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Coalgebras and Bialgebras in COmbinatorics

By S.A. Joni* and G.-C. Rotat i

The following material is discussed in this paper: Incidence Coalgebras for PO
sets; Reduced Boolean Coalgebras; Divided Powers Coalgebra; Dirichlet Coal-
gebra; Eulerian Coalgebra; Faa di Bruno Bialgebra; Incidence Coalgebras for
Categories; The Umbral Calculus; Infinitesimal . Coalgebras; Creation and
Annihilation Operators; Point Lattice Coalgebras; . Restricted Placements;
Cleavages; and Hereditary Bialgebras. Vol g

Dedicated to William T. Tutte on his 60th birthday.”" .

Forse altri cantera con miglior plettro

—Ariosto

I. Introduction . :

A great many problems in combinatorics are concerned with assembling, or
disassembling, large objects out of pieces of prescribed shape, as in the familiar
board puzzles. Even in the seemingly simple case of finite sets, very little is
known on, say, the structure of families of sets subject to restrictions. The oldest
result in this direction is Sperner’s theorem, which gives the structure of all
maximum size families of subsets of a finite set, subject to the restriction that no
set in the family may be contained in another. On the blueprint of Sperner’s
theorem, a host of similar results have been developed, largely in the last fifteen
years, but the proofs rely more on ingenuity than on general techniques.

In more complicated cases, our understanding is even more limited; rarely,
except perhaps in number theory, has a branch of mathematics been so rich in
relevant problems and so poor in general ideas as to how such problems may be
attacked. ‘ ‘ o

This paper grew out of an attempt to make some of the combinatorial
problems of assemblage available to a public of algebraists. It originated from
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Address for correspondence: Professor G.-C. Rota, Room 2-351, MLT,, Cambridge, MA 02139.
*Research partially supported by NSF Contract No. MCS 7820264.

tResearch partially supported by NSF Contract No. MCS 7701947

STUDIES IN APPLIED MATHEMATICS 61:93-139 (1979) - 93
Copyright © 1979 by the Massachusetts Institute of Technology

Published by Elsevier North Holland, Inc. 0022-2526,/79,/050093 + 47$01.75
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the realization that the notions of coalgebra, bialgebra, and Hopf algebra,
recently introduced into mathematics, may give in a variety of cases a valuable
formal framework for the study of combinatorial problems. Armed with this
realization, we have assembled in this paper a variety of coalgebras and
bialgebras which arise in combinatorics, in the hope of interesting both the
combinatorist in search of a theoretical horizon, and the algebraist in search of
examples which may point to new and general theorems.

The modesty of our undertaking cannot be overemphasized. We have simply
given a list of coalgebras and bialgebras as possible objects of investigation, and
proved only a few elementary results whenever the proofs were indispensable to
the understanding of the examples. _

Several of the coalgebras described below are presented here for the first
time, notably puzzles, closure coalgebras, infinitesimal coalgebras, hereditary
bialgebras, rook coalgebras, and cleavages. Others are drawn from previous
work on the subject by P. Doubilet, M. Henle, R. W. Lawvere, S. Roman, R.
Stanley, and ourselves. -

It must be stressed that the coalgebras of combinatorics come endowed with
a distinguished basis, and many an interesting combinatorial problem can be
formulated algebraically as that of transforming this basis into another basis
with more desirable properties. Thus, a mere structure theory of coalgebras—or
Hopf algebras—will hardly be sufficient for combinatorial purposes.

Most of the content of this paper was developed from the Hopf Algebras and
Combinatorics lectures presented by G.-C. Rota during the Umbral Calculus
Conference at the University of Oklahoma on May 15-19, 1978. The authors
take this opportunity to thank Professor M. Marx and Professor Robert Morris
of the Mathematics Department of the University of Oklahoma for giving them
an opportunity to present these ideas to a responsive audience of coalgebraists,
as well as for their gracious hospitality.

- IL. Notation and terminology

Very little knowledge is required to read this work. Most of the concepts basic
enough to be left undefined in the succeeding sections will be introduced here.
A partial ordering relation (denoted by <) on a set P is one which is reflexive,
transitive, and antisymmetric (that is, @<b and b<a imply a=b). A set P
together with a partial ordering relation is a partially ordered set, or PO set for -
short. For x<y in P, the segment (or interval) [x,y] is the collection of all
elements z in P such that x<z'<y. A PO set is said to be locally finite if every
segment is finite. All the PO sets we shall consider will be locally finite.

A PO set P is said to have a 0 or a 1 if it has a unique minimal or maximal
element. An element y is said to cover x if the segment [x,y] has two elements.
An atom of P is an element which covers a minimal element. . .

An ordered ideal in a PO set P is a subset J which has the property that if
y€Jand x<y, then x€J.

The product P X Q of two PO sets P and Q is the set of all ordered pairs (P 9
where pE P and g€ @, with (p,q)> (r,s) if and only if p>r and g>s. The
product of any number of PO sets is defined similarly.

. A lattice is a PO set where the max and min of two elements (we call them
Join and meet, and write them \/ and A) are defined. A sublattice L' of a latticé
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L is a subset of L which is a lattice under the induced partial ordering such that
the join and meet of any two elements in L’ are the same as those in L. A
distributive lattice is one in which for all p,q,r in L, p A(g\V/ P)=(p ADV(PAg)
and p\/(gAr)=(pV NNV q).

A partition w of a set S is a collection of pairwise disjoint nonempty subsets of
S, called the blocks of , whose union is S. The /lattice of partitions TI(S) is the
set of all partitions of S ordered by refinement: a partition « is less than or equal
to a partition ¢ (or 7 is a refinement of o) if each block of = is contained in a
block of a. The 0 of II(S) is the partition having all blocks of size one, and the 1
is the partition with one block. For further study of lattices, the reader is
referred to Birkhoff.

We come now to the definition of the incidence algebra $(P) of a locally
finite PO set P over a field K. We shall assume throughout that X has
characteristic zero. The members of §(P) are functions of two variables f: P X P
—K such that f(x,y)=0 unless x <y. The sum of two functions, as well as
multiplication by scalars, is defined as usual. The product (or convolution)
f*g=nhis defined by

h(x,y) = ng(x,Z)g(z,y)-

Since P is locally finite, the variable z in the above sum ranges over the finite
segment [x,y). It is immediate that this product is associative, and the unit

element § is
1 if x=y,
8(x,y) = .
(x.) {O otherwise

No further knowledge of the incidence algebra is required in the present paper;
the reader is referred to [4] and [12] for studies of this algebra.

A coalgebra is a triple (C,A,€) with C a K-vector space, A:C—»>C®C a map
called diagonalization or comultiplication, and e: C— K a map called the counit or
augmentation, where A and ¢ satisfy the following commutative diagrams:

A
C > C®C

A J, \L A®T (coassociativity), 2.1)

18A
CRC—> CRCBC

C
| N
K®C Jj CoK ~ (counitary property). (2.2)
®

e@l\ | ]I®¢
c®C

Thus, coassociativity says (I ®A)ocA=(A®I)<4A, or in wox.'ds, after diagona-
lizing once, we can next diagonalize in either factor and obtain the same result.
When we write “a coalgebra C,” we mean “a coalgebra (C,A,¢).”

A subcoalgebra of a coalgebra C is a subspace W such that A(W)C WO W. A
coideal of C is a subspace J such that AJ)CJ @ C+C®J and e(J)=0. If ~is
an equivalence relation on a basis of C such that the subspace J spanned by
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{f—g:f~g)} is a coideal, then the quotient space C/~ can be endowed with the
coalgebra structure of the quotient coalgebra of C modulo J.

A space B which is simultaneously an algebra and a coalgebra is said to be a
bialgebra if the diagonalization A and counit € are algebra maps.

Let C be a coalgebra, 4 an algebra, and set for c&€C

Ac =D c;; ® ¢y
i

We give Hom(C,A) an algebra structure by defining the product or convolution
fxg=nh as follows:

h(c) = frg(c) = S fler)z(e):

The unit of this algebra is ue, where u is the unit of 4.

Let H be a bialgebra, and let us define I in Hom(H,H) to be map I(h)=h
for all & in H. If it exists, the unique element S in H which is inverse under * to
I (ie., S*I=1I+S=ue) is the antipode of H. A bialgebra with an antipode is a
Hopf algebra. For a further study of bi-, co-, and Hopf algebras, the reader is
referred to [27).

III. Section coefficients

We begin with the abstract concept of section coefficients. This concept arises as
a natural generalization of the binomial coefficients. We shall see many exam-
ples in the later sections, particularly in Sec. IV-IX. Using section coefficients,
one can give an alternative definition of coalgebras (with a specified basis) that
does not involve commutative diagrams, Let § denote a set. Section coefficients
(ij,k) of § arise by specifying and counting the number of ways an element / in
¢ can be “cut up” into the ordered pair of pieces j,k(with j,k in $). The
multisection coefficients (il j,p,q) count the number of ways we can “cut” i into
the ordered triple of pieces j,p,q. To get (i|/,p,q) we could cut i into pieces j,k
and then cut k into pieces p, g in all possible ways, and we want to get the same
number if we cut / into pieces s,q and then cut s into pieces j,p in all possible
ways. More precisely, section coefficients are a mapping

(i, k)~ (iljk) ez
satisfying |
Given i, .
the number of ordered pairs j, k 3.1
such that (i j,k)#0 is finite '
and

%(ﬂj,k)(HP,Q) = > (ils, 9)(s]4,p). (¢2)

The common vz?lue of the two sides of (3.2) is denoted (i[J,p,q). Iterating (32
allows us to define more general multisection coefficients Gliks.ospsq)-
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Often, there exists a function €:9 - K such that. = . ..
2_ (ll_],k)E(_]) = 6;‘,[;;
J
2kt =8 (3.3)

If 9 is a commutative semigroup (written additively), the section coefficients
are called bisection coefficients if they satisfy

(+ipd = 2 (rna)Ulppa) (3.4)
A=

In words, cutting up i+; is the same as cutting i ahd J ih_dividualiy and piecing
back together. ~

Example 3.1 (Binomial coefficients): The binomial coefficients are defined by

n!
(nlj,k) =1 jlk!
0 otherwise.

if n=j+k,

They count the number of ways a set with # element can be “cut up” into two

. n . .
disjoint sets of size j and k(= n—j). Usually, we write ( j) for these coefficients.
The condition (3.2) is easily seen to be satisfied, since -

n! . -
. — if j+p+q=n,
(nlj.p,q) = { j'plet - -
0 otherwise,
andforj+p+q#n,
W (prq)_ ol )

(Mipd) = SiGrgt plat - Gralal !

