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1. Introduction 

Let V= C e and let A be a finite set of hyperplanes in V, all containing the origin. 
If A c A  let ~0 a be a linear form with kernel A. Let M = V -  ~J A be the 

AEA 
complement of the union of the hyperplanes. Define holomorphic differential 
forms mA on M by OOA=d~OA/2niq~ A and let [e)A] denote the corresponding 

de Rham cohomology class. Let ~ = @ ~,p be the graded ~-algebra of holomor- 
p-O 

phic differential forms on M generated by the o~ A and the identity. Arnold [1] 
conjectured that the natural map q ~ [r/] of o~__+ H*(M)=H*(M,C) is an 
isomorphism of graded algebras. This was proved by Brieskorn [5, Lemma 5] 
who showed in fact that the Z-subalgebra of o~ generated by the forms co A and 
the identity is isomorphic to the singular cohomology H*(M, Z). 

Let z~, ..., z~ be coordinate functions on F. In case the linear forms are q~jk 
=Zj--Zk, Arnold [1] found the formula 

(1.1) PM(t)=(l +t)(l + Zt)...(l +( / -1 ) t )  

for the Poincar6 polynomial of M. He also gave a presentation for the algebra ,~ 
which may be described as follows. Let g be the exterior algebra of the vector 
space which has a basis consisting of elements labeled e~k 1 < j < k < ( .  Let J be 
the ideal of g' generated by all elements eiiejk+ejkeki+ekieg ~. Then the map 
ejk- '+(~)jk = d tPjk/2 7~ i rpj  k defines an algebra isomorphism d/~ r ~-~. 

In this paper we extend these results in several ways. We give a general 
formula for the Poincar6 polynomial of M and we give a presentation for the 
algebra ,~ -H*(M)  which agrees with Arnold in his special case. If G is a 
subgroup of GL(V)  which permutes the set A of hyperplanes, then G has a 
representation on H*(M) and we compute the character of this representation. 
This allows us to compute the Poincar6 polynomial of the orbit space M/G. 
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We prove these results using certain algebraic and combinatorial con- 
structions with a lattice L. This part of our work occupies Sect. 2-4 and involves 
no topology. If A is a set of hyperplanes we choose L to be the collection of 
subspaces of V of the form X = A  1 c~ ... nAp  where AieA. We partially order L 
by reverse inclusion so that L has V as its unique minimal element. Then L is a 
finite geometric lattice [-3, p. 80] with A as its set of atoms. 

In general let L be a finite geometric lattice and tet A be its set of atoms. Let 
g =  @ gp be the exterior algebra of the vector space which has a basis 

p > 0  

consisting of elements e, in one to one correspondence with the elements a e A. 
In Sect. 2 we construct, in a functorial way, a graded anticommutative C-algebra 
d = g / J  whose Poincar6 polynomial 

(1.2) P~,(t)= ~ ~t(x)(-t) r~x) 
x 6 L  

is given by Theorem 2.6. Here r(x) is the rank of x and ~t(x) =/~(0, x) where/~ is 
the M6bius function of L and 0 is the minimal element of L. Thus the Poincar6 
polynomial of d is essentially the characteristic polynomial ZL(0 
= ~ I~(X)t t-r~x~ in Rota's sense [13, p. 343], where d is the rank of L. 

x E L  

Let G be a group which acts as a group of automorphisms of L. Then G has 
a representation on each space alp. To compute the character of this repre- 
sentation we introduce, in Sect. 3, a second graded anticommutative tE-algebra 

d 

~3= @ Mp. The elements of M are certain linear combinations of p-tuples 
p = O  

(xl < . . .  < x p  of elements of L and the multiplication is defined using a shuffle 
product. The main result, Theorem 3.7, of Sect. 3 asserts that d and M are G- 
isomorphic algebras. Thus the trace computations may be done in ~.  There is a 
close connection between ~ and the homology of L in the sense of Rota [13] 
and Folkman [9]. Thus the Hopf  trace formula for a finite simplicial complex 
may be used to obtain the trace formula of Theorem 4.8: 

d 

(1.3) ~ tr(gldp)tP= ~ t~ (x ) ( - t )  r~x) g~G. 
p ~  0 x E L g  

Here L g is the subset of L fixed by g and #g is its M6bius function. 
Baclawski [2] has defined a (co)homology theory for a geometric lattice L 

whose Poincar6 polynomial is P~(t)=P~(t). It turns out that our algebra ?3' 
consists of cycles in Baclawski's homology ~,~, and in fact the natural map 
sending each element of ~ to its homology class is a vector space isomorphism 
~ _ ~ .  

In Sect. 5 we combine our combinatorial theorems with topological theo- 
rems of Brieskorn [5]. Let A be a finite set of hyperplanes in V = tE e, let L be the 
corresponding lattice and let M =  V -  U A. We prove in Theorem 5.2 that the 

AEA 
map eA~[e)A] from o ~ to H*(M) defines an algebra isomorphism g / d  ~-H*(M). 
This gives a presentation for the cohomology ring of M. Moreover, M and g / ~  
have the same Poincar6 polynomial 

(1.4) Pn(t)= ~ #(X) ( - t )  "~x). 
X ~ L  
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Our isomorphism is G-equivariant for any subgroup G of GL(V) which per- 
mutes A. Thus the combinatorial trace formula (4.8) yields the trace of G on 
H*(M). 

In case the hyperplanes are defined by linear forms with real coefficients 
there is a remarkable coincidence between the dimension of H*(M) and the 
number of connected components of the corresponding real configuration, 
computed by Zaslavsky [18, p. 18]: if Aa is a finite set of hyperplanes in IRe and 
A = {A | ~pA ~ A~} then the number of connected components of IR ~' - U A is 
equal to dimcH*(M). A~A~ 

Since )ff-----~ as vector spaces and N~H*(M)  as algebras the deRham 
cohomology of M is isomorphic, as vector space, to Baclawski's (co)homology of 
the lattice L. One might expect that It*(M) is algebra isomorphic to Baclawski's 
cohomology but we have not checked this. 

Suppose A is a set of affine hyperplanes in ~t  which do not all contain the 
origin. Here the corresponding poset L consisting of intersections A 1 c~... c~ Ap is 
not a geometric lattice (even if we adjoin the empty set as a maximal element). 
Nevertheless the Poincar6 polynomial of M is given by the formula PM(t) 
= ~ t~(X)(-t) r(x). Since L is not a geometric lattice our algebra d is not 

X e L  

defined. However, an algebra like ~4 may be defined for any finite poset with a 
unique minimal element and we intend to study its homological properties in a 
sequel to this paper. 

If L is the lattice of subspaces of an f-dimensional vector space over lFq and 
G = GLI(IFq) our algebras d ~ ~ have Poincar6 polynomial 

~-o qk(k- 1)/2 t k (1.5) ( l + t ) ( l + q t ) . . . ( l + q • - l t ) = k  

where [~] is the Gaussian q-binomial coefficient. Thus we have constructed an 

algebra d which plays the same role for the q-binomial theorem as the exterior 
algebra does for the ordinary binomial theorem where q = 1. In this case the G- 
module ~ is the Steinberg module of GLe0Fq) and the isomorphism d~ ~---d~ 1 

gives its homological interpretation [16]. The map (3.3) and its anti-sym- 
metrization are similar to constructions used by Steinberg [17, w167 Some of 
the ideas in Sect. 4 were used in work of Solomon [15]. The exact sequence 
(2.19) is closely related to a sequence used by Lusztig [10, p. 1 l] in his work on 
the discrete series of GLe(IFq). Lusztig uses it to give a recursive formula for the 
Steinberg character [10, p. 22]. 

