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The ``height'' of a graph G is defined to be the number of steps to construct G
by two simple graph operations. Let Bn be the graph obtained from an n-edge path
by doubling each edge in parallel. Then, for any minor-closed class G of graphs, the
following are proved to be equivalent: (1) Some Bn is not in G; (2) There is a
number h such that every graph in G has height at most h; (3) G is well-quasi-
ordered by the topological minor relation; (4) There is a polynomial function p( } )
such that the number of paths of every graph G in G is at most p( |V(G)|+|E(G)|).
� 1996 Academic Press, Inc.

1. Introduction

All graphs in this paper are finite and may have loops or multiple edges.
A graph H is called a minor of a graph G if H can be obtained from a sub-
graph of G by contracting edges. A class G of graphs is minor-closed if G
belongs to G whenever G is isomorphic to a minor of a member of G. For
a positive integer n, a double path Bn is the graph obtained from an n-edge
path by doubling each edge in parallel. The main results of this paper are
Theorem (1.5) and Theorem (1.6), which characterize those graphs that do
not have a ``long'' double path as a minor.

This research was motivated by a conjecture of Robertson (a detailed
discussion is given in Section 3). By using Theorem (1.6), we prove that
Robertson's conjecture is true if we only consider minor-closed classes of
graphs. In Section 4, we discuss another application of Theorem (1.6). It is
proved, for every minor-closed class G of graphs, that some Bn is not in G
if and only if there is a polynomial function p( } ) such that the number of
paths of every graph G in G is at most p( |V(G)|+|E(G)| ).

To formulate our main results, we need some preparations. A rooted
graph is a connected graph, together with a specified vertex called the root.
Let G be an r-rooted graph. That is, G is a rooted graph with root r. We
shall say that G has Bn as a rooted minor if G has Bn as a minor while
the root r of G is contracted to an end-vertex of Bn . We first make the
following obvious observation.
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(1.1) Let G be a rooted graph. If Bn is not a minor of G, then Bn is not
a rooted minor of G. On the other hand, if Bn is not a rooted minor of G,
then B2n&1 is not a minor of G.

It follows from this observation that characterizing those graphs which
do not have a ``long'' double path as a minor is equivalent to characterizing
those rooted graphs which do not have a ``long'' double path as a rooted
minor. In the following, we shall concentrate on rooted graphs since they
are easier to work with.

Let G be a rooted graph. A single-extension of G is a rooted graph
obtained from G by adding a new vertex r, which will be the root, and
then, adding loops incident with r and adding new edges between r and
V(G) in an arbitrary way. It is easy to see from (1.1) that the following
proposition holds.

(1.2) If G does not have Bn as a rooted minor, then a single-extension
of G does not have B2n as a rooted minor.

Let k be a positive integer and let G1 , ..., Gk be mutually disjoint rooted
graphs with roots r1 , ..., rk respectively. A tree-connection of these graphs is
a rooted graph defined as follows. Take an r-rooted tree T disjointing from
every Gi . Then, for each Gi , identify ri with a vertex of T, where we allow
more than one ri to identify with a vertex of T. Finally, we define the root
of the resulting graph to be r. A good feature of this operation is given by
the following lemma. We leave the proof to the reader since it is easy.

(1.3) Let G be a tree-connection of rooted graphs G1 , ..., Gk . Then G
has Bn as a rooted minor if and only if some Gi has Bn as a rooted minor.

Clearly, every rooted graph can be constructed from graphs with one
vertex by a sequence of single-extension and tree-connection operations.
This observation suggests that we may define the height of a rooted graph
as follows. The height of a graph with one vertex is zero. Then, for a
positive integer h, a rooted graph has height at most h if it is a single-exten-
sion of a rooted graph of height at most h&1, or it is a tree-connection of
rooted graphs of height at most h&1. It is clear from (1.2) and (1.3) that
the following holds.

(1.4) If the height of a rooted graph G is at most h, then G does not
have B2h as a rooted minor.

Conversely, we have the following theorem, the rooted version of our
main result.

12 GUOLI DING
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(1.5) Theorem. There is a function h(n) such that every rooted graph
without Bn as a rooted minor has height at most h(n).