The well-known Vahdermonde convolution identity

(7=, 2, 10)5)

shows that the binomial coefficients are bisection coefficients.

Each collection of section coefficients satisfying (3.1), (3.2), and .(3..3) gives
rise to a coalgebra C in the following way: we associate to each i in 9 llge
variable x; and let C be the free vector space spanned by the x%'s. The counit ¢ 1s
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the function defined in (3.3), and the diagonalization A is defined by
Ax; = 2, (ilj, k) x; ® X (3.5)
ik

In our examples it is often the case that there exists a unique “0” in § such that
(i0,/))=(i| j,0)=§;,-and the counit ¢ is given by

1 if j=0
e(x;) =
() [0 otherwise.
The condition (3.2) gives that C is coassociative. C is cocommutative if and only
if for all ij,k, (i|j,k)=(i|k,j). In addition, if the section coefficients are
bisection coefficients, and we set x;x;=x;,;, then C is a bialgebra. This is so
because

MAE) = ( 2 (190205, 05,)( 2 (12a)5,©,)

Ppq P29

= E N +§2=p (ilpya0)(J| Py qZ)xp,+p2 ® Xa1+ a2
Qit+gx=q

- g(iﬂlp,q)x',, ®x,

= AX; ;-
Good references for this section include [4], [11], [16], and [17].

IV, Incidence coalgebras for partially ordered sets

Many of the coalgebras arising from the study of combinatorial problems are
incidence or reduced incidence coalgebras of locally finite PO sets. The duals of
these coalgebras, namely the incidence and reduced incidence algebras for PO
sets, have been objects of intensive study during the last fifteen years. In this
section, we give the abstract setting, definitions, and some basic results. In Sec.
V—IX we work out some of the fundamental examples.

Given a locally finite PO set (P, <), the incidence coalgebra C(P) (over K, 2
field of characteristic zero) is the free vector space spanned by the inde-

terminates [x,y], for all intervals (or segments) [x,y] in P. The diagonalization A
and counit ¢ are given by

Alx.y] = x§<y[x,z] ®[z.y] L@
and

£ _ |1 if x=y, 4.2

([x,y]) {0 ~otherwise. (42)



Coalgebras and Bialgebras in Combinatorics 99

Here, the section coefficients are

([xl’xZ:H[yl’yz],[Zl,Zz]) = { 1 lf Xy =)V x2=z.2 andy2=zl,
| ‘ - \0 otherwise.

It is immediate that C(P) is coassociative. Moreover, it is cocommutative if and
only if the order relation is trivial, i.e., no two elements of P are comparable.

Note that C*(P)=Hom(C(P),K) is isomorphic to $(P), the incidence alge-
bra of P, since if f,g € C*(P), then

fog[xy]= 2 flxz]e[zy]

xX<zKy

which is precisely the definition of f*g in 3(P).

It is frequently the case in enumeration problems that the full incidence
coalgebra is not required; rather, we want to work with a smaller quotient
coalgebra of C(P). These quotient coalgebras, called reduced incidence
coalgebras, are obtained by taking suitable equivalence relations on P.

DEerFINITION 4.1. An equivalence relation ~ on the segments of P is said to be
order compatible if the subspace spanned by the collection {[x,y]—[u,v]|[x,y]~
[4,0]} is a coideal. -

Whenever ~ is order compatible, the quotient space C(P)/~ is isomorphic
to a quotient coalgebra of C(P) (see [27, p.22]). In general, there is no simple
criteria expressible in terms of the partial ordering to decide when an equiva-
lence relation on P is order-compatible. A useful sufficient condition due to
D.A. Smith [4, p. 276] is the following.

ProPosITION 4.1. An equ;’valence relation ~ on the segments of P is order
compatible if whenever [x,y]~[u,v] there exists a bijection ¢, depending in general
on [x,y), of [x,y] onto [u,v] such that [x,,y;]~[$(x,), (¥l for all x <x;<y,<y.

Note that the linear dual (C(P)/~)* is isomorphic to the reduced incidence
algebra §(P)/~. i

If ~ is an order compatible equivalence relation on P, we call the nonempty
equivalence classes of C(P)/~ types, and we think of C(P)/~ as the vector
space spanned by the variables x, associated to each type a. Each such reduced
incidence coalgebra gives rise to a collection of section coefficients (a| B,Y),
where (a| 8,v) counts the number of distinct z in any interval [x,y] f’f type @
such that [x,z] is of type 8 and [z,y] is of type v, and the diagonalization in
C(P)/~ is given by

Axu = 2 (al ﬁ,Y)xB ® Xys

where the sum ranges over all ordered pairs of types B, . .
The standard reduced incidence coalgebra is obtained from the equivalence

relation

[x,y]~[u,0] if and only if [x,y] is isomorphic to [u,v].
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One way of obtaining bialgebras of combinatorial interest is to form reduced
incidence coalgebras. We shall return several times to the question of when a
reduced incidence coalgebra is a bialgebra.

The following definition is motivated by the fact that the lattice of closed
ideals of an incidence algebra is distributive [4].

DEFINITION 4.2. A combinatorial coalgebra is a coalgebra whose lattice of
subcoalgebras is distributive.

The characterization of all combinatorial coalgebras is an opening problem.
At present, we can prove

THEOREM 4.1. Every (full) incidence coalgebra is a combinatorial coalgebra.

Proof: Let W be a subcoalgebra of C(P). If [x,y] is in W, then for all
x<w<z <y, [w,z] is in W. This is seen as follows: If x <z <y, then the term
[x,2]®[z,y] occurs in A[x,y]. The occurrence of the segment [x,z] (and [z,y]) is
unique, and all segments are linearly independent. Thus, we must have [x,z] and
[z,y) in W. Since [x,z]€ W, the same argument applies and gives that for all
x<w<z <y, we must have [w,z] in W. Thus the collection of segments of W
forms an order ideal in the PO set of all segments of P, Seg(P), ordered by
inclusion. Conversely, if J.is an order ideal in Seg(P),, then AJ CJ ®J, so that
the linear span of J forms a subcoalgebra of C(P). Therefore, the lattice of
subcoalgebras of C(P) is isomorphic to the lattice of order ideals of Seg(P). A
well-known theorem of Birkhoff states that the lattice of order ideals of any PO

set is d1stnbut1ve and our proof is complete

,.‘,i_

V Reduced Boolean coalgebras

The Boo]ean PO.set (lattice) B consists of all finite sets of posmve integers
ordered by inclusion. The minimum element of this lattice is the empty set. The
Boolean 1nc1dence coalgebra C(% ) is spanned by all segments [4,B] with

" A[4,B] = ,,g %;B[A,c] ®[C,B].

gl T
Sl
F e

T S B Boolean coalgebras

The Boolean coalgebra % is the coalgebra spanned by all sets of (positive)
1ntegers, with (for A€R) L . :

S

1)

and

{(E(A)i{ 1f A=,

0 othermse
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Note that in (3.1), 4,4, is an ordered pair. This coalgebra is isomorphic to the
reduced Boolean incidence coalgebra obtained by setting [4,B]~[C, D] if and
only if B—A=D— C, Thus, each set 4 represents the eqmvalence class of all
segments [B,C] such that C—~ B=A4,

~ 2. Binomial coalgebras

For each integer s> 0, we define the binomial coalgebra B, to be vector space
K[x,x,,...,x,] with

(n ny\ D
Axl"l...xs"s= 2 (ml)”'(,J)xlmu»'~'xsm’®xlnl—ml";x"'-m' .
(Mp,...s m,)<(n,,...,n:)v 1 'S : . ,

and

laproeagy = {0 Lm0
0 otherwise.

Each binomial coalgebra is seen to be the Boolean incidence coalgebra
modulo the coideal generated by a compatible ~ as follows: For s=1, the
(univariate) binomial coalgebra B,= K[x] is obtained by setting [4, B]~[C, D]
if and onmly if |B—A|=|D—C|. This is the standard reduced incidence
coalgebra. Here the section coefficients are the binomial coefficients (

For s=2, we set [4,B]~[C, D] if and only if the numbers of even and odd
integers in B— A4 and D— C are equal For general 5, we set [4,B)~{C, D] if
and only if for all k=1,2,.

[{i€ B—Al|i=k mod s}|=|{j €D~ C|j=k mod s}]|.

It is easy to verify that the binomial coalgebras are cocommutative bialgebras,
and in fact, Hopf algebras with the antipode S given by S(x,)= — x,. In addition,
the dual B* is isomorphic to the algebra of formal exponential power series in §

variables. A final heuristic remark: “B_=%.”

3. Poiynomial sequences of Booleah and binomial type

A polynomial sequence p,(x) is said to be of binomial type if

degp,(x) =n  foralln, (5.3)

and

n

pn(x+9) = 2 (1 )PePacs() Y

k=0



102 S. A. Joni and G.-C. Rota

Let us rephrase (5.4) in the landuage of bialgebras. The polynomial ring
K[x,y]is seen to be isomorphic to K [x]® K[x] under the mapping x->x®1 and
y—>1®x. By linearity, for any polynomials ¢(x) and r(y), g(x)—>q(x)®1 and
r(y)~>1®r(x). Thus, (5.4) can be restated

n

2x®1+18x) = 2 (7 )Pulx) @, u(). (55)
k=0

A map p mapping the binomial coalgebra K{x] to itself is a coalgebra map if
Aop=(p®p)-A. Thus, a polynomial sequence is of binomial type if and only if
it is the image of {x"} under an invertible coalgebra map p. This is seen as
follows. Let p,(x) denote the image of x” under p. Since K[x] is a bialgebra, we
have

(8op)x" = Ap,(x) = p,(A%) = p,(x®1+18®x), (59)
and clearly
((p®p)o0)x" = 3 ()P0 ®p,a(x). (57)
k=0

Therefore, if p is an invertible coalgebra map, deg p,(x)=n and (5.5) holds, and
conversely. :

Multivariate polynomial sequences of binomial type, { p,, .. ,,!(xl,...,xs)}, are
similarly seen to correspond to invertible coalgebra maps of B to itself.

Examples of sequences of polynomials of binomial type include x", (x),=
x(x=1)-+-(x—n+1), x(x—na)""!, and the Laguerre, Gould, and exponential
polynomial sequences. The reader is referred to [3] and [5] for further examples,
and to [18] for their multivariate analogs.