If G is a finite irreducible subgroup of GL/(1R ) generated by reflections and 
A consists of the complexified reflecting hyperplanes, Brieskorn [5, Theorem 6] 
found the formula 

(1.6) PM(t)=(l+mxt ) . . . ( l+mt t  ) 

where the m i are the exponents of G. In a sequel to this paper we will show that 
if G is a finite irreducible subgroup of GLe,(II~ ) generated by unitary reflections 
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and A consists of the reflecting hyperplanes then 

(1.7) PM(t)=(l+n l t ) . . . ( l+ne t  ) 

where the ni~N are certain generalized exponents. In case G is real, ni=m~ so 
our formula agrees with Brieskorn's. 

Our notational conventions are as follows. All vector spaces are over (12 and 
all (co)homology has coefficients in 112. In the course of the argument we define 
certain functors g,~r ... on a category of lattices. To simplify notation we 
usually suppress the dependence of the objects o~(L), d ( L ) ,  ... on L and write 
=g(L) ,  d = d ( L )  . . . . .  Similarly for functions on L we write P=/~L, r=rL, ... and 
exhibit the dependence on L only when necessary. The lattice terminology is 
standard as used by Birkhoff [3]. 

We would like to thank D. Zagier for a suggestion which simplified our proof of Theorem 5.2. 

2. Geometric Lattices and Exterior Algebra 

Let L be a finite poset (partially ordered set) with a unique minimal element 0. 
The MSbius function/~ is an integer valued function on L x L defined recursively 
as follows:/~(x, x ) =  1, 

(2.1) ~ p ( x , z ) = 0  if x < y  
X ~ Z ~ V  

and p(x, y)=  0 otherwise. We agree to write p(x)= g(O, x). Our  aim in this section 
is to associate to a geometric lattice L a graded finite dimensional anticom- 
mutative C-algebra d =  @ Sdp, and to show that the dimension of Sip may be 

p>O 
computed in terms of/~. 

We recall the definition of a geometric lattice. A poset L satisfies the chain 
condition if for each xeL  all maximal linearly ordered subsets 0 
=Xo<X t < ... <xp=x have the same cardinality. The integer p is called the rank 
of x, and will be written r(x). The rank r(L) of L is the maximum of the ranks of 
its elements. Elements of rank l are called atoms. A finite lattice L is said to be 
geometric if (i) it satisfies the chain condition, (ii) every element in L - 0  is a join 
of atoms, and (iii) the rank function satisfies the inequality 

(2.2) r(x/xy)+r(xvy)<=r(x)+r(y), x, yeL. 

Henceforth we assume that L is a finite geometric lattice. We let 1 denote the 
unique maximal element of L and assume that 0 4 = 1. 

Let A be the set of atoms of L. Let Sp be the set of all p-tuples S = (a  t, ..., %) 
where aiEA. For  p = 0  we agree that S o consists of the empty tuple ( ) .  Let 
S =  U Sp. If S= (a t  . . . . .  %) write \ / S=a  t v . . .  yap and for p = 0  write ~/( )=0.  If 

p>0  
x e L let Sx consist of all S e S with ~/S = x. We introduce an arbitrary linear order 

on the set A and say that S = (al . . . .  , %) is standard if a t ~ . . . ~  av. This linear 
order is introduced for notational purposes and has nothing to do with the 
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partial order =< in L, since no two elements of A are comparable in L. If SeS  v 
then (2.2) implies that r(V S)=<p. We say that SeS  v is independent if r(V S)=p, 
and dependent if r ( VS)<p .  We agree that the empty tuple is standard and 
independent. 

Let g =  @ g) be the exterior algebra of the vector space which has a basis 
p>=0 

consisting of elements e, in one to one correspondence with the elements a~A. If 
S=(a 1 . . . . .  %) let es=e~, ... e , .  Thus E has a basis consisting of all e s with S 
standard. If S = (  ) write es= 1. Define a ff;-linear map 3: down by 31 =0, 3e,,= 1 
and for S = (a 1 . . . .  , %) 

p 

3es= ~ ( - 1 )  k-1 ^ Cat . . .  eau . . .  e a r .  
k=l  

Then 3 2 =0. If SeSp and TeS then 

(2.3) 3(eser)=(3es)er+ ( -  l)v es(Oe.r). 

Let J be the ideal of ~ generated by all elements 3e s where S is dependent. Let 
.~r162 Since ..r is generated by homogeneous elements d is a graded 
anticommutative ~-algebra. If E is another geometric lattice and f :  E ~ L  is a 
map satisfying 

(2,4) (i) f(Ar,)~_At,; (ii) f x  v f y = f ( x  vy)  (iii) rr(fx)<rr,(x ) 

then the map e~--*ei~ defines a homomorphism fe: g(E)-~E(L) of graded C- 
algebras. It follows from (2.4) that f maps dependent S to dependent f (S)  and 
thus fr induces a homomorphism f~: sff(E)--*~ff(L) of graded ~-algebras. In fact 
d ~ and d are covariant functors from the category of geometric lattices and 
maps satisfying (2.4) to the category of graded anticommutative ~-algebras. 

(2.5) Remark. If E is the lattice of subsets of A L then J ( E ) = 0  so d ( E ) = g ( E ) .  
The map f :  E ~ L  defined by . f { a l , . . . , % } = a l v . . . v a  v satisfies (2.4). If we 
identify A L, with A L and hence d~ with g(L) then the induced map f~ may be 
identified with the natural homomorphism do(L)--,s~(L). 

(2.6) Theorem. Let L be a finite geometric lattice. '17zen the graded algebra 3[ 
has Poincar( polynomial 

e~(t)  -- E ~ (x ) (  - t) r~x~. 
x r  

The rest of this section contains the proof of Theorem 2.6. Let A~=~ ~ e  s where 
the sum is over all dependent S~S. 

(2.7) Lemma. J = j + 3 j .  

Proof If SeS is arbitrary and TeS is dependent then the formula 3(es(3er) ) 
=-(3es)(3er) shows that t ?J_~J .  Suppose S is dependent. Choose aaA. Then T 
=(a,S) is dependent and since er=eoe s it follows from (2.3) that es=Oe r 
+e, 3es~J .  Thus J__~r Since 3 J  contains the generators of J it suffices to 
show that J + 0 J  is an ideal. If aeA then e,~C~vf and the last equation above 
shows that e , 3 f ~_ f + 3 J .  [] 
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Define a Hermitian inner product ( , )  on do by requiring that the standard 
basis elements e s form an orthonormal basis. If uedo we define the support of u, 
supp(u), as follows. Write u uniquely in the form u = ~ c s e  s where CseC and the 
S are standard. Then supp(u) is defined to be the set of S with cs+O. The 
support, supp(Jg) of a subspace Jr of do is the union of the supports of its 
elements. Two subspaces with disjoint supports are orthogonal. If x e L  let do~ 
= ~ ff;e s. Thus d~ @dox. The subspaces dox have pairwise disjoint supports and 

S~Sx x e L  

thus they are pairwise orthogonal. 
If SeS is dependent and S=(ax, ...,ap) let q~(S) be the set of all indices k 

= 1 . . . .  , p such that Sk=(a ~ . . . . .  d k, ..., ap) is independent. Since ~/S k __< ~/S for all 
k, it follows that for kecl)(S) we have p - l = r ( V S k ) < = r ( V S ) < p - 1  and thus 
V S k = V S .  Let fs = ~ (--1)k--lesk. Then fs=-(?esmodJ, if x6L let , ~  

ke~(S)  

=~ff~fs where the sum is over all dependent S~S~. Since V S= ~/S k whenever 
k ~ ( S )  we have es~do ~ and thus fsCdo~. Therefore ~ _ ~  do~. 

(2.8) Lemma. J = J + ~ ,~x, direct sum of pairwise orthogonal subspaces. 
xEL 

Proof By Lemma 2.7 ~ r  Since ~ e s - f s  m o d J  for any dependent S, we 
have J - - J + ~ : , ~ @  Since ~_~do~ the subspaces Xx are pairwise orthogonal. 
Since su pp (~ )  consists of independent S~S~ and supp(J)  consists of dependent 
SoS, J is orthogonal to every ,~ .  [] 

(2.9) Lemma. Let ~z be the orthogonal projection of do onto j l .  I f  S~S x is 
independent then ~z es~do ~. 