We shall prove this theorem in Section 2, where we show that
h(n)�32n4.

The height of a graph G is at most h if all connected components of G
can be rooted in such a way that the heights of these rooted graphs are at
most h. Immediately, we conclude from (1.1), (1.4), and (1.5) the following
theorem, the unrooted version of our main result.

(1.6) Theorem. Let G be a minor-closed class of graphs. Then some Bn

is not in G if and only if there is a number h such that the height of every
graph in G is at most h.

Theorem (1.6) can be viewed in different ways. For instance, we may say
that a long double path minor is the only obstacle to small height. We may
also say that a graph has a long double path minor if and only if its height
is big.

However, we need to point out that height is not a parameter preserved
under taking minors. In another words, there exist graphs G such that the
height of a minor of G exceeds the height of G. For example, let G be the
graph obtained from a path on five vertices by adding a new vertex r and
making it adjacent to all the five vertices of the path. Since the height of
the path is one and G is a single-extension of the path, it follows that the
height of G is two. Now let G$ be the graph obtained from G by contracting
the edge between r and the middle vertex of the path. Then it is easy to see
that the height of G$ is three, which is larger than the height of G.

If one is interested in a parameter that is preserved under taking minors,
one may define the m-height (modified height) of a graph in the same way
as height is defined, except allowing G to be the disjoint union of
arbitrarily many rooted graphs in the definition of single-extension (this
new operation will be called modified single-extension). It is not difficult to
verify the following proposition.

(1.7) The m-height of a minor of a graph G is at most the m-height
of G.

Observe that a modified single-extension of a graph G can also be
obtained by a tree-connection of single-extensions of the connected com-
ponents of G. Thus the following must hold.

(1.8) If the height and the m-height of a graph are h and m, respec-
tively, then m�h�2m.

Therefore, Theorem (1.5) and Theorem (1.6) still hold if height is
replaced by m-height. We choose to use height in our discussion because

13EXCLUDING A LONG DOUBLE PATH MINOR
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single-extension is more elementary than the modified single-extension,
which makes our theorems slightly stronger. Besides, even though a minor
may have greater height, from (1.7) and (1.8) we conclude that the height
of a minor cannot be arbitrarily large.

(1.9) The height of a minor of a graph G is at most twice the height
of G.

2. Proving Theorem (1.5)

Let G be a graph and let G$ be the graph obtained from G by deleting
its loops. It is not difficult to see that G and G$ have the same height. Thus,
we shall only consider loopless graphs in this section. We begin with a
corollary of Dilworth's theorem [1], which will be used in our proof.

(2.1) A poset with at least (m&1)(n&1)+1 elements must have a
chain of size m or an antichain of size n.

A graph H is called a topological minor of a graph G if a subdivision of
H is a subgraph of G. Let n be a positive integer and let Ln , Cn be graphs
as illustrated in Fig. 1. Then we have the following lemma.

(2.2) Let n be a positive integer and let G be a cubic hamiltonian
graph. Suppose G has at least 2(n&1)(n2&1)+1 vertices. Then G has a
topological minor isomorphic to either Ln or Cn .

Proof. Let C be a hamiltonian circuit of G. Let x1 , ..., xs be vertices of
G such that [x1 , x2], [x2 , x3], ..., [xs&1, xs], and [xs , x1] are the edges
of C. Let F be the set of other edges of G. Then F is a perfect matching
of G.

Fig. 1. A ``ladder'' Ln and a ``circuit'' Cn .

14 GUOLI DING
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Let us define a binary relation P on F as follows. For any two members
e=[xi , xj] and e$=[xi $ , xj $] of F, let ePe$ if e=e$ or max[i, j]<
min[i $, j $]. It is clear that Q=(F, P) is a poset. Moreover, if Q has
a chain P of size n, then the subgraph of G induced by P _ E(C) is iso-
morphic to a subdivision of Cn .

Since F is perfect matching of G and G has at least 2(n&1)(n2&1)+1
vertices, it follows that F has at least (n&1)(n2&1)+1 elements. Thus, by
(2.1), we may assume that Q has an antichain F $ of size n2. Now we define
a binary relation P$ on F $. For any two members e=[xi , xj] and
e$=[xi $ , xj $] of F $, let eP$ e$ if either e=e$ or i and j are between i $ and
j $. It is clear that Q$=(F $, P $) is a poset. Moreover, if Q$ has a chain P$
of size n, then the subgraph of G induced by P$ _ E(C) is isomorphic to a
subdivision of Ln .

