideal primary to the maximal
ideal is empty (in projective space), so if we want to study projective varieties by
the method above, we have to be a bit careful. In particular, although having a
component primary to the maximal ideal does not affect the Hilbert polynomial,
it can considerably alter the Hilbert function.

degree i = 0 1 2 3 4 5 6
HF (R/I, i) = 1 2 3 4 5 6 7
HF (R/J, i) = 1 3 6 4 5 6 7

So if we want to look at Hilbert functions, we need start by removing this
ambiguity.

Definition 7.3.6. Let I and J be ideals in a polynomial ring. Then I : J∞ =
{f |f ∈ I : Jn for some n }.

Since R is a Noetherian ring, the chain

I : J ⊆ I : J2 ⊆ · · ·

must stabilize; the stable value I : J∞ is called the saturation of I with respect
to J . If J is the ideal generated by the variables, then Isat = I : J∞ is the
saturation of I . It is the largest ideal such that Isati = Ii for i≫ 0.

Exercise 7.3.7. Let I ⊆ k[x0, . . . , xr] be a saturated ideal of codimension r.

1. Prove that there exists a linear form L such that

∞∑

i=0

HF (R/〈I, L〉, i) =

∞∑

i=0

∆H(R/I, i) = HP (R/I, t).

For example, if I is radical, then
∞∑
i=0

∆H(R/I, i) is the number of points

of V (I).

2. Show that for g of degree j, if 〈I, g〉 is also saturated, then the exact
sequence

0 −→ R(−j)/〈I : g〉 −→ R/I −→ R/〈I, g〉 −→ 0,

gives rise to

∆H(R/I, i) = ∆H(R/〈I : g〉, i− j) + ∆H(R/〈I, g〉, i).

3

When Id has a GCD of degree j and ∆H(R/I, d) = fr,j(d), the following
theorem of Bigatti, Geramita and Migliore gives very specific information about
how the Hilbert difference functions split up. As you might guess, the proof
follows along the lines of the exercise above. See [15] for the details.



7.3. ARTINIAN REDUCTION AND HYPERSURFACES 99

Theorem 7.3.8. Let I ⊆ k[x0, . . . , xr+1] be a saturated ideal, and suppose that
Id has a greatest common divisor f of degree j, and that ∆H(R/I, d) = fr,j(d).
Then if we define

IX1 = 〈I, f〉 and IX2 = 〈I : f〉,
we have that

∆H(R/IX1 , i) = fr,j(t) if i ≤ d
∆H(R/IX1 , i) = ∆H(R/IX , i) if i > d

∆H(R/IX2 , i− j) = ∆H(R/IX , i)− fr,j(i) if i ≤ d
∆H(R/IX2 , i− j) = 0 if i > d

Example 7.3.9. For the 24 points in Example 7.3.1 we have

f2,j(d) = dj +
3j − j2

2
.

Solving for j in

f2,j(8) = 8j +
3j − j2

2
≤ HF (R/I, 8) = 21,

we see that j = 2 is the potential GCD degree. We compute

21 =

(
9

8

)
+

(
8

7

)
+

(
6

6

)
+

(
5

5

)
+

(
4

4

)
+

(
3

3

)

so HF (R/I, 9) ≤ 23, hence R/I has maximal growth in degree eight. By The-
orem 7.3.4 I8 has a GCD C of degree two. Now, f1,2(8) = 2 = ∆H(R/I, 8), so
Theorem 7.3.8 tells us that for the subset X1 of points on C

degree i = 0 1 2 3 4 5 6 7 8 9 10
∆H(R/IX1 , i) = 1 2 2 2 2 2 2 2 2 2 1

So if we had started out with no knowledge about X except the Hilbert func-
tion, we would have been able to determine that 20 of the points of X lie on a
conic! Use your code to come up with some interesting examples and experi-
ment. The paper [15] also contains interesting results on sets of points with the
uniform position property (see [33]) and on sets of points with “many” points
on a subvariety (see also [73]).

Exercise 7.3.10. If ∆H(R/I, d) = fr,j(d) and ∆H(R/I, d+ 1) = fr,j(d + 1),
prove that Id and Id+1 have a greatest common divisor of degree j. In particular,
Theorem 7.3.8 applies. 3

Supplemental Reading: For more on regularity, see Chapter 4 of [29] or
Chapter 18 of [28]. The study of points in Pn is a very active field with a
vast literature. An excellent introduction to the area may be found in the
Queen’s Papers articles by Tony Geramita [43], [44]; other nice expositions are
by Harbourne [51] and Miranda [70]. I learned the approach of Section 7.1 from
Sorin Popescu. In [31] Eisenbud, Green and Harris give a wonderful introduction
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to the “Cayley-Bacharach problem”, which concerns collections of points (more
properly, subschemes) lying on a complete intersection.

If we allow points to occur with multiplicity, then they are called “fat points”,
and there are surprising connections to ideals generated by powers of linear forms
and secant varieties; for this see the work of Emsalem and Iarrobino [37] and
Iarrobino and Kanev [57]. A final topic worth mentioning is the notion of the
Hilbert scheme: the basic idea is to study all varieties of Pn having the same
Hilbert polynomial at once. A priori this is just some set, but in fact there
is lots of algebraic structure, and Hilbert schemes for zero-dimensional objects
have received quite a bit of attention. A very quick introduction to the Hilbert
scheme can be found in the book of Smith, Kahanpää, Kekäläinen, Traves [86]
(which is another nice elementary algebraic geometry text); or in the Montreal
lecture notes of Eisenbud and Harris [33].



Chapter 8

Snake Lemma, Derived

Functors, Tor and Ext

In Chapter 2, we introduced the concept of a chain complex, which is a sequence
of modules and homomorphisms such that the image of one map is contained in
the kernel of the next map. Free resolutions are one very specific type of chain
complex: the modules are free and the sequence is actually exact; in Chapter 5
we saw that there are also many interesting chain complexes which are not of
this type. We now introduce two key tools used to study chain complexes—the
snake lemma, and the long exact sequence in homology. We also take a look at
the topological roots and motivation, specifically, the Mayer–Vietoris sequence.
We saw in Chapter 6 that for an arbitrary R–module M the functor • ⊗RM is
right exact but not (in general) exact. In this situation, we define objects called
higher derived functors which measure the failure of exactness. This relates
to free resolutions and chain complexes because the higher derived functors
of • ⊗R M can be computed via free resolutions; the long exact sequence in
homology plays a key role. One beautiful payoff is that this abstract machinery
actually gives a really slick proof of the Hilbert syzygy theorem!
Key concepts: Snake lemma, long exact sequence, Mayer–Vietoris sequence,
derived functors, Tor, Ext.

8.1 Snake Lemma, Long Exact Sequence in

Homology

Suppose we have a commutative diagram of R-modules with exact rows:

0 −→ A1
a1−→ A2

a2−→ A3 −→ 0
↓ f1 ↓ f2 ↓ f3

0 −→ B1
b1−→ B2

b2−→ B3 −→ 0

Are the kernels and cokernels of the vertical maps related? Indeed they are!

101
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Lemma 8.1.1 (The Snake Lemma). For a diagram as above, we have an
exact sequence:

0 −→ kernel f1 −→ kernel f2 −→ kernel f3
φ−→

cokernel f1 −→ cokernel f2 −→ cokernel f3 −→ 0.

Proof. The key is defining the map φ from kernel f3 to cokernel f1. Let α3

be in the kernel of f3. Since a2 is surjective, we can find α2 ∈ A2 such that
a2(α2) = α3. Then f2(α2) ∈ B2. Furthermore, since the diagram commutes,
we have that

b2(f2(α2)) = f3(a2(α2)) = 0,

so f2(α2) is in the kernel of b2. By exactness there is a β1 ∈ B1 such that
b1(β1) = f2(α2). We put φ(α3) = β1. Let’s check that this is well defined.
Suppose we chose α′

2 mapping to α3. Then α2 − α′
2 is in the kernel of a2, so

there exists α1 ∈ A1 with
a1(α1) = α2 − α′

2,

so α2 = α′
2 + a1(α1). Now we map things forward, so

f2(α2) = f2(α
′
2 + a1(α1)) = f2(α

′
2) + b1f1(α1).

So β1 is well defined as an element of coker f1, because f2(α2) = f2(α
′
2) mod

the image of f1.

Exercise 8.1.2. Finish the proof of the Snake lemma by showing exactness.
With the Snake in hand, give a short proof of Exercise 2.3.5.2. 3

Exercise 8.1.3. For a short exact sequence of modules

0 −→ A1
a1−→ A2

a2−→ A3 −→ 0,

show that A2 ≃ A1 ⊕ A3 iff there is a homomorphism b2 with a2b2 = 1A3 or a
homomorphism b1 with b1a1 = 1A1 . 3

A short exact sequence of complexes is a diagram:

0 0 0
↓ ↓ ↓

A : · · · −→ A2
∂2−→ A1

∂1−→ A0 −→ 0
↓ ↓ ↓

B : · · · −→ B2
∂2−→ B1

∂1−→ B0 −→ 0
↓ ↓ ↓

C : · · · −→ C2
∂2−→ C1

∂1−→ C0 −→ 0
↓ ↓ ↓
0 0 0

where the columns are exact and the rows are complexes.
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Theorem 8.1.4 (Long Exact Sequence in Homology). A short exact se-
quence of complexes yields a long exact sequence in homology, i.e. an exact
sequence

· · · −→ Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ Hn−1(A) −→ · · ·

Exercise 8.1.5. Prove the previous theorem. The Snake lemma gives the
theorem for an exact sequence of complexes where each complex is of the form

0 −→ F1 −→ F0 −→ 0.

Now induct. 3

Homological algebra has its roots in topology, and we illustrate the usefulness
of the above theorem with a topological application. Suppose we glue two
simplicial complexes X and Y together along a common subcomplex Z = X∩Y .
What is the relationship between the homology of X ∪Y , X ∩Y and X and Y ?
Let Ci denote the oriented i-simplices. We have a surjective map:

Ci(X)⊕ Ci(Y )
g−→ Ci(X ∪ Y ),

defined by g(σ1, σ2) = σ1 + σ2. Notice that if we take a simplex σ ∈ X ∩ Y ,
then g(σ,−σ) = 0, so that the kernel of g is isomorphic to Ci(X ∩ Y ). Thus,
we get a short exact sequence of complexes

0 −→ C•(X ∩ Y ) −→ C•(X)⊕ C•(Y ) −→ C•(X ∪ Y ) −→ 0.

From the long exact sequence in homology, we obtain the Mayer–Vietoris se-
quence:

· · · −→ Hn+1(X ∪ Y ) −→ Hn(X ∩ Y ) −→ Hn(X)⊕Hn(Y )

−→ Hn(X ∪ Y ) −→ Hn−1(X ∩ Y ) −→ · · ·

Example 8.1.6. Suppose we want to compute the homology with Q-coefficients
of the torus T 2 with a puncture. In other words, we’re going to remove a little
triangular patch. Let X play the role of the punctured torus and Y be the little
triangular patch. So we have that X ∪Y is the torus itself, and X ∩Y is a little
(hollow) triangle ≃ S1. Mayer–Vietoris gives us the exact sequence:

0 −→ H2(S
1) −→ H2(X)⊕H2(Y ) −→ H2(T

2) −→
H1(S

1) −→ H1(X)⊕H1(Y ) −→ H1(T
2) −→

H0(S
1) −→ H0(X)⊕H0(Y ) −→ H0(T

2) −→ 0

We know the homology of everything in sight except X :

dim(H0) dim(H1) dim(H2)
S1 1 1 0
T 2 1 2 1
Y 1 0 0
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Since X is connected, dim(H0(X)) = 1, which means (by exactness) that the
map from H1(T

2) to H0(S
1) is the zero map. So since dim(H1(Y )) = 0 this

means that dim(H1(X)) − dim(H2(X)) = 2. That is all we can get from the
exact sequence. Remove a two-simplex from the triangulation that appears in
Exercise 5.1.8. This yields a triangulation of X . Verify that H2(X) = 0, hence
dim(H1(X)) = 2.

Exercise 8.1.7. Identify all the vertices in the picture below, and identify the
edges according to the labelling. Call the resulting object X2.

ε

ε
ε

2
1

3
ε 1ε 4

ε 3

ε 4

2ε

The underlying topological space of X2 is a “sphere with two handles” or more
formally a real, compact, connected, orientable surface of genus 2.

Take two copies of the simplicial complex corresponding to the punctured torus
of Example 8.1.6 and identify them along the boundary of the “missing” triangle
(make sure the orientations of the boundaries of the “missing triangles” agree).
Topologically this corresponds to gluing together pieces as below.

Compute the homology of X2. You should obtain dim(H0) = dim(H2) = 1,
and dim(H1) = 4. Prove that for a simplicial complex Xg whose underlying
topological space is a real, compact, connected, orientable surface of genus g
that H0 = H2 = 1, and H1 = 2g. Recall (Chapter 5) that Poincaré duality
says that dim(Hi) = dim(Hn−i) for a certain class of “nice” n-dimensional
orientable manifolds; we’re seeing that here. Naively, orientable means that for
a surface S sitting in R3 you can choose a normal vector at a point p ∈ S, then
travel around S (dragging the normal vector with you); when you get back to
p, the normal points the same way as at the start of the trip. The Möbius band
is not orientable, nor is the Klein bottle of Exercise 5.1.8. For more on the
classification of surfaces and the formal definition of orientability, see [41]. 3
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8.2 Derived Functors, Tor

Let R be (as always) a commutative ring with unit and C be the category of
R-modules and R-module homomorphisms. We know that some functors from
C to C do not preserve exactness: if we apply •⊗RM to a short exact sequence

0 −→ A1 −→ A2 −→ A3 −→ 0,

then A1 ⊗R M −→ A2 ⊗R M may have a kernel. We’re going to define a
collection of objects which measure, in some sense, the failure of a functor to
be exact. Although the initial definition seems a little forbidding, we’ll see that

• you can compute these things

• they yield lots of useful information

Definition 8.2.1. Let F be a right exact, covariant, additive (preserves addition
of homomorphisms), functor from C to C. Then for an object N we define the
left derived functors LiF (N) as follows: Take a projective resolution P• for N :

· · · −→ P2
d2−→ P1

d1−→ P0 −→ N −→ 0.

Apply F to the complex · · · −→ P2
d2−→ P1

d1−→ P0 −→ 0, and call the resulting
complex F•(N). Then

LiF (N) = Hi(F•(N)).

In words, the ith homology of F•(N) is the ith left derived functor of F .
F•(N) is a complex because F preserves composition, so didi+1 = 0 means
0 = F (didi+1) = F (di)F (di+1). Our paradigm for F is • ⊗RM .

Exercise 8.2.2. (Chain Homotopy). Let (A•, d) and (B•, δ) be chain com-
plexes, and let α, β be chain maps: for each i, αi and βi are homomorphisms
from Ai to Bi which commute with the differentials. If there exists a family γ of

homomorphisms Ai
γi−→ Bi+1 with α−β = δγ+γd then α and β are homotopic.

1. Prove that a chain map induces a map on homology (easy).

2. Prove that if α and β are homotopic, then they induce the same map on
homology (easy).

3. For F as in Definition 8.2.1, show that LiF (N) does not depend on the
projective resolution chosen for N . Hint: take projective resolutions P•

and Q• for N , and use projectivity to obtain chain maps between them
which compose to give the identity. Then you’ll need to use additivity.
(harder!) If you get stuck, see [28], Corollary A.3.14.

3
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Example 8.2.3. We work in the category of graded k[x]-modules and graded
homomorphisms, and consider the functor

F = • ⊗k[x] k[x]/x.

Suppose we want to compute LiF (k[x]/x2), for all i. Well, first we take a
projective resolution for k[x]/x2:

0 −→ k[x](−2)
·x2

−→ k[x] −→ k[x]/x2 −→ 0.

Dropping k[x]/x2 and applying F we obtain the complex

0 −→ k[x](−2)⊗ k[x]/x ·x2

−→ k[x]⊗ k[x]/x −→ 0.

Since A⊗AM ≃M , this is

0 −→ k[x](−2)/x
·x2

−→ k[x]/x −→ 0.

Since ·x2 is the zero map, the homology at position zero is just k[x]/x, i.e.

L0F (k[x]/x2) = k[x]/x.

In fact, it is easy to see from the definition that the zeroth left derived functor
of an object N is just F (N). What about L1? We have that L1F (k[x]/x2) is
the kernel of the map ·x2. But when we tensored with k[x]/x, we set x to zero,
so this is the zero map: everything is in the kernel. So

L1F (k[x]/x2) = k[x](−2)/x.