Proof If Jg is any subspace of do, let ~(es, ~/g) be the orthogonal projection of e s 
on ~/L By Lemma 2.8 we have 

rt(es, J ) =  rC(es, J )  + ~, n(es, ~ ) .  
y~L 

If T is dependent then T:~S because S is independent so (%, eT)=0. Thus 
=(es, J ) = 0 .  If y + x  we prove that r~(es ,~)=0.  By definition aC~=~CfT 
summed over dependent TeSr. If ke~(T)  then V Tk= ~ / T = y  so Tkq=S and 

@s,fT) = ~ ( - - l ) k - ' ( e s ,  eT~)=O 
kecl:,(T) 

so ~(es,.Z/~)=0. Thus ~(es,~,c)=~(es, oUx)~dox. Since es~do x we have ~es=e  s 
- ~(es, J)edox. [] 

Let Cts=~Oe s and let d~ =(pdo~ where (p: d o ~ d  is the natural homomorphism. 

(2.10) Proposition. d = @ d ~ .  
x e L  

Proof Since do= @dox we have d =  ~ dx. Define a positive definite Hermitian 
x~L x~L  

inner product ( , ) on d by (q~u,~ov)=(~u,~zv) for u, ve& We prove that the 
sum ~ d  x is direct by showing that the subspaces d~ are pairwise orthogonal 
with respect to this inner product. Suppose x ~ y  and SeS~ and TeSr  If S is 
dependent then e s e J  so e s = 0  and (C~s, CtT)=0. Similarly if T is dependent. 
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Suppose S and T are independent. By Lemma2.9 nes6g x and ner~o~y so 
(~S,~T) =(nes, neT)=0 because 8 x and gy are orthogonal. [] 

Remark. If S~S is dependent then C~s=0. If S~Sx is independent then ~s6dp 
where p=r(x). Thus 

(2.11) alp= @ d x. 
r (x) = p 

Our next aim is to show that dimdx=(-1) ' (x)/~(x) .  We will do this by 
induction on the rank of L after several lemmas. Here it is important to make 
explicit the dependence on L of all the spaces we have constructed. Let A' be any 
subset of the set A of atoms of L. Let E be the set of all V S where S ranges over 
the set S' consisting of all sequences (al,...,ap) with ai~A'. Then E is a 
geometric lattice and A' is its set of atoms. We view g(E) as a subalgebra of 
g(L). Thus g ( E ) =  O l~es where the sum is over all standard SeS'. Since the 
rank function of E is the restriction of the rank function of L, a sequence SeS'  is 
dependent in E if and only if it is dependent in L. Thus 

(2.12) J(L)c~g(E)=~(E). 

If xeE then o~x(L)c_g(E). If xCE then gx(L)c~g(E)=0. Since ~x(L)c_gx(L) this 
implies 

(2.13) ,~x(L)c~(E)=W'~(L)=c,~x(E) if x~E 

and 2r c~ g(E) = 0 otherwise. 

(2.14) Lemma. J(L)c~g'(E)=J(E). 

Proof We begin with a general remark. Let Jla, ,-'#2 .... be any subspaces of g(L) 
with pairwise disjoint supports. If ui6Jg / then supp(~ul)=Usupp(ui) .  Thus if 
ZUieo~(I],) then supp(ui)esuppg(E ) so that UiEo~(/J). Thus (ZJ / I )~G(/J )  
=~(J l ind~(E))  whenever the ~#i are subspaces of g(L) with pairwise disjoint 
supports. We showed in the proof of Lemma 2.8 that the subspaces J (L )  and 
,:,U~(L) have pairwise disjoint supports. Thus by Lemma 2.8 together with (2.12) 
and (2.13) we conclude that 

J (L )  c~ 8(E)  = (~r c~ d~(E)) + ~ (#{'~(L) c~ r 
x E L  

=j(c)+ ~ ~(c) 
x E L '  =y(/~) 

where the last equality follows from Lemma 2.8 applied to E. [] 

Let i: E ~ L  be the inclusion and let q/: g(E)--,~'(E) be the natural map. 
Then we have a commutative diagram. 

r i8 ~g(L) 

d ( E ) -  . - d ( L ) .  
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(2.15) Proposition. The map id: d(E)-~sc/(L) is injective. Thus d(E)  is isomor- 
phic to the subalgebra of d (L)  generated by the identity and all ~oe,, where aeA'. 
Furthermore for each xeE the map id: dx(E)--,dx(L ) is an isomorphism. 

Proof Clear from (2.14) and the diagram. [] 
d 

(2.16) Lemma. ~ ( - 1 ) "  d i m ~ p = 0  where I=r(L). 
p=O 

Proof Our convention 0 :t: 1 implies that I is not zero. Note from (2.7) that ( J ,  8) 
is a chain complex. Let e =  ~e~  and define 8*: ~ o  ~ by 8*u=eu. Then (08* 

a~A 
+8*8)u=nu for all u e 8  where n=lA[ is the number of atoms. The maps 8, 8" 
carry J to J and thus induce maps a, a*: d -*~4 .  Since aa*+a*a=n,  id~ the 
map a* is a contracting homotopy for the chain complex (d,a)  which is 
therefore acyclic. In particular the Euler characteristic of ( d , a )  is zero. []  

(2.17) Lemma. d i m d ~ = ( - 1 ) ' ~ ) # ( x )  x~L. 

Proof We argue by induction on the rank l= r (L ) .  If #--1 then L={0,1} and 
the assertion is clear. 

Suppose xeL and x:t=l. Let A~={a~Ala<=x} and let L~ be the geometric 
lattice consisting of 0 and joins of elements of A x. The rank and M6bius 
functions of L~ are the restrictions of the corresponding functions of L. By 
Proposition 2.15 ~(L~)~-d~(L). Since the rank of L x is less than the rank of L 
the induction hypothesis shows that dim d~ = ( - 1 )  '~)/~(x) if x + 1. For x = 1 we 
note that by (2.11) alp= @ ~'~ and then the vanishing of the Euler characteris- 

r ( x )  = p 

tic for 1 > 0 gives 

y , ( -  1)'(~)dimd~= ~ # ( x ) + ( -  1)edimdl  =0. 
x ~ L  x ~: l 

On the other hand, by the definition (2.1) of/~ we have ~# (x )=O ,  so d i m d  1 
= (-1)'/~(1). []  x~L 

This completes the proof of Theorem 2.6. Since ( d ,  a) is acyclic we have an 
exact sequence 

(2.18) O - ~ d , - *  @ ~'~--~ @ ~r162 
r ( x ) = l -  1 r(x)= d -  2 

3. An Algebra Defined by Shuffles 

Let L be a finite geometric lattice of rank (. In this section we construct an 
algebra ~ whose elements are certain rE-linear combinations of ordered subsets 
of L with multiplication defined using a shuffle product. The aim of this section 
is to prove that d and ~ are isomorphic algebras. In fact ~ is also a functor 
from the category of geometric lattices and maps satisfying (2.4) to the category 
of graded anticommutative ~-algebras, and our construction yields a natural 
transformation between the functors d and ~.  
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Define vec tor  spaces  Jpp for p > 0  as follows. F o r  p > 0  let Jp  have basis 
consisting of all p- tuples  (Xl , . . . , xp )  where x ~ e L - O .  F o r  p = 0  let J0=f f : .  Let  
Sym(p) be the symmetr ic  g roup  on  the let ters l , . . . , p .  If rceSym(p) and u 
= ( x l ,  . . . ,  xp) let zru=(x~_ 51 . . . .  , x~ ,p). This makes  @ a Sym(p)-module .  Let Y-- 
= @Yp.  Define a p roduc t  ,Y-x ,Y---,,~,, wri t ten , ,  as follows. If u = ( x  1 . . . .  ,Xp) 

p__>O 

and v =(Yl . . . . .  yq) let w = ( z  l . . . . .  Zp+q) = ( x l ,  . . . ,  xp, Y l ,  . . . ,  Yq) and define 

u , v = ~ s g n ~ . ~ w  

where the sum is over  all (p, q)-shuffles ~ of 1 . . . .  , p + q, Recal l  [11, p. 243] that  a 
(p,q)-shuffle of  1 . . . . .  p + q  is a p e r m u t a t i o n  ~ S y m ( p + q )  such that  ~ i < ~ j  
whenever i < j < p  or p < i < j .  This makes  Y-- into an associat ive graded  an t icom-  
mutat ive  (E-algebra with identi ty.  Let  q: J-~,Y-- be the an t i symmet r ize r  defined 
for u = ( x  1 . . . .  , xp)  by 

(3.1) q u = ~ , ( s g n n ) n u = ~ ( s g n n ) n - l u  

summed over all n~Sym(p) .  It follows by induct ion  that  

( 3 . 2 )  / ] ( X  1 . . . .  ,Xp):(X1)* ...*(Xp). 