Therefore, by (2.1) again, we may assume that Q$ has an antichain A of
size n+2. Suppose [xi1 , xj1], ..., [xin+2

, xjn+2
] are the members of A.

Without loss of generality, let us assume that ik<jk for all k, and
i1<i2< } } } <in+2 . Since A is an antichain of both Q and Q$, it is clear
that we must have in+2<j1< } } } <jn+2. Let the two paths of C induced
by [xi : i1�i�in+2] and [xj : j1�j�jn+2] be Ci and Cj , respectively.
Then it is easy to see that the subgraph of G induced by A _ E(Ci) _ E(Cj)
is isomorphic to a subdivision of Ln . Thus (2.2) is proved. K

Our next lemma is a result on how to estimate the height of a rooted
graph.

(2.3) Let G be an r-rooted graph and let X be a subset of V(G) with
r # X. If the height of every connected component of G&X is at most h,
then the height of G is at most h+2 |X|.

Proof. We prove the result by induction on |X|. If |X|=1, then
X=[r]. Let the connected components of G&X be G$1 , ..., G$k . For each
G$i , let Gi be the subgraph of G induced by X _ V(Gi). Since G is connected,
it is clear that each Gi is also connected. Let the root of each Gi be r. Then
we conclude that each Gi is a single-extension of G$i . Consequently, the
height of each Gi is at most h+1. Let T be the tree with vertex set X. Then
it is clear that G is a tree-connection of G1 , ..., Gk (over T). Therefore, the
height of G is at most h+2.

Now we assume that |X|>1. Let x be a vertex in X&[r] and let X$ be
X&[x]. Let G$ be the connected component of G&X$ that contains x.
Since all the connected components of G$&[x] are connected components
of G&X, it follows that the heights of these graphs are at most h. Let the
root of G$ be x. Then we conclude from our induction hypothesis that the
height of G$ is at most h+2. Notice that all the other connected com-
ponents of G&X$ are connected components of G&X. Thus the height of

15EXCLUDING A LONG DOUBLE PATH MINOR
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every connected component of G&X$ is at most h+2. By our induction
hypothesis, it is clear that the height of G is at most (h+2)+2|X$| , which
is h+2|X| , as required. K

A rooted graph G is well-rooted if its root r is contained in a circuit and
G&[r] is connected.

(2.4) Every rooted graph G is either a rooted tree or a tree-connection
of well-rooted graphs.

Proof. Let r be the root of G and let E$ be the set of edges e of G that
do not belong to any circuit of G. Then (V(G), E$ ) must be a forest. Let
T be the connected component of this forest that contains r. If G=T, then
we are done. If G{T, since T is an induced subgraph of G, it follows that
V(G){V(T). Thus there is a positive integer k such that G$1 , ..., G$k are the
connected components of G&V(T). From the choice of T it is clear that,
for each G$i , there is a vertex ri in V(T ) such that the edges between ri and
V(G$i) are exactly the edges between V(T) and V(G$i). For i=1, ..., k, let Gi

be the subgraph of G induced by V(G$i) _ [ri]. Then, from the choice of T
again, we conclude that each Gi is well rooted if we choose ri to be its
root, and that G is the tree-connection of G1 , ..., Gk (over T ). The proof is
complete. K

To prove our last lemma, we need a result of Gallai [3]. Let G be a
graph and let S be a subset of V(G). Then an S-path is a path P of G such
that E(P){< and S & V(P) consists of the two end-vertices of P.

(2.5) The maximum number of vertex-disjoint S-paths of G equals

min
Z�V(G)

|Z|+ :
k

i=1
\|S & V(Gi)|

2 � ,

where G1 , ..., Gk are the connected components of G&Z.

The following is an immediate corollary of (2.5).

(2.6) Let G be a graph and let S be a subset of V(G). Let m be a
nonnegative integer. Then there exist either m+1 vertex-disjoint
S-paths or a subset X of V(G) such that |X|�2m and each connected com-
ponent of G&X has at most one vertex in S.