A polynomial sequence indexed by the finite subsets of a set { p,(x)} is said
to be of Boolean type if

Pax+p)= X py (a3 - (59)
A+ A=A o

or equivalently, if p,(x) is the image of A under a coalgebra map from @B to
K[x]. [Usually, we require that deg p,(x)=|4].] Chromatic polynomials of
graphs Qrovide combinatorially interesting examples of polynomials of Boolean
type. Given a graph G, the chromatic polynomial of G, %(x), counts the
number of proper colorings (i.e. assignments of colors to the vertices of G sO that
no edge connects two vertices of the same color) of G with x colors. Given 2
subset H of the vertex set of G, we think of H as the full subgraph of G obtained
by f‘_?smcﬁng the vertex set of G to H. Similarly, we denote by G\ H the graph
obtained by restricting ‘the vertex set of G to G — H. Tutte, in [28], states

Kelx+y) = % éx,,(x)eec\,,( »)- (59
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This is not difficult to verify, since every proper coloring of G in x+y different
colors decomposes uniquely into the proper colorings of the subgraph H colored
with the x colors and G\H colored with the y colors, and conversely. Polynomi-
als of Boolean type were first studied by J. P. S. Kung and T. Zaslavsky,

- 4,- Puzzles

Everyone is familiar with solitaire games where several flat pieces of wood or
cardboard are to be assembled 1nto a required shape, for example, a square, as
in the following figure: ‘

111
:

L -] -

el o-t—a

Little is known at present of the underlying mathematical theory that might
lead, for example, to an algorithm for verifying that an assigned shape can be
assembled out of a given set of pieces. We shall develop here the very first step
in such a program, namely, the precise definition of a puzzle as a very special
type of coalgebra. The definition of comultiplication is in fact a natural
rendenng of the combinatorial operation of cuttmg up an object into a set of
pieces.

Before introducing the general defmltlon we shall describe the coalgebra
associated with the puzzles in the above picture. We shall develop the construc-
tion in two steps. In the first step we define the placement coalgebra; in the
second step we decribe a quotient coalgebra of the placement coalgebra, modulo
a certain coideal. The quotient coalgebra will be called the puz.zle or the piece
coalgebra, and we shall see that the difficulty of the puzzle is carried in the
structure of this coideal.

The pieces of the puzzle are

a H 2 pieces
b D[EEl 3 pieces (5.10)
c ] 1 piece.

The board is the four-by-four square
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on which pieces are to be placed. The squares are labeled by Cartesian

coordinates.
A placement of some of the pieces on the board is a subset of the board

obtained by placing some of the pieces on the board without overlapping. For
example the placement

(5.11)

is obtained by placing two pieces of shape a, a piece of shape b, and a piece of
shape c, as indicated. In a placement, no more than the alloted number of pieces
is allowed. R

Two placements covering the same squares by distinct sets of pieces, or by
pieces placed in different positions are considered to be different, for example,

> - and 4] -

are distinct, as are

L 4

and

The pieces in a placement need not be adjacent. To every placement p,
specified by the occupied squares and the position of the pieces, we associate
variable x(p), and we denote by V the free module over the integers spanned by
ti}e variables x(p) and the variable 1, which denotes the trivial placement of no
pieces.

We now define a comultiplication on the module ¥, as follows. If p and g are
placements, it is clear what is meant by saying that g is a subplacement of p- The
preces used in ¢ are a submultiset of the pieces in p, and they are placed in the
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same positions. For example,

is not a subplacement. Thus, there is a partial ordering of placements, and we
denote this PO set by P. P has a unique minimal element, the empty placement,
but in general, it has no maximal element. Furthermore, for any placement p,
the segment {q|q < p} is a Boolean algebra; therefore, the PO set P is a simplicial
complex. We are now ready to define the placement coalgebra. For any place-
ment p, list all ordered pairs (gq,r) such that

g and r are subplacements of p, (5.12a)

g and r do not overlap, (5.12b)

the union of ¢ and r is the placement p. (5.12¢)
Now set

Ax(p) = 2 *(q) ® x(r) (5.13)

where the sum ranges over all such pairs. For example, if p is the placement

, (5.19)

¢
v

»

and x,,x,,..., x¢ are the placements shown in Fig. 1, then
Ax(P) =1 ®X(p) + x ®x6+ X2®X4+ x3®x5+ x4®x2+ XS®X3

+x,®x,+ x(p)® L
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X, X,
1 1
"'. -—J
% Xy Xs- X,
1 - ! [ > &
e PR
Figure 1.

It is intuitively clear that the comultiplication just defined is coassociative, in

fact, it follows from the coassociativity of the Boolean coalgebra. The counit € is
defined by

e(i) =1 and e(x(p)) =0 forall x(p)=*1. (5.15)

We now come to the definition of a puzzle, at least in the special case we are

considering. To. this end, we begin by defining an equivalence relation on
placements. We shall say that p~g when:

p and g are obtainéd by placing,
possibly in different positions, the same pieces .
with the same multiplicity, _ (5.162)

and
the placement ¢ can be obtained from the placement p

by rigidly sliding and rotating (and possibly turning over,
depending on the rules of the game) placement p. (5.16b)

P:or example, any two placements of single pieces of the same shape are
equivalent. As another example,

and ]

— [ ]
L .

are equivalent.
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It is immediate that the relation ~ is an equivalence. An equivalence class
will be called a shape. The equivalence classes corresponding to placements of a
single piece will be called, appropriately enough, pieces.

The most important remark is that the submodule C of ¥V generated by all
elements

x(p) — x(q),

where p~g, is a coideal. Again, this is intuitively clear, but we shall verify it in
detail. We have

Ax(p) = 2 x(p1;) @ x(py;)

[

and
Ax(q) = 2 x(q1;) ® x(g,,),

and it follows from the definition of equivalence that the families {(p,;,p,;)} and
{(41:»92;)} of ordered pairs can be put into one-to-one correspondence in such a
way that the entries are respectively equivalent. We can therefore write

x(P1) ® x(py) — x(q1,) ® x(q)

=[x(p1)— x(9:,)] ® x(p) + x(2:) @[ x(p2) — x(g2) ]-

Thus, if p~gq, then
A(x(p)—x(q)) = 2 [x(Pu)"x(‘hi)] ® x(py)

+ x{q,;) ®[x(1’2i) —x(q2) ]

In other words, this shows that AC CC® V+ V' ®C, and thus proves that Cis a
coideal (see [27, p. 18]). We can therefore take the quotient coalgebra ¥/ C. This
coalgebra generated by shapes is called a puzzle. If p is the placement given in
(5.14), then in the puzzle (or quotient coalgebra) we have x;~x; and x,~xg.
Thus (if we represent each equivalence class by its placement of smallest index)
in the puzzle

Ax(p) = 1® x(p) +2(x;®x,) + X3 @ x5+ x5 ® x5+ 2(x,®x;) + x(p) @ 1.

From the preceding example it is now easy to extract the general definition of
a puzzle. One begins with a finite simplicial complex P, and one associates to P
a placement coalgebra in the same way as we have done above: to every p in P,
one associates the set of ordered pairs (g,r) such that g\/r=p and gAr=0.
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From this, one obtains the definition of the placement coalgebra in exactly the
same way. A puzzle is now generally defined as the quotient of the placement
coalgebra by a coideal defined by an equivalence relation among the elements of

P. _
The basic problem about puzzles is to determine how many distinct shapes

cover the entire board. At present, too little is known about the structures of
puzzles to even hazard a conjecture on how one might approach the problem.

V1. Divided powers coalgebra

Let N denote the lattice of nonnegative integers under natural ordering. The
incidence coalgebra G(N) is spanned by all segments [i,j] with

Alij]= 2 [ik]®[kJ]-

i<k<j
The divided pov.vers coalgebra ©) is the vector space K[x] with
n
CAxt= D xk@xk
S k=0
and

e(x") = 8,

It is the standard reduced incidence coalgebra of C(N), and its dual D* is
isomorphic to the algebra of formal power series k[[x]] (with the usual multi-
plication). Multivariate divided powers coalgebras are similarly defined to be the
standard reduced incidence coalgebra of

| @(N) = (N x XN,

- 'Y
s times

~ VIL Dirichlet coalgebra
Let Z* denote the lattice of positive integers ordered by divisibility, i.e., m <n if
and only if m divides n. The 0 of this lattice is 1. The equivalence relation on the
segments of C(Z ™) which gives the Dirichlet coalgebra is [7,j]~[k, /] if and only
if j/i=1/k. Alternatively, the Dirichlet coalgebra D is the vector space spanned
by the variables {n*:n=0,1,2,...}, with S

An*)= 3 p*®g*

and

E(nx)= 60,1:‘
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D has a natural algebra structure given by n*m*=(nm)*. While D is not a
bialgebra, the comultiplication is an algebra map when n and m are coprime,
that is,

A(n*m™) = A(n‘)A(m“)

whenever the ged of n and m equals 1.
The linear dual D* is isomorphic to the algebra of formal Dirichlet series, the
isomorphism being given by

o o(s) = ZL(;”SL)

Multivariate Dirichlet coalgebras are obtained from the same equivalence rela-
tion on the incidence coalgebra C(Z* X -+ XZ ).

The standard reduced incidence coalgebra is a subcoalgebra of the Dirichlet
coalgebra. Let [i,/] and [&,/] be two segments, and let

j/i=pl“l...p:aa and l/k=ql1-..qrﬁr

be their respective prime factorizations. The segments [i,/] and [k, /] are isomor-
phic if and only if s=r, and as multisets, the collections {a,} and { 8;} are the
same. In other words, given n, let shape(n)=(A,A,,...) where A, is the number
of distinct primes in the factorization of n which occur precisely & times. Then
[i./]~[k,] if and only if shape(j/i)=shape(//k).

VIIIL. Eulerian coalgebra

Let ¥ denote the lattice of all finite-dimensional subspaces of a vector space of
countable dimension over GF (g), ordered by inclusion. The minimal element of
V is the trivial subspace. The standard reduced incidence coalgebra of C(V) is
obtained by setting

[X,Y]~[S,T] if and only if dimY — dimX = dimT — dim .