In math lingo, the left derived functors of the tensor product are called
Tor. The reason for this is that Tor1 represents torsion—for example, if we
have an arbitrary domain R, an R-module M , and r ∈ R, then to compute
Tor1(R/r,M) we take a free resolution of R/r:

0 −→ R
·r−→ R −→ R/r −→ 0,

drop the R/r and tensor with M , obtaining the complex:

0 −→M
·r−→M −→ 0.

So Tor0(R/r,M) ≃ M/rM (compare to Atiyah–Macdonald Exercise 2.1), and
Tor1(R/r,M) is the kernel of the map from M to M defined by

m −→ rm.

Tor1(R/r,M) consists of the r-torsion elements of M , that is, the elements of
M annihilated by r.
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i1 : R=ZZ/101[x];

i2 : M=coker matrix{{x}};

i3 : N=coker matrix{{x^2}};

i4 : prune Tor_0(N,M)

o4 = cokernel | x |

1

o4 : R-module, quotient of R

i5 : prune Tor_1(N,M)

o5 = cokernel {2} | x |

1

o5 : R-module, quotient of R

In English, Tor1(N,M) is just R(−2)/x, as expected. One of the most im-
portant facts about Tor is that we can compute Tori(N,M) either by taking
a projective resolution for N and tensoring with M , or by taking a projective
resolution for M and tensoring with N . In the last section we’ll prove this, but
for the moment let’s accept it. When I learned about derived functors and Tor,
the first question I asked was “Why? What good is this thing?” Well, here’s
the beef:

Exercise 8.2.4. (Hilbert Syzygy Theorem). Let M be a finitely generated,
graded module over R = k[x1, . . . , xn]. Prove the Hilbert syzygy theorem as
follows: First, compute Tori(k,M) using a free resolution for M and tensoring
with k. Now compute using a free resolution for k (remember, this is the Koszul
complex from Chapter 3), and tensoring with M . Comparing the results yields
the theorem, basically with no work at all! This is the power of the machinery,
and it is pretty persuasive. 3

Notice that in the betti diagram for a graded module N , the num-
ber appearing in the row indexed by j and column indexed by i is simply
dimkTori(N, k)i+j . We check the betti diagram in position (1, 1) for the module
N in the previous example:

i6 : betti N

o6 = relations : total: 1 1

0: 1 .

1: . 1

i7: hilbertFunction(2,Tor_1(N,coker vars R))

o7 = 1
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One of the most important properties of Tor (indeed, of derived functors in
general) is that it behaves nicely on short exact sequences.

Theorem 8.2.5. Given a module N and short exact sequence of modules,

0 −→M1 −→M2 −→M3 −→ 0,

there is a long exact sequence in Tor

· · · −→ Tori+1(N,M3) −→ Tori(N,M1) −→ Tori(N,M2)

−→ Tori(N,M3) −→ Tori−1(N,M1) −→ · · ·
Proof. Take free resolutions (F ′

•, d•) for M1 and (G′
•, δ•) for M3. We can obtain

a free resolution for M2 where the ith module is F ′
i ⊕ G′

i. This often called
the Horseshoe lemma–work it out now! Be careful–the differential is not simply
d• ⊕ δ•. So we have a short exact sequence of complexes:

0 0 0
↓ ↓ ↓

· · · −→ F ′
2 −→ F ′

1 −→ F ′
0 −→ 0

↓ ↓ ↓
· · · −→ F ′

2 ⊕G′
2 −→ F ′

1 ⊕G′
1 −→ F ′

0 ⊕G′
0 −→ 0

↓ ↓ ↓
· · · −→ G′

2 −→ G′
1 −→ G′

0 −→ 0
↓ ↓ ↓
0 0 0

Now, since the columns are short exact sequences of free modules, when we
tensor this complex with N , the columns are still exact. To be completely
explicit, a column is a short exact sequence of the form

0 −→ F ′
i −→ F ′

i ⊕G′
i −→ G′

i −→ 0,

where the first map is the identity on F ′
i and zero elsewhere, and the second

map is the identity on G′
i and zero on F ′

i (this is part of the Horseshoe lemma).
So when we tensor through with N , the first map is the identity map from
rank F ′

i copies of N to itself, and the second map is the identity map from
rank G′

i copies of N to itself. In short, after tensoring through with N , we still
have a short exact sequence of complexes, which gives a long exact sequence in
homology. But these homology modules are exactly the Tor modules.

We close with some famous words which show that those who don’t take the
time to study Tor end up feeling foolish (Don’t be a Tor, learn Tor!):

“Habe nun, ach! Philosophie,
Juristerei und Medizin,
Und leider auch Theologie!
Durchaus studiert, mit heissem Bemühn.
Da steh ich nun, ich armer Tor!
Und bin so klug als wie zuvor.”

– Göthe, Faust, act I, scene I
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8.3 Ext

Recall that the functor G = HomR(M, •) is left exact and covariant. For a
left exact, covariant functor G : C −→ C and R–module N , we define the right
derived functors of G(N) by taking an injective resolution for N , applying G
to the complex, and computing homology. Injective modules are defined in a
fashion similar to the way we defined projective modules, but the arrows just
go in opposite directions; a good reference for injective modules is Section IV.3
of [56]. Warning! Although free modules are projective, they are not in general
injective. For many rings, injective modules are huge objects, good for theory
but not so good for computation. What about the functor G′ = HomR(•,M)?
It is left exact, but contravariant. For such a functor and R–module N , we
define the right derived functors of G′(N) by taking a projective resolution for
N , applying G′ to the complex, and computing homology. For the functor Hom,
the higher derived functors have a special name: Exti. We continue working in
the category of graded modules and graded homomorphisms.

Example 8.3.1. Let R = k[x, y] and N = R/〈x2, xy〉; we compute Exti(N,R).
First, we take a free resolution for N :

0 −→ R(−3)

24 x
−y

35
−→ R(−2)2

[xy,x2]−→ R −→ N −→ 0.

We drop N , and apply HomR(•, R), yielding a complex:

0←− R(3)
[x,−y]←− R(2)2

24 xy
x2

35
←− R←− 0.

Since the rightmost map obviously has trivial kernel, Ext0(N,R) = 0. Just as
the zeroth left derived functor of a right exact, covariant functor F and module
N was simply F (N), the zeroth right derived functor of a left exact, contravari-
ant functor G and module N is G(N). In sum, Ext0(N,R) = HomR(N,R).
Since every element of N is annihilated by x2, HomR(N,R) should indeed be
zero. Then we have

Ext1(N,R) = ker [x,−y] /im
[
xy
x2

]
= im

[
y
x

]
/im

[
xy
x2

]
≃ R(1)/〈x〉.

Recall that R(2) is a free module with generator of degree −2, so the generator

[
y
x

]

of Ext1(N,R) is of degree −1. Finally, Ext2(N,R) is clearly R(3)/〈x, y〉. We
double check our computations:
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i9 : R=ZZ/101[x,y];

i10 : N = coker matrix {{x^2,x*y}};

i11 : Ext^0(N,R)

o11 = image 0

1

o11 : R - module, submodule of R

i12 : Ext^1(N,R)

o12 = cokernel {-1} | x |

1

o12 : R - module, quotient of R

i13 : Ext^2(N,R)

o13 = cokernel {-3} | y x |

Notice that for this example the annihilators of the Ext modules are very easy
to compute:

ann(Ext0(N,R)) ≃ 〈1〉
ann(Ext1(N,R)) ≃ 〈x〉
ann(Ext2(N,R)) ≃ 〈x, y〉

For a finitely generated module M 6= 0 over a Noetherian ring, Ass(M) contains
all primes minimal over ann(M) ([28], Theorem 3.1); in Section 1.3 we saw that
{〈x〉, 〈x, y〉} ⊆ Ass(N). This is no accident, and in Chapter 10 we’ll prove:

Theorem 8.3.2. [35] Let M be a finitely generated, graded module over a
polynomial ring R, and P a prime of codimension c. Then

P ∈ Ass(M)⇐⇒ P ∈ Ass(Extc(M,R)).

So the Ext modules can help us to find the associated primes! Let’s try one
more example:

i1 : R = ZZ/31991[x,y,z,w];

i2 : I = ideal (z*w, x*w, y*z, x*y, x^3*z - x*z^3);

o2 : Ideal of R

i3 : rI=res coker gens I



8.3. EXT 111

1 5 6 2

o3 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o3 : ChainComplex

i4 : rI.dd

1 5

o4 = 0 : R <--------------------------- R : 1

| xy yz xw zw x3z-xz3 |

5 6

1 : R <------------------------------- R : 2

{2} | -z -w 0 0 z3 0 |

{2} | x 0 0 -w -x3 0 |

{2} | 0 y -z 0 0 z3 |

{2} | 0 0 x y 0 -x3 |

{4} | 0 0 0 0 y w |

6 2

2 : R <--------------------- R : 3

{3} | w -x2w |

{3} | -z x2z-z3 |

{3} | -y x2y |

{3} | x 0 |

{5} | 0 -w |

{5} | 0 y |

2

3 : R <----- 0 : 4

0

o4 : ChainComplexMap

i5 : betti rI

o5 = total: 1 5 6 2

0: 1 . . .

1: . 4 4 1

2: . . . .

3: . 1 2 1

i6 : Ext^2(coker gens I, R)
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o6 = cokernel {-2} | z x |

1

o6 : R-module, quotient of R

i7 : Ext^3(coker gens I, R)

o7 = cokernel {-4} | 0 0 x w -z y |

{-6} | w y 0 0 x2z-z3 0 |

2

o7 : R-module, quotient of R

The annihilator of Ext2(R/I,R) is visibly the ideal 〈z, x〉. It is a tiny bit harder
to see what the annihilator of Ext3(R/I,R) is, so we ask Macaulay 2:

i8 : annihilator o7

3 3

o8 = ideal (w, y, x z - x*z )

o8 : Ideal of R

i9 : primaryDecomposition o8

o9 = {ideal (x, y, w),

ideal (z, y, w),

ideal (x + z, y, w),

ideal (- x + z, y,w)}

o9 : List

i10 : hilbertPolynomial coker gens I

o10 = 4*P + P

0 1

By Theorem 8.3.2 we know 〈x, z〉 is a codimension two associated prime of I ,
and we also have four codimension three associated primes corresponding to
points. This agrees with our computation of the Hilbert polynomial. In fact, we
could just do a primaryDecomposition command, and see that V (I) consists
of a line and four points in P3. Question: is there any interesting geometry
associated to this set, for example, are the betti numbers what we would expect
for a random choice of a line and four points in P3? Let’s take the ideal of a
random line (generated by two random linear forms) and four ideals of random
points (each generated by three random linear forms), intersect and examine
the resulting free resolution:
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i11 : J=ideal random(R^{1,1},R)

o11 = ideal (953x + 758y + 13z + 165w, 363x + 556y + 405z - 695w)

o11 : Ideal of R

i12 : scan(4, i->(J=intersect(J,ideal(random (R^{1,1,1},R^1)))))

i13 : hilbertPolynomial coker gens J

o13 = 4*P + P

0 1

i14 : betti res coker gens J

o14 = total: 1 3 4 2

0: 1 . . .

1: . 3 . .

2: . . 4 2

So, the free resolution is quite different for a random configuration. A line is a
line, so what must be happening is that our four points must have some special
geometry (either amongst themselves, or with respect to the line). We first
examine the ideal of the four generic points; we can get at this in a number of
ways (think of them now!). One way is to grab the annihilator of Ext3(R/J,R):

i15 : annihilator Ext^3(coker gens J, R);

o15 : Ideal of R

i16 : transpose gens o15

o16 = {-2} | z2+7851xw-4805yw+9019zw+8224w2 |

{-2} | yz+14030xw+2636yw-15494zw+1445w2 |

{-2} | xz-5953xw+6959yw-4072zw+1380w2 |

{-2} | y2-5477xw+9246yw+13158zw+11228w2 |

{-2} | xy+2049xw-472yw+15528zw-13625w2 |

{-2} | x2-2165xw+9752yw-10641zw+8888w2 |

6 1

o16 : Matrix R <--- R

i17 : betti res coker gens o15

o17 = total: 1 6 8 3

0: 1 . . .

1: . 6 8 3
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By Exercise 7.1.9 this is exactly what we expect the betti diagram for four
random points in P3 to look like. So there must be some very special geometry
associated to the first set of points. Because the equations are so simple for the
first variety, we can actually write down the coordinates of the four points:

(1 : 0 : 0 : 0), (0 : 0 : 1 : 0), (1 : 0 : 1 : 0), (1 : 0 : −1 : 0).

And now we see the geometry! These four points all lie on the line y = w =
0. Of course, if you were watching carefully, this was also apparent in the
primaryDecomposition on line o9. So the ideal of the four points of V (I) will
be defined by the two linear equations and a quartic.

Exercise 8.3.3. Have Macaulay 2 generate (or, if you are not near a keyboard,
do it by hand) a free resolution for k[x, y, z]/〈xyz, xy2, x2z, x2y, x3〉. The betti
numbers should be:

total: 1 5 6 2

0: 1 . . .

1: . . . .

2: . 5 6 2

Compute the Ext modules by hand, then check your work in Macaulay 2. 3

Just as Tor1 has a non-homological meaning, there is also a very important
interpretation of Ext1:

Definition 8.3.4. Given two modules M and N , an extension of M by N is a
short exact sequence

0 −→ N −→ E −→M −→ 0.

Two extensions are isomorphic if there is a commutative diagram of exact se-
quences which is the identity on M and N ; an extension is trivial if E ≃M⊕N .

Theorem 8.3.5. There is a one to one correspondence between elements of
Ext1(M,N) and extensions of M by N .

Since an extension is a short exact sequence, if we apply the functor
Hom(M, •) to the above exact sequence, then we get a long exact sequence
of Ext modules:

· · · −→ Hom(M,E) −→ Hom(M,M)
δ−→ Ext1(M,N) −→ · · · .

It is easy to see that if E ≃ M ⊕N then the connecting map δ is zero. Given
an element of Ext1(N,M), how can we build an extension?

Exercise 8.3.6. Given a short exact sequence 0 −→ R
i−→ S

π−→ M −→ 0,

and a map R
j−→ N there is an obvious short exact sequence

0 −→ R
(j,i)−→ N ⊕ S −→ F −→ 0,
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where F is the cokernel of (j, i). Show that mapping F to M via (n, s)→ π(s)
yields an extension 0 −→ N −→ F −→ M −→ 0 (Hint: Snake lemma). With
this result in hand, take a free resolution F• of M , and apply Hom(•, N). An
element of Ext1(M,N) is in the kernel of the mapHom(F1, N) −→ Hom(F2, N)
so gives a map from F1/F2 to N . Then the theorem follows from our result and
the exact sequence:

0 −→ F1/F2 −→ F0 −→M −→ 0.

If you get stuck, you can find the proof on page 722 of Griffiths–Harris. 3

Exercise 8.3.7. (Yoneda Pairing [28], Exercise A3.27) It turns out that there
is a multiplicative structure on Ext. Prove that there is a (nonzero) map

Exti(M,N)×Extj(N,P ) −→ Exti+j(M,P ).

Hint: take a free resolution · · ·F1
d1−→ F0 −→ M. An element of Exti(M,N)

is a map Fi
θ−→ N such that θ ◦ di+1 = 0. An element of Extj(N,P ) can be

defined in similar fashion. Write it down and determine the pairing. 3

8.4 Double Complexes

A (first quadrant) double complex is a diagram:

...
...

...
↓ ↓ ↓

0 ←− C02
∂12←− C12

∂22←− C22 ←− · · ·
δ02 ↓ δ12 ↓ δ22 ↓

0 ←− C01
∂11←− C11

∂21←− C21 ←− · · ·
δ01 ↓ δ11 ↓ δ21 ↓

0 ←− C00
∂10←− C10

∂20←− C20 ←− · · ·
↓ ↓ ↓
0 0 0

where the maps commute and both rows and columns are complexes. We can
make this into a single complex D by defining

Dn =
⊕

i+j=n

Cij ,

and setting the differential to be

dn(cij) = ∂ij(cij) + (−1)nδij(cij).

Exercise 8.4.1. Check that dn · dn+1 = 0. 3
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Now suppose that the columns only have homology in the bottom position.
We can make a complex E• via Ei = Ci0/image δi1. It is easy to see that Di

surjects onto Ei, so we can call the kernel of this map Ki, and we get a short
exact sequence of complexes:

0 −→ K• −→ D• −→ E• −→ 0,

yielding a long exact sequence in homology.