For every positive integer n, let g(n)=(2n&1)(4n2&1)+1 and h(n)=
4(g(1)+ } } } +g(n)).

(2.7) If G is a well-rooted graph without Bn as a rooted minor, then the
height of G is less than h(n).

16 GUOLI DING
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Proof. Let r be the root of G and let C be a circuit of G containing r.
Let S=V(C) and let G$=G&E(C). Then G$ does not have g(n) vertex-dis-
joint S-paths. Because otherwise, if H is the union of C and these S-paths,
then H is a subdivision of a cubic hamiltonian graph on 2g(n) vertices. It
follows from (2.2) that H, and hence G, has either L2n or C2n as a topologi-
cal minor. But in both of these two cases, G has Bn as a rooted minor, a
contradiction. Therefore, by (2.6), there is a subset X$ of V(G$) such that
|X$|�2(g(n)&1) and every connected component of G$&X$ has at most
one vertex in S.

Let X=X$ _ [r]. Then |X|�2g(n)&1 and every connected component
of G$&X has at most one vertex in S. Let H be a connected component
of G$&X. Since G&[r] is connected, there is a path PH between S and
V(H) without using r. Let us choose this path so that |V(PH)| is mini-
mized. Let sH in S and rH in V(H) be the end-vertices of PH . It is clear that
sH=rH if H has a vertex in S. Let GH be the union of C, PH , and H. Let
the root of GH be r and let the root of H be rH . Since G, and hence GH ,
does not have Bn as a rooted minor, it follows that H does not have Bn&1

has a rooted minor.
Let J be a connected component of G&X. Since G&X can be obtained

from G$&X by adding the edges of C&X, and since each connected com-
ponent of G$&X has at most one vertex in S, it follows that J is a tree-con-
nection of connected components of G$&X (over a path). From (1.3) and
the discussion in the last paragraph, we conclude that J can be rooted so
that it does not have Bn&1 as a rooted minor. Thus, by our induction
hypothesis, the height of J is at most h(n&1). Consequently, by (2.3), the
height of G is at most h(n&1)+2(2g(n)&1), which is less than h(n).
Therefore, (2.7) is proved. K

Proof of (1.5). We shall prove, by induction on n, that the function h
in (2.7) satisfies the requirement. First, we consider the case when n is one.
If a rooted graph G does not have B1 as a rooted minor, then G must be
a rooted tree. It follows that the height of G is at most one, which is clearly
less than h(1).

Next we consider the case when n exceeds one. Clearly, we may assume
that G is not a tree. Thus we conclude from (2.4) that G is a tree-connec-
tion of well-rooted graphs G1 , ..., Gk . It follows from (1.3) that Gi does not
have Bn as a rooted minor for all i. Now, by (2.7), the height of each Gi

is at most h(n)&1. Therefore the height of G is at most h(n), as
required. K

Remark. From the definition of g we deduce that g(n)�8n3. Therefore,
h(n)�32n4.

17EXCLUDING A LONG DOUBLE PATH MINOR
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3. Well-quasi-ordering

A binary relation P on a set Q is a quasi-order if P is reflexive and
transitive. An infinite sequence q1 , q2 , ... of members of Q is bad (with
respect to P ) if i�j whenever qi Pqj . We call (Q, P ) a well-quasi-order
(or a wqo for brevity) if there is no bad sequence.

For any two graphs H and G, let HPt G if H is isomorphic to a
topological minor of G. Clearly, Pt is a quasi-order on the class of all
graphs. However, Pt is not a wqo, as shown by the bad sequence
A1 , A2 , ..., where An is the graph as illustrated in Fig. 2.

There are many other bad sequences with respect to Pt (see [2]), but
all these known examples, in some way, involve double paths of arbitrary
length. Based on this observation, Robertson made the following
(unpublished) conjecture.

(3.1) Robertson's Conjecture. Let G be a class of graphs. If there is a
positive integer n such that no graph in G contains Bn as a topological minor,
then (G, Pt) is a well-quasi-order.

We will show that Robertson's conjecture is true if G is minor-closed. We
formulate this result in the following form.