The section coefficients count the number of subspaces of dimension k con-
tained in a subspace of dimension n, which is given by the Gaussian coefficient

ny _ (1-g)(1—-¢")---(1-g") .
["L (1-g)--- (1-g*)1-g)--- (1=¢"7")

If we set [n],! =(1—g)(1 —g®)- - - (1—g"), then

n (]!
[k],,""’ [T M [n—k]}
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The Eulerian coalgebra E is the vector space K[x] with

n

Ax"=2[2]x"®x"“k

k=0

and
e(x") = 8o, -

It is cocommutative, and E* is isomorphic to the algebra of formal Eulerian
power series, the isomorphism being given by

7> 9(u) = 2 ot

IX. The Faa di Bruno bialgebra

The Faa di Bruno coalgebra ¥ is the standard reduced incidence coalgebra for
the full lattice of partitions, II. As such, it bears the same relationship to the
lattice of partitions as does the binomial coalgebra to the lattice of subsets and
the Eulerian coalgebra to the lattice of subspaces of a vector space over a finite
field. In this section we shall show that this coalgebra is a bialgebra. (The proof
is due to Doubilet [11].) Moreover, this bialgebra serves as a blueprint for the
formulation and understanding of the general class of hereditary bialgebras
presented in Sec. XVII.

The full lattice of partitions, H 1s the lattice of all set partitions of A
(positive integers) having exactly one 1nf1n1te block and finitely many finite
blocks, ordered by refinement (see Sec II) :

Every segment {a, 7] of II is isomorphic to H"* X szx « X II}¥- - -, where II,
is the lattice of partitions of an n-set, and A, equals the number of blocks of 7
which consist of k blocks of o. (This isomorphism can be seen by thinking of the
ith block of o as the “element” B,, and [o,7] as a partition on the collection of
B;’s, with ¢ as the finest partition) To each segment [o, 7] of II, we associate the
sequence A=(1,1,...,1,2,.. ..) of A, ones, A, twos,...,sometimes written
A=(122M. ) or equlvalently, xllxi‘2 —x" A or x, is the type of [o,7], and
clearly [g,,7,] is 1somorph1c to [0,,7,] if and only if they have the same type.
type A=(12%-.n'...)=x, is often written as n. We shall use the symbols
a,B,A,v,u to denote types.

n Ny
The section coefficients a, B | coOunt the number of partitions # contained in

[0,(L,2,...,n)]=1II_ such that [0,7] is of type « and [7,(1,2,...,n)] is of type B.
Note that if a= xf‘ 3%+ - - x, we must have a,+2a,+ +na =n and =

Xay+ayt - +a, These section coefficients, known as the Faa dz Bruno coeffi ctents,
are given explicitly by

n o "‘nl;‘ t“"r 9.1)
[ a’B} a,'a2 |(1|)a|(2,)a2 (nD)= (
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The explicit coalgebra structure of & is as follows. As a vector space, ¥ is
isomorphic to K[x,,x,,...]= K[x]. The diagonalization A and counit ¢ are given
by

Ax* = azﬁ [ a),\B ]x“ ®xA (9.2)
and
_[1 if A=(0,0,0....) or (1,0,0,...)
(<) [0 otherwise. ©:3)

If 0<7 and B is a block of 7, then by 0N B we mean the partition of B
consisting of the blocks of o contained in B. Let [0, 7] be of type x,,x,, i.e., 7 has
two blocks B and B’, where B contains m blocks of ¢, and B’ contains n.
Suppose = is such that ¢ <7 <7, [6N B,7N B] is of type x{'x53,..., and [oN
B’,w B']is of type xix2%- - -. Then clearly [o,7] is of type x{i*ixfa*%s... =
x*x%. Similarly, if [N B,7N B] is of type x# and [#N B’,7 B'] is of type x#,

then [7,7] is of type x’x#". Thus, for all m,n,»,p,

X, X Xm X

mn | = > |, 9.4

[ s ] a,o, 8,8 [a’ﬂ}[a,’ﬁ ] ( )
ata'=p,B+B'=p

where addition of sequences is defined by (&“'%C“Z- )+ (82A )=
(10+Pm+h: ) je. x*xf=x**E It follows that [ ;"p”] is the coefficient of

b4

X’ ®x* in A(x,)A(x,,). This is equivalent to

| 2 [ xzzg]xv®xn - (2 [ ;m,e]"u@xp)(Z[:'b]x“@‘B)- (95)

N Y ) a,ﬂ a:ﬁ

' R Y . :
More generally, [x, X2 ] is the coefficient of X’ ®x" in A(x,)"‘A(x,_)"*- .

But this is just
A(xi\tx%z. .. ) = A(XI)A'A()CZ)M' ., (96)
In addition, it is clear from (9.3) that

A
e(Redr.) = el e

Hence, we have shown

THEOREM 9.1. F is a bialgebra under ordinary multiplication and the coalgebra
structure obtained from the standard reduced incidence coalgebra of cdan.
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Note that F is non-cocommutative. By Theorem 9.1, the space of all K-liner
maps from ¥ to itself, Hom(%, %), is an algebra with multiplication (or convolu-

tion) » defined by
7o) = 2| g |/ 602800, o)
a,fB ’

A function f in Hom(%, %) is said to be multiplicative if and only if for all A,
FMeeo ) =f(xM .. f(x)".... Any such function is determined by the
values it takes on the segments IT,. Let M (%) denote the class of multiplicative
functions. The following elementary result is fundamental [4].

PROPOSITION 9.1. The convolution of two multiplicative functions is multiplica-
tive.

Thus, IM(F) is a subsemigroup of the multiplicative semigroup Hom(%, %).
If f EM(F), let f(n) denote f(I1,), that is, f([s,7]) for all [,7] of type n. For
£,8 €EM(F), we get from (9.1) and (9.7) that
2 alf()™--- f(n)*g(ay+ ... + a,)

o1+ 2054w+ g =n a,!...a, (1) ... (n))™

frgln) = (9.8)

THeOREM 9.2 (Doubilet, Rota, Stanley). The semigroup IN(%F) is anti-isomor-
phic to the algebra of all formal power series with zero constant term over K[X] in
the variable u under the operation of functional composition. The anti-isomorphism
is given by fr>f(u), where

fu) = E / (") . (99)

Thus f+g(u)=g(f ().

Proof: Clearly the map defined by (9.9) is a bijection, so we need only check
that multiplication is preserved. Now

g(f(u)) = 2 3(")(2 (f)uv) . ©.10)

The coefficient of u” in the expansion of

is

SO0 £ K S
v,+,§ly"_n rl..p! 2 al.a,l (1NN (nD)* ’
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where the summation is taken over a, +2a,+... +na,=n and a, +... +a,=k,
since there are k!/a,!...a,! ways of ordering the partition ay+2e,+ ... +na, =

n. When we multiply (9.11) by g(k)/ k! and sum over all k, we obtain (9.8), and
the proof follows.

¥ is not a Hopf algebra, since A(x,)=x,®x,. It can be realized as a Hopf
algebra in K[x] localized at x,, with

A(_l_) ~lel.

Xy X, X

A proof of the existence of the antipode is given by demonstrating that a certain
recursion can be carried out. An explicit formula can be obtained using the
Lagrange inversion theorem [19].

In K[x] localized at x;, 9IL(¥) is anti-isomorphic to the group of all invertible
(under functional composition) formal power series. The inverse of any function
can be obtained by composition of this function with the antipode S. For a
more detailed discussion of the Hopf-algebra aspects of &, we refer the reader to

[11], [19].

X. Incidence coa_lgebraé for categories

Certain enumeration problems (see [4, p. 283]) lead to counting over structures
more complicated than a single PO set. The concept of a Mobius category [21],
gives one such structure. To extend the notion of incidence and reduced
incidence coalgebras for PO sets to these situations, we are led to define
incidence coalgebras for categories.

A locally finite category is a category in which for each morphism J, the
collection of pairs of morphisms {(f,/) 1f; ofo=f} is finite.

Given a locally finite category M, the incidence coalgebra C(M) is the free
vector space over K spanned by the indeterminates f, where fis 2 morphism of
M with coalgebra structure given by

Af = 2 ;8L (10.1)
Siefa=f
and
e(f) = { 1 if f=id, for somtf object p in M, (10.2)
0 otherwise.

Let ~ denote an equivalence relation on the morphisms of M. The subspace
generated by ~ is the subspace of C(M) spanned by the collection {f—g: f~g].
We say ~ is compatible if the subspace generated by ~ is a coideal. A reduced
incidence coalgebra C(M)/~ is the quotient coalgebra of C(M) modulo the

coideal generated by a compatible ~ relation.



114 S. A. Joni and G.-C. Rota

Given two morphisms f,g in M, we say that g divides f if there exists
morphisms A,k in M such that f=hogok. Let [f] denote the subcategory
generated by {g|g divides f}. The standard reduced incidence coalgebra is
obtained via the following equivalence on the morphisms: We set f~g if and
only if [f] is isomorphic (as a subcategory) to [g]. Clearly the subspace
generated by this equivalence relation is a coideal.

The range of meaningful reduced incidence coalgebras for categories is much
larger than those of PO sets. For example, the inner reduced incidence coalgebra
arises by setting f~g if and only if there exists an invertible morphism 4 in M
such that [f]=heo[g]eh~", and the strongly reduced incidence coalgebra arises
by setting f~g if and only if there exists a category isomorphism ¢: [f]-[g]
such that p(f)=g. '

Example 10.1: Every locally finite PO set P can be viewed as a locally finite
category as follows: the objects of M are the elements (or vertices) of P, and
there is a unique morphism f, ,x—y if and only if x <y. Clearly, if x<z<y,
then f, ,of,, =/, and [f ] corresponds to the interval [x,y]. There are no
invertible morphisms (other than the trivial ones, i.e. f, ,), so that in this case,
the inner reduced incidence coalgebra is the full incidence coalgebra. Moreover,
in this case the standard reduced and strongly reduced incidence coalgebra are
isomorphic.

