A Characterization of Perfect Graphs

L. Lovász
Eötvös L. University, Budapest, VIII. Muzeum krt. 6-8, Hungar
Communicated by W. T. Tutte
Received December 3, 1971

It is shown that a graph is perfect iff maximum clique • number of stability is not less than the number of vertices holds for each induced subgraph. The fact, conjectured by Berge and proved by the author, follows immediately that the complement of a perfect graph is perfect.

Throughout this note, graph means finite, undirected graph without loops and multiple edges. \bar{G} and $|G|$ denote the complement and the number of vertices of G, respectively. Let $\mu(G)$ denote the maximum cardinality of a clique in the graph G, and let $\chi(G)$ be the chromatic number of G. Obviously

$$
\chi(G) \geqslant \mu(G) .
$$

A graph G is called perfect if

$$
\chi\left(G^{\prime}\right)=\mu\left(G^{\prime}\right)
$$

for every induced subgraph G^{\prime} of G. Berge [1] formulated two conjectures in connection with this notion:
(A) A graph is perfect iff neither it nor its complement contains an odd circuit without diagonals.
(B) The complement of a perfect graph is perfect.

Obviously, (A) is stronger than (B). In [3] (B) was proved. This result also follows from the theory of anti-blocking polyhedra, developed by Fulkerson [2].
In the present paper a theorem stronger than (B) but weaker than (A) is proved. This possibility of sharpening of (B) was raised by A. Hajnal.

Theorem. A graph G is perfect if and only if

$$
\mu\left(G^{\prime}\right) \mu\left(\bar{G}^{\prime}\right) \geqslant\left|G^{\prime}\right|
$$

for every induced subgraph G^{\prime} of G.
Proof. Part "only if" is trivial. To prove part "if" we use induction on $|G|$. Thus we may assume that any proper induced subgraph of G, as well as its complement, is perfect.

Let multiplication of a vertex x by $h(h \geqslant 0)$ mean substituting for it h independent vertices, joined to the same set of vertices as x. This notion is closely related to the notion of pluperfection, introduced by D. R. Fulkerson.
(I) As a first step of the proof we show that if G_{0} arises from G by multiplication of its vertices then G_{0} satisfies

$$
\mu\left(G_{0}\right) \mu\left(\bar{G}_{0}\right) \geqslant\left|G_{0}\right|
$$

Assume this is not the case and consider a G_{0} failing to have this property and with minimum number of vertices. Obviously, there is a vertex y of G which is multiplied by $h \geqslant 2$; let y_{1}, \ldots, y_{h} be the corresponding vertices of G_{0}. Then

$$
\mu\left(G_{0}-y_{1}\right) \mu\left(\bar{G}_{0}-y_{1}\right) \geqslant\left|G_{0}\right|-1
$$

by the minimality of G_{0}; hence

$$
\mu\left(G_{0}\right)=\mu\left(G_{0}-y_{1}\right)-p, \quad \mu\left(\bar{G}_{0}\right)-\mu\left(\bar{G}_{0}-y_{0}\right)=r
$$

and

$$
\left|G_{0}\right|=p r+1
$$

Put $G_{1}=G_{0}-\left\{y_{1}, \ldots, y_{h}\right\}$. Then G_{1} arises from $G-y$ by multiplication of its vertices, hence by [1, Theorem 1], \bar{G}_{1} is perfect. Thus, \bar{G}_{1} can be covered by $\mu\left(\bar{G}_{1}\right) \leqslant \mu\left(\bar{G}_{0}\right)=r$ disjoint cliques of G_{1}; let C_{1}, \ldots, C_{r} be these cliques, $\left|C_{1}\right| \geqslant\left|C_{2}\right| \geqslant \cdots \geqslant\left|C_{r}\right|$.

Obviously, $h \leqslant r$. Since $\left|G_{\mathbf{1}}\right|=\left|G_{0}\right|-h=p r+1-h$,

$$
\left|C_{1}\right|=\cdots=\left|C_{r-h+1}\right|=p
$$

Let G_{2} be the subgraph of G_{0} induced by $C_{1} \cup \cdots \cup C_{r-h+1} \cup\left\{y_{1}\right\}$, then

$$
\left|G_{2}\right|=(r-h+1) p+1<\left|G_{0}\right|
$$

thus, by the minimality of G_{0},

$$
\mu\left(G_{2}\right) \mu\left(\bar{G}_{2}\right) \geqslant\left|G_{2}\right| .
$$

Since $\mu\left(G_{2}\right) \leqslant \mu\left(G_{0}\right)=p$, this implies

$$
\mu\left(\bar{G}_{2}\right) \geqslant r-h+2 .
$$

Let F be a stable set of $r-h+2$ vertices of G_{2}; then $\left|F \cap C_{i}\right| \leqslant 1$ $(1 \leqslant i \leqslant r-h+1)$, hence $y_{1} \in F$. This implies that $F \cup\left\{y_{2}, \ldots, y_{n}\right\}$ is stable in G_{0}. On the other hand

$$
\left|F \cup\left\{y_{2}, \ldots, y_{n}\right\}\right|=r+1>\mu\left(\bar{G}_{0}\right),
$$

a contradiction.
(II) We show that $\chi(G)=\mu(G)$. It is enough to find a stable set F such that $\mu(G-F)<\mu(G)$ since then, by the induction hypothesis, $G-F$ can be colored by $\mu(G)-1$ colors and, adding F as a further one, we obtain a $\mu(G)$-coloring of G.

Assume indirectly that $G-F$ contains a $\mu(G)$-clique C_{F} for any stable set F in G. Let, for $x \in G, h(x)$ denote the number of C_{F} 's containing x. Let G_{0} arise from G by multiplying each x by $h(x)$.

Then, by Part I above,

$$
\mu\left(G_{0}\right) \mu\left(\bar{G}_{0}\right) \geqslant\left|G_{0}\right| .
$$

On the other hand, obviously

$$
\left|G_{0}\right|=\sum_{x} h(x)=\sum_{F}\left|C_{F}\right|=p f,
$$

where f denotes the number of all stable sets in G_{0}, and

$$
\begin{aligned}
& \mu\left(G_{0}\right) \leqslant \mu(G)=p, \\
& \mu\left(\bar{G}_{0}\right)=\max _{F} \sum_{x \in F} h(x)=\max _{F} \sum_{F^{\prime}}\left|F \cap C_{F^{\prime}}\right| \leqslant \max _{F} \sum_{F^{\prime} \neq F} 1=f-1,
\end{aligned}
$$

a contradiction.
Remark. The condition given in the theorem is strictly related to the max-max inequality given by Fulkerson [2]. Multiplication of a vertex is the same as what he calls pluperfection.

References

1. C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961), 114.
2. D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, 7th International Programming Symposium, The Hague, 1970.
3. L. LovÁsz, Normal hypergraphs and the perfect graph conjecture, Discrete Math., in press.