Define a {E-linear m a p  )`: 5T~,Y - by 21 =1 and 

(3.3) )`(x 1 . . . . .  x p ) = ( X l ,  X l v x  2 . . . . .  x l v x 2 v . . . v x p ) .  

(3.4) Lemma. I f  u, v e J -  then 

),(2 u * )` v) = )`(u �9 v). 

P r o o f  It suffices to check this for u = ( x ~ , . . . , x p )  and v = ( y  1 . . . .  ,yq). Then 2u 
- -  t ! t j 
- ( x  1 . . . .  ,Xp) and 2 v = ( y '  1 . . . .  ,y'q) where x i = x l v . . . v x  i and y i = y l v . . . v y j .  

t t t Write (z 1 . . . .  , zp+q) = (x 1 . . . . .  xp,  Yl . . . .  , yq) and  (z' 1 . . . .  , Z'p+q) = (x'l, . . . . .  Xp, Yl . . . .  , Yq). 
It follows f rom the idempotence  z = z  v z of the lat t ice jo in  that  z ~  v ... v z'~i 
= z,~ v . . .  v z~  for all i = 1, . . . ,  p + q and all pe rmu ta t i ons  rc of 1, . . . ,  p +  q. Thus  

2(2 u �9 2 v) = ~ sgn re. )`(z '~l, . . .  , z'~p + ~)) 

= ~ s g n  7r. )`(z,1, . . . ,  Z~r 

= )`(u * v). [ ]  

Let ~ / =  2(3-). Then  Y/ inher i t s  a grading from J.. Since 2 is i dempo ten t  ~//is 
spanned by the ident i ty  and all (x 1 . . . .  , xp) with x~ __< ... <Xp. Define a p roduc t  in 
o~ by 

u v = 2 ( u , v )  u, v e ~ .  

This mul t ip l ica t ion  is associat ive:  if u, v, w e ~  ' then ) ` w = w  so L e m m a  3.4 shows 

(u v) w =)`(u v * w) = ;~()`(u * v) * )` w) =),((u * v) * w). 
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Thus ~//is an associative, an t i commuta t ive  algebra with identity. We may  view 
each element SES as an element  of  J .  If  S = (  ) let/~s = 1 and for S=(a 1 . . . . .  %) 
d e f i n e / ~ s e ~  by 

(3.5) f ls=2(~lS)=~sgnn(a~l,a~l va~2, ...,a~l va~Ev ... Vamp). 
/t 

(3.6) Lemma. Let S, T~S. Then flsflr=fl(s,r). 

Proof Let S=(a 1 . . . .  , ap) and T=(bl ,  ..., bq) where ai, b F A .  Then using (3.2) and 
(3.4) we have 

/~s/~r = ~(/~s */~T) 
= 2(2(r/S) * 2(q T)) 

=2 ( t /S*  tlT) 

= 2((a,) * . . .  * (a,) * (b,) * . . .  * (b,)) 

= 2 r / ( a ,  ..., ap, b 1 . . . .  , bq) 

=/~s,T).  [ ]  

Let ~ = ~ ~ ]~s. Lemma 3.6 shows that ~ = (~) ~p is a graded subalgebra of ~ 
S~S p>O 

I f  f :  E-*L  satisfies (2.4) then the induced m a p  f~-: 0Y-(E)~J-(L)  commutes  with 
2 and r/ and thus f~,- induces a h o m o m o r p h i s m  f r  ~ ( E ) - ~ ( L )  of  graded ~-  
algebras,  which is functorial.  

(3.7) Theorem. Let L be a finite geometric lattice. There exists an isomorphism 
0: d - + ~  of algebras such that Ogs=fls. The map 0: ~ / - ~  defines a natural 
transformation of functors. 

T he o rem 3.7 is a consequence of L e m m a s  3.8 and 3.9. If S=(a 1 . . . .  , ap) and 
n6Sym(p)  then rlnS=(sgnn)~IS so fl~s=(Sgnn)fls . Thus  there exists a ~- l inear  
m a p  ~b: g ~ )  such that  ~es=fls.  Since esev=e(s,T ) it follows from (3.6) that  ~ is 
a h o m o m o r p h i s m  of algebras. 

(3.8) Lemma. I f  S~S is dependent then fls=O. 

Proof Let S=(a I . . . .  ,ap). If Sk=(a ~ . . . .  ,dk,. . . ,ap) is dependent  for some k 
= 1  . . . . .  p then flS=(--1)k-lfl(,~.S~)=(--1)k-lfla~flS~ and we are done by in- 
duction. Thus we may  assume that  S k is independent  for each k. Then as in the 
pa rag raph  preceding L e m m a  2.8 we see that  V Sk = V S for all k. If n sSym(p )  let 

be the pe rmuta t ion  defined by ~ k = n k  for k= 1, . . . , p - 2 ,  ~(p -  1)=rip and ~(p) 
= n ( p - 1 ) .  Then s g n ~ =  - s g n n  and the terms corresponding to n and ~ in (3.5) 
cancel. [ ]  

g 

Note  that  L e m m a  3.8 implies/~s = 0 if iS[ > ~ so that  ~ = @ ~p. Define a ~-  
p = 0  

l inear m a p  ~: ~ - - ~ -  by z l = 0 ,  z ( x ) = l  for x ~ L - O ,  and z(x , , . . . ,Xp)  
= ( -  1) ~- a (x~, . . . ,  x ,_  ~) f o r p  > 2 and x~eL - O. The compu ta t i on  in the next t emma 
shows in part icular  that  - c ~ p c ~ , _ ~ .  
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(3.9) Lemma.  The diagram below commutes. 

o 

1 
Proof. If SsSp then 

\ k =  1 

= 2  ~ ( - 1) k-  l(sgn ()(a~l, .. . ,  a~k . . . .  , a~p) 
k 1 ~eW~, 

where W k is the group  of  pe rmuta t ions  of  l . . . .  , ~', . . . ,  p. On the other  hand since 
2 = 2 z we have 

T ~ e s = 2 ( ~  sgn ~ (a~  1, - . . ,  a , ( p _ l ) ) )  

where u ranges over  Sym(p). If rcaSym(p) and ~zp=k define ( a W  k by 

(a,1, .. . ,  a~(p_ j))= (a~l, . . . ,  aca_ 1), a~(k+ a), ---, acp). 