Example 10.2: Every finite group G can be viewed as a locally finite category.
The category has only one object, and each morphism S, corresponds to an
element of G. Composition of morphisms is given by Jo oSy, =Fs ¢ and if e is the
identity element of G, is the identity morphism. In contrast to the case of PO
sets, the standard reduced incidence coalgebra for this category is isomorphic to
the trivial category (conmsisting of one object and one morphism), whereas the
inner reduced incidence coalgebra is isomorphic to the category of conjugacy
classes of G. Indeed, in the inner reduced coalgebra, we have f~g if and only if
there exists an 4 such that f=hgh ', that is, f is conjugate to g. Let J denote the
subspace generated by ~. If f~g, then to each pair (f,f,) such that f, f,=f
there correspond a unique pair  (g;,g,) such that g,g,=g and f~g; The
correspondence is given explicitly by g,= i~ !f,h. Therefore

A(f-g) = z.fu ®f2:“2h_lfnh®h_ffz.-h _
= 2 {(f T h_lflrh)®f21+ ’_;.—‘-k}fﬁh ®(fzi —h~ EfZih)]

CIRCM)+C(MJ. . -
Hence J is a coideal and C(M) [/~ is isomorphic to the category of conjugacy
classe-s of G, as asserted. In the strongly reduced incidence category we have
f~g if and only if there exists a group automorphism ¢ such that o(f)=§
_As we have seen in Sec. IV (Theorem 4.1), the lattice of subcoalgebras of the
incidence coalgebra for PO sets is distributive. This is also trivially true for the
lattice of subcoalgebras of the incidence coalgebra for a group G, because there
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are no proper subcoalgebras. It is, however, In general false. For example, let M
be the category :

wher= i, o f.=f; and f o, = fj, ji=12. The lattlce of subcoalgebras of this category
is not a dlstnbutlve lattice. This i 1s easily seen as follows: Let L(4) denote the
lines. span of 4, and set M, = L(i,,i,); M,=L( Jisigip); My=L(fy,i,iy); My=
L(,,+ f5i,,i,). Then each M, is a subcoalgebra of G(M ), and

Mz/\(M3VM4_) = _Mz’ |
whereas o
A(MAAM)V (MaAM) = M,

In fact, the seginent [MI,G(M )]'is isOmOrphic to the lattice of subspaces of a
two-dimensional vector space over K, and it is well known that this lattice is not
distributive. S

. XL The umbral calculus

The binomial bialgebra has been studied in great detail, in particular with regard
to applications to combinatorics; in a series of papers beginning with Mullin and
Rota [2], followed by Kahaner, Odlyzko, and Rota [3] and finally Roman and
Rota [5). Elegant expositions of the results of Mullin and Rota were given by
Aigner [6), Garsia [14], Liu [22], and several others. We shall summarize the
main lines of this theory, keeping in mind that these results should act as
blueprints for yet to be carried out generalizations to the more complex
blalgebras and coalgebras arising in combmatoncs, some of which are described
in the rest of the present paper. :
The comultiplication _ SUREEE A
ny -
o= 3 () 0rm ay
on the algebra of polynomials p(x) of one variable, defines a bialgebra structure,
The dual algebra on linear functions L—where we denote by (L|p(x)) the
action of the linear functional L on the polynomial p(x)—is seen to be

(LiLyfx"> = 2 (3 KL+ Lo *). (11.2)
k
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The dual algebra, with the augmentation ¢ acting as the identity, has been called
the umbral algebra by Roman and Rota. The umbral algebra is isomorphic to
the algebra of formal power series under the map

tn
LD (L™ —, (11.3)

even in a topological sense. The formal power series thus associated to a linear
functional is said to be its indicator.

The algebra of shift-invariant operators on polynomials is the algebra of all
linear operators T mapping polynomials into polynomials, such that TE“= ET,
where E* is the shift operator mapping p(x)—p(x + a), for all a. It turns out that
the umbral algebra is also isomorphic to the algebra of shift invariant operators
under the map sending the linear functional L to the operator Q given by

Qxf = 2 ( Z)(lek)x”"‘.

k

A coalgebra isomorphism U, that is, a one-to-one onto linear operator on
polynomials such that ‘

AUX" =S (¢ )vx*® Uxn* (11.4)
o k

has been called an umbral operator by Mullin and Rota. The adjoint of an
umbral operator is an isomorphism of the umbral algebra, and conversely, with
due respect to topology. The sequence p,(x)= Ux", where U is an umbral
operator, is said to be of binomial type, and is characterized by the identity

palx+a) = 2 (§ )pula)pn-4(x)- (115)
=2

Sequences of binomial type are of frequent occurrence in combinatorics, and
have motivated much of the work on the umbral calculus. For example the
sequences (x),=x(x—1):-:(x~n+1), x(x—na)"~!, and the Laguerre poly-
nomials are of binomial type.

A delta functional L is a linear functional such that {L|1)=0 and {Lfx)#0.
T.o every delta functional one can associate two polynomial sequerces of
binomial type: the associated sequence p,(x) uniquely defined by the biortho-
gonality requirements

LM p(x)) = n', | (11.6)

and the conjugate sequence q,(x), defined by

) = DLk X (117
=2 i
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Conversely, every sequence of binomial type, Pn(x), is the associated sequence
and the conjugate sequence of unique delta functionals, say L and L, which are
said to be reciprocal.

A shift-invariant operator Q associated to a delta functional L is said to be a
delta operator. If p,(x) is the associated sequence of the linear functional L, then
the identity Qp,(x)=np,_,(x) shows that the sequence P.(x) is related to the
delta operator Q in a manner analogous to D and x”. This leads to the
generalization to delta operators of several classical formulas of the calculus; as
the simplest example, Taylor’s formula generalizes to

plx+a) =D -P"T(!‘QQ’p(x). | (11.8)

For example, for the sequence p,(x)=(x),, the delta operator Q is the difference
operator A defined by Ap(x)=p(x+1)— p(x). Every delta operator Q equals the
product DP, where Dp(x)=p’(x) is the ordinary derivative, and the inverse
operator P! exists. The operator P is called the transfer operator of the
sequence p,(x). We come now to the first basic fact of the umbral calculus,
which is the transfer formula:

Pa(x) = xP """, (11.9)
where P is the transfer operator of the sequence of binomial type p,(x). This
formula is closely related to the Lagrange inversion formula for formal power
series [15].

To introduce the next basic fact, we consider the operator x mapping p(x) to
xp(x). The operator Q’'=Qx—xQ is called the Pincherlé derivative of the
operator Q, and is also shift-invariant if Q is. Now, if Q is the delta operator of
the sequence p,(x), then the recurrence formula

Pa(x) = x(2") " 'ppr(X) (11.10)

gives another way of explicitly computing a sequence of binomial type. .
We now come to the fundamental fact of the umbral calculus. If p,(x) is a
sequence of binomial type, then its generating function is of the form

.
Z &'}gf_)t" = exp[x(a,t+ ;_!ztz_’_ )J = g (11.11)
for some formal power series f(¢) such that a,=0 and a,#0, (a delta seﬁc§, for
short) and conversely. If p,(x) is the associated sequence for the Eiclta functional
L with indicator g(7), then the series f(f) and g(¢) are inverse in the sense of
functional composition, that is, f(g(N)=g(f(1)=1. Furthermpre., if p,(x) is the
conjugate sequence of the delta functional L, then f{(z) is the indicator of L.
Functional composition is also related to umbral operators. It turns out that
every umbral operator U is uniquely related to a delta series u(#), and if L has
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indicator f(¢), then the linear functional U*(L) has the indicator f(u(s)); the
converse is also true. |

The coalgebraic statement of this fact leads to the interpretation and rigoriza-
tion of the classical technique of treating indices as exponents, from which the
umbral calculus derives its name. If p,(x)=2 4, ,x* and g,(x) are sequences of
polynomials of binomial type, then the polynomial sequence

) = 3 ar 2 ae(%) = Pa(a()) (1L12)

is called the umbral composition of the sequences p,(x) and g,(x). It turns out
that the sequence r,(x) is also of binomial type; furthermore, if the indicators of
the delta functionals L and M with respect to which p,(x) and g,(x) are the
associated sequences are, respectively, f(¢#) and g(¢), then the corresponding
indicator of the sequence 7,(x) is the functional composition f( g(?)).

Among many other facts of the umbral calculus which cannot be mentioned
here—but some of which will be found in the memoir of Roman and Rota—we
mention the extension of the preceding results to other module actions of the
umbral algebra; in fact, it would be of the utmost interest to classify all such
module actions. For example, a natural action is defined on the ring of inverse
formal power series S

-3 %

‘n>1

by sending ¢™" to (¢+4a)™", thus defining the operator E°, and then taking a
suitable closure. In this way, one can define “inverse” analogs of all sequences
of binomial type; for example,

o 1
" () (x+2) - (x+n)’

(x)_

leading to a generalization of _the ciassiéal theory of factorial series.

XIL Infinitesimal coalgebras; the Newtonian coalgebra
Recall that a bialgebra A4 is a vector space which is simultaneously an algebra
and a coalgebra such that the comultiplication A is an “endomorphism™ of 4 (as
an algebra). The analogy between endomorphisms and derivations leads us to
define an infinitesimal coalgebra A to be a vector space which is simultaneously
an algebra and a coalgebra (possibly without a counit) such that the comultipli-
cation A is a derivation of 4 in the sense that for p,gin 4, \

A(pq) = (4p)(4®1) + (1®p)(Aq). 2
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In this section we shall present only one infinitesimal coalgebra, the Newtonian
coalgebra. The study of this coalgebra should provide a prototype for the
general study of infinitesimal coalgebras.

Let us recall the definition of the Newton divided differences. The 0th
divided difference is

[f:xo] = f(xy)-
The first divided difference is -

J(xo) — f(x,)

Xo— X)

[f:xo,x,] =

the second

[f:xO’xl] - [f:xpxz]

[ fixpX,X,] = o ’

and the kth divided difference [ f: x,...,x,] is obtained by iteration.
A polynomial sequence { p,(x)} [with py(x)=1] is said to be of Newtonian

type if

- n-1
22D LS (x)py s (122)
Y k=0

Two examples of such sequences are {x"}, and {(x +a)"} for any a. There are
two coalgebras within which we can study these polynomial sequences. As
vector spaces and as algebras, both are isomorphic to K[x]. The first coalgebra
we shall consider is the Newtonian coalgebra, denoted N. The comultiplication in

Nis

Ap(x) = p—————g——('x_’)‘ :}; ») (123)

and is easily checked to be coassociative. There is no counit in N. Moreover, itis
immediate to verify that

A(pg) = Ap(¢®1) + (1®p)Ag,

so that N is an infinitesimal coalgebra. The kth divided difference [ PiXp.. o Xs)
=AX(x). This coalgebra setting gives an elegant proof of Newton’s formula,
namely

J) = 3 (xmx (e ) S5
k=
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In the dual algebra, the following striking relationship between divided
differences and ordinary differentiation is seen. Let us set, for all p,

(gl f(x)) = f(p).
Then

_fp»)—-Aq)
<£p£q|f(x)> - P—4q ’

and

(e f(x)) = f'(p)-
An extensive study of the theory within this setting has been pursued by S.
Roman [25].

A different approach was taken by Garsia and Joni. Using the umbral
machinery with the “differentiation” operator A defined by

Ax" = x
and the “multiplication” operator B defined by

n+1

they define a polynomial sequence {g,(x)} [g,(x)=1] to be of Newjonian type if

DI L S (51,40 (124)
x=y k=0

Notel that g,(0)=0 for all n> 1. Examples of such sequences are {x"}, {x(x+
a’"'}.