(3.2) Let G be a minor-closed class of graphs. Then (G, Pt) is a well-
quasi-order if and only if the intersection of G and A is finite, where
A=[A1 , A2 , ...].

Notice that (3.2) implies the following well-known result of Mader [6].

(3.3) Mader's Theorem. For every positive integer n, (Mn , Pt) is a
well-quasi-order if Mn is the class of graphs that do not have n vertex-dis-
joint circuits.

In fact, the result we are going to prove is stronger than (3.2), as
explained below. Let H and G be graphs with HPt G. Then there is an
isomorphism \ from a subdivision H$ of H to a subgraph G$ of G. The
homomorphism from H to G is a mapping _ defined as follows. For each
vertex v of H, let _(v)=\(v); for each edge e of H, let _(e) be the path of
G$ that corresponds to the subdivision of e (if e is a loop, _(e) is actually
a circuit). If H and G are rooted graphs with roots rH and rG , respectively,
then a homomorphism from H to G is a homomorphism _ from H to G,
where H and G are viewed as unrooted graphs, such that _(rH)=rG .

Fig. 2. The graph An .

18 GUOLI DING
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Let Q be a set and let G be a graph, which might be rooted. A Q-labeling
of G is a mapping from V(G) to Q. If G is a class of graphs or a class of
rooted graphs, then we denote by G(Q) the class of all pairs (G, f ) such
that G is in G and f is a Q-labeling of G. Suppose now that P is a quasi-
order on Q. Then, for any two members (G, f ) and (G$, f $) of G(Q), we
define (G, f )Pl (G$, f $) if there is a homomorphism _ from G to G$ such
that f (v)P f $(_(v)) for all v in V(G). Now we may state the main result of
this section.

(3.4) Theorem. Let (Q, P ) be a wqo and let G be a minor-closed class
of graphs. Then (G(Q), Pl) is a wqo if and only if G & A is finite.

Clearly, by taking Q to be a single-element set, we deduce (3.2) from
(3.4) immediately. We shall prove (3.4) at the end of this section. We first
establish a lemma, (3.5), which is the major part of the proof of (3.4). Let
n be a nonnegative integer and let Gn be the class of rooted graphs of
height at most n.

(3.5) For every nonnegative integer n, if (Q, P) is a wqo, then
(Gn(Q), Pl) is a wqo.

To prove (3.5), we need some preparations. For a quasi-order (Q, P ),
let Q* be the set of all finite sequences of members of Q. Suppose that
p=[ p1 , ..., ps] and q=[q1 , ..., qt] are members of Q*. Then we define
pP* q if there exist indices i1 , ..., is such that 1�i1< } } } <is�t and
p1 Pqi1 , ..., ps Pqis . Observe that, if p is the sequence with no term, then
pP* q for all q in Q*. The following classical result is due to Higman [4].

(3.6) Higman's Theorem. (Q*, P*) is a wqo if (Q, P) is.

Let (Q1 , P1) and (Q2 , P2) be quasi-orders and let Q=Q1_Q2 . For
any two members p=( p1 , p2) and q=(q1 , q2) of Q, we define pPq if
p1 P1 q1 and p2 P2 q2 . We define P1_P2 to be P. It is not difficult to
show (see [4], for instance) that

(3.7) (Q1_Q2 , P1_P2) is a wqo if both (Q1 , P1) and (Q2 , P2) are.

We also need the following result of Kruskal [5].

(3.8) Kruskal's Theorem. Let K be the class of rooted trees and let
(Q, P) be a wqo. Then (K (Q), P l), is a wqo.

Proof of (3.5). We proceed by induction on n. First, we consider the
case when n=0. For any member (G, f ) of G0(Q), let q(G, f )=( f (v), k),
where v is the only vertex of G and k is the number of loops of G. Clearly,
q(G, f ) is a member of Q_N, where N is the set of nonnegative integers.

19EXCLUDING A LONG DOUBLE PATH MINOR
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In addition, for any two members (G, f ) and (G$, f $) of G0(Q), it is easy to
see that (G, f )Pl (G$, f $) if and only if q(G, f )P $q(G$, f $), where P$ is
P_�. Therefore, (G0(Q), Pl) is isomorphic to (Q_N, P $), and thus we
conclude from (3.7) that (3.5) holds for n=0. Next, we consider the case
when n is positive. We shall assume that (Gn$(Q$), Pl) is a wqo for every
wqo (Q$, P $) and for every nonnegative integer n$ less than n.