Exercise 8.4.2. Prove that in fact Hj(D) ≃ Hj(E), i.e. Hj(K) = 0, for all j.
Instead of trying to get this fact from generalities, it is easiest to show that the
map from Di to Ei is both injective and surjective at the level of homology, so
you need to do a diagram chase. 3

By symmetry, if we have a complex whose rows only have homology at the
leftmost position we can define D as before, and a complex F analogous to E,
such that Hj(D) ≃ Hj(F ). Combining, we have:

Theorem 8.4.3. Suppose we have a first quadrant double complex, which has
homology along the rows only at the leftmost position, and homology along the
columns only at the bottom position. Then you can compute homology of D by
computing either the homology of E or of F .

So what? Well, this is exactly what proves we can compute Tori(M,N)
using either a resolution for M and tensoring with N , or vice versa. Do this
carefully and convince yourself that it is true. This is really just the tip of the
iceberg: what we are seeing is a special case of a spectral sequence, a fundamental
tool in many areas of algebra and topology. But it is best left for a class devoted
solely to homological algebra!

Supplemental Reading: A quick overview of derived functors appears in the
appendices of Matsumura’s book [64]; Eisenbud [28] has a more comprehensive
treatment. For the topological roots Munkres [71] is a good source. If a real
surface S is given “abstractly” as a bunch of patches Ui and change of coordi-

nate maps Ui
δij→ Uj ; then S is orientable if for every p ∈ S, the determinant

of the Jacobian matrix of δij is positive, but this does not really give an intu-
itive picture. In Sections 8.2 and 8.3 we discussed derived functors for a very
specific category, but where the core ideas are apparent. The reader who wants
to understand more of the theoretical underpinnings will need to study Abelian
categories, δ–functors, injective modules and the Baer criterion, and other de-
rived functors like local cohomology and sheaf cohomology. These topics are
covered in [28]; you can also consult a more specialized text like [98] or [42].



Chapter 9

Curves, Sheaves, and

Cohomology

In this chapter we give a quick introduction to sheaves, Čech cohomology, and
divisors on curves. The first main point is that many objects, in mathematics
and in life, are defined by local information–imagine a road atlas where each
page shows a state and a tiny fraction of the adjacent states. If you have two
different local descriptions, how can you relate them? In the road map analogy,
when you switch pages, where are you on the new page? Roughly speaking, a
sheaf is a collection of local data, and cohomology is the mechanism for “gluing”
local information together. The second main point is that geometric objects do
not necessarily live in a fixed place. They have a life of their own, and we can
embed the same object in different spaces. For an algebraic curve C, it turns out
that the ways in which we can map C to Pn are related to studying sets of points
(divisors) on the curve. If the ground field is C , the maximum principle tells us
that there are no global holomorphic functions on C, so it is natural to consider
meromorphic functions. Hence, we’ll pick a bunch of points on the curve, and
study functions on C with poles only at the points. Sheaves and cohomology
enter the picture because, while it is easy to describe a meromorphic function
locally, it is hard to get a global understanding of such things. The famous
theorem of Riemann–Roch tells us “how many” such functions there are for
a fixed divisor. We bring the whole discussion down to earth by relating the
Riemann–Roch theorem to the Hilbert polynomial, and discuss how we can use
free resolutions to compute sheaf cohomology.

Key concepts: sheaves, global sections, Čech cohomology, divisors, Riemann–
Roch theorem.
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9.1 Sheaves

Let X be a topological space. A presheaf F on X is a rule associating to each
open set U ⊆ X an algebraic object (vector space, abelian group, ring ...):

U −→ F(U).

We want some simple properties to hold: for an inclusion of open sets U ⊆ V
there is a homomorphism

F(V )
ρV U−→ F(U).

We also require that F(∅) = 0, ρUU = idF(U), and if U ⊆ V ⊆ W then
composition works as expected: ρV U ◦ ρWV = ρWU . If we wanted to be fancy,
we could say that a presheaf is a contravariant functor from a category where the
objects are open sets of X and the morphisms are inclusion maps to a category
of algebraic objects and homomorphisms. A sheaf is a presheaf which satisfies
two additional properties; before discussing this we give a few examples. The
paradigm of a sheaf is the set of some type of functions on X ; for example:

X F(U)
topological space continuous real valued functions on U.
complex manifold holomorphic functions on U.
algebraic variety regular functions on U.

Motivated by the examples above, we’ll call ρV U the restriction map; for s ∈
F(V ) we write ρV U (s) = s|U . Recall that being regular is a local property: a
function is regular at a point p if there is a Zariski open set U around p where we
can write the function as a quotient of polynomials with denominator nonzero
on U . With the examples above in mind, the properties that make a presheaf a
sheaf are very natural.

Definition 9.1.1. A presheaf F on X is a sheaf if for any open set U ⊆ X and
open cover {Vi} of U ,

1. whenever s ∈ F(U) satisfies s|Vi
= 0 for all i, then s = 0 in F(U).

2. for vi ∈ F(Vi) and vj ∈ F(Vj) such that vi|(Vi∩Vj) = vj |(Vi∩Vj), then there
exists t ∈ F(Vi ∪ Vj) such that t|Vi

= vi and t|Vj
= vj .

In English, the first condition says that something which is locally zero is
also globally zero, and the second condition says that if elements agree on an
overlap, then they can be glued together. The stalk of a sheaf at a point is the
direct limit (see Appendix A)

Fp = lim
−→

p∈U

F(U).

We obtain the stalk at a point p by taking all open neighborhoods Ui of p,
and then using the restriction maps to identify elements which agree on a small
enough neighborhood. This is identical to the notion of the germ of a function—
for example, if X ⊆ C and F is the sheaf of holomorphic functions, then given
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f1 ∈ F(U1) and f2 ∈ F(U2) with p ∈ Ui, f1 = f2 in Fp if they have the same
Taylor series expansion at p, so the stalk is the ring of convergent power series
at p. Hence, the stalk gives us very local information. A morphism of sheaves

F φ−→ G

is defined by giving, for all open U , maps

F(U)
φ(U)−→ G(U),

which commute with the restriction map. A sequence of sheaves and morphisms
is exact when it is exact locally, that is, at the level of stalks. At the opposite
extreme from the very local information given by the stalks, we have the global
sections of a sheaf. These are the elements of F(X), so are precisely the ob-
jects defined globally on X . One thing that can seem hard to grasp at first
is that it is possible for a sheaf to be nonzero, but for it to have no nonzero
global sections. Thus, there are no global objects, although the objects exist
locally. For example, suppose we want non-constant holomorphic functions on
a compact, complex one-dimensional manifold (curve). The maximum principle
tells us that there are no such things, even though on a small enough open set
(a disk, say) they certainly exist! Just as there are lots of different classes of
algebraic objects (vector spaces, fields, rings, modules), there are lots of types
of sheaves. For algebraic geometry, the most important sheaf is the sheaf of
regular functions OX on X , closely followed by sheaves of modules over OX . A
sheaf F of OX -modules is just what you expect: on an open set U , F(U) is an
OX(U)-module. For example, if Y is a subvariety of X , then Y is defined on an
open set U by a sheaf of ideals IY (U) ⊆ OX(U); hence IY is a OX -module.

We’ve been working primarily with graded modules over a polynomial ring;
how do these objects relate to sheaves? It turns out that any “nice” sheaf on Pn
“comes from” a finitely generated graded module over R = k[x0, . . . , xn]. What
this means is that we already know how to study sheaves on Pn.
Definition 9.1.2. Suppose we have a finitely generated, graded module M
over the polynomial ring R = k[x0, ..., xn], and a homogeneous f ∈ R.
Then on the Zariski open set Uf = V (f)c, define a sheaf M via M(Uf ) =
{m/fn, degree m = degree fn}. We call M the sheaf associated to M , and

write M = M̃ .

In fact, locally things are as nice as possible: for a prime ideal p the stalk
Mp is just the degree zero piece of the localization Mp. It is not obvious that
this really defines a sheaf. But it does–see [53], Section II.5 for the many details
omitted here. For a projective variety X , we can build sheaves in a similar
fashion.

Definition 9.1.3. A sheaf F of OX -modules is coherent if for every point x ∈ X
there is an affine open neighborhood Ux of x with F(Ux) ≃ M , where M is a
finitely generated module over O(Ux).
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Definition 9.1.4. A sheaf F of OX-modules is locally free of rank m if for
every point x ∈ X, Fx ≃ Omx .
Example 9.1.5. Regular functions on Pn: let R = k[x0, . . . , xn]. On the open
patch Ux0 , from the definition above we have

OPn(Ux0) = (Rx0)0,

which are quotients of the form f/xn0 , where f is homogeneous of degree n. We
also have the “twisted sheaf”

OPn(m) ≃ R̂(m).

For a coherent sheaf F on Pn we set F(m) = F ⊗ OPn(m) and Γ∗(F) =
⊕n∈ZF(n)(Pn). For a finitely generated graded R-module M there is a homo-

morphism of R-modules M −→ Γ∗M̃ , which is an isomorphism in high degree.
So the correspondence between coherent sheaves on Pn and finitely generated
graded modules over R is not quite perfect – for more, see [53] Exercise II.5.9.

What if F̃ is a coherent sheaf on an arbitrary projective variety X = V (I)?
Well, since mapping X into Pn corresponds to a map of rings from R to R/I ,

this means that the sheaf F̃ is associated to an R/I-module F . Since we have
a map from R to R/I , we can regard F as an R-module.

9.2 Cohomology and Global Sections

As we have seen, sheaves encode local data. Oftentimes it is easy to describe
what is happening locally, and hard to get a global picture. In particular, the
global picture involves patching things together = cohomology .

Example 9.2.1. For any open U ⊆ R let F(U) denote real valued continuous
functions on U . Suppose we’re interested in real valued continuous functions on
S1. Cover S1 with two open sets U1 and U2 each ≃ R, which overlap (at the
ends) in two little open sets, each also ≃ R. We define a map:

F(U1)⊕F(U2) −→ F(U1 ∩ U2)

via (f, g) −→ f − g. Then this map has a kernel and a cokernel. The kernel will
be precisely the global, real valued continuous functions on S1, written F(S1).

The Čech complex is just a generalization of the simple example above; keep
in mind that what we’re doing is building a cohomology where elements of H 0

are precisely the objects defined globally. For this reason, F(X) is also written
as H0(F); H0(F) is called the zeroth cohomology (or the global sections) of the
sheaf F . Let U = {Ui} be an open cover of X—that is, a collection of open
subsets of X whose union is X . When U consists of a finite number of open
sets, then the ith module Ci in the Čech complex is simply

⊕

{j0<...<ji}

F(Uj0 ∩ · · · ∩ Uji).
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Of course, in general a cover need not be finite; in this case it is convenient to
think of an element of Ci as an operator ci which assigns to each (i+ 1)-tuple
(j0, . . . , ji) an element of F(Uj0 ∩ · · · ∩ Uji). We build a complex:

Ci =
∏

{j0<...<ji}

F(Uj0 ∩ · · · ∩ Uji)
di

−→ Ci+1 =
∏

{j0<...<ji+1}

F(Uj0 ∩ · · · ∩ Uji+1),

where di(ci) is defined by how it operates on (i+ 2)-tuples, which is:

di(ci)(j0, . . . , ji+1) =
i+1∑

k=0

(−1)kci(j0, . . . , ĵk, . . . , ji+1)|F(Uj0∩···∩Uji+1
).

Now we define the Čech cohomology of a cover U as the cohomology of this
complex.

Exercise 9.2.2. (Čech cohomology with Z-coefficients) The constant
sheaf on a space X is defined by giving Z the discrete topology, and then set-
ting Z(U) to be continuous functions from U to Z. (remark: there is an easy
extension of this definition from Z to any abelian group)

1. Is it true that Z(U) ≃ Z for any open set U? If not, what additional
assumption on U would make this true?

2. Compute the Čech cohomology of the constant sheaf Z on S2 using the
cover of the open top hemisphere, and the two open bottom “quarter-
spheres” (all opens slightly enlarged so that they overlap) and see what
you get. Your chain complex should start with these three opens (each of
which is topologically an R2 ), then the three intersections (each of which
is again an R2 ) and then the triple intersection, which is two disjoint R2 ’s.
Of course, you’ll need to write down the differentials in this complex (it
is not bad, and will help you see how the definition works!).

3. Next, use a hollow tetrahedron to approximate S2, and write down the
Čech complex corresponding to open sets which are (slightly enlarged
so they overlap) triangles. Compare this to the exercise on simplicial
cohomology in Chapter 6.

4. What happens if you use the open cover consisting of the top hemisphere
and bottom hemisphere?

3

Formally, the sheaf cohomology is defined as a direct limit, over all open
covers, of the cohomology of the covers. Of course, this is no help at all for
actually computing examples, but it can be shown that if all intersections of the
open sets of a cover have no cohomology except H 0, then that cover actually
can be used to compute the cohomology (such a cover is called a Leray cover).
Can you see which of the covers above is a Leray cover? A very important fact
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is that the open cover of Pn given by {Uxi
}ni=0 is a Leray cover (see [53] III.3

for a proof).
As we have seen many times, one way to understand a module is to fit it into

an exact sequence. In the situation of interest to us (when the Fi are sheaves of
modules on a smooth algebraic variety X) we have the following key theorem:

Theorem 9.2.3. Given a short exact sequence of sheaves (remember that exact
means exact on stalks)

0 −→ F1 −→ F2 −→ F3 −→ 0,

there is a long exact sequence in sheaf cohomology

· · · −→ H i−1(F3) −→ H i(F1) −→ H i(F2) −→ H i(F3) −→ H i+1(F1) −→ · · · .
The proof rests on an alternate approach to defining sheaf cohomology. First,

the global section functor is left exact and covariant. Second, injective resolu-
tions of OX -modules exist (in general, the existence of injective resolutions is
not automatic), so the results of Chapter 8 imply that a short exact sequence
of sheaves yields a long exact sequence in the higher derived functors of H 0.
Showing that these higher derived functors agree with the Čech cohomology
would suffice to prove the theorem. This (along with the existence of an injec-
tive resolution) requires some work, and can be found in Section III.4 of [53].
The most important instance of a short exact sequence of sheaves is the ideal
sheaf sequence. For a variety X sitting inside Pn, say X = V (I), we have the
good old exact sequence of modules:

0 −→ I −→ R −→ R/I −→ 0.

Since exactness is measured on stalks, if we take an exact sequence of modules
and look at the associated sheaves, we always get an exact sequence of sheaves.
So we have an exact sequence of sheaves on Pn:

0 −→ IX −→ OPn −→ OX −→ 0.

Exercise 9.2.4. Prove that for any m, H i(OPn(m)) = 0 unless i = 0 or i = n.
Use the definition of Čech cohomology and the fact that the standard open cover
of Pn is Leray. Hint: [53] Theorem III.5.1. 3

In particular, if n > 1, then

H1(OPn(m)) = 0.

This means that for any projective variety X ⊆ Pn, n ≥ 2 we’ll always have an
exact sequence:

0 −→ H0(IX(m)) −→ H0(OPn(m)) −→ H0(OX(m)) −→ H1(IX(m)) −→ 0.

This is what we were computing when we dealt with points back in Chapter 7!

Exercise 9.2.5. In Section 4 we’ll see that H 0(OP1(3)) is a finite dimensional
vector space. Use the definition of Čech cohomology and the standard open
cover of P1 to compute a basis of H0(OP1(3)) (you should find 4 elements).
For X a point, prove H0(OX) is one-dimensional, and all higher cohomology
vanishes. 3



9.3. DIVISORS AND MAPS TO PN 123

9.3 Divisors and Maps to Pn
A major step in geometry came when people realized that it was important to
distinguish between intrinsic properties of an object and extrinsic properties:
those properties that depend on how the object is embedded in some space. An
embedding of a variety X is an isomorphism between X and a variety in Pn. A
simple example of this is the projective line. First, it has a life of its own, as
plain old P1. On the other hand, it can also be embedded in P2. Let a, b be
homogeneous coordinates on P1, and x, y, z be homogeneous coordinates on P2;
we now embed P1 in two different ways. First, letP1 f−→ P2,

be defined by

(a : b)
f−→ (a2 : ab : b2).

The image of f lies in the region of P2 covered by the open sets Ux and Uz. On
Ux, (x : y : z) = (1 : yx : zx) which we write affinely as ( yx ,

z
x). The inverse map h

from Ux to Ua which sends (s, t) −→ s takes ( yx ,
z
x) to y

x , which in homogeneous
terms yields (

1 :
y

x

)
=

(
1 :

ab

a2

)
=

(
1 :

b

a

)
= (a : b) ,

so on Ua, h ◦ f is the identity. A similar computation on Uz shows that f is an
embedding. The image of f is V (xz − y2), and so the Hilbert polynomial is

HP (k[x, y, z]/〈zx− y2〉, t) = 2t+ 1.