Here, the underlying coalgebra structure is given by

Ap(x) = xp(x))c:;'p(y)

and

ny — 1, »=0,
e(x") {0 otherwise

(that is, € is evaluation at zero).
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In this setting, all of the results within the umbral calculus, appropriately
modified .(sF,e [13]) for the “differentiation” 4 and “multiplication” B, apply. For
example it is not difficult to show that {g,(x)} is of Newjonian type if and only
if '

S g(our =

1
n=0 I—xf(u) ’

where f(«) is an invertible (under functional composition) formal power series.
It turns out that polynomial sequences of Newtonian and Newjonian type are
essentially the same class of polynomial sequences. Indeed, we have

THEOREM 12.1. A polynomial sequence { p,(x)} is of Newtonian type if and only
if the polynomial sequence {q,(x)} defined by

(x) = 1, n=0,
X} = Xpp_y(x), n>1

is of Newjonian type.

The Newjonian coalgebra setting provided the machinery for the explicit
computation of the “Newtonian analogs” of many of the classical polynomial
sequences (e.g. Laguerre, Abel, exponential, Gould, etc.).

XIII. Creation and annihilation operators

The creation and annihilation operators we present here generalize those of

quantum field theory. .
Let {(i|lj,k)} be a collection of section coefficients satisfying the extra

condition that for each ordered pair (J, k), the set {i: (i j,k)70} is finite, and let
C be the coalgebra defined by these section coefficients and a given counit e (see
Sec. III). Creation and annihilation operators are linear maps from C to itself
defined as follows:

for each jE Y, the creation operator K, is

K%, = 3 3R (13.0)

) -
)
and the annihilation operator A, is
A;x, = 2 (klji)x (13:2)
i

zero or one, and if, in addition, for
k)=1, then the creation operator K,
k and j together if it exists,

If the section coefficients are all equal t(.?
each j,k there is at most one / such that (il k=1
acting on x, gives the “piece” i obtained by piecing
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and zero otherwise. Similarly, the annihilation operator 4; acting on x, gives the
piece i which when added to the piece j is the piece k, if such a piece exists, and

zero otherwise. ‘
For example, let us look at the situation when C is an incidence coalgebra for

a PO set. An easy computation gives

y,o| if x=wuand x<y<vo,
Apy[#0] = { [7>2]

0, otherwise.
Similarly
if y=u
K. Juv] = [x,0] i ,
e[ 0] { 0 otherwise.

In a puzzle, K;x, gives a list (with multiplicities) of all possible x; obtainable by

piecing together x; and x;. Similarly, 4,x; gives a list (with multiplicities) of all

possible pieces x; such that x; and x; can be pieced together to form x,.
Straightforward computations give

K, 4%, = X (klj,i)(ql P 1),
iq
and *
Ajlg’xk = 2 (i]p,k)(ilj,q)xq_

If the section coefficients are bisection coefficients, then C is a bialgebra, and in
addition,

Apxpy; = D k(Ap.xi)(Apzxf)'

pitpy=

PROPOSITION 13.1. If § is a commutative semigroup (written additively), then

KK, =KK, =K., and AA = AA; = 4;,

if and only if for all j,k,1,q

%(klj.p)(pll,q) = ; (k|Lp)(plj9)

= (klj+1q). (133)
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Proof:

‘I(jKqu = K_](; (p":Q)xp)

= Ek(pll,q)(klj,p)xk

and
Kiv 1%y = % (klj+1,9)x,.
Therefore, K;K,= K, ., if and only if
(klj+1,q) = ;(pli,Q)(klj,p)-

The same argument using K;X; cbmplctcs the proof for creation operators, and
the analogous argument holds for annihilation operators.

The coalgebra C, considered as a vector space, has a natural inner product:

THEOREM 13.1. The bilinear form
<xi|)€/>c = %(’l.’sQ)E(xq) :

on C is symmetric and nondegenerate.

Proof: Since ¢ is ihe counit of C, we have
PP (il /> g)e(x,) x;. (13.4)
' jq
Equating coefficients of the x’s on both sides gives

{xlxre = %I("U ..q)e(xq) =&

THEOREM 13.2. Relative to the symmetric form (» De» 4; and K; are adjoint
operators. : ' '

Proof: We show that
(Axlxde = GlKxdc
for all i,j, k. Expanding the left side gives

{Aixi| X e = %‘4 Ulip)Xxp Xe D = (Jli, k)
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since {x,, X, )c =0, x- Similarly, the right-hand side gives

(xlKxe = 2 (Pl k)% %> = (Jlik),
P

as desired.

In the following examples we see how creation and annihilation operators cut
up and piece together sets and partitions.

Example 13.1: For the binomial coalgebra, the creation and annihilation
operators are easily seen to be

I(jxk= (j'i-.k)xk+j
J

and

k\ k- i
ar = ()2 i sk
0 otherwise.

Example 13.2: Let X and Y be subsets. The creation and annihilation
operators for the Boolean coalgebra are

_[XuY if XnY=@
Ky Y = < ’
X0 {o “otherwise

and

A Y'=‘{Y—X if XCY,
X 0 °~  otherwise.

Example 13.3: The creation and annihilation operators for the Faa di Bruno
coalgebra are a bit more complicated than those of the previous two examples.

Let a, B, and A denote types of partitions. The creation operators K, are, by
definition, SRR

Kxf = S (Na, B

Since (Ala,8)#0 only if B,+28,+...+nB =a,+a,+... +a, A +2A
+..tnh,=a;+20,+ ... +na,, and A +A+ ... +A, =B+ B+ ... + B, the
types x* occurring in K, x? [with multiplicites (Ala, B)] are seen to be the types
obtainable by merging, in all possible ways, the blocks of a partition of type a so
that the resulting partition has the same number of blocks as 8. The multiplici-
ties count the number of ways in which a given type can occur.
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The annihilation operators 4, are
Aaxﬁ = 2 (Bla,A)x*,
A

so here we must have a«,+2a;+...+ne, =B +28,+...+nB, A +2\,
tootnh,=a+ .. +a,, and A +A . A, =8+ B8,+ ...+ 8, for the type
x* to occur in 4,x”. Thus we obtain a list of all the types of partitions (with
appropriate multiplicities) of a set of size a; + ... + a, with the same number of
blocks as 8.

XIV. Point-lattice coalgebras

Let £ be a finite point lattice, that is, a lattice in which every element is the
supremum of a set of atoms. It is well known and easily proved that £ is
isomorphic to the lattice of closed sets relative to the closure operation defined
on subsets of the set @ of atoms by

A= {pER|p<supAd} for A CQ@.

The closure operation enjoys the properties

ACA, (14.12)
A=1 | (14.1b)
if ACB, then ACB (14.1c)

(but not, in general A U B=AuUB). The complements of closed sets, called open
sets, can be characterized even more simply by

(1) the union of any family of open sets is an open set, _
(2) every open set is the union of the minimal nonempty open sets 1t

contains.

Thus, every point lattice can be represented as the family of all open setsin a
closure relation where the join in the lattice is set-theoretic union. In the
following we shall assume that £ is so represented by a fixed set @. We shall
further assume that £ has a unique minimal element, which is reprqsented .by
the empty set. This representation of £ allows us to define a very .mterestm_g
coalgebra structure on @. As a vector space, this coalgebra @ (£) is isomorphic
to the free vector space over K with basis consisting of all open sets of @&. For

cach open set A C&, the diagonalization is

AA = . 2 Al ®A2, (14'3)
Al,Azoan
A.nAz-Q
A|UA2-A
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and the counit is

{1 if A=C )
e(4) = {0 otherwise. (144)

Since the union of open sets is again an open set, it follows immediately that the
above diagonalization (14.3) is coassociative. Since point lattices occur in many
combinatorial investigations, the study of this class of coalgebras should prove
very interesting. We give three examples of point-lattice coalgebras.

Example 14.1 (The Boolean coalgebra): Finite-dimensional Boolean
coalgebras arise from the point lattice of subsets of {1,2,...,n}. This lattice can
be represented as follows: the minimal nonempty open sets are the sets consist-
ing of one element, i.e., the sets {j}, for 1 <j<n. Thus, every subset is an open
set. Hence, for each A, : '

AA = 2 A1®A21
A\NA;=2
AIUA2='A

so that these coalgebras are isomorphic to subcoalgebras of the Boolean coal-
gebra defined in Sect. V.

Example 142 (The nX n board): Let @ denote the collection of the n? squares
{a,}i;-; on an nXn square board. Our point lattice £ is represented by the
following family of open subsets of &: the minimal nonempty open sets are the
lines of the board, where a line, by definition, is either a row or column. The
open sets consist of all possible unions of lines, so each open set 4 is uniquely
determined by the two subsets of {1,2,...,n)}

R(A) = {ilrowiisinA} and C(A4) = {j|columnisin4)}.

Two open sets 4, and A4, can have 4, A,=@ if and only if either |R(4))|=
|R(42)| =0 or |C(4,)|=|C(4,)| =0. Thus, our comultiplication A breaks up open
sets which are unions of rows or unions of columns, and leaves intact any open
set which is a combination of both rows and columns,

Example 14.3 (Graphs): Let § =(V,E ) be an undirected graph with vertex set
V, |V|< oo, and edge set E. Here, our point lattice is the family of open subsets,
of V defined as follows: the minimal nonempty open sets are (unordered) pairs
of vertices p and ¢ such that there is an edge in E connecting p and g. We shall
sometimes write (p,q) to denote such an edge. An open set A is a subset of ¥
such that for each p €4, there exists a g€ 4 such that (p,q) is an edge in E.
(Note that g need not be unique.) Our comultiplication gives all ways of dividing
an open vertex set A into two disjoint sets 4, and 4, such that each vertex in 4,
i=1,2, remains connected to some other vertex in A,. For example, let § be the
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graph given by the following figure:

/ 2 3 ¥
J ¢ ]
V={12...,7).

Then {1,5,2}®{3,6,4,7} occurs in AV, whereas {1,2,3,5}®{4,6,7} does not.

An element p in any lattice £ is said to be a join-irreducible element if it
cannot be expressed as the join of two incomparable elements of £. Every
element in £ is the supremum of a set of join irreducibles, and £ is isomorphic
to the lattice of closed sets relative to the closure operation defined on subsets of
the set of join irreducibles J by

A={p&EJ|p<supd} for ACJ.