Let Gs be the class of rooted graphs G in Gn such that G is a single-
extension of a rooted graph in Gn&1 . Then we prove that

(3.9) (Gs(Q), Pl) is well-quasi-order.

Let (G, f ) be a member of Gs(Q) and let r be the root of G. Then
G&[r], which will be denoted by Gs, belongs to Gn&1. For each vertex v
of Gs, let fs(v)=( f (v), kv), where kv is number of edges between r and v.
Then we define q(G, f )=( f (r), k, (Gs, fs)), where k is the number of
loops incident with r. Clearly, q(G, f ) belongs to Q_N_Gn&1(Q_N).
Moreover, for any two members (G, f ) and (G$, f $) of Gs(Q), it is easy
to see that q(G, f )P$ q(G$, f $) implies (G, f )Pl (G$, f $), where P$ is
P_P_Pl . Thus (3.9) follows from (3.7) and our induction hypothesis.

Let Gt be the class of rooted graphs G in Gn such that G is a tree-connec-
tion of rooted graphs in Gn&1 . Then we prove that

(3.10) (Gt(Q), Pl) is a wqo.

Let (G, f ) be a member of Gt(Q). Then there exists a rooted tree TG and
a set J of rooted graphs in Gn&1 such that G is the tree-connection of the
members of J (over TG). Let v be a vertex of TG and let G1 , ..., Gk be all
the v-rooted graphs in J (k can be zero here). Then, for each Gi , let fi be
the restriction of f to V(Gi). Now we define FG(v) to be the sequence
((G1 , f1), ..., (Gk , fk)). Clearly, FG is a (Gn&1(Q))*-labeling of TG .
Moreover, for any two members (G, f ) and (G$, f $) of Gt(Q), it is easy to
see that (TG , FG)Pl (TG$ , FG$) implies (G, f )Pl (G$, f $). Thus (3.10)
follows from (3.6), (3.8), and our induction hypothesis.

From the definition of height it is clear that Gn is the union of Gs and
Gt. Consequently, (3.9) and (3.10) imply that (Gn(Q), P l) is a wqo. There-
fore, the induction is completed and so (3.5) is proved. K

Proof of (3.4). The ``only if'' part is obvious and so we need only prove
the ``if'' part. Let n be a positive integer such that An is not in G. Since G
is minor-closed and An is a minor of Bn+4 , it follows that Bn+4 is not in
G. As a consequence, no graph in G has Bn+4 as a minor. Let C be the
class of connected graphs in G. Then we deduce from (1.6) and (3.5) that
(C(Q), Pl) is a wqo. Observe that all connected components of a graph in
G must belong to C. Therefore, if we view every graph in G as a sequence

20 GUOLI DING
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(in any order) of members of C, then (3.4) follows from (3.6)
immediately. K

4. Bounding the Number of Paths of a Graph

For any graph G, let a(G) denote the number of subgraphs of G that are
isomorphic to paths. For instance, if G is a tree with m edges, then
a(G)=(m+1)(m+2)�2. The main result in this section is the following.

(4.1) Theorem. Let G be a minor-closed class of graphs. Then there is a
polynomial function p( } ) such that a(G)�p( |V(G)|+|E(G)| ) for all graphs
G in G if and only if some Bn is not in G.

Let G be a minor-closed class of graphs. Suppose that one is interested
in finding an optimal path, with respect to certain criteria, for every graph
in G. Depending on the criteria, one may design different kinds of algo-
rithms to solve this problem. But the following is an algorithm that is inde-
pendent of the criteria. For every input graph G in G, list all paths of G and
then find the best one. In general, this algorithm is not very efficient.
However for some special G (for example, the class of all forests), this is a
polynomial time algorithm (here we assume that the criterion can be tested
in polynomial time for any given path). Theorem (4.1) actually is a charac-
terization of the classes of graphs for which this algorithm runs in polyno-
mial time.