Now let P1 g−→ P2,

be defined by

(a : b)
g−→ (a : b : 0).

This is again an embedding. But now the Hilbert polynomial of the image is

HP (k[x, y, z]/〈z〉, t) = t+ 1.

In particular, the Hilbert polynomial depends upon the embedding. Of course,
we knew this already, because the lead coefficient of the Hilbert polynomial of
a curve is the degree. The point is that the same object (plain old P1) can
have different incarnations. What we are seeing is that there are two parts to
“understanding” a variety—what it is intrinsically, and in what ways we can
embed it in some projective space. For the remainder of this chapter we restrict
to the case of smooth, complex algebraic curves. It turns out that the way to
attack the second part of the problem is by studying sets of points on the curve
C. First, we need some generalities:

A compact Riemann surface is a compact, complex manifold of dimension one
(for the definition of manifold, see [49], the intuitive idea is that a complex one-
dimensional manifold “locally looks like” C ). The word surface appears because
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there are two real dimensions; topologically these gadgets are the objects Xg

which appeared in Exercise 8.1.7. Recall that the genus g is just the number of
holes in Xg, so 2g is the rank of the first simplicial homology of a triangulation
of Xg. The key fact is that any compact Riemann surface is a smooth algebraic
curve. This is pretty amazing - why should there be any algebraic structure
at all? The relevance of these facts to the problem of mapping a curve to
projective space is that we can employ tools of complex analysis to study the
problem. Since there are no global holomorphic functions on a curve, it is natural
to consider meromorphic functions: pick a bunch of points on the curve, and
consider functions on C with poles only at the points. This is the essential idea.

In the last section we touched on the notion of an ideal sheaf. Since a curve
is one-dimensional, if we look at the ideal of a point (on some open patch), the
ideal will be principal. Now, of all the ideals in the world, only one type of
ideal corresponds to a locally free sheaf—those which are locally principal! The
second thing to notice is that if an ideal sheaf is defined locally by a polynomial
f , and if we want to consider meromorphic functions with poles only at the
points where f vanishes, then locally this sheaf is generated by 1/f . Pick a
(finite) set of points pi where poles will be allowed (possibly with order greater
than one, but always finite).

Definition 9.3.1. A divisor on a curve C is a finite integral combination of
points of C:

D =
∑

aipi.

The degree of D is
∑
ai.

To a divisor D we associate a locally free sheaf, usually written as O(D) or
L(D). To do this, take a cover of C by open sets, such that at each point pi
of D, there is a little open disk Ui with local coordinate zi, centered at pi (i.e.
zi(pi) = 0). For a function f defined on Ui, a power series expansion of f will
have the form

f(zi) = zni (c0 + c1zi + c2z
2
i + · · · ), c0 6= 0.

If n > 0 then f has a zero of order n at pi, written n · pi ∈ Z(f); if n < 0 then
f has a pole of order n at pi, written −n · pi ∈ P (f). Now set

div(f) = Z(f)− P (f).

Definition 9.3.2. The sheaf O(D) consists on an open set U of meromorphic
functions f on U such that

div(f) +D|U ≥ 0.

So if ai > 0 this means we’re allowing a pole at pi of order at most ai, and
if ai < 0 this means we require a zero of order at least ai. If we can find global
sections of O(D), then we’ll have a chance of mapping C to some projective
space, by using the global sections (which are meromorphic functions) as our
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map. In the next section we’ll prove that H0(O(D)) is a finite dimensional com-
plex vector space; the Riemann–Roch problem is to determine dimCH0(O(D)).
If {f0, . . . , fk} is a basis for H0(O(D)), then we obtain a map

C
(f0,...,fk)−→ Pk.

D is said to be very ample if H0(O(D)) defines an embedding; if deg(D) ≥ 2g,
then ([53], IV.3) D is very ample.

Definition 9.3.3. Two divisors D1, D2 are linearly equivalent (D1 ≃ D2) if
they differ by the divisor of a meromorphic function.

Example 9.3.4. On P1 let’s consider the divisor D = 3p, where p is the point
(1 : 0). Write k[X,Y ] for the coordinate ring of P1, and let x denote X/Y and
y denote Y/X . On UY the ideal sheaf of D is 1 since the support of D does not
meet UY . On UX the ideal sheaf of D is generated by y3. A point given globally
as (p0 : p1) is written locally on UY as p0/p1, and when we change from UY to
UX , it is transformed to p1/p0, so on UY ∩ UX , x = 1/y. We have that

O(D)(UY ) = 1 · O(UY ), O(D)(UX) = 1/y3 · O(UX).

Thus, H0(O(D)) has a basis consisting of the following pairs of elements of
(O(D)(UY ),O(D)(UX )):

(x3, 1), (x2, y), (x, y2), (1, y3).

We can think of these as elements of the coordinate ring

X3, X2Y,XY 2, Y 3.

Warning: although a homogeneous polynomial has a well defined zero set on
projective space, it is NOT a function on projective space. But taken together,
the global sections give us a map from P1 to P3 by sending

(a : b) −→ (a3 : a2b : ab2 : b3).

The image of this map is our old friend the twisted cubic. Notice that if we slice
the image with a hyperplane, we get three points. This is because a generic
hyperplane of P3 corresponds exactly to the vanishing of a generic cubic on P1.

i1 : R=ZZ/31991[x,y];

i2 : S=ZZ/31991[a,b,c,d];

i3 : map(R,S,matrix{{x^3,x^2*y,x*y^2,y^3}})

3 2 2 3

o3 = map(R,S,{x , x y, x*y , y })
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o3 : RingMap R <--- S

i4 : kernel o3

2 2

o4 = ideal (c - b*d, b*c - a*d, b - a*c)

o4 : Ideal of S

i5 : betti res coker gens o4

o5 = total: 1 3 2

0: 1 . .

1: . 3 2

i6 : hilbertPolynomial coker gens o4

o6 = - 2*P + 3*P

0 1

Exercise 9.3.5. Consider the cubic curve C = V (X 3 + Y 3 + Z3) ⊆ P2. We
pick a divisor D of degree six and use the global sections as a map. An easy
choice is to take the intersection of C with the curve V (XY ), so that D consists
of two sets of three collinear points. Check that on UZ

{
x

y
, 1,

1

y
,
y

x
,
1

x
,

1

xy

}

are sections, and as in the previous example we can write these globally as

{X2, XY,XZ, Y 2, Y Z, Z2}.

It is not obvious that these are all the sections, but we’ll see that this is so in
the next section. The observant reader may have noticed that the monomials
we wrote down above are sections of OP2(2), so we actually have a map φ from
all of P2 to P5. The image of P2 is called the Veronese surface; φ carries the
curve C along for the ride. First part: Let (a0 : . . . : a5) be coordinates on P5;
show that the Veronese surface is defined by the vanishing of the two by two
minors of



a0 a1 a2

a1 a3 a4

a2 a4 a5


 .

Second part: Since X3 + Y 3 + Z3 = 0, so does X(X3 + Y 3 + Z3), which we
can rewrite as a2

0 + a1a3 + a2a5 = 0. Find similar relations and determine the
equations for the image of C in P5. Finally, with the equations in hand, have
Macaulay 2 tell you the Hilbert polynomial, and see if we really get a curve of
degree six. A generic hyperplane in P5 corresponds to a general quadric in P2,
which meets C in six points.
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i2 : R=ZZ/101[a_0..a_5];

i3 : S=ZZ/101[X,Y,Z];

i4 : m = basis(2,S)

o4 = | X2 XY XZ Y2 YZ Z2 |

1 6

o4 : Matrix S <--- S

i5 : map(S,R,m)

2 2 2

o5 = map(S,R,{X , X*Y, X*Z, Y , Y*Z, Z })

o5 : RingMap S <--- R

i7 : transpose gens ker o5

o7 = {-2} | a_4^2-a_3a_5 |

{-2} | a_2a_4-a_1a_5 |

{-2} | a_2a_3-a_1a_4 |

{-2} | a_2^2-a_0a_5 |

{-2} | a_1a_2-a_0a_4 |

{-2} | a_1^2-a_0a_3 | --are these really the minors?

i8 : n=matrix{{a_0,a_1,a_2},{a_1,a_3,a_4},{a_2,a_4,a_5}}

o8 = | a_0 a_1 a_2 |

| a_1 a_3 a_4 |

| a_2 a_4 a_5 |

i9 : minors(2,n) == ker o5

o9 = true

i10 : p=ideal(a_0^2+a_1*a_3+a_2*a_5,

a_0*a_1+a_3^2+a_4*a_5,

a_0*a_2+a_3*a_4+a_5^2);

o10 = Ideal of R

i11 : q = ((ker o5)+ p);

o11 : Ideal of R
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i12 : betti res coker gens q

o12 = total: 1 9 16 9 1

0: 1 . . . .

1: . 9 16 9 .

2: . . . . 1

i13 : hilbertPolynomial coker gens q

o13 = - 6*P + 6*P

0 1

3

9.4 Riemann–Roch and Hilbert Polynomial

Redux

The cornerstone of the theory of algebraic curves is the Riemann–Roch theorem,
which answers the question we studied last section: How many global sections
does O(D) have? We start by proving that H0(O(D)) is a finite-dimensional
complex vector space; we write h0(O(D)) for dimC H0(O(D)).

Definition 9.4.1. A holomorphic (meromorphic) one-form ω is defined on a
local patch U1 with coordinate z1 as g1(z1)dz1, where g1(z1) is holomorphic
(meromorphic). On a patch U2 with coordinate z2 such that U1∩U2 is nonempty,
g1(z1)dz1 transforms into g2(z2)dz2 via the chain rule. The divisor of ω is the
divisor defined by the gi(zi).

If ω1 and ω2 are holomorphic one-forms, then the ratio of their coefficient
functions is meromorphic and we obtain a well defined divisor class K, called
the canonical divisor. On a curve C, the sheaf of holomorphic one-forms Ω1

C

corresponds to the sheaf O(K). The vector space of global holomorphic one-
forms has h0(Ω1

C) = g, where g is the genus of the underlying real surface. This
is non-trivial, for a proof, see [48].

Example 9.4.2. On P1 we take the one-form dy on UX . Then since we send
(p1/p0) on UX to (p0/p1) on UY , the map sends a local coordinate y to 1/y = x.
So dx = −dy/y2, i.e. we get a pole of order two, and the canonical divisor onP1 is −2 times a point.

Exercise 9.4.3. Prove that on P1 any two points are linearly equivalent. 3

To prove that h0(O(D)) is finite, consider a divisor D on C. For simplicity,
let’s assume that the points of D are distinct, so D =

∑m
i=1 pi. Then h0(O(D))

is bounded by deg(D)+1: we map an element of H0(O(D)) to its residues at the
points of D (if your complex analysis is rusty and you are thinking “What fresh
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hell is this?”1, you may want to cut to Appendix B for a refresher). This gives us
a map to C deg(D) , and obviously the constant functions are in the kernel of the
map; in fact any two elements which have the same principal part are equal up
to constants, since their difference is holomorphic. So h0(O(D)) ≤ deg(D) + 1.
Next we study the cokernel of the map H0(O(D)) → C deg(D) . Let Di be little
disks centered at the pi, with ∂Di = γpi

, and put W = C − ∪Di. If we have a
meromorphic one-form α on C with simple poles at the pi, then

∑

p∈C

respα =
∑

pi

1

2πi

∫

γpi

α = − 1

2πi

∫

∂W

α = 0,

since α is holomorphic on W . Thus, if we take f ∈ H0(O(D)) and ω ∈ H0(Ω1)
we have that ∑

p∈C

resp(f · ω) = 0.

In English, each holomorphic one-form imposes a condition on residues at the
points of D, unless the one-form vanishes at D. Thus, we get g−h0(O(K−D))
conditions. It can be shown that they are independent, and so:

h0(O(D)) ≤ deg(D) + 1− g + h0(O(K −D));

in fact, equality holds:

Theorem 9.4.4 (Riemann–Roch).

h0(O(D)) = deg(D) + 1− g + h0(O(K −D)).

Now that we have at least sketched Riemann–Roch, let’s see what it has
to say about things we already know. For a curve C embedded in Pn with
C = V (I), we know we have a free resolution of the form:

0 −→ Fn+1 −→ Fn −→ · · · −→ R −→ R/I −→ 0.

This sequence remains exact when we pass to associated sheaves, since it is exact

locally. We have OC = R̃/I , and the alternating sum of the dimensions of the
cohomology modules (usually called the sheaf-theoretic Euler characteristic)

χ(OC) =
∑

(−1)ihi(OC)

may be computed as the alternating sum
∑

(−1)iχ(F̃i). If a basis {f0, . . . , fn}
for H0(O(D)) is used to map C −→ Pn, then a hyperplane V (

∑n
i=0 aixi) ⊆ Pn

meets C when
∑n

i=0 aifi = 0. We can use Riemann-Roch to compute the
Hilbert polynomial of R/IC : the Fi are free modules, and [53] Theorem III.5.1
tells us that

Hi(OPn(t)) = 0, i ≥ 1, t ≥ 0 and H0(OPn(t)) = Rt.

1Dorothy Parker
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So it follows that
χ(OC(tD)) = HP (R/I, t).

The Hilbert polynomial has reappeared! In sum, the Hilbert polynomial which
we defined in Chapter 2 is indeed the same thing as the Hilbert polynomial
you’ll find in Section III.5 of [53].

Exercise 9.4.5. In any of the books on curves listed in the references, you can
find a proof of Serre duality, which for a divisor D on a curve says

dimCH1(O(D)) = h0(O(K −D)).

Now assume D is effective: D ≃ ∑
aipi with ai ≥ 0. Use Serre duality to give

another proof of Riemann–Roch as follows: If D is the divisor used to embed C
in Pn, then we have an exact sequence

0 −→ It·D −→ OC −→ Ot·D −→ 0.

1. Find an appropriate object to tensor with so that the above sequence be-
comes:

0 −→ OC −→ OC(t ·D) −→ Ot·D −→ 0.

This shows that
χ(OC(t ·D)) = χ(OC) + χ(Ot·D).

2. By definition χ(OC) = h0(OC) − h1(OC). Combine Serre duality (with D
the empty divisor), the fact that h0(OC(K)) = g and the exercise at the end of
the last section (that χ(Opoint) = 1) to obtain:

χ(OC(t ·D)) = 1− g + deg(D) · t.

3

Example 9.4.6. For Example 9.3.4, we know that P1 has genus zero, since the
corresponding real manifold is S2. We also know that the canonical divisor on P1

is −2 times a point. Thus, OP1(K− tD) will have no global sections, since there
are no meromorphic functions with 3t+ 2 zeroes and no poles. Riemann–Roch
then yields that

h0(OC(t ·D)) = 3t+ 1,

which is the Hilbert polynomial of the twisted cubic. For Exercise 9.3.5, we use
the fact that a smooth plane curve C of degree d has genus

g =

(
d− 1

2

)
.

To prove this, let R = k[x, y, z], take a free resolution and pass to sheaves:

0 −→ R(−d+ t) −→ R(t) −→ R(t)/IC −→ 0,

0 −→ OP2(t− d) −→ OP2(t) −→ OC(t) −→ 0.
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We obtain

1− g + deg(D) · t = χ(OC(t ·D)) = HP (R/IC , t)

=

(
t+ 2

2

)
−

(
t− d+ 2

2

)
= dt+ 1−

(
d− 1

2

)
.

In particular, a smooth plane cubic has genus one. From Riemann–Roch and the
fact that h0(O(K)) = g, it follows that degree K = 2g−2, so K has degree zero
on a genus one curve. For a divisor of degree six, we find h0(OC(K−tD)) = 0 for
t positive, so Riemann–Roch gives another reason that the Hilbert polynomial
in Exercise 9.3.5 is 6t.

Exercise 9.4.7. Suppose D is an effective divisor on a curve C, and let φK

be the map defined by the canonical divisor C
φK−→ Pg−1. Let D be the linear

subspace of Pg−1 spanned by φK(D). Prove the Geometric Riemann–Roch
theorem: h0(O(D)) = deg(D) − dimD. Hint: relate the codimension of D to
the space H0(O(K −D)) of holomorphic differentials which vanish on D. 3

Example 9.4.8. As in Exercise 9.3.5, take a smooth cubic C ⊆ P2, but this
time take a divisor D of degree five. Since a divisor of negative degree has
no global sections (since there are no global holomorphic functions on C, there
are certainly no global holomorphic functions which in addition have prescribed
zeroes), h0(O(K−D)) = 0 (we say that D is nonspecial). Riemann–Roch shows
that h0(O(D)) = 5 + 1 − 1 = 5, hence we obtain a map of C to P4. To find
HF (R/IC , t), we just use Riemann–Roch to compute χ(OC(tD)). Let’s see how
many quadrics are in IC : by Riemann–Roch,

HF (R/IC , 2) = χ(OC(2D)) = deg(2D) + 1− g = 10.