Thus, the construction given for the point-lattice coalgebras extends in the
obvious way to a construction for general lattices.

XY. Restricted placements

A fundamental concept in the study of permutations with restricted positions is
that of a non-taking subset of a board. A non-taking subset of a board is a
collection of squares {g,} such that no two squares have the same row or
column index. They are best visualized as follows: if we place a rook on each
square in a given set A, then A is non-taking if and only if no rook can “take”
any other rook, that is, no two rooks are in the same row or column. .

In this section we shall give a very general setting for the construction of
non-taking sets; non-taking sets of boards arise as one special case. A.nother
special case gives totally unconnected collections of vertice§ in graphs, which are
closely related to the problem of colorings of graphs. Within this context we are
lead to a very natural interpretation of Mdbius inversic')n for a large .class of
lattices, and a coalgebra closely associated with enumerations of non-fakmg sets.

In order that this paper may be reasonably self-contained, we give a bnc_f
sketch of Mébius inversion for an arbitrary locally finite PQ set P. The rcaficr is
referred to [1] for a more complete discussion. In enumeration, we often wish to
calculate f(y), a function on P, and it turns out to be much easier to calculate

gx) = S £().
yox

As an example, if P is the lattice of subsets of {1,2,...,n}, and f(A) is the
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number of permutations of {1,2,...,n} whose set of fixed points is precisely 4,
then it is easy to see that

g(4) = > f(B) = the number of permutations whose set of
B2A fixed points contains 4

= (n—|4].
We obtain the values of f (in terms of the values of g) via Mobius inversion.

The zeta function is the function in the incidence algebra § (P) defined by

1 if x<y,
0 otherwise.

(%) = {

The inverse of { (under =), p, is the Mébius functidn. That is, p satisfies, for all
x<y,

> wx28zy)= 2 {(x2)u(zy)

xXQzy xX<z<y

1 if x=y
=6 = ’ 15.1
il [ 0 otherwise. (15.1)

THEOREM 15.1 (Mobius inversion). Let f and g be functions on a givenyPO set
P such that

g(x) = ygxf (). (152)
Then
f(x)= g #(x,y)g(y). (153)

Proof: Equation (15.2) states that
g(y) = Eyf (2) = 2 8(2,2) f(2)-
Thus, multiplying both sides by u(x,y) and summing over y gives .
?.u(x,y)g(y) =2 gﬁ u(x,»)E(y,2) f(2)

= 38,.0() = S(x).
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As in Sec, XIV, we shall assume that we are given a point lattice £,
represented as a family of open subsets of a set @. We shall call nonempty
minimal open sets forbidden sets. Given £, we construct a new lattice St(), the
lattice of stars of £, as follows: for each p €&, the star of p, st(p), is the union of
all forbidden (minimal nonempty open) sets containing p. If 4 is any subset of
@, we set

si(4) = U st(p).

PEA

We say that an element S in £ is a star if and only if $=st(4) for some 4 CQ.
(Note that 4 is, in general, not unique.) If 4 C B, then st(4) Cst(B). We say that
A generates S if st(4)= S and for all 4’ % A, st(A") ; st(4). The lattice St(£)

consists of all stars of £, ordered by inclusion, where the join is set-theoretic
union. St(f) is, in general, not a sublattice of £. Indeed, the meets in the two
lattices are not necessarily the same, since if S and T are stars, then in St(2),
their meet will be the maximal star contained in S N T, whereas in £, their meet
is the maximal open set contained in S N T. Moreover, St(£) need not be a point
lattice. We shall give an example of this later in this section.

A subset 4 of & will be said to be non-taking when for all p7q in A, p &st(q)
and g &st(p). We define two functions f and g on St(£) as follows: given a star
S, let g(S) be the number of non-taking sets whose star contains S, and let f (S)
be the number of non-taking sets whose star equals S. Clearly,

g(S)= X f(7), (154)

TDS

where T ranges over all stars. Hence, by Mébius inversion,

f(8)= 2 (S, T)g(T), (15.5)

TOS

and we have exhibited a combinatorial interpretation of Mbius inversion over
any lattice of stars.

For our first example, let us return to the problem of rooks on an # X n board.
As in Example 14.2, our point lattice £ is represented by the family of open
subsets of @ (where @ is the collection of squares {g ;3 of the board) whose
forbidden sets are lines. The minimal nonempty stars of £ are the unions of the
two lines through each square g, - Thus, the number of atoms of St(£) is n?, and
since every star is a union of these minimal stars, St(£) is a point lattice. A
non-taking set A C& is, by definition, a set such that for each a4, in 4,
%g Est(a,;) and g;; &st(a,,). Clearly there is a bijection between these sets and all
possible placements on the nX n board of non-taking rooks. Recall that for an
Open set 4, R(A)={ilrow i is in A} and C(A)={(/jlcolumn j is in 4}. Let
7(4)=|R(4)| and c(4)=|C(A)|. If A generates the star S, then |A4|=
max(r(S),c(S)). The number of sets generating S equals the number of maps
from a set with max(7(S),c(S)) elements onto a set with min(r(S),c(S)) ele-
ments. Moreover, 4 is non-taking if and only if 7(st(4)) = c(st(4)). Thus, if S is a
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star such that r(S)=c(S)=m, then S is generated by m! non-taking sets of size
m. Therefore, we have shown

m! if r(S)=c(S)=m, 156
(8) = { otherwise. (156)
For n > 3, the lattice St(£) does not satisfy the chain condition. This is easily
seen, since
7
1'/,// L : :,//1 Y ////
/ i ——
/// / v | é = % A, (15.7)
§ oY Z/
while
4
J// A /// /)

77 //'/ '/ (15.8)

VA VAs U

In general, T is a successor of S in St(£) if and only if

and r(S) < r(‘T) <r(S+1), (159)

e(S) < o(T) < e(S+1).

Thﬁs the number of successors of S is given by
[1=r(S)]+[n=e(8)] + [n=r(S)][n—e(S)]
| =[n+1=r(S)][n+1-¢(S)] - L

Moreover if for SC W, we set Succ(S W)={T C W|T is a successor of §},
then |Succ(S W) is 4

(S, W) =[r(W)+1-r(S)][c(W)+1—c(S)] - 1. (15.10)
Let us set, for SC W and 2<k <y(S, W),
o(S,W;k) = |{¥ CSuce(S, W):|Y|=k and supY=W}|. (1511)

The cross-cut theorem [1] for Mébius functions of lattices gives

kS, W) = 3 (—1)re(S, w; k). (15.12)
k>2
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While the constants in (15.11) are not tremendously difficult to calculate in any
given interval, no closed formula is known at this time.

Finally, let us calculate the values of g(S). If T is a star generated by a
non-taking set and 7D S, then r(T)= ¢(T)=m > max(r(S),c(S)), and there are

precisely
()

such T. Hence, there are

n—r(S)\[ n—c(S) m
m—r(S)\m—c(S)/
non-taking sets of size m whose star contains S. Therefore, we have

CRIPI b)) M

m=max(r(S5),c(S))

Let us now turn to the case of graphs. As in Example 14.3, given a finite
graph § =(V, E), our lattice £ is represented by the family of open subsets of V'
whose forbidden sets consist of two-point subsets {p,q} such that (p,q) is an
(undirected) edge in E. The minimal nonempty stars will be a collection of
st(p)’s, but not every st(p) is necessarily minimal. A two-subset {p,q} is
nontaking if and only if p &st(q) and g &st(p), that is (p,g) is not an edge of §.
Thus, nontaking subsets correspond to collections of vertices where no two are
connected by an edge of §.

A proper coloring of a graph is a placement of colors, one on each vertex
of §, such that no edge connects two vertices of the same color. Clearly,
the maximum number of vertices we can color with one color is equal to
max, {|4|: A4 in non-taking}. The minimum number of colors needed to prop-
erly color a graph is equal to the smallest & such that there exists a collection of
pairwise disjoint non-taking subsets 4,,4.,,...,4, whose union is V..

Since the class of all finite graphs is extremely general, one would not expect
to be able to obtain general formulas for the functions f and g. However, in
many specific cases, they are very simple. As an example, let § be the graph

2
L
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There are six stars in ¥, and St(£) is

3¢(5)

Stt) sy

&
The non-taking subsets are &, {1}, {2}, {3}, {4}, {5}, {1,3}, and {2,4}. Thus,
I, 0<j<4,
=13 15.14
e =1y 0% (1514
and
8, j=0,
g(st())) =44, 1<j<4, (15.15)
3, j=5. '
Now consider the graph
d 5
|
4
3 4

Here the lattice St(£) is nor a point lattice. Indeed the minimal nonempty stars
are {1,2,3}, (1,2,4}, {1,3,4), {4,5}, and {4,6}. Thus, st(4)=(2,3,4,5,6} is not a
minimal star, and is not the join of the minimal nonempty stars contained in 1t.

Let us recall that our point lattice £ is represented by a family of open
subsets of the set @. For some sets 4 C@, the enumeration of the non-taking
subsets contained in 4 can be reduced to counting the number of non-taking
subsets contained in certain subsets of 4. The precise determination of when this
occurs leads us to the following definition. We say that two subsets 4 and B split
(or form a splitting of) a subset W if AU B= W, ANst(B)=, and st(4)n B=
. Let A and B split W, and suppose S is a non-taking subset of W. Clearl)[,
S NA and § N B are non-taking subsets of 4 and B, respectively. Conversely, if
§ is a non-taking subset of 4, and T is a non-taking subset of B, then SUT isa
non-taking subset of W. To see this let s S, teT, and sEst(s). Then s eAn
st(B), but ANst(B) is empty. Let r(W; k) denote the number of non-taking
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subsets of W of size k. Then for any splitting 4, B of W, we have shown
n
H(Won)y =, (Z)r(A,k)r(B,n—k). (15.16)
k=0

This identity is a generalization of those given by Henle for morphs relative to
certain dissects [17]. If @ itself admits a nontrivial splitting 4, B, then £ is the
direct product of the lattices of open subsets of A and B.

The Henle coalgebra 3C (£), associated to a point lattice £, studies the sphts
of &. More precisely, JC (£) is the vector space over K with basis consisting of
all subsets of @. The diagonalization A and counit € are given by

A4 = > 4,04, (15.17)
(A, 4;) ordered :
splits of 4
and
- if 4=0, 15.18
&(4) {0 otherwise ° ( )

That the comultiplication A is coassociative is easily verified. The full # X n rook
board admits no nontrivial splittings. However, if W is the subset shown in Fig.
2, then

AW =W+ W, W,+ W,® W, + WRJ.