Then s g n r ~ = ( - - 1 ) p - k s g n (  and the sums O~e s and r o e  s are equal term for 
term. [ ]  

Now we m a y  complete  the p roof  of  (3.7). If S is dependent  then ~ 0 e s = z 0 es 
= Z / ? s = 0  so that  ~esaker~, .  Thus J_cker~b  and ~, induces a surjective m a p  0: 
d - - . ~  such that  Octs=fl s. Since ~p is an algebra h o m o m o r p h i s m  so is 0. Recall 
that 0, 0": g ~ g  defined in Sect. 2, carry , /  to r and thus induce maps  tT, ~*: 
, ~ 1 ~ 4 .  We have  a commuta t ive  d iagram 

(3.1.0) ~ 1~ 
Let f l=  ~ f l , .  If  u s N  then flu~Y3. Define z*: ~ , ~  by T*u=flu .  Then tpO*e s 

aEA 

= ~( ~ a es) = 2 (~P a)(O es) -- 2 ft, fls = r* 0 es. Thus the d iagram 
aeA aeA aEA 

(3.11) 

•p( if* ~ p - - 1  

~ 1~ 
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commutes. Since a* is a contracting homotopy for the chain complex ( d ,  a), z* 
is a contracting homotopy for (~,z) so (~ , r )  is also acyclic. Thus (2.16) holds 
with ~ in place of d .  Define E as we did following (2.11). Then (2.15) holds with 

in place of d .  The proof of this fact does not require the same effort as (2.15): 
there is a natural inclusion 3--(E)~Y-(L), and because joins in E are the same as 
joins in L there is a natural inclusion q/(E)-+~#(L) and hence ~(E)~CC(L). 

If xeL  let ~ x =  ~ ~fls. Then ~ =  @~x-  We may choose E=Lx and apply 
S~Sx x ~ L  

the remarks of the preceding paragraph to conclude that ~(Lx)~-~x(L  ). This 
allows us to prove (2.17) with ~ in place of d .  Thus d i m d x = d i m ~  ~ so the 
surjective map 0: d~-*Mx is an isomorphism. Thus 0: d ~  is an isomorphism 
of algebras. Since all our constructions are functorial, this completes the proof of 
Theorem 3.7. []  

Since ~Jp= @ Mx we have a commutative diagram of exact sequences 
r ( x ) =  p 

o - ~ d , - ,  | d~ ,~  | ~ - ~ . . . - ~ d o - ~ O  

(3.12) 1 "'~'i e - '  "'~'i e-2 l 

0 - - , ~  @ ~ x - *  @ ~ x ~ . . . - ~ 0 - ~ 0  
r ( x ) =  d' -- 1 r(x)= g -  2 

where the vertical maps are isomorphisms. The Poincar6 polynomial of ~ is 

(3.13) P~(t)= y~u(x)(- t )  "~ 
x 6 L  

Baclawski [-2] has shown that there corresponds to the finite geometric 
lattice L a (co)chain complex whose (co)homology has Poincar6 polynomial 
equal to P~(t). We show here that the elements flseM are cycles in Baclawski's 
homology ~ ,  and that the map p: ~ - , o f  sending fls to its homology class [fls] 
is an isomorphism of vector spaces. We recall Baclawski's definitions, slightly 
altered to suit our purposes in that we shift dimensions up by one in order to 
agree with the earlier results in this section and the topological applications in 
Sect. 5. 

Define subspaces c6p of ~ for p = 0 . . . .  , f as follows. For p = 0 let (d o = ~. For 
p > 0  let (alp have basis consisting of all p-tuples (x 1 . . . . .  xp) where x~sL-O and 

/ 

x 1 <. . .  <xp. Let cg= @(dp. Define a 112-linear map (5: cd--,cd by 61 =0,  6(x)=0 
p = O  

for x e L - O  and 

p - - 1  

a(Xl, ..., Xp) = y, (-- 1)k--l(Xl, . . . ,& . . . .  ,Xp) 
k = l  

for p = 2 . . . .  , f. Note that 6 differs from the usual boundary operator in that xp is 
never deleted. Nevertheless 62=0 so (off, a) is a chain complex. There is an 
ancestor of this complex in work of Deheuvels [-6, w 10]. Let ar be the homology 
of (cd, a). 

(3.14) Theorem (Baclawski). Let L be a finite geometric lattice. The PoincarO 
polynomial of Of is P~r(t)= ~ # ( x ) ( - t )  "~x). 

x~L  
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Baclawski's proof uses results of Rota [13] and Folkman [9] on the 
homology of geometric lattices. We give a direct argument along the lines of 
(2.17) as follows. For x c L - O  let cg~ be the subspace of cg spanned by all 
(x l , . . . , xp)  with Xp=X and let %=112. Then cs and ~: ~ - * ~ .  Thus 

x a L  

(%, 6) is a subcomplex and J,F = @ JY~ where ~ is the homology of (%, ~). Let 
x ~ L  

~;=~2. For p > 0  let ~_ccgp be the subspace spanned by all (x~ . . . .  ,xp) with 
x p # l  and let ~ ' _ ~ p  be the subspace spanned by all (x~,. . . ,xp) with xp=l .  
Then ~p = ~ �9 ~ ' .  The 112-linear map defined by 1 ~(1) and 
(x~ . . . . .  xp)--,(x~ . . . .  ,xv ,1  ) establishes an isomorphism c(fi~-~g~'+l of vector spac- 
es, for p = 0 , . . . , ( - 1 .  Thus the Euler characteristic of ~ is zero. Since .~  
=@JF~  and the natural identification %(L~)=%(L)  implies ~f~(L~,)~_.Icg~(L), 

x E L  

we may argue as in the proof of (2.17) that dim~=(-1)~(~)/~(x) ,  which proves 
the assertion. 

4. Character Formulas 

Let L be a finite geometric lattice, Let G be a group which acts as a group of 
automorphisms of L. This means that G acts as a permutation group on L and 
preserves the partial order. We do not assume that the action is effective. If g e G 
then g(x v y ) = g x  v gy and r(gx)=r(x).  Thus G induces maps which satisfy the 
conditions (2.4) and hence, by functoriality the group G is represented by linear 
transformations of the graded vector spaces ~4 and ~.  In this section we 
compute the character of the representation of G on ~,  and hence, by Theorem 
3.7, on d .  In Sect. 5 we will see that the character formulas on d admit a 
topological interpretation. 

Let L be a finite poset with unique minimal element 0 and maximal element 
1. Define a simplicial complex K = K ( L )  as follows. The vertices of K are the 
elements of L - { 0 , 1 }  and (x 1 . . . .  ,xp) is a (p-1)-simplex i f 0 < x  I < . . .  < x p < l .  If 
L is a geometric lattice of rank f > 2 let /( be the augmented complex obtained 
from K by adjoining a simplex of dimension - 1 on which G acts trivially. Then 
the reduced homology /4(K) of K is the homology H(/~) o f / ( .  According to 
Folkman [9] and Rota [13] the homology o f / (  is given by 

(4.1) d imHp( / ( )=0  i f p # f - 2  

dim He_ 2 ( / ( ) = ( -  1)e/~(1). 

If L is a Boolean algebra on atoms a l , . . . , a  e, f > 2 ,  then K is the barycentric 
subdivision of the boundary of the ( ( -  U-simplex with vertices al ,  ..., a t. The 
group / / t_2( /~  ) is generated by the cycle z(a I . . . . .  ae)=zfl~ ........ t) where 
r : ~ _ l  defined by r(x 1 . . . .  , x e ) = ( - l f - l ( x l  . . . . .  xe 1) is the map used in 
(3,9). Thus 

(4.2) z(a 1 . . . . .  ae,)= ~ ( - l ) e - l s g n r c ( a ~ , a ~ i  v a ~ z , . . . , a , ~  v . . . v a ~ _ ~ ) .  
ltsSym(s 
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Note that a G-action on L induces a simplicial G-action on K, so tha t  He_2(/~ ) 
is a G-module. 

(4.3) Theorem. Let L be a finite geometric lattice of rank ~> 2. Then ~ l  and 
He_2(/< ) are isomorphic G-modules. 