But in P4, there are
(
4+2
2

)
= 15 quadrics. Hence, IC contains 5 quadrics. Let’s

keep going: HF (R/IC , 3) = 15, whereas there are
(
4+3
3

)
= 35 cubics in five

variables. Each quadric spawns five cubics (multiply by the variables), so there
are 25 cubics in IC which come from quadrics. Since there are only 20 cubics
in IC , there must be at least five linear dependencies, i.e. there are at least five
linear syzygies on the quadrics.

One can go on in this way. We say that a map is given by a complete linear
system if the map is defined by using all the global sections of some divisor. If C
is embedded by a complete linear system corresponding to a nonspecial divisor
D, Castelnuovo’s base point free pencil trick ([28], Exercise 17.18) shows that
H1(IC(m)) = 0 if m 6= 2. If D is a very ample divisor such that H 1(IC(m)) = 0
for all m, then the homogeneous coordinate ring R/IC is called projectively
normal or arithmetically Cohen–Macaulay (fear not, this is explained in the
next chapter). This means that the length of a minimal free resolution of R/IC
is equal to the codimension of C, which for the example above is obviously three.
It turns out that there are exactly five linear syzygies, and IC is closely related
to this five-by-five matrix of linear forms.
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Exercise 9.4.9. Pick a divisor of degree five on a smooth plane cubic curve and
check the claims above in Macaulay 2. Once you have the matrix of linear forms,
try the Macaulay 2 command pfaffians and see what you get. For more on this
example, see Buchsbaum and Eisenbud [22]. Now try mimicking the argument
above for D of degree six, and check your result against the resolution that
appeared in Exercise 9.3.5. 3

We close by returning to the central point of this chapter. A curve C does
not live in a projective space until we choose an embedding, which depends
on a divisor D. Once we choose D and use the sections H 0(OC(D)) = V to
map C −→ P(V ), then it makes sense to study the free resolution of R/IC .
So the big question is: how does this free resolution relate to the choice of D?
Here’s an example of a famous question along these lines: What does the free
resolution of R/IC look like when C is embedded by the canonical divisor K?
For a curve of genus greater than two which is not hyperelliptic (which means C
does not possess a divisor D with deg(D) = 2 and h0(O(D)) = 2; in particular
C does not admit a 2 : 1 map to P1), K gives an embedding; Mark Green
has conjectured that if C is sufficiently general in the family of curves of fixed
genus, then there are no syzygies except linear ones for the first ⌊ g−3

2 ⌋ steps.
For substantial recent progress on this, see Teixidor [94] and Voisin [96].

Exercise 9.4.10. Do the Macaulay 2 tutorial on Divisors, and then try the
tutorial on canonical embeddings of plane curves and gonality. These are super
exercises and also lots of fun! 3

Mea maxima culpa: In this chapter we have sketched material more properly
studied in a semester course. We have either simply stated or at best tersely
sketched major theorems; we moved without justification between regular and
holomorphic functions and ignored important facts (e.g. for a coherent sheaf F
on a projective variety defined over a field k, H i(F) is a finite dimensional k
vector space). All of these failings can be remedied by digging into one of the
texts below. For those with a course in one complex variable (which we have
assumed), the little book of Griffiths [48] is an excellent place to start.

Supplemental Reading: For those who want a more algebraic approach, Ful-
ton [40] is nice. However, just as the fundamental theorem of algebra is best
proved using complex analysis, I think that the complex analytic viewpoint is
the proper way to approach the subject for the first time. Miranda [69] is very
comprehensive, encompasses both viewpoints, and is a nice read. Hartshorne’s
chapters on cohomology and on curves are also very good; in fact, it probably
makes sense for a first pass at Hartshorne to start at Chapter 4. Other refer-
ences for curves are [2], [18], [33], [74], [97]. See pages 166–167 of Harris [52]
for more on the Hilbert polynomial and Riemann–Roch. In Chapter 8 of [95],
Eisenbud gives a beautiful explanation of how to compute sheaf cohomology. A
closely related question concerns the computation of sheaf-theoretic versions of
Ext; for this, see Smith [85].



Chapter 10

Projective Dimension,

Cohen–Macaulay Modules,

Upper Bound Theorem

Since free modules are projective, a module M always has a projective (possi-
bly infinite) resolution. The minimum length of a projective resolution is the
projective dimension of M , written pdim(M). When M is a finitely generated,
graded module over k[x1, . . . , xn] then we saw in Chapter 3 that pdim(M) is just
the length of a minimal free resolution. In this chapter we examine the relation
between pdim(M) and the geometry of M . When M is finitely generated over
a graded or local ring R with maximal ideal m, we can characterize pdim(M)
as

sup{i|Tori(M,R/m) 6= 0}.

An important invariant of a module M is its depth, which we define and relate
to the associated primes of M . The famous Auslander–Buchsbaum theorem
gives a precise relationship between depth(M) and pdim(M).

We then investigate Cohen–Macaulay modules, which are modules where
there is a particularly close connection between the projective dimension and
the geometry of the associated primes. We briefly revisit the material of Chapter
9, discussing the relationship between the linear system used to map a curve
C to Pnk and the Cohen–Macaulay property for the R = k[x0, . . . , xn]-module
R/IC . Finally, we tie everything up by sketching Stanley’s wonderful proof
of the upper bound conjecture for simplicial spheres, where Cohen–Macaulay
modules play a leading role.

Key concepts: projective dimension, Krull dimension, Cohen–Macaulay, upper
bound theorem for simplicial spheres.

133
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10.1 Codimension, Depth, Auslander–

Buchsbaum Theorem

In Chapter 3, we defined the codimension of a homogeneous ideal I ⊆ R =
k[x0, . . . , xn] as nminus the degree of the Hilbert polynomial ofR/I , and showed
that this was sensible from a geometric standpoint. While this definition had
the virtue of being easy to grasp and easy to compute, it does not make sense
for other rings. However, it is compatible with the following general definition:

Definition 10.1.1. For a prime ideal P , the codimension of P is the supremum
of chains of prime ideals contained in P . For arbitrary I, the codimension of I
is the smallest codimension of a prime containing I.

Example 10.1.2. For I = 〈x, y, z〉 ⊆ k[x, y, z], we have a chain of primes

0 ( 〈x〉 ( 〈x, y〉 ( 〈x, y, z〉,
so I has codimension at least three (we count the number of strict inclusions).
For I = 〈xy, xz〉 ⊆ k[x, y, z], 〈x〉 and 〈y, z〉 are primes minimal over I . Since
〈x〉 has codimension one and 〈y, z〉 has codimension two, the codimension of I
is one.

The word height is sometimes used for codimension, but codimension sug-
gests complementary dimension, which is geometrically sensible. For exam-
ple, the geometric object V (xy, xz) corresponds to a line V (x) and a point
V (y, z) in P2; the line is defined by a single equation, so has dimension one less
than the dimension of the ambient space. Notice that for the chain of primes
0 ( 〈x〉 ( 〈x, y〉 ( 〈x, y, z〉 it is not clear that there could not be other, longer
chains of primes.

Exercise 10.1.3. Codimension for some ideals in k[x, y, z]

1. Prove that the chain exhibited for I = 〈x, y, z〉 is maximal. Hint: localize
and quotient.

2. What is the codimension of 〈xy, xz, yz〉?

3. How about of 〈xy, x2〉?
3

When commutative algebraists talk about the dimension of a ring R, they
usually mean the Krull dimension dim(R), which is the length of the longest
chain of prime ideals contained in R. For example, a PID has Krull dimension
one. It is obvious that a polynomial ring in n variables has dimension at least
n (by induction). A polynomial ring over a field is catenary, which means that
any two maximal chains of primes between prime ideals P and Q have the same
length. So if R is a polynomial ring over a field, then

codim(I) = dim(R)− dim(R/I).
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Our earlier remarks then show that dim(k[x0, . . . , xn]/I) is equal to the dimen-
sion of the affine variety V (I) ⊆ A n+1 , so for homogeneous I the Krull dimension
of R/I is one larger than the dimension of the projective variety V (I) ⊆ Pn.
For the example I = 〈xy, xz〉 ⊆ k[x, y, z], as an affine variety, V (I) consists of
a plane and a line, so has dimension two. As a projective variety, V (I) is a line
and a point, so has dimension one. For a proof that the Krull dimension of R
modulo a homogeneous ideal is really one more than the dimension as defined in
terms of the Hilbert polynomial, the best route is via Noether normalization, for
example, see [3]. A nice exposition of the equivalence of the various definitions
of dimension may be found in Balcerzyk and Jozefiak [6].

Definition 10.1.4. The dimension of a finitely-generated R–module M is de-
fined in terms of the annihilator ideal of M :

dim(M) := dim(R/ann(M)).

As mentioned in Chapter 3, a graded ring R behaves very much like a local
ring, where the ideal R+ generated by all elements of positive degree plays the
role of maximal ideal. So in the graded case, we’ll call R+ “the” maximal idealm. Back in Chapter 3 we also defined a regular sequence: for a polynomial
ring R and graded R-module M a regular sequence on M is just a sequence of
homogeneous polynomials {f1, . . . , fk} ⊆ m such that f1 is a nonzero divisor on
M and fi is a nonzero divisor on M/〈f1, . . . , fi−1〉M for all i > 1. To define a
regular sequence for a module over a local ring we simply drop the requirement
of homogeneity (notice that in a local ring, any f 6∈ m is a unit–see Exercise
A.2.7). The depth of a module M over a graded or local ring is:

Definition 10.1.5. depth(M) = sup{j|{f1, . . . , fj} ⊆ m is a regular sequence
on M}.

Example 10.1.6. Let R = k[x1, . . . , xn]. If

M = R⊕R/m,
then every nonconstant homogeneous element is a zero divisor, since R/m is a
summand of M , so depth(M) = 0. Since R is a summand of M , the annihilator
of M is zero, so dim(M) = n. Notice that the only prime ideal minimal over
ann(M) is the zero ideal, but Ass(M) = {(0),m}. In particular, Ass(M) can
strictly contain the set of primes minimal over ann(M).

Lemma 10.1.7. If M is a finitely generated module over a Noetherian local
ring R, then depth(M) ≤ dim(M).

Proof. First, by Exercise 1.3.11 the union of the associated primes of M is the
set of zero-divisors on M . Let I = ann(M). The proof is by induction on the
depth of M , with the base case obvious. Now suppose {f1, . . . , fk} is a maximal
regular sequence on M . Then f1 is a nonzero divisor on M , so is not contained
in any associated prime of M . In particular, f1 is not contained in any prime



136 CHAPTER 10. PROJECTIVE DIMENSION

minimal over I . Therefore the dimension of R/〈I, f1〉 is strictly less than the
dimension of R/〈I〉: consider a maximal chain of primes

P0 ⊆ P1 ⊆ · · · ⊆ Pn ⊆ R/〈I〉.

The candidates for P0 are just the minimal associated primes of I . Of course,
a prime ideal in R/〈I, f1〉 is just a prime ideal of R/〈I〉 which contains f1, so
since f1 is not contained in any minimal prime of I this means that

dim(R/〈I, f1〉) < dim(R/〈I〉).

But depth(M/f1M) = k − 1, which by the inductive hypothesis is at most
dim(R/〈I, f1〉), so we’re done.

Exercise 10.1.8. In the graded case, use a short exact sequence and Hilbert
polynomials to give a quick proof of Lemma 10.1.7. 3

When M = R, it is common to write depth(I) to mean the length of a
maximal regular sequence (on R) contained in the ideal I ; with this notation
depth(I) ≤ codim(I). For R = k[x1, . . . , xn] we have depth(R) = n, and if
I ⊆ R then depth(I) = codim(I). The main result relating depth and projective
dimension is the famous Auslander–Buchsbaum theorem.

Theorem 10.1.9 (Auslander–Buchsbaum). For a finitely generated module
M over a Noetherian graded or local ring R, if pdim(M) is finite, then

pdim(M) + depth(M) = depth(R).

The proof requires some work; the interested reader can find complete details
in [28]. On the other hand, it is fun to prove the following special case.

Exercise 10.1.10. Let M be a finitely generated graded module over R =
k[x1, . . . , xn]. Without using Auslander–Buchsbaum, prove that if m =
〈x1, . . . , xn〉 is an associated prime of M , then depth(M) = 0 and pdim(M) = n.
Here is an outline: since m is an associated prime of M , there exists α ∈ M
such that m is the annihilator of α. But α generates a submodule Rα of M , so
we have an exact sequence:

0 −→ Rα −→M −→M/Rα −→ 0.

Tensoring with R/m ≃ k yields a long exact sequence of Tor ′s:

· · · −→ Tori+1(k,M/Rα) −→ Tori(k,Rα) −→ Tori(k,M)

−→ Tori(k,M/Rα) −→ Tori−1(k,Rα) −→ · · ·

Now, we know that as an R-module Rα ≃ k, and the minimal free resolution of
k over R is the Koszul complex, hence

Torn(k,Rα) 6= 0.

How does this complete the proof? 3
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10.2 Cohen–Macaulay Modules and Geometry

In this section, we study Cohen-Macaulay rings and modules; we begin with a
remark of Mel Hochster (cited in [21]):

“Life is really worth living in a Cohen–Macaulay ring”.

One reason is that there are nice connections to geometry; for example, all the
local rings of a smooth variety are Cohen-Macaulay, and to combinatorics (see
the next section).

Definition 10.2.1. A finitely generated module M over a Noetherian local ring
R is Cohen–Macaulay if depth(M) = dim(M).

A local ring R is Cohen–Macaulay if depth(R) = dim(R), in other words, it
is Cohen–Macaulay as a module over itself. A non-local ring is Cohen–Macaulay
if localizing at any maximal ideal yields a (necessarily local) Cohen–Macaulay
ring. In [53], a projective variety (or scheme)X is defined to be Cohen-Macaulay
if all its local rings are Cohen-Macaulay; by [28], Proposition 18.8 this is true
if the local rings at the points of X are Cohen-Macaulay. If X ⊆ Pn we say
that X (or R/IX) is arithmetically Cohen–Macaulay (abbreviated aCM) if the
homogeneous coordinate ring R/IX is a Cohen-Macaulay ring. This is true (see
[28]) iff R/IX is a Cohen-Macaulay R = k[x0, . . . , xn]-module; it is this property
that we now study. Notice that the Cohen-Macaulay property of a variety is
intrinsic because it depends only on the local rings, whereas the aCM property
is extrinsic, since it depends on how X sits in Pn. We have that R/IX is aCM
iff

depth(R/IX) = dim(R/IX) = dim(R)− codim(IX).

Since depth(R) = n+ 1 = dim(R), the Auslander–Buchsbaum theorem tells us
that pdim(R/IX) = n+ 1− depth(R/IX), so R/IX is aCM iff

pdim(R/IX) = codim(IX).

Example 10.2.2. aCM examples

1. The twisted cubic C is aCM: in Section 3.2 we saw that pdim(R/IC) = 2,
and in Example 2.3.9 we found HP (R/IC , i) = 3i+ 1, so codim(IC) = 2.

2. i1 : R=ZZ/31991[x,y,z];

i2 : I=ideal(x*y,x*z,y*z);

o2 : Ideal of R

i3 : codim I

o3 = 2
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i4 : pdim coker gens I

o4 = 2

i5 : res coker gens I

1 3 2

o5 = R <-- R <-- R <-- 0

0 1 2 3

o5 : ChainComplex

i6 : o5.dd

1 3

o6 = 0 : R <---------------- R : 1

| xy xz yz |

3 2

1 : R <----------------- R : 2

{2} | -z 0 |

{2} | y -y |

{2} | 0 x |

2

2 : R <----- 0 : 3

0

Notice that just like the twisted cubic, I is generated by the 2 by 2 minors
of the syzygy matrix.

3. The ideal of six random points in P2 (From Chapter 7)

i2 : m= random(ZZ^3,ZZ^6)

o2 = | 0 2 0 -9 -4 -2 |

| 1 -9 7 4 6 9 |

| 5 -9 8 -10 0 -5 |

3 6

o2 : Matrix ZZ <--- ZZ

i3 : I = pointsideal1 m;

i4 : res coker gens I
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1 4 3

o4 = R <-- R <-- R <-- 0

0 1 2 3

o5 : betti o4

o5 = total: 1 4 3

0: 1 . .