A graph § with admit a splitting if and only if it has more than one connected
component.

W= vn,
W,
W1/
7P
P

v
s
%

Figure 2.
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XVI. Cleavages

We shall next discuss a class of coalgebras that generalizes the classical notion
of the shuffle algebra to partially ordered sets. A family 2 of PO sets is called an
SBC family (suitable for building cleavages) when it satisfies the following
condition:

if P is a partially ordered set in X,
and if Q is a partially ordered subset of P in Z,
then the partially ordered subset P-Q also belongs to 2. (16.1)

Under this condition we define a cleavage of a PO set P in £ as an ordered
pair (Q, R) of subsets of P—with the inherited partial order—such that Q " R=
&, QUR=P, and Q and R belong to 2.

The cleavage coalgebra of the family =, C (), is now defined as follows.
Associate a variable x, to each P in Z, including 1 for the empty PO set, and let
C (=) be the vector space having the X’s as a basis. Set

Axp= 2 x5® xp, (16.2)
(2:R)

where the sum ranges over all cleavages (Q,R) of P. The counit &(xp) is zero
unless x, =1, and e(1)=1; the verification of coassociativity is immediate.

We shall call a family 3 of #ypes (i.e. isomorphism classes) of partially ordered
sets a reduced SBC family when it satisfies the following condition:

if @ is a type in 3,

if P is a partially ordered set of type a,

if Q is a partially ordered subset of P,

and if the type B of Q belongs to S, then the type v

of the partially ordered subset P~ Q belongs to 3. (16.3)

Clearly, if Z is an SBC family, and if S is the family of types (or isomorphism
classes) of 2, then 2 is a reduced SBC family. The reduced cleavage coalgebra of
the family X is the vector space C(S) freely spanned by the variables x,
associated to each type a, including 1 for the empty PO set, with

Ax, =2 (a] B,7)%, ® x,, (16.4)

where the sum ranges over all ordered pairs (8,7) of types in S such that a
partially ordered set P of type a contains a cleavage of type (8,7).

The section coefficients (a|B,y) are integers counting the number of clea-
vages of type (3,v) in a partially ordered set of type a. The counit is the obvious
one, and again the verification of coassociativity is immediate.

If 2 is an SBC family and £ is the family of types of =, then the reduced
cleavage coalgebra C(Z) is isomorphic to the quotient of the cleavage coalgebra
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C(Z) modulo the coideal generated by xp — x,, for all isomorphic PO sets P, Q in

z. . _
Examples of SBC and reduced SBC families are not abundant, and we shall

only give three.

Example 16.1. Let 3 be the family of all finite linearly ordered subsets; S is
the family of all types of finite linearly ordered subsets. The cleavage coalgebra
C(2) is isomorphic to the Boolean coalgebra. The reduced cleavage coalgebra
C(S) turns out to be isomorphic to the shuffle coalgebra. It is well known that
this coalgebra is a bialgebra, where the noncommutative multiplication is simply
juxtaposition.

Example 16.2. Let = be the family of all finite forests, and 3 the reduced
family consisting of all types of finite forests, considered as PO sets. Clearly X is
an SBC family. S defines an interesting reduced cleavage coalgebra, the tree
coalgebra, which does not seem to have been studied. We do not know whether
the tree coalgebra can be significantly turned into a bialgebra.

Example 16.3: Let = be the family of all finite PO sets; Z, the reduced family
of all types of PO sets. The associated reduced cleavage coalgebra, we conjec-
ture, should have some notable universal mapping characterization, generalizing
the universal properties of the shuffle coalgebra.

Several SBC subfamilies (reduced SBC subfamilies) of PO sets defined by
restricting the length or width of the PO sets (types) allowed give subcoalgebras
of the cleavage (reduced cleavage) coalgebra. For example, one can take all PO
sets (types of PO sets) with the property that in each P, no chain exceed in
length an integer » prescribed in advance.

The cleavage and reduced cleavage coalgebras can be viewed as generaliza-
tions of the incidence and reduced incidence coalgebras. Very probably, other
coalgebras “in between” these two extremal cases can be defined.

XVII. Hereditary bialgebras

We come now to the description of a class of bialgebras—indeed, of Hopf
algebras—which are probably the richest in structure and combinatorial ap-
plications. They are obtained from hereditary classes of matroids, a notion
which we proceed to discuss briefly.

Recall that a matroid M(S) on a (finite) set S is a closure relation defined on
the subsets of S which enjoys the MacLane-Steinitz exchange property: if 4 is
any subset of S, A4 it A its closure, and p,q elements of S such that g€ 4 U p but
q& A, then pE AU g. We shall need only a few elementary concepts from the
theory of matroids; further details can be found in the books by Crapo and
Rota [9] and by Welsh. The direct sum of two matroids M(S,) and M(Sz) on
disjoint sets S, and S, is defined as M(S,+S,) by setting 4, U 4,= A,UA,,
where 4, C S,. A matroid is said to be connected when it is not isomorphic to a
nontrivial direct sum of two matroids. Every matroid M(S) is uniquely the
direct sum of connected matroids M(S;) obtained from the blocks S, of a
suitable partition of the set S. A segment of a matroid is defined as follows. Let
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A and B be closed sets of M(S), and let 4 C B. The segment M(ALB; S) is the
matroid defined as the set B— A with, for C C B— A4, the closure C of C to be
C=CuA-A.

In the following we denote by Greek letters isomorphism classes, or types, of
matroids. The lattice of closed sets of a matroid is called a geometric lattice. Two
non-isomorphic matroids may have isomorphic geometric lattices. In fact,
among all non-isomorphic types of matroids having isomorphic geometric latt-
ices, there is one which is canonically associated with the geometric lattice L as
follows: the set S is the set of atoms of the lattice L (that is, elements covering
the minimum element), and for ACS, one sets A={pES:p<supA4}. This
matroid is called the combinatorial geometry associated to the geometric lattice
L.

The geometric lattice of the segment matroid M(4, B; S) is isomorphic to the
segment [4, B] in the geometric lattice L of the matroid M(S).

We come now to our main notion. A hereditary class H of matroids is a
family of types of combinatorial geometries with the following properties:

(1) If a and B belong to H, then the direct sum a+ 8 is a combinatorial
geometry, and it belongs to H. The geometric lattice of a + B is the product, in
the sense of partially ordered sets, of the geometric lattices of a and 8.

(2) If M(A,B;S) is a segment of a matroid M(S) and the type of M(S) is in
H, then the combinatorial geometry of the type of the matroid M(4,B;S) also
belongs to H.

(3) If a belongs to H and « is isomorphic to the nontrivial direct sum
a=qa,+a, of combinatorial geometries, then o, € H.

- Let H be a hereditary class, with types a,8,y in H. The section coefficient
(af B;y) of H is defined to be the number of closed sets 4 in a matroid M(S) of
type a such that the segment M(Z,4;S) is of type B and the segment
M(A,S;S) is of type y. It is easy to see that this number depends only on the
types a, 8, .

We have the important

PROPOSITION 17.1. The section coefficients of a hereditary class of matroids are
section coefficients. |

Proof: We have to prove the identity
%(alﬁ,v)(YIw,O) = (a| B,7,0)
= % (a]8,0)(8] B, 7).

Let (a| B,7,0) be the number of pairs of closed sets A C B of a matroid M(S) of
type a such that M(&,4; S) is of type B, M(4, B; S) is of type w, and M(B,S;S)
is of type 0. The first sum is obtained by fixing 4 and letting B vary, whereas the
second sum is obtained by fixing B and letting A vary.

More important is the
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THEOREM 17.1. The section coefficients associated with a hereditary class of
matroids H are bisection coefficients.

Proof: We define a semigroup structure on the hereditary class H by taking
direct sums as addition. For clarity, we shall prove the bilinear identity for the
special case (a|B,y) where a=a;+ a, and the a; are connected (nontrivial)
types; the general case is similar. Thus, we need to show that

(a,+a2|,8,'y)= 2 (“1'3le1)(“2'3st2)°
Bi+B=8
Yit Y=y

To this end, let A C S be a closed set of M(S), and let M(S) be the direct sum of
M(S,) and M(S,). Then the matroid M(J,A4; S) is isomorphic to the direct sum
of the matroid M(J,4,;S,) and M(J,4,; S,) wheré A,=ANS,. Similarly, the
matroid M(A4,S;S) is isomorphic to the direct sum of M(A4,,S,;S,) and
M(A,, S,; S;). Counting, we obtain the desired identity.

Thus, associating the variable x, to each type of the hereditary class H, we
obtain a bialgebra where the underlying algebra is the polynomial algebra in the
variables x, for which a is a connected type, and the comultiplication is defined
by o

Ax, = Z(a| B,7)x ® x,.

The augmentation is defined in the obvious way.
The bialgebras obtained by this construction will be called hereditary bialge-
bras. We list some of the examples previously discussed.

(1) The Boolean algebra of subsets of finite sets turns out to be a heredltary
bialgebra, which is in fact the binomial bialgebra. B

(2) The Faa di Bruno bialgebra is the hereditary b1a1gebra obtamed by taking
the bond closure (see [1]) on graphs which are direct sums of complete graphs.

(3) The Eulerian coalgebra is also associated—although rather trivially—
with a hereditary bialgebra. One takes all direct sums of matroids whose
geometric lattices are the lattices of all subspaces of a vector space over a finite
field. If « is connected, then A(x,) agrees with the definition already given.

Other notable hereditary classes of matroids are (4) all finite sets of points in
projective space over a fixed field; (5) all series-parallel networks (6) all graphs,
(7) all planar graphs; (8) all unimodular matroids.

Each hereditary blalgebra leadsto a generahzatlon of the umbral calculus, for. -

which the umbral calculus in one variable, outlined in Sec. XI, is the blueprint.
We believe the development of such “hereditary” calculi to be one of the most
Promising prospects of present-day combinatorics.

In the preceding theorem (Theorem 17.1), an essential role is played by the
very special factorization properties of matroids. Thus, the notlon of hereditary
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bialgebras can be extended to any family of PO sets where one can prove the
factorization properties required to make the above proof work. One such class
is the class of semimodular lattices. The discovery of the most general such class,
if any, may well lead to a class of bialgebras sharing a simple axiomatic
definition.

In closing, we remark that the detailed study of hereditary bialgebras should
have as some of its goals the extension to hereditary bialgebras of the exponen-
tial formula of the binomial bialgebra, as well as generalizations of the Lagrange
inversion formula.
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