Proof. If ( =  2 then we have G-isomorphisms 

~Jl "~(@ ~a)/llS( ~ a)'~Ho(R). 
aeA aeA 

Assume f > 3 .  Since there are no f - 2  boundaries we have He_z(s 
= Z t _  2(K). We identify the cycle group Z r_ 2 (K) with a subspace of Jrr-1. Note 
that ~ 1  C 07- - J r -  We show that z~,~l_~Zt_2(K ). Let S = ( a  I . . . .  , a t )6S  r. If  S is 
dependent then (3.8) shows that Z/~s=Z0=0.  Suppose S is independent. Let L s 
be the sublattice of L generated by a 1 , . . . ,a  e and 0. Then L s is a Boolean 
algebra on a 1 . . . .  , a~. Let K s be the corresponding complex. From (3.5) and (4.2) 
we see that r~s=z(a 1, ..., ae) is a generating cycle of Ze_2(Ks)~_Ze_2(K). Thus 
z ~  1 __Ze_2(K ). Let ~-~/be the subspace of ~ spanned by all (xl,  ..., xt) with x e 
=1.  If SES e is independent then ~ / g S = V  S = I  for all r~eSym(f) so N~___~'. 
But z: ~ - ~ / - ~ -  1 is a monomorphism and thus ~: ~I - -*Zt_2(K)  is a monomor-  
phism. Since d i m ~  1 = ( - 1 ) t # ( 1 ) = d i m H e _ 2 ( K )  and z: J-~--*3~e_ 1 is a G-module 
homomorphism,  z: ~I~/He_2(K)  is a G-isomorphism. [] 

The G-isomorphisms 0: sd-- ,N and ~: ~l---~Ht_2(/~) allow us to compute 
the character of the representation of G on s / .  Let R(G) be the representation 
ring of G. If M is a G-module we let [M] denote its image in R(G). I f / 4  is a 
subgroup of G and N is an /-/-module we let I ndgN denote the induced G- 
module and write Indg [N]  = [Ind~ N].  For simplicity of notation we write [M] 
= [G/H] if M = ~[G/H].  If x e L  and r(x)> 2 the complex/~(Lx) is defined. Let 
G x = { g e G I g x = x  }. If o is a simplex of/~(L) let d(o) denote its dimension, let G~ 
={g~G [ga=~ }  and let G~,~=G~c~G~. 

(4.4) Theorem. Let L be a finite geometric lattice of rank f and let G act as a 
group of automorphisms of L. Then 

[ ~ ' o ]  = [ r  
[~1]--  ~ IG:G~I-'EG/G~] 

r(x)= 1 

and for p= 2, ..., f 

[ ~ ' v ]= ( - l )  ~ Z Y', ( - I ) d ( " ~ I G : G x , . I - I [ G / G x , . ]  �9 
r(x)=p a~R(Lx) 

Proof. The assertion of the theorem is clear for d o and ~'1, since d I -~ gl is the 
G-module defined by permuting the atoms. This proves the assertion if f =  1. 
Henceforth assume f >= p >= 2. The Hopf  trace formula says 

.~-2 d--2 

(-1)"[/-/~,(K)] = y, (-1)" [C,,(K)] 
q=0 q=0 



Combinatorics and Topology of Complements of Hyperplanes 181 

where Cq(K) is the group of q-chains of K. It follows from (4.1) and (4.3) that 

Y-2 

( -  l)q[Hq(K)] =[112] +(-  I / [~ , ] .  
q=O 

If aeK(L) then, since G preserves the orientation of a, the modules II;[Ga] and 
C[G/G~] are isomorphic. Thus we have 

d--2 

(-1)qucq(K)] = ~ (-1)d(~')IG:G~I-I[G/G~]. 
q= 0 ~r e K(L) 

Putting these facts together shows that 

[ l ~ ]  -II- ( -- I)E [ ~ 1 ]  = Z ( - 1 ) d ( ~ l l O : G a  I I [ G / G ~ ]  �9 
~eK(L) 

Now replacing K(L) by the augmented complex /s we absorb the term [11~] 
on the right hand side so we get 

(4.5) ( - 1 ) e [ ~ , ( L ) ] =  ~ (-I)d(~)IG:G~I-~[G/Go]. 
~e~2(L) 

If xeL and r(x)=p>2 then we may apply (4.5) to L x and the group Gx 
operating on L~ to conclude that 

(4.6) (-1)r(x)[~x(Lx)]= ~ (-1)a(~)JGx:Gx,~]-l[Gx/Gx,~] 
ae[g(Lx) 

in the representation ring R(Gx). Let (9 be a G-orbit on the set of elements of L 
of rank p. Let ~ r  Thus ~ p = ( ~ r  sum over all orbits. Since 

xe~ 6 7 

gN~(L)=~gx(L) we have N~_~Ind~ ~x(L ) for any fixed x6(9. Since 
3r as G~-modules we have [ ~ ] = I n d ~ x [ ~ ( L ~ )  ], Now it follows 
from (4.6) and transitivity of induction that 

[ ~ p ] = ( - 1 )  p ~ ~ (-1)dc~)[G:G~,~[-I[G/G~,~]. 
r (x )=p aeK(Lx)  

The assertion of the theorem follows from the G-module isomorphism ~ ' p - ~ p  
of Theorem 3.7. [] 

By choosing representatives for the orbits we may write [~r as a ~-linear 
combination of certain [G/Gx,~] and thereby put the formulas of Theorem 4.4 in 
a form more suitable for calculation. Let T~ be a set of representatives for the G- 
orbits on the set of elements of L of rank p. For  each xe Tp let Ux be a set of 
representatives for G~-orbits on the set of simplices of/((L~). Then 

(4.7) [A,]= ~ [G/G~] 
x e T l  

[Ap]=(-I) p ~ ~ (-1)d(")[G/G~,.] p=2,...,f. 
x e T p  oeUx  
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(4.8) Theorem. Let L be a finite geometric lattice of rank #. Let G be a group 
which acts as an automorphism group of L. I f  g ~ G let U = {x ~ L]gx = x} and let 
#~ be the M6bius function of the poser IS. Then 

t r (g ldp) t  p= ~ #g(X)(- t)  r~x) 
p =  0 x 6 L  g 

where r is the rank function in L. 

Proof. The statement is clear for p = 0, 1. Assume p > 2 and compute tr (gl~p). 
Since g ~ ( L ) =  ~g~(L) the terms with gx  4= x do not contribute to the trace. Thus 

tr(gi~p)--  ~ t r (gL~(L)) - -  ~, t r (g l~(L~)) .  
x ~ L  g x ~ L  g 

r ( x )  = p r ( x )  = p 

Choose x ~ L  g with r(x)=p. Let (91 . . . .  , (gs be the orbits of G~ on /~(Lx) and 
choose trj ~ (9j. Let mj  = ~[(9~] ~- q2[G~/G~,J. Now (4.6) gives 

( -  1) p tr (g l~ (L~) )=  ~ ( -  1) d~~ tr(g]Mj) 
j=l 

= ~ ( -  1) a(~') l(gg[ = - 1 +e(K(Lx) g) 
j = l  

where e denotes the Euler characteristic. If L is any finite poset with 0, 1, # is its 
M6bius function and K is the corresponding complex then Rota [14, Cot. 2] 
has shown that e(K)=l+/~(1) .  Since K(L~)g=K(L~) this gives, in our case, 
(-- 1)Ptr(gl~x(Lx))=#g(x). [] 

(4.9) Remark. Note that L g is a lattice containing 0, 1 and joins of elements in 
L g are the same as in L. But L g need not satisfy the chain condition and the 
elements of L g need not be joins of atoms of L g. 