1: . . .

2: . 4 3

i6 : minors(3,o4.dd_2) == I

o6 = true

Once again, the ideal is generated by the maximal minors of the matrix
of first syzygies.

All three of these examples are evidence for the Hilbert-Burch theorem, which
says if I is codimension 2 and R/I is aCM, then I is indeed generated by the
maximal minors of the matrix of first syzygies. See [29], Chapter 3 for more.

A polynomial ring R over a field is Cohen–Macaulay [28]; we use this and
the Auslander–Buchsbaum theorem to prove Theorem 8.3.2: If M is a finitely
generated, graded R-module and P is a prime of codimension c, then P ∈
Ass(M) iff P ∈ Ass(Extc(M,R)). First observe that if P ∈ Ass(M), then
depth MP = 0. This follows since every non-unit in RP is in P , and is thus a
zero divisor on M .

Lemma 10.2.3. In the setting above, if P ∈ Ass(M) and codim(P ) = c, then
Exti(M,R)P = 0 for i > c and Extc(M,R)P 6= 0.

Proof. If P ∈ Ass(M), then by Auslander–Buchsbaum and the observation
above, pdim(MP ) = depth(RP ); since R is Cohen–Macaulay, depth(RP ) =
c. Thus, the free resolution of MP over RP goes back c steps, so obviously
ExtcRP

(MP , RP ) 6= 0, and ExtiRP
(MP , RP ) = 0 if i > c. Localization commutes

with Hom (exercise!), so we’re done.

So, we still need to show that P ∈ Ass(Extc(M,R)). By Exercise 6.1.5,
we know that P is in the support of Extc(M,R), so P contains the annihilator
of Extc(M,R). If P properly contains a prime Q of codimension < c minimal
over the annihilator, then by Lemma 10.2.3, Extc(M,R)Q = 0 which implies
Q is not in the support of Extc(M,R), hence not minimal over the annihila-
tor, contradiction. Conclusion: P is a prime minimal over the annihilator of
Extc(M,R), so P ∈ Ass(Extc(M,R)).

Exercise 10.2.4. Finish the proof of Theorem 8.3.2 by showing that for a prime
P of codimension c, P ∈ Ass(Extc(M,R))⇒ P ∈ Ass(M). 3
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Exercise 10.2.5. Still assuming that M is a finitely generated, graded R-
module, show that i < codim(P ) for all P ∈ Ass(M) ⇒ Exti(M,R) = 0.
Combine this with Theorem 10.1.9 to show that M is Cohen-Macaulay iff
Exti(M,R) = 0 for all but one value of i (can you see which?). 3

One easy but important observation is that ifR/I is aCM, then I cannot have
embedded components; in fact, the associated primes of I must all have the same
codimension. Let’s take a look at an example with no embedded components,
but for which V (I) is not equidimensional. If I = 〈xy, xz〉 ⊆ k[x, y, z] = R we
know the minimal primes of R/I are 〈x〉 and 〈y, z〉, so I has codimension 1.
But it is obvious that the free resolution of R/I has projective dimension two,
so R/I is not aCM.

Exercise 10.2.6. aCM or not?

1. 〈x2, xy〉 ⊆ k[x, y]

2. (Macaulay 2) In Z/101[x, y, z] the ideal 〈x2 − 19xy − 6y2 − 35xz + 9yz −
44z2, xy2−13y3+xyz−29y2z−25xz2+15yz2−50z3, y3−39xyz−32y2z−
23xz2 − 20yz2 + 44z3〉

3. The image of the map P1 −→ P4 given by

(x : y) −→ (x4 : x3y : x2y2 : xy3 : y4).

3

It would be nice if equidimensional varieties V (I) all had R/I aCM, but this
is not true—here is an example of a smooth, irreducible projective variety which
is not aCM:

Example 10.2.7. (The rational quartic) Map P1 φ−→ P3 via

(x : y) −→ (x4 : x3y : xy3 : y4).

Let (a : b : c : d) be homogeneous coordinates for P3. The image X of φ(P1)
is contained in the open sets Ua and Ud; on Ua ∩ X we define an inverse map
via (a : b), on Ud ∩ X we define an inverse map via (c : d), so P1 and X are
isomorphic. The codimension of IX in R = k[a, b, c, d] is therefore two. However,
the projective dimension of R/IX as an R-module is three. Since the Hilbert
polynomial is 4t + 1, Riemann-Roch provides (after checking smoothness, see
Example A.3.2) another way to see that X is intrinsically a P1.

i1 : R=ZZ/101[a,b,c,d]; S=ZZ/101[x,y];

i3 : m=map(S,R,{x^4,x^3*y,x*y^3,y^4});

o3 : RingMap S <--- R

i4 : I=kernel m
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3 2 2 2 3 2

o4 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)

o4 : Ideal of R

i5 : hilbertPolynomial coker gens I

o5 = - 3*P + 4*P

0 1

o5 : ProjectiveHilbertPolynomial

i6 : res coker gens I

1 4 4 1

o6 = R <-- R <-- R <-- R

0 1 2 3

o6 : ChainComplex

i7 : o6.dd

1

o7 = -1 : 0 <----- R : 0

0

1 4

0 : R <--------------------------------------- R : 1

{0} | bc-ad b3-a2c ac2-b2d c3-bd2 |

4 4

1 : R <--------------------------- R : 2

{2} | -b2 -ac -bd -c2 |

{3} | c d 0 0 |

{3} | a b -c -d |

{3} | 0 0 a b |

4 1

2 : R <-------------- R : 3

{4} | d |

{4} | -c |

{4} | -b |

{4} | a |

i8 : Ext^3(coker gens I, R)

o8 = cokernel {-5} | d c b a |
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To understand this example, we need some definitions. Recall from Chapter 9
that a complete linear system on a curve is just the set of all global sections of
the line bundle corresponding to a divisor, so is a finite dimensional vector space
H0(O(D)). An incomplete linear system is a proper subspace of H0(O(D)). For
example, on P1,

H0(OP1(4)) ≃ span{x4, x3y, x2y2, xy3, y4}.
The homogeneous coordinate ring of the image of this map in P4 is isomorphic
to k[x4, x3y, x2y2, xy3, y4], while for the rational quartic, the homogeneous co-
ordinate ring of the image in P3 is isomorphic to k[x4, x3y, xy3, y4]. How does
this relate to the aCM property? The key is

Theorem 10.2.8 (Local duality, see [28]). Let M be a finitely generated,
graded R = k[x0, . . . , xn]-module, and i ≥ 1. Then as vector spaces,

Hi(M̃(m)) ≃ Extn−i(M,R)−m−n−1.

In particular, for a curve C ⊆ Pn (even allowing several components, but all
one-dimensional), H1(IC(m)) ≃ Extn(R/IC , R)−m−n−1. Now, we know that a
curve is codimension n−1 in Pn, so a curve will be aCM iff R/IC has projective
dimension n− 1 iff the only non-vanishing Exti(R/IC , R) occurs at i = n − 1,
which means a curve in Pn is aCM iff for all m

Extn(R/IC , R)−m−n−1 = H1(IC(m)) = 0.

Why don’t we have to worry about Extn+1(R/IC , R)? Well, we can assume that
IC is saturated, so m 6∈ Ass(R/IC). Then by Exercise 10.1.10 pdim(R/IC) <
n+ 1 and so Extn+1(R/IC , R) = 0. The ideal sheaf sequence

0 −→ IC(m) −→ OPn(m) −→ OC(m) −→ 0

gives rise to

0 −→ H0(IC(m)) −→ H0(OPn(m)) −→ H0(OC(m)) −→ H1(IC(m)) −→ 0.

What this means is that C is aCM iff the map H0(OPn(m)) −→ H0(OC(m)) is
a surjection iff Rm surjects onto H0(OC(m)) for all m.

This example illustrates the wonderful fact that Ext modules can be used
to compute sheaf cohomology; we return to the rational quartic X . From the
free resolution we see that

Ext3(R/IX , R) ≃ R(5)/〈a, b, c, d〉.
Thus Ext3(R/IX , R)i = 0 unless i = −5, hence H 1(IX(m)) vanishes except
at m = 1, and H1(IX(1)) is a one dimensional vector space. We could also
obtain this from the exact sequence in cohomology: h0(IX(1)) = 0 since there
is no linear relation on the sections used to embed X . By Riemann-Roch,
h0(OX(1)) = 5 and from Example 9.1.5, h0(OP3(1)) = 4. As noted last chapter,
a great description of the fine points may be found in Eisenbud’s chapter in [95];
references for local duality are Bruns and Herzog [21], Brodmann and Sharp [19],
and the appendix in [28].



10.2. COHEN–MACAULAY MODULES AND GEOMETRY 143

Exercise 10.2.9. Prove that any hypersurface in Pn is aCM. Now find the flaw

in the following argument. Map P1 φ−→ P2 by a sublinear system of the linear
system of Example 9.3.4 (in particular, we’re using a divisor D of degree 3):

(x : y) −→ (x3 : x2y : y3).

Let (a : b : c) be homogeneous coordinates for P2; clearly the image Y of φ(P1)
is simply V (b3 − a2c). We have an exact sequence

0 −→ H0(IY (1)) −→ H0(OP2(1)) −→ H0(OY (1)) −→ H1(IY (1)) −→ 0.

Now, there are no linear forms in IY , so h0(IY (1)) = 0, and h0(OP2(1)) = 3.
By Riemann-Roch, h0(OY (1)) = h0(OY (D)) = deg(D)+1−g = 4. So from the
exact sequence, h1(IY (1)) = 1; hence Y is not aCM. But Y is a hypersurface,
so what’s wrong? 3

While we’ve got local duality on the table, we should revisit the concept of
regularity. A coherent sheaf F on Pn is defined to be m-regular if

Hi(F(m− i)) = 0

for all i > 0. In Chapter 7 we defined the regularity of a graded R =
k[x0, . . . , xn]-module N in terms of a minimal free resolution of N ; in Macaulay
2 terms the regularity of N corresponds to the label of the bottom row of the
betti diagram of N . For a coherent sheaf F as above, we obtain a graded R-
module by taking the direct sum of all the global sections Γ∗(F) = ⊕iH0(F(i)).
How does the regularity of Γ∗(F) relate to the regularity of F? Alas, if Γ∗(F)
has zero-dimensional associated primes, then it cannot be finitely generated as
an R-module:

Example 10.2.10. Let X = (0 : 0 : 1) ⊆ P2, and let F = OX . There are
several ways to see that h0(OX(m)) = 1 for all m negative (think about why
this means Γ∗(OX) cannot be finitely generated). First we have the intrinsic
description: sinceX is a point, regular functions are just constants, and the twist
is irrelevant. Alternately, since h0(IX(m)) = h0(OP2(m)) = 0 for m negative,
we have that h0(OX(m)) = h1(IX(m)), and by local duality this last number is
the dimension of Ext2(R/〈x, y〉, R)−m−3 ≃ k[z]−m−1, which is one dimensional
for all m ≤ −1. A third alternative is to observe that the nonvanishing of
H1(IX(m)) for m negative follows from the results of Chapter 7.

This is very disconcerting - after all, a word should really have a single
meaning! Happily, it turns out ([29], Chapter 4) that as long as Γ∗(F) does
not have zero-dimensional associated primes the two definitions of regularity
actually do agree. We illustrate this for a set of points X ⊆ Pn. It is obvious
that IX has (as a module) no associated primes. In Chapter 7 we asserted that
the regularity as defined via the betti diagram of IX coincided with the smallest
i such that H1(IX(i − 1)) = 0. If IX is a saturated ideal of codimension n,
then obviously Exti(R/IX , R) 6= 0 iff i = n, thus R/IX is aCM. If j is the
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label of the bottom row of the betti diagram for R/IX , then Extn(R/IX , R)
has a generator of degree −n − j. When X is zero-dimensional, local duality
says that Extn(R/IX , R)−i−n ≃ H1(IX(i − 1)), so IX will be m-regular when
Extn(R/IX , R)−j−n = 0 for all j ≤ m. For the example of twenty generic points
in P3 we computed the free resolution:

0 −→ R10(−6) −→ R24(−5) −→ R15(−4) −→ R −→ R/IX −→ 0.

Since Ext3(R/IX , R) is generated in degree −6, Ext3(R/IX , R)−7 = 0, and we
see that IX is four regular, just as expected.

To recap, the basic idea is that the regularity as defined in 7.1.7 corresponds
to the largest j such that Exti(M,R)−i−j is nonzero (taken over all i). By local
duality, this corresponds to the nonvanishing of a certain sheaf cohomology
module, which is how we defined the regularity of a set of points. We end this
section with a famous conjecture on regularity. The conjecture is known to be
true in certain cases [50], [60], but is open in general.

Conjecture 10.2.11 (Eisenbud-Goto, [30]). Let P ⊂ k[x0, . . . , xn] be a
homogeneous prime ideal. Then

reg(P ) ≤ degree(R/P )− codim(P ) + 1.

10.3 The Upper Bound Conjecture for Spheres

We return to a question raised in Chapter 5: If we fix the number of vertices,
what is the biggest possible f -vector for a d-dimensional simplicial polytope?
We compare f -vectors pointwise, so f(∆1) ≥ f(∆2) if

fi(∆1) ≥ fi(∆2)

for all i. More generally, consider a simplicial (d− 1)-sphere (a triangulation of
Sd−1): what is the biggest possible f -vector for such a triangulation? Rather
surprisingly, there are simplicial (d−1)-spheres which do not correspond to sim-
plicial polytopes. By the Dehn–Sommerville relations, if we know f0, . . . , f⌊ d

2 ⌋
,

then we know the entire f -vector. The convex hull of n distinct points on the
moment curve

(t, t2, t3, . . . , td)

turns out to be a simplicial d-polytope with n vertices; it is called a cyclic
polytope and denoted Cd(n). It is good fun (see Chapter 0 of Ziegler) to show
that

fi(Cd(n)) =

(
n

i+ 1

)
, i <

⌊
d

2

⌋
.

Conjecture 10.3.1 (Motzkin). Let P be a triangulation of Sd−1 having n
vertices. Then for all i,

fi(P ) ≤ fi(Cd(n)).
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At first this seems trivial, because for a fixed n and d, Cd(n) obviously
maximizes the first “half” of the f -vector. The content of Motzkin’s conjecture
is that maximizing the first half of the f -vector also maximizes the remaining
half. McMullen gave a slick combinatorial proof for the special case of simplicial
polytopes in 1970 using a technique called shelling ([100], Chapter 8). In 1974,
Stanley gave a beautiful algebraic proof of the conjecture, which we now sketch.
For a full treatment, see either [88] or [89]. The first step is to reformulate
the conjecture in terms of the h-vector (which we encountered in Chapter 5);
recall that the Dehn–Sommerville relations say that the h-vector of a simplicial
polytope is symmetric.

Conjecture 10.3.2 (Reformulation of 10.3.1). Let P be a triangulation of
Sd−1 having n vertices. Then

hi(P ) ≤
(
n− d+ i− 1

i

)
.

A key ingredient in Stanley’s proof is Reisner’s theorem. To state Reisner’s
theorem we need to define the link of a face F ⊆ ∆:

lk(F ) = {G ∈ ∆|G ∩ F = ∅, G ∪ F ∈ ∆}.
Theorem 10.3.3 (Reisner). If ∆ is a simplicial complex with n vertices,
then the Stanley–Reisner ring k[v1, . . . , vn]/I∆ is aCM iff for each face F and
i < dim lk(F ),

H̃i(lk(F )) = 0,

where the homology is computed with coefficients in k.

Notice that the field matters. For the proof of Theorem 10.3.3 we refer to
Reisner’s original paper [79] (which is a great advertisement for Frobenius and
characteristic p methods); an alternate treatment appears in [21]. If ∆ is a
triangulation of a manifold, then for any nonempty face F , lk(F ) is either a
homology sphere or a homology cell–the adjective homology here means that
its nonreduced homology looks like that of a sphere (nonzero only at top and
bottom) or of a cell (nonzero only at bottom). In particular the Stanley–Reisner
ring of a simplicial sphere is aCM. Note that the primary decomposition of the
Stanley-Reisner ring which appeared in Theorem 5.3.3 provides some evidence
for this: for a simplicial sphere, clearly all the minimal cofaces have the same
number of vertices, so that V (I∆) is equidimensional, which is consistent with
the remarks in Section 10.1. To prove the theorem, we need the following
characterization of the aCM property.

