Math 582: Foundations of Combinatorics - Graph Theory
Lecturer: Prof. Sara Billey

## Problem Set \#7 <br> due Friday, February 28, 2018

Reading: Read Chapter 3 of Diestel.
Homework Problems: For each of the problems below, explain your answer fully.
No credit will be given for a simple numerical answer.
(1) Draw the 3-mer graph on the following reads and use it to find ALL shortest possible circular DNA sequence containing all of the reads.

$$
\begin{array}{cccc}
\text { (G C C A C G C) } & \text { (G A G T A T T) } & \text { (C C A C G C T) } & \text { (A T T T T C G) } \\
\text { (T A T T T T C) } & \text { (G C T T C G A) } & \text { (A C G C T T C) } & \text { (C G C T T C G) }
\end{array}
$$

(2) Prove that every 3 -connected graph with at least six vertices that contains a subdivision of $K_{5}$ also contains a subdivision of $K_{3,3}$.
(3) Prove that a graph is 2-connected if and only if for every two vertices $x$ and $y$ and every edge $e$ there exists a path from $x$ to $y$ through $e$.
(4) Prove that if $G$ is $k$-connected $(k \geq 2)$ then every set of $k$ vertices is contained in a cycle. Is the converse true?
(5) Diestel, Chapter 3, Problem 15.
(6) Diestel, Chapter 3, Problem 18.
(7) (Bonus) Show that any 3-connected planar graph forms the skeleton of a convex polyhedron.