(4.10) Example. Let L be the lattice of partitions of the set {1,2,3,4} with 
refinement as the order relation. The elements of L listed by rank are 

r(x) x 

0 1]2t3]4 
1 121314, 13]214, 14[2t3, 23[114, 241113, 3411]2 
2 123f4, 124]3, 134]2, 234]1, 12134, 13]24, 14]23 
3 1234 

Let G = Sy m (4). Choose representatives g = (l), (12), (12 3), (12) (3 4), (12 3 4) for the 
conjugacy classes. The following diagrams, for g 4~(1), picture U with the values 
of pg(x) inside the circles. A picture of L = L  ~1) appears in Birkhoffs book [3, 
p. 15]. 
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1234 

1 2 1 3 4 ~  

1 1 2 1 3 4 ~  

1121314 

  ,24,3 

L(123) ( 
(- 

1234 

12314 

11213[4 

183 

1234 
g(121(341 

1 ~  -1 114123 

121314"~- 

1121314 

The polynomials P4(t, g ) = ~  tr(gls/p)t r are: 

L(123,*) ( ~  1234 

g P~(t, g) 

(1) 
(12) 
(123) 
(12)(34) 
(1234) 

(1 +t)(1 +2t)(1 +30 
(1 +t)(1 +t) 
(l-t)(l +t) 
(l-t)(1 +t)(l +2t) 
(1 -t)(l +t) 

The first line of this table is a special case of a known fact about the lattice of 
partitions of the set {1 . . . . .  #} where P~(t, 1)=(1 +t)(1 +20. . . (1  + ( ? -  1)t). This 
has a topological counterpart in work of Arnold [1]. The connection between 
the combinatorics and the topology will be given in Sect. 5. The formulas for 
p~(t, g) with g=t=(1) will be studied in a forthcoming paper. 

5. Topology of Complements of Hyperplanes 

Let V__.~U t and let A be a finite set of hyperptanes in V. I fA~A let q~A be a linear 
form with kernel A. Let M = V -  ~) A be the complement of the union of the 

,4eA 
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hyperptanes.  Define ho lomorph ic  differential forms co A on M by ~o A 
=d(Pa/27~iq~ a and let [~OA] denote the corresponding d e R h a m  cohomology  

E 

class. Let ~ = @ ~tp be the graded ~?-algebra of  ho lomorph ic  differential forms 
p = O  

on M generated by the mA and the identity. 
Let L be the collection of subspaces of  V of  the form X = A 1 c~... c~ A~ where 

A i e A. We partially order  L by reverse inclusion; thus X ' <  X means  X'_~ X. fThe 
poset  L satisfies the chain condition, has a unique minimal  element 0 = V, and a 
unique maximal  element 1 = ("] A. The poset  L is a lattice with X v X '  = X c~ X'  

AeA 

and X A X ' ~ _ X + X ' .  Since X + X '  may not be in L the equality d i m ( X + X ' )  
+ dim (X c~ X')  = dim X + dim X r becomes  an inequality r(X/x X') 
+r(X v X')<r(X)+r(X') .  Thus  L is a geometr ic  lattice, with r(X)=codim(X), 
and the a toms  of  L are the hyperplanes.  

As in Sect. 2 let g be the exterior a lgebra of the vector  space with basis 
consisting of elements r in one to one correspondence  with the hyperplanes  
A c A .  Let d = g / J ,  let q~: ~-~sr  be the natural  h o m o m o r p h i s m ,  let dx=qo~ x 
and let C~A=~Oe A. Let ~X=~OOAI...~OAp where the sum is over  all independent  

p 

S=(A1, ...,Ap) with ~ Ai=X.  Note  that  in the present  context  the not ion of 
i = 1  

independence defined in Sect. 2 means that  codlin X = p  so that  the hyperplanes  
Ai are in general position. We have ~ p =  ~ ~x .  

r l X )  = p 

(5.1) L emma .  There exists a surjective homomorphism 7: d ~ . N  of graded 
algebras such that 7(eA)= 0),t and 7C~r ~x. 

Proof. Define an a lgebra  h o m o m o r p h i s m  v: ~ - , ~  by V(eA)=CO A. TO show that  
v ( J ) = 0  we need to show that  if S=(A~ ..... Ap) is dependent  then v(~?es)=0. Let 
~Oi=~OA, and COi=~0A. Since S is dependent  r(A 1 v . . .  v A p ) < p .  Thus 
codim(Atc~..,c~Ap)<p so the forms ~0~,..., (pp are linearly dependent .  Thus 
V(es)=Co 1 ... ~%=0.  Let S k =(A1,  ..., Ak,-- . ,  Ap). If  S k is dependent  for some k, it 
follows f rom (2.3) that  (--1)~Oes=eA~?es--es~ so we are done  by induction. 
Thus  we may assume that  no proper  subset  of  {q~, ... ,  q~p} is linearly dependent ,  

p 

so that  there exist c ~  I1~, all nonzero,  with ~ c~o~ =0 .  If  we replace ~o~ by c~o~ 
i = I  

P 

then col is unchanged.  Thus we may  assume that  ~ ~o~=0. Suppose j =  1 . . . . .  
i = 1  

p - 1 .  Then 0 =  ~ dq h implies 0 =  dqo i (dq)~...dqojdqo~+~...dq)~) so 
i = 1  q = l  

dqOl...d~oa+,...d~op= -d~o~...ds Define q~ by q0~t / j=(-1)  a lCOl...d)~...c %. 
Then  qOl ... q~ q~+ 1 = ( - 1)~d~ol ... dqS~+ a ... d~0v = ( - 1) J -  ~ dq~a ... d+j . . ,  dq% = ~01 ..- 
q~et/a. Let  q be the c o m m o n  value of the q~. Then  

p 

v(Oes)= ~ ( - -1)  i-~o9, ...o31...co p 
i = l  

(),I = q~tli= ~o i t /=0 .  [ ]  
i = 1  i 
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(5.2) Theorem. Let A be a finite set of hyperplanes in IE e. There exists an 
isomorphism d ~ - H * ( M )  of graded algebras such that eA--~[ma] for all A EA. In 
particular the Poincar~ polynomial of M is given by 

Pi(t) = ~ # (X) ( - - tY  (x). 
X E L  

Proof. We know from Brieskorn's work that the natural map ~-*H*(M)  is an 
isomorphism sending e)A-*[e)A]. Thus it will suffice to show that the map 
7: d - ~  is an isomorphism. Since d i m d =  ~ (-1)*(x)/~(X) it will suffice to 
show that X~L 

(5.3) d im H*( M)=  ~ (-1)*(x)/z(X). 
X e L  

If X EL let Ax=  {A EA]A_~X} and let L x be the geometric lattice consisting of 
V=lEe and intersections of elements of A x, Let M x = V -  Q) A. The inclusion 

A ~ A x  

ix: M ~ M  x induces a map i*" H~(X)(Mx)-~H~(X)(M ). Let H x be the image of i~. 
Brieskorn [5, Lemmas 3, 5] showed that: (i) i* is a monomorphism and HV(M) 
= @ H x and (ii) if r(X)>O then the Euler characteristic e(Mx)=O. Assuming 

r ( X ) -  p 

(i) and (ii) we prove 

(5.4) dim Hq(M) = ( -  1) q # (~)  A) 
AeA 

where q=r(  (~ A) is the rank of L. We use induction on q; the argument is 
A~A 

similar to the one used in (2.17). If q =0  then both sides of (5.4) are equal to one. 
If X EL and r (X)<q then the induction hypothesis shows that 

(5.5) dim Hr(X)(Mx) = ( -  1) r(x) g(X). 

Note that the rank and M6bius functions of L x are the restrictions of the 
corresponding functions of L. Using Brieskorn's (i), (ii) and (5.5) we have 

q 

0 = ~ ( -  1) p dim HV(M) 
p=O 

q - t  

= ~ ( - 1 )  p ~ d i m H x + ( - 1 ) q d i m H q ( M )  
p= 0 r(X)= p 

= ~ # ( X ) + ( - 1 ) q d i m H q ( M )  
r(X)<q 

= - # (  ~ A ) + ( -  1) q dimHq(M). 
A~A 

This proves (5.4), and hence (5.5) for all X. Now using (i) again we obtain 
(5.3). D 

(5.6) Corollary. Let A be a finite set of hyperplanes in V=IIY. Let L be the 
corresponding lattice and let M = V -  U A. Then the deRham cohomology groups 

A 6 A  

of M and the Baclawski (co)homology groups of L are isomorphic vector spaces. 