Lemma 10.3.4 (Hironaka’s criterion). Let R = k[x1, . . . , xn], k an infinite
field, I a homogeneous ideal, and suppose R/I has Krull dimension d. Then
R/I is aCM iff there exists a regular sequence of linear forms l1, . . . , ld and ho-
mogeneous elements ν1, . . . , νm such that any f ∈ R/I may be written uniquely
as

f =

m∑

i=1

νipi(l1, . . . , ld).



146 CHAPTER 10. PROJECTIVE DIMENSION

Corollary 10.3.5 (Stanley). If R/I is aCM with νi as above, then the Hilbert
series may be written:

P (R/I, t) =

m∑
i=1

tdegree νi

(1− t)d .

Exercise 10.3.6. Prove the corollary, given the lemma. 3

We know that chopping down by a regular sequence will preserve the nu-
merator of the Hilbert series, so the Hilbert series of R′ = R/〈I, l1, . . . , ld〉 is
the numerator of the Hilbert series of R/I . In Chapter 5 we saw that if I = I∆,
then this numerator is h(∆). In the situation we’re interested in, I∆ will have
no degree one elements, so h1 of R′ is n− d, and after a change of variables we
can think of R′ as the quotient of a polynomial ring in n − d variables. Since
a polynomial ring S in n − d variables has HF (S, i) =

(
n−d+i−1

i

)
and R′ is a

quotient of such a ring, the hi must satisfy

hi ≤
(
n− d+ i− 1

i

)
.

This proves the upper bound conjecture for simplicial spheres! Can you see
what happens if equality holds?

Exercise 10.3.7. Write a program (without using your code from Exercise
5.3.5) which takes as input a simplicial complex and returns the h-vector. Hint:
find a way to express the relationship between the h-vector and f -vector in
terms of univariate polynomials. 3

For the combinatorially inclined reader, it is worth mentioning that there
are all sorts of open questions on the f -vectors of polytopes; for example, the
f -vectors of non-simplicial four polytopes are not classified. For simplicial poly-
topes, there is a complete characterization of possible f -vectors, due to Billera–
Lee [16] and Stanley [90] (using toric methods). One consequence of this is my
favorite counterexample in mathematics (see [17] or [61]), which we close with:

Conjecture 10.3.8 (Motzkin). The f -vector of a simplicial polytope is uni-
modal.

The conjecture is true in all dimensions ≤ 19, but in dimension twenty there
is a simplicial polytope with

4, 203, 045, 807, 626

vertices whose f -vector is not unimodal! So your intuition in low dimension can
lead you astray.

Supplemental Reading: As usual, Eisenbud [28] is excellent; there are nice
short treatments in Matsumura [64] and Sharp [84]. The most comprehensive
source is the book [21] by Bruns and Herzog. My use of local duality in Section
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10.2 is a bit unfair–I intended to write an appendix on this, but everything I’d
say already appears in Chapter 9 of [29]. In fact, local duality is usually stated
in terms of local cohomology. Here’s the gist: if R is Noetherian, I an ideal and
M an R-module, then we set

H0
I (M) = {m ∈M | Idm = 0, some d}.

H0
I is a left exact, covariant functor; RiH0

I (M) is the ith local cohomology of M .
For the specific case when M is a finitely generated, graded R = k[x0, . . . , xn]-
module and m = R+, local duality [29] tells us that

HF (Extn+1−i(M,R),−j − n− 1) = HF (H im(M), j).

(again, I fudge here a bit, if you’re careful there are dual vector spaces involved,
but for dimension counts that’s not important). We check this on the rational
quartic X , where we computed Ext3(R/IX , R)−5; from the long exact sequence
in Ext this is the same thing asExt2(IX , R)−5. In Macaulay 2, local cohomology
is obtained with HH:

i10 : hilbertFunction(-5,Ext^2(image gens I, R))

o10 = 1

i11 : hilbertFunction(1,HH^2(image gens I))

o11 = 1

An argument with the Cech complex (see section A.4.1 of [28]) shows that if
i > 1 then

HF (Him(M), j) = dimkH
i−1(M̃(j)),

which gives us the version of local duality in Theorem 10.2.8. Back to sup-
plemental reading: for the last section, see the original papers of Stanley and
Reisner; Chapter 5 of Bruns and Herzog, Chapter 3 of Stanley [88] and Chapters
1 and 8 of Ziegler [100].





Appendix A

Abstract Algebra Primer

A.1 Groups

Let G be a set of elements endowed with a binary operation G×G −→ G. We
will write · for this operation. By definition, G is closed under the operation.
G is a group if:

1. · is associative: (a · b) · c = a · (b · c).

2. G possesses an identity element e such that ∀ g ∈ G, g · e = e · g = g.

3. Every g ∈ G has an inverse g−1 such that g · g−1 = g−1 · g = e.

The operation · need not be commutative; if it is then G is abelian. For abelian
groups, the group operation is often written as +. For example,Z/nZ
is an abelian group with the usual operation of addition modulo n. Notice if we
define the operation + as multiplication modulo n, then in general Z/nZ will
not be a group: for example, in Z/6Z the class of 2 has no inverse. Are there
values of n for which Z/nZ is a group under multiplication?

Everyone’s first example of a nonabelian group is the set of permutations
of the numbers {1, 2, 3}. If we label the vertices of an equilateral triangle as
{1, 2, 3} then we may also think of this as the set of rigid motions of the trian-
gle. The operations are rotation by 2π

3 and reflection about a line connecting a
vertex to the midpoint on the opposite edge. Think of a tuple (i, j, k) as repre-
senting the permutation i→ j, j → k, k → i; for example (1, 2, 3) represents the
permutation 1→ 2, 2→ 3, 3→ 1, whereas (2, 3) represents 2→ 3, 3→ 2, and 1
is left fixed. The group operation is just composition ◦. With our notation we
can compose two permutations by tracing their composed action. For example,
to compute

(1, 2, 3) ◦ (2, 3),

149
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we start reading from the right: 2→ 3 now step left, where 3→ 1. So the effect
of the composition is to send 2→ 1. Now that we know where 2 goes, let’s see
where 3 goes: again starting from the right, 3→ 2, step left, where 2 → 3. So
3 is fixed by the composition. Finally, (2, 3) fixes 1, step left, where 1 is sent to
2, so the composition sends 1→ 2. We conclude

(1, 2, 3) ◦ (2, 3) = (1, 2).

Exercise A.1.1. The group of permutations on {1, 2, 3} is denoted S3. Write
out the table for the group law. Then interpret it geometrically in terms of the
rigid motions of the triangle. 3

A subgroup of a group is just a subset which is itself a group; a particularly
important class of subgroups are the normal subgroups. A subgroup H of G
is normal if gHg−1 ⊆ H for all g ∈ G, this condition means that the quotient
G/H is itself a group. A homomorphism of groups is a map which preserves the

group structure, so a map G1
f−→ G2 is a homomorphism if

f(g1 · g2) = f(g1) · f(g2).

The kernel of f is the set of g ∈ G1 such that f(g) = e.

Exercise A.1.2. Prove that the kernel of a homomorphism is a normal sub-
group. 3

If at this point you are feeling confused, then you should go back and review
some basic algebra. If you are yawning and saying “ho hum, seen all this stuff”,
that is good, because now we come to another topic covered in a first abstract
algebra class, but which is not usually emphasized.

A.2 Rings and Modules

A ring is an abelian group under addition (+), with an additional associative
operation multiplication (·) which is distributive with respect to addition. Think
for a moment and find examples of a noncommutative ring, and a ring without
unit. All the rings we consider will also have a multiplicative identity (denoted
by 1), and the multiplication will be commutative. If every element in a ring
(save the additive identity 0) has a multiplicative inverse, then the ring is a field.
A (nonzero) element a is called a zero divisor if there is a (nonzero) element b
with a · b = 0; a ring with no zero divisors is called a domain or integral domain.
For emphasis, we repeat: in this book, ring means commutative ring with unit.

Example A.2.1. Examples of rings.

1. Z, the integers.

2. Z/nZ, the integers mod n.

3. A[x1, . . . , xn], the polynomials with coefficients in a ring A.
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4. C0(R), the continuous functions on R.

5. k a field.

In linear algebra, we can add two vectors together, or multiply a vector by
an element of the field over which the vector space is defined. Module is to ring
what vector space is to field. Formally, a module M over a ring R is an abelian
group, together with an action of R on M which is R-linear: for ri ∈ R, mi ∈M ,
r1(m1 +m2) = r1m1 +r1m2, (r1 +r2)m1 = r1m1 +r2m1, r1(r2m1) = (r1r2)m1,
1(m) = m. The most important class of modules are ideals: submodules of the
ring itself.

Exercise A.2.2. Which are ideals?

1. {f ∈ C0(R) | f(0) = 0}.

2. {f ∈ C0(R) | f(0) 6= 0}.

3. {n ∈ Z | n = 0 mod 2}.

4. {n ∈ Z | n 6= 0 mod 2}.

3

Example A.2.3. Examples of modules over a ring R.

1. Any ring is a module over itself.

2. A quotient ring R/I is both an R-module and an R/I-module.

3. A direct sum of copies of R is called a free R-module. The terminology
comes because the module is free of relations. To see that this is not the
case in general, suppose we have a ring R, and consider a free module M
consisting of two copies of R, with generators ǫ1 and ǫ2 (if R is a field,
this module is simply a two dimensional vector space). Elements of M
may thus be written as two by one vectors with entries in R, with module
operations performed just as we do them in linear algebra. Now let’s add
a twist. Pick a nonzero m ∈M , which we can write as

[
r1
r2

]

for some ri ∈ R. m generates a (principal) submodule 〈R ·m〉 ⊆ M , so
we can form the quotient module

M ′ = M/〈R ·m〉.

This is obviously not a free module, since ǫ1 =
(
1
0

)
and ǫ2 =

(
0
1

)
are

nonzero elements of M ′, but there is a relation between them: in M ′,
r1 · ǫ1 + r2 · ǫ2 = 0.
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If A and B are rings, a ring homomorphism φ : A→ B is a map such that:

φ(a · b) = φ(a) · φ(b)
φ(a+ b) = φ(a) + φ(b)

φ(1) = 1.

Let M1 and M2 be modules over A, mi ∈ Mi, a ∈ A. A homomorphism (or
map) of A-modules ψ : M1 →M2 is a function ψ such that

ψ(m1 +m2) = ψ(m1) + ψ(m2)
ψ(a ·m1) = a · ψ(m1).

An important instance of both ring and module maps is the map from a ring
A to a quotient A/I . Is the kernel of a ring map (of rings with unit) a ring
(with unit)? Given a homomorphism of A-modules ψ : M1 → M2, the kernel
consists of those elements of M1 sent to zero by ψ. The image of ψ is the set
{m ∈ M2|m = ψ(n)} (the elements of M2 “hit” by ψ) and the cokernel of ψ
is M2/ψ(M1). It is easy to check (do so if this is unfamiliar!) that the kernel,
image, and cokernel are all A-modules.

Exercise A.2.4. Let R = k[x, y, z] and define a map of modules R3 φ−→R1,
where φ is the three by one matrix [x, y, z]. The kernel of φ is generated by the
columns of the matrix ψ: 


y z 0
−x 0 z
0 −x −y




This is just linear algebra, but with matrices of polynomials. Prove that the
kernel of ψ is not a free module, i.e. find a (polynomial) relation between the
columns of ψ. Hint: just write down a polynomial vector



f1
f2
f3


 ,

multiply it against ψ, and see what relations the fi must satisfy. Check your
solution against the solution (in Macaulay 2 syntax) given in the next section
(but take ten minutes to try it yourself first!) 3

Exercise A.2.5. Types of ideals and geometry

1. An ideal I is principal if I can be generated by a single element.

2. An ideal I 6= 〈1〉 is prime if f · g ∈ I implies either f or g is in I .

3. An ideal I 6= 〈1〉 is maximal if there does not exist any proper ideal J with
I ( J .

4. An ideal I 6= 〈1〉 is primary if f · g ∈ I implies either f or gm is in I , for
some m ∈ N.
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5. An ideal I is irreducible if there do not exist ideals J1, J2 such that I =
J1 ∩ J2, I ( Ji.

6. An ideal I is radical if fm ∈ I (m ∈ N) implies f ∈ I .

In R = k[x, y], which classes (above) do the following ideals belong to? It
may be helpful to read a bit of Chapter 1 first, and then draw a picture of the
corresponding variety before tackling these. After you have read the section
of Chapter 1 on primary decomposition, see what the Macaulay 2 command
primaryDecomposition tells you.

1. 〈xy〉

2. 〈y − x2, y − 1〉

3. 〈y, x2 − 1, x5 − 1〉

4. 〈y − x2, y2 − yx2 + xy − x3〉

5. 〈xy, x2〉

3

Exercise A.2.6. Prove that a maximal ideal is prime. 3

Exercise A.2.7. A local ring is a ring with a unique maximal ideal m. Prove
that in a local ring, if f 6∈ m, then f is a unit. 3

Exercise A.2.8. If I is an ideal, when is R/I a domain? A field? A ring
is called a principal ideal domain (PID) if it is an integral domain, and every
ideal is principal. Go back to your abstract algebra textbook and review the
Euclidean algorithm, and use it to show that k[x] is a PID. Find the generator
of the ideal 〈x4 − 1, x3 − 3x2 + 3x− 1〉. Is k[x, y] a PID? 3

We close this section with the definition of a direct limit. A directed set S is
a partially ordered set with the property that if i, j ∈ S then there exists k ∈ S
with i ≤ k, j ≤ k. Let R be a ring and {Mi} a collection of R-modules, indexed
by a directed set S, such that for each pair i ≤ j there exists a homomorphism
µji : Mi →Mj. If µii = 1Mi

for all i and µkj ◦ µji = µki for all i ≤ j ≤ k, then
the modules Mi are said to form a directed system. Given a directed system,
we build an R-module (the direct limit) as follows: let N be the submodule of
⊕Ml generated by the relations mi−µji(mi), for mi ∈Mi and i ≤ j. Then the
direct limit is

lim
→
Ml = ⊕Ml/N.

This is a pretty simple concept: we identify elements mi ∈Mi and mj ∈ Mj if
the images of mi and mj eventually agree.
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A.3 Computational Algebra

Macaulay 2 is a computer algebra system, available at

http://www.math.uiuc.edu/Macaulay2.

It is available for basically all platforms; some tips for installing it (and general
commutative algebra news) can be found at:

http://www.commalg.org/

To start it on a unix machine, just type M2 on the command line (make sure
your paths are set). Macaulay 2 will respond with

Macaulay 2, version 0.9.2

--Copyright 1993-2001, D. R. Grayson and M. E. Stillman

--Singular-Factory 1.3b, copyright 1993-2001, G.-M. Greuel, et al.

--Singular-Libfac 0.3.2, copyright 1996-2001, M. Messollen

i1 :

Let’s do Exercise A.2.4. First we make a polynomial ring - we’ll use Z/101 as
the base field, but you can also work over other finite fields, the rationals, and
more. Input lines are prefixed with i, and output lines with o; input is ended
with a return. Try the following:

i1 : R=ZZ/101[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M=matrix {{x,y,z}}

o2 = | x y z |

1 3

o2 : Matrix R <--- R

i3 : kernel M

o3 = image {1} | 0 -y -z |

{1} | -z x 0 |

{1} | y 0 x |

3

o3 : R-module, submodule of R
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We make a matrix with a list of lists; once we have a matrix we can ask for the
kernel, which we did on line i3. Of course, the kernel of M is a submodule of
R3; we want to convert the submodule on line o3 into a matrix, we do this by
asking for the generators of the module:

i4 : gens o3

o4 = {1} | 0 -y -z |

{1} | -z x 0 |

{1} | y 0 x |

3 3

o4 : Matrix R <--- R

i5 : kernel o4

o5 = image {2} | x |

{2} | z |

{2} | -y |

3

o5 : R-module, submodule of R

So we have solved our problem. Of course, there are many other ways we could
have solved the problem, for example we could also have typed:

i6 : kernel matrix {{0,-y,-z},{-z,x,0},{y,0,x}}

o6 = image {1} | x |

{1} | z |

{1} | -y |

3

o6: R-module, submodule of R

The numbers at the left of the matrix are related to grading, which is discussed
in Chapter 2. The numbers differ because the matrix on line o4 maps R3(−2)
to R3(−1),

i7 : degrees source o4

o7 = {{2}, {2}, {2}}

i8 : degrees target o4

o8 = {{1}, {1}, {1}}

reflecting the fact that the matrix was obtained as the kernel of the matrix o2.
If we hand Macaulay 2 a matrix with no specifications, the target is assumed
to have degree zero generators; so the matrix on line o6 maps R3(−1) to R3.
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Example A.3.1. There are three main loop structures in Macaulay 2: they
are scan, apply, and while-do; all are documented online.