To prove (4.1), we first prove a lemma. Let G be a graph. If G{K1 , we
define s(G) to be the number of edges of G. If G=K1 , then we define
s(G)=1. Let n be a nonnegative integer and let Hn be the class of con-
nected loopless graphs of height at most n.

(4.2) a(G)�32n&1s2n+1&2 for all graphs G in Hn , where s=s(G).

Proof. We proceed by induction on n. If n=0, since K1 is the only
graph in H0 , (4.2) holds obviously. Next, we assume that n is positive. Let
G be a graph in Hn . We shall consider two cases, G is a single-extension
of a graph of height at most n&1 or G is a tree-connection of graphs of
height at most n&1.

Suppose that G is a single-extension of H and the height of H is at most
n&1. Let r be the vertex of G that is not in H. If H=K1 , then

a(G)=|E(G)|+2�3 |E(G)| 2�32n&1s2n+1&2,

as required. Therefore we may assume that H{K1 . Let D be the set of
edges of G that are incident with r. Let d=|D| and let p be the number of
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paths of H. For i=0, 1, 2, let pi be the number of paths of G that use
exactly i edges of D. Then

p0=1+p, p1�dp, p2�\d
2+\

p
2+ .

It follows that

a(G)=p0+p1+p2�(d 2+d 2p)+d 2p+d 2p( p&1)�4�d 2p2,

where the last inequality holds since p�3. Now, by our induction
hypothesis, we have

a(G)�d 2p2�s2(32n&2
|E(H)| 2n&2

)2�32n&1s2n+1&2,

as required.
Suppose now T is a tree, J=[J1 , ..., Jk] is a set of rooted graphs of

height at most n&1, and G is a tree-connection of the rooted graphs in J
(over T ). For each vertex v of T, let kv be the number of v-rooted graphs
in J and let k$v be the number of v-rooted graphs in J with a none-empty
edge-set. By adding and removing copies of K1 to and from J, if necessary,
we may assume for very vertex v of T that kv=k$v whenever k$v>0 and
kv=1 whenever k$v=0. Since have shown that (4.2) holds for n=0, we may
also assume that G is not in H0 , that is, G{K1 . Finally, let m=|E(T )|
and k$=�[k$v : v # V(T )].

If G=T then m�1 since G{K1 . Thus

a(G)=(m+1)(m+2)�2�3m2�32n&1s2n+1&2,

as required. Therefore, k$ is positive and thus k&k$�|V(T )|&1=m. For
each Ji , let s(Ji) be denoted by si . Then

:
k

i=1

si= :
E(Ji)=<

si+ :
E(Ji){<

si

=k&k$+ :
E(Ji){<

si�m+ :
E(Ji){<

si=s.

Let P be a path of G. If P is not a path of any J in J, then it is easy
to see that there exist Ji and Jj in J such that P is the concatenation of
a path of Ji , a path of Jj , and the unique path of T between the roots of
Ji and Jj . Thus we have

22 GUOLI DING
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a(G)� :
i, j # [1, ..., k]

a(Ji) a(Jj)=\ :
k

i=1

a(Ji)+
2

�\ :
k

i=1

32n&2s2n&2
i +

2

�32n&1 \ :
k

i=1

s2n&1
i +

2

�32n&1 \ :
k

i=1

si+
2n+1&2

�32n&1s2n+1&2,

as required. K

For every positive integer n, let pn(x)=(3x)2n+1
. Then the following is an

immediate corollary of (4.2).

(4.3) Let n be a positive integer and let G be a graph of height at most
n. Let k be the number of connected components C of G with |V(C)|=1.
Then a(G)�k+pn( |E(G)| ).

Now we are ready to prove the main result of this section.

Proof of (4.1). The ``only if'' part is obvious and so we need only prove
the ``if'' part. Let m be a positive integer such that Bm is not in G. Then we
conclude from (1.6) that there is a positive integer n such that the height
of every graph in G is at most n. Now we verify that the function pn in (4.3)
satisfies our requirement. Let G be a graph in G and let k be as in (4.3).
Then

a(G)�k+pn( |E(G)| )�|V(G)|+pn( |E(G)| )�pn( |V(G)|+|E(G)| ),

as required. K
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