Proof. This follows at once from (5.2) and (3.14). []  
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(5.7) Corollary. Let G be a finite subgrou p of GL(V) which permutes a set of 
hyperplanes. I f  g ~ G let L g = {X E L]g X c X} and let IJg be the M6bius function oJ" 
the poser U. Then 

tr(g[HP(M))t p= ~" pg(X)(- t )  r(x) 
p>_O X ~ L  g 

where r is the rank function of L. The Poincar~ polynomial for the orbit space 
M/G is 

1 
PM/G(t)=~ ~, ~ #.(X)(--t) "(x). 

g~G X ~ L  g 

Proof. The first assertion follows at once from Theorem 4.8 since the isomor- 
phism in Theorem 5.2 is G-equivariant. The second assertion follows since 
H*(M/G)~-H*(M) G, [-4, p. 1203. [] 

We may use (4.7) to compute the Poincar6 polynomial of M/G without the 
trace formulas. Since each induced module C[G/Gx,r contains the trivial 
module with multiplicity one (4.7) gives: 

(5.8) Corollary. The Betti numbers of M/G are b 0 = l  , bl=lT11 and for p 
--2 . . . . .  { 

bp=(-1)  p Z Z ( - 1 )  a(~)" 
X ~ T p  ~ U x  

(5.9) Remark. Let G be a finite subgroup of GL(IR ~) generated by reflections in 
hyperplanes V 1 . . . . .  V,. Let G act on ~t  and let A~= �9 | V~ c_ ~ .  Brieskorn [-5] 
has computed the Betti numbers bp explicitly in this case. Since one knows from 
Brieskorn and Deligne [5, 7] that M and M/G are K(~, 1) spaces the Betti 
numbers bp give the ranks of the cohomology groups of the corresponding 
generalized braid groups. 

(5.10) Example. Let A be the set of hyperplanes in C 4 defined by the linear 
forms z~-z~, 1 < i< j<4 .  The corresponding lattice L is the lattice of partitions 
of { 1,2, 3, 4}. Let G = Sym (4). In view of Corollary 5.7 the polynomials p~(t, g) 
computed in (4.10) give the trace for the G-action on H*(M). According to (5.7) 
the Poincar6 polynomial of M/G is the average over G of the polynomials 
PN(t,g). This turns out to be 1 +t ,  which agrees with Brieskorn. We may also 
compute this Poincar6 polynomial directly from (5.8) as follows. Since G acts 
transitively on the hyperplanes we have b t = 1. Let A 1 =ker(z  a -z2), Az=ker(zz 
-z3) ,  Aa=ker(za-Z  J and A4=ker(z l - z3) .  For p - 2  we may choose T 2 
={A 1 ~A 2, A 1 ~Aa}. For  p = 3  there is a unique representative element so T3 
={A~c~A 2~A3}. The table 

X K.(Lx) U x 

AlcoA 2 d?,A1,A2, A 4 (9, A~ 
AI ~A3 (P, AI, A3 4, A1 
AlnA2c~A3 I((L) (o, A1,AIc~A2, Ajc~A3,(A1, Alc~A2),(AI, A1~A3) 

y ie lds  b 2 ---b 3 = 0. Here q~ denotes the simplex of dimension - 1 .  [] 
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The isomorphism of Theorem 5.2 allows us to give geometric interpretations 
to some of our combinatorially defined maps, which we summarize in Prop- 
osition 5.11. To interpret the map a: ~ r  consider the space f ( V )  of 
holomorphic vector fields on V. There is a natural map V* | V - ~ f ( V )  given by 
h | v~hD~, where D~ is directional derivative in the direction v. Let el, ..., e t be 
any basis for V and let z~ . . . .  , z~, be the dual basis for V*. The (Casimir) element 

z; | ej is independent of basis and thus defines a holomorphic vector field 
j = l  

g 

= ~ zjDej, which is independent of basis. We may view ~ e l ( M )  as a holomor- 
j --1 

phic vector field on M. Let [2P(M) be the space of holomorphic p-forms on M. 
Recall that any vector field ~ on M induces an interior multiplication i(~): 
/2P(M)-,E2 p- ~ (m) defined by 

(i(g) r/)(~l, ..,, Cp- a)= ~/(r gl,  .-., gp- a) 

where t/cf2P(m) and ~ ; ~ f ( m ) .  Define i(~)*: ~2 p ~(M)--*D~ by i(r 
=( ~ ~OA)V/. Note that both i(~.) and i(r map ~ - - , ~ .  

A~A 

To interpret the map (0: g - - , J  geometrically we imbed M in a complex n- 
torus M'=(~7*)" as follows. Write A={A~,  ..., A,,} in some chosen order. Let V' 
=(I;". Define a ~-linear map f :  V-~V '  by f (v )=(q) l (v  ) . . . .  , ~o,(v)), where q)i=q~a . 
Note that f :  M--*M'. Let z' 1 . . . .  , z', be the coordinate functions in V' and let A' i 
= k e r z  I. Since M'  is the complement of the set A'={A'~, . . . ,A',} of coordinate 
hyperplanes in C", all our constructions may be applied to it. Let E be the 
corresponding lattice. Since E is a Boolean algebra the map f :  V--, V' induces a 
map, again called f :  E-- ,L,  defined by f ( A I ) = A  ~. This map satisfies (2.4). In 
view of (2.5) go: g ' (L ) -~d(L)  may be identified with f4: ~4(E)~o4(L) .  

(5.11) Proposition. The connection between the combinatorics and the topology is 
given by the commutative diagram: 

~ ' ( L ' ) - -  a , ,~(L')  

.~(C)-- ~(~) I:) !/ i]I 
,~(L) -i(~) , ~ ( L )  

where the vertical maps are 7 and f *  is the induced map on dilferential forms. 
There is a similar diagram with a, i(~) replaced by a*, i(~)* and we have i(~)i(~)* 
+ i(~)* i(~) -= n.  id~,. 
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Proof. The top and bottom faces commute by functoriality. Let A~ . . . . .  Ap~A 
and let ej=C~A . Since c?: ~--*o ~ induces a: d--*~4, we have 

P 
O ' ( ~ I ' " ~ p ) =  2 (--1)k-l~l""~k'"O~p 

k=l. 

and there is a corresponding formula for the map y~rT-1 where ~ is replaced by 
~)j-=O~A=d~pj/2~i~p j. To show that the front face is commutative it suffices to 
check the equality i (~)~/=~ay-t  ~/on a set of elements rl which span ~(L). Thus 
take r / = ~ l . . . ~ "  where rpl, ..., rp, are independent. We must prove that 

(5.12) (~o~...c%)(~, Ca . . . .  , ~p-1)  

P 
= 2 (--1)k-l(gOa"'O3k"'Ogp)(~l''"'~p-1) 

k=l  

for all ~ j~ r (M) .  Let Dj=D~.  We may assume (~a,--- ,~p-0=(Dj~, .... Di,_~) 
where Jl <. .-  <Jp- 1. Since 

(dz I /x ... /x dzp)(Dk, Dj~, .... Dj~_,) = ( -  1) k-1 

if (j~ . . . . .  jp_ 1)=(1, ..., ~', . . . ,p) and is zero otherwise, both sides of (5.12) are 
equal to ( - 1 )  k- l(za...2k.." Zp)-1. This proves the commutativity of the front face, 
and hence the back face. Since f*(z))=g0j we have f (cog)=r~)j where co~ 
=dz)/2r~iz). This proves the commutativity of the two sides. The last assertion 
follows from the formula aa* + a* a = n- ida. []  

Define f :  V~II2 by f =  [ I  (Pa' Then f has a critical point at the origin 
A~A 

which is not in general isolated. It follows from Milnor's fibration theorem [12, 
p. 5] that the map f :  M--,II2* is the projection map of a smooth fiber bundle. 
Thus our computations yield the cohomology of the total space of this fibration 
but they do not yield the cohomology of the Mitnor fiber. 
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