1. The apply command expects as input a list l and a function f , it returns
the list f(l):

i1 : apply({2,3,5,6}, i->i^2)

o1 = {4, 9, 25, 36}

2. The scan command is similar to apply, except that when f is applied to
l, the result is not saved anywhere unless specified by the user.

i2 : scan({2,3,5,6}, i->i^2)

i3 : scan({2,3,5,6}, i-><<" "<< i^2)

4 9 25 36

(the << are a way of printing data all on the same line).

3. The while loop

i1 : i = 0;

i2 : while i < 20 do (<< " " << i; i = i + 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Example A.3.2. Here is a more substantive example. Suppose we are asked
to study (whatever that means!) random rational curves of degree d in Pn. If
C ⊆ Pn is an irreducible curve (so IC = 〈f1, . . . , fk〉 is a prime ideal), then a
point p ∈ C is singular if the rank of the Jacobian matrix (evaluated at p) is
less than n − 1 (which is the codimension of C). In other words, the singular
locus is defined by IC and the n− 1× n− 1 minors of




∂f1
∂x0

∂f1
∂x1

· · · ∂f1
∂xn

∂f2
∂x0

∂f2
∂x1

· · · ∂f2
∂xn

...
...

...
...

∂fk

∂x0

∂fk

∂x1
· · · ∂fk

∂xn



.

A point p ∈ C is called smooth if the rank of the Jacobian matrix at p is n− 1;
C is smooth if every point of C is a smooth point. When is a random rational
curve of degree d in Pn smooth? If it is not smooth, what is the singular locus?

issmooth = (I)->(c = codim I;

J = jacobian mingens I;

minors(c,J)+I)

--return the ideal defining the singular locus of a curve
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randratcurve = (d,n)->(R=ZZ/31991[s,t];

rands = random(R^{d}, R^(n+1));

--get n+1 random elements of R_d

S=ZZ/31991[a_0..a_n];

kernel map(R,S,rands))

--given a degree d and target space P^n, find the ideal of a

--random rational curve. If d < n, then the image will lie in

--a linear subspace of P^n.

iexamples = (i,d,n)->(apply(i, j->(

slocus = issmooth(randratcurve(d,n));

degree coker gens slocus)))

--run i examples.

When you run this code, you’ll see that as long as n ≥ 3, the image of the curve
is smooth. What follows is argued in detail in Hartshorne section IV.3, so we
only give a quick sketch. First, picking a random rational curve of degree d inPn corresponds to picking a generic (n+1)-dimensional subspace of H 0(OP1(d)),
which in turn corresponds to a generic projection of C from Pd to Pn. For any
curve C in Pn, n > 3 the secant variety should have dimension three: there are
two degrees of freedom to pick points p1, p2 on C, and then another degree of
freedom in choosing a point on the line p1p2. So if n > 3, the secant variety of
the curve will not fill up Pn. This means that a generic point q will not lie on
the locus of secant lines, so that projection from q will be one-to-one (exercise:
show the locus of tangent lines has dimension at most two). To see that the
image is actually smooth requires just a bit more effort, and we refer to [53],
Proposition IV.3.4. Thus, any curve can be embedded in P3. What if we project
all the way down to P2?

i4 : iexamples(5,3,2)

o4 = {1, 1, 1, 1, 1}

i5 : iexamples(5,4,2)

o5 = {3, 3, 3, 3, 3}

i6 : iexamples(5,5,2)

o6 = {6, 6, 6, 6, 6}

i7 : iexamples(5,6,2)

o7 = {10, 10, 10, 10, 10}

So a random projection of a degree d rational curve to P2 results in a curve with(
d−1
2

)
singular points. A singular point of a plane curve is called a node if it
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consists of two irreducible smooth branches crossing transversely. For example,
the curve V (y2z − x3 − x2z) ⊆ P2 has a node at the point (0 : 0 : 1); if we plot
the curve on the affine patch where z = 1 the picture is:

For plane curves with only nodal singularities, there is a genus formula:

Theorem A.3.3. If C ⊆ P2 is an irreducible curve of degree d with only (δ)

nodes as singularities, then the genus of the desingularization C̃ is given by

g(C̃) =

(
d− 1

2

)
− δ.

For a random degree d planar rational curve, our computations show that
there are

(
d−1
2

)
singular points, which agrees exactly with the genus formula

(of course, a computation is not a proof, and it remains to check that the
singular points are really nodes). The genus formula is itself a consequence
of the Riemann-Hurwitz formula; nice explanations of both can be found in
Griffiths [48]. Finally, it should be noted that there is a local description of
smoothness:

Definition A.3.4. Let R be a Noetherian local ring with maximal ideal m. R
is a regular local ring if

dimR/mm/m2 = dimR.

Theorem A.3.5. p ∈ C is a smooth point iff the local ring at p is a regular
local ring.

See [53], section 1.5 for the proof.

Exercise A.3.6. Prove that the ring k[x, y, z]/〈y2z − x3 − x2z〉, localized at
the ideal 〈x, y〉, is not a regular local ring. What point of the curve above does
the ideal 〈x, y〉 correspond to? 3

There are several other computer algebra packages which have similar func-
tionality to Macaulay 2; Singular is available at

http://www.singular.uni-kl.de/

Greuel and Pfister have written a commutative algebra book [47] based on
Singular. CoCoA is another system, available at

http://cocoa.dima.unige.it/

Kreuzer and Robbiano have written a commutative algebra book [58] based on
CoCoA. Supplemental Reading: some options for additional algebra background
are Hungerford [56], Lang [59] or Rotman [81].



Appendix B

Complex Analysis Primer

B.1 Complex Functions, Cauchy–Riemann

Equations

Let x and y be real numbers. A complex number is a number of the form

z = x+ iy,

where i2 = −1. The complex numbers form a field C , which is the algebraic
closure of the real numbers; in other words every non-constant univariate poly-
nomial with coefficients in C has a root in C . A complex valued function is a
function from C to C of the form

f(z) = f(x+ iy) = u(x, y) + iv(x, y),

with u(x, y), v(x, y) real valued functions. The definitions for continuity and
differentiability for a complex valued function are the same as for a real valued
function, i.e. f(z) is differentiable at z0 iff

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

exists, if so, the limit is defined as f ′(z0). Over the real number line there
are only two directions from which to approach a point—from the left or from
the right. The complex line corresponds to a real plane (plot the two real
components of z = x+ iy), so we can approach a point z0 from many different
directions; the limit above exists iff it takes the same value for all possible
directions of approach to z0. The famous Cauchy–Riemann equations tell us
that we don’t have to check every single direction; it suffices to check the limit
along a horizontal and vertical ray:

Theorem B.1.1 (Cauchy–Riemann equations). Let f(x+ iy) = u(x, y) +
iv(x, y) and z0 = x0 + iy0. If ux, uy, vx, vy exist and are continuous at (x0, y0),
then f ′(z0) exists iff

ux = vy and vx = −uy.

159
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Proof. Write z0 = x0 + iy0. First, let ∆z = ∆x+ i∆y tend to 0 through values
with ∆y = 0. Then the limit above is

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆x→0

u(x0 + ∆x, y0)− u(x0, y0)

∆x

+ i
v(x0 + ∆x, y0)− v(x0, y0)

∆x
= ux + ivx.

On the other hand, let ∆z tend to 0 through values with ∆x = 0. Then we
obtain

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆y→0

u(x0, y0 + ∆y)− u(x0, y0)

i∆y

+ i
v(x0, y0 + ∆y)− v(x0, y0)

i∆y
= −iuy + vy.

Obviously these must agree if f is differentiable, which shows that the Cauchy–
Riemann equations are necessary. We leave sufficiency for the reader to prove
or look up.

When a function f(z) is differentiable in an open neighborhood of a point,
then we say that f is holomorphic at the point.

B.2 Green’s Theorem

Surprisingly, most of the important results in one complex variable are easy
consequences of Green’s Theorem, which you saw back in vector calculus. Since
that may have been awhile ago, we provide a refresher; first let’s recall how to
do line integrals. Suppose C is a parametric curve; for example consider the
plane curve given by C = (t2, t3), t ∈ [1, 2]. Notice that the curve is oriented: as
t goes from 1 to 2, a particle on the curve moves from (1, 1) and ends at (4, 8)
(the notation −C means traverse C in the opposite direction).

(1,1)

(4,8)

Evaluating a function g(x, y) along C is easy: we just plug in t2 for x and t3

for y. But we can’t just multiply g(x, y) by dt—to integrate, we want to sum
up the function times a little element of arclength ds, which (draw a picture!)
is given by √(

dx

dt

)2

+

(
dy

dt

)2

dt.
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For our parameterization, dx
dt = 2t, dydt = 3t2. If, say, g(x, y) = x+ 2y2, then we

obtain ∫

C

g(x, y)ds =

∫ 2

1

(t2 + 2(t3)2)
√

(2t)2 + (3t2)2dt.

Now that we remember how to do line integrals, we recall the key theorem of
vector calculus:

Theorem B.2.1 (Green’s Theorem). Let C be a simple closed contour in
the plane, oriented counterclockwise. If R denotes the region bounded by C, and
P (x, y) and Q(x, y) are continuously differentiable functions, then

∫

C

P (x, y)dx+Q(x, y)dy =

∫ ∫

R

(Qx − Py)dxdy.

Proof. A simple closed contour is nothing more than a smooth closed curve.
We prove Green’s Theorem for the contour C = C1 ∪ C2 pictured below. The
general case is easily proved by splitting up the region bounded by C into a
bunch of pieces of this form. Orient C counterclockwise, and let C1 denote the
“bottom” curve, and C2 denote the “top” curve.

2 2

1 1

a 2a
1

y   = f   (x) = C

y   = f   (x) = C

2

1

We have:
∫ a2

a1

∫ y2

y1

∂P

∂y
dydx =

∫ a2

a1

(P (x, f2(x)) − P (x, f1(x)))dx

=

∫

−C2

Pdx−
∫

C1

Pdx =

∫

C

−P.

Almost the same formula holds for Qx—work through it to see why the signs
differ, and put the pieces together to conclude the proof.

Exercise B.2.2. Let C be the unit circle, parameterized by x = cos(t), y =
sin(t), t ∈ [0..2π]. Evaluate

∫

C

xydx+ y2dy

directly (using the parameterization), and using Green’s Theorem. 3
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B.3 Cauchy’s Theorem

We now return to the complex case. A surprising and easy consequence of
Green’s Theorem and the Cauchy–Riemann equations is

Theorem B.3.1 (Cauchy’s Theorem). If f(z) is holomorphic within and on
a simple closed contour C, then

∫

C

f(z)dz = 0.

Proof. Write f(z) = u(x, y) + iv(x, y) and dz = dx+ idy. Multiplying out,

f(z)dz = u(x, y)dx − v(x, y)dy + i(v(x, y)dx + u(x, y)dy).

So
∫

C

f(z)dz =

∫

C

u(x, y)dx− v(x, y)dy + i

∫

C

v(x, y)dx + u(x, y)dy.

By Green’s Theorem, this is

∫ ∫

R

−vx − uy + i

∫ ∫

R

ux − vy.

But the Cauchy–Riemann equations say these integrals are both zero! Historical
note: Cauchy proved this for f ′ continuous; Goursat showed that the hypothesis
f ′ continuous is unnecessary, so this is sometimes referred to as the Cauchy–
Goursat Theorem.

The Cauchy integral formula says that if C is a simple closed contour and f
is holomorphic within and on C, then the value of f at a point interior to C is
determined by the values f takes on C. Henceforth, all contours will be oriented
positively, which corresponds to the choice of counterclockwise orientation of the
boundary in Green’s Theorem.

Theorem B.3.2 (Cauchy Integral formula). If f(z) is holomorphic within
and on a simple closed contour C, then for any z0 in the interior of the region
bounded by C,

f(z0) =
1

2πi

∫

C

f(z)dz

z − z0
.

Proof. By parameterizing a little circle C0 of radiusR = |z−z0| as z = z0+Reiθ,
we get dz = iReiθdθ. A quick computation shows that

∫

C0

dz

z − z0
= 2πi.

Now split the annulus as below:
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0z
C

C0

By Cauchy’s Theorem,

∫

C

f(z)dz

z − z0
−

∫

C0

f(z)dz

z − z0
= 0,

i.e. ∫

C

f(z)dz

z − z0
=

∫

C0

f(z)dz

z − z0
.

Now we simply subtract a judiciously chosen quantity from both sides:

f(z0)2πi = f(z0)

∫

C0

dz

z − z0
,

obtaining ∫

C

f(z)dz

z − z0
− f(z0)2πi =

∫

C0

f(z)− f(z0)

z − z0
dz.

Since f is holomorphic, as we shrink C0 the right hand side goes to zero, done.

If f(z) is holomorphic within and on a simple closed contour C, then the
Cauchy integral formula tells us that for any z in the interior

f(z) =
1

2πi

∫

C

f(s)ds

s− z .

So it follows that

f(z + ∆z)− f(z)

∆z
=

1

2πi

∫

C

(
1

s− z −∆z
− 1

s− z

)
f(s)ds

∆z

=
1

2πi

∫

C

f(s)ds

(s− z −∆z)(s− z) .

As ∆z approaches zero, this quantity is equal to

1

2πi

∫

C

f(s)ds

(s− z)2 .
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To see this, consider the integral

∫

C

(
1

s− z −∆z
· 1

s− z −
1

(s− z)2
)
f(s)ds = ∆z

∫

C

f(s)ds

(s− z −∆z)(s− z)2 .

Set M = max |f(s)| on C, L = length of C. We may assume that |∆z| is small
enough that z + ∆z is in the interior of C. Let δ be the smallest distance from
z to C. So |s− z −∆z| ≥

∣∣|s− z| − |∆z|
∣∣ ≥ δ − |∆z|, and we obtain

∣∣∣∣∣∣
∆z

∫

C

f(s)ds

(s− z −∆z)(s− z)2

∣∣∣∣∣∣
≤ |∆z| ·M · L

(δ − |∆z|) · δ2 → 0 as |∆z| → 0,

which is the desired result. We have shown

Theorem B.3.3. If f is holomorphic near a point z, then f ′ is holomorphic

near z, and f ′(z) = 1
2πi

∫
C
f(s)ds
(s−z)2 (C a simple closed contour around z).

Repeating, we obtain the Cauchy Derivative formula:

f (n)(z) =
n!

2πi

∫

C

f(s)ds

(s− z)n+1
.

In particular, f is automatically infinitely differentiable.

B.4 Taylor and Laurent Series, Residues

Being holomorphic imposes additional very strong constraints on a complex
function. For example, we have

Theorem B.4.1. If f(z) is holomorphic within a circle of radius R centered at
z0, then ∀z with |z − z0| < R, there is a Taylor series expansion for f(z):

f(z) =

∞∑

j=0

f (j)(z0)(z − z0)j
j!

.

The proof follows from the Cauchy integral and derivative formulas, see [20].
An important variant of the Taylor series is the Laurent series, which allows
negative powers in the series above:

Theorem B.4.2. Let C0 and C1 be two positively oriented circles of radius
R0 < R1 centered at z0. If f(z) is holomorphic in the region R0 ≤ |z| ≤ R1,
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then ∀z such that R0 < |z| < R1, f(z) has a Laurent expansion, i.e.

f(z) =
∞∑

n=0

an(z − z0)n +
∞∑

n=1

bn
(z − z0)n

an =
1

2πi

∫

C1

f(z)dz

(z − z0)n+1

bn =
1

2πi

∫

C0

f(z)dz

(z − z0)1−n
.

The proof follows the same lines as that for the Taylor series. If f(z) is
holomorphic in a neighborhood of a point z0 but not holomorphic at the point
itself, then we say that f has an isolated singularity at z0. An isolated singularity
for which the only nonzero bi in the Laurent series is b1 is called a simple pole.

By the previous theorem if f has an isolated singularity, then f has a Laurent
series expansion at z0. The number b1 which appears in the Laurent series is
called the residue of f at z0, and we have the residue theorem: for a little simple
closed contour C around an isolated singular point z0,

∫

C

f(z)dz = 2πi · b1.

The residue theorem will be important in proving the Riemann–Roch Theorem;
we will use the fact that if f(z) has an isolated singularity at z0, then the residue
is a well defined complex number.

Supplemental Reading: A nice elementary complex analysis text is Brown–
Churchill [20], which is where I learned most of the material here.
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