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1. Introduction

Let ¥=C’ and let A be a finite set of hyperplanes in ¥, all containing the origin.
If AeA let ¢, be a linear form with kernel 4. Let M=V~ () A be the

AecA
complement of the union of the hyperplanes. Define holomorphic differential

forms w, on M by wA=d(pA/2ni(pA and let [w,] denote the corresponding
deRham cohomology class. Let # = @ 4, be the graded C-algebra of holomor-

phic differential forms on M generated by the w, and the identity. Arnold [1]
conjectured that the natural map n—[n] of # - H*(M)=H*(M,C) is an
isomorphism of graded algebras. This was proved by Brieskorn [S, Lemma 5]
who showed in fact that the Z-subalgebra of # generated by the forms o, and
the identity is isomorphic to the singular cohomology H*(M, Z).

Let z, ..., z, be coordinate functions on V. In case the linear forms are ¢,
=z;—1z;, Arnold [1] found the formula

(L) Py()=(1+0(1+20)...1 +(/ = 1))

for the Poincaré polynomial of M. He also gave a presentation for the algebra #
which may be described as follows. Let & be the exterior algebra of the vector
space which has a basis consisting of elements labeled e;, 1<j<k=</. Let .# be
the ideal of & generated by all elements ¢jepte; e +ee;. Then the map
e~y =dep;/2nig, defines an algebra isomorphism &/.9 ~ .

In this paper we extend these results in several ways. We give a general
formula for the Poincaré polynomial of M and we give a presentation for the
algebra #~ H*(M) which agrees with Arnold in his special case. If G is a
subgroup of GL(V) which permutes the set A of hyperplanes, then G has a
representation on H*(M) and we compute the character of this representation.
This allows us to compute the Poincaré polynomial of the orbit space M/G.

—_—
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We prove these results using certain algebraic and combinatorial con-
structions with a lattice L. This part of our work occupies Sect. 2-4 and involves
no topology. If A is a set of hyperplanes we choose L to be the collection of
subspaces of V of the form X=4,n...nA4, where 4, A. We partially order L
by reverse inclusion so that L has V' as its unique minimal element. Then L is a
finite geometric lattice [3, p. 80] with A as its set of atoms.

In general let L be a finite geometric lattice and let A be its set of atoms. Let

&= (P &, be the exterior algebra of the vector space which has a basis
pz0

consisting of elements e, in one to one correspondence with the elements ae A.

In Sect. 2 we construct, in a functorial way, a graded anticommutative C-algebra

of =&/ # whose Poincaré polynomial

(12) PM([)= Z 'u(x)(_t)r(x)

xeL

is given by Theorem 2.6. Here r(x) is the rank of x and u(x)=u(0, x) where u is
the Mébius function of L and 0 is the minimal element of L. Thus the Poincaré
polynomial of ./ is essentially the characteristic polynomial y, (1)
=Y u(x)t’~"™ in Rota’s sense [13, p. 343], where ¢ is the rank of L.

xeL

Let G be a group which acts as a group of automorphisms of L. Then G has
a representation on each space .«/,. To compute the character of this repre-

sentation we introduce, in Sect. 3, a second graded anticommutative C-algebra
4

B= @0 #,. The elements of # are certain linear combinations of p-tuples
o

(x, <...<x,) of elements of L and the multiplication is defined using a shuffle

product. The main result, Theorem 3.7, of Sect. 3 asserts that o/ and # are G-

isomorphic algebras. Thus the trace computations may be done in 4. There is a

close connection between # and the homology of L in the sense of Rota [13]

and Folkman [9]. Thus the Hopf trace formula for a finite simplicial complex

may be used to obtain the trace formula of Theorem 4.8:
£

(13) Y trgle)ytP=3 pu,(x}—1y® geG.
p=0 xelL&
Here L is the subset of L fixed by g and g, is its Mobius function.

Baclawski [2] has defined a (co)homology theory for a geometric lattice L
whose Poincaré polynomial is P,(f)=P,(¢). It turns out that our algebra #
consists of cycles in Baclawski’s homology 4, and in fact the natural map
sending each element of 4 to its homology class is a vector space isomorphism
B~H.

In Sect. 5 we combine our combinatorial theorems with topological theo-
rems of Brieskorn [5]. Let A be a finite set of hyperplanes in V=, let L be the

corresponding lattice and let M=V — ( ) A. We prove in Theorem 5.2 that the
AcA

map e,—[w,] from & to H*(M) defines an algebra isomorphism &/.% ~ H*(M).
This gives a presentation for the cohomology ring of M. Moreover, M and &/
have the same Poincaré polynomial

(14) Py()= Y u(X)(—1y™.

XelL
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Our isomorphism is G-equivariant for any subgroup G of GL(V) which per-
mutes A. Thus the combinatorial trace formula (4.8) yields the trace of G on
H*(M).

In case the hyperplanes are defined by linear forms with real coefficients
there is a remarkable coincidence between the dimension of H*(M) and the
number of connected components of the corresponding real configuration,
computed by Zaslavsky [18, p. 18]: if Ay is a finite set of hyperplanes in R? and
A={A® C|AeAg} then the number of connected components of R — | ) A is
equal to dimg H* (M). AcARr

Since # ~4% as vector spaces and #~H*(M) as algebras the deRham
cohomology of M is isomorphic, as vector space, to Baclawski’s (cojhomology of
the lattice L. One might expect that H*{M) is algebra isomorphic to Baclawski’s
cohomology but we have not checked this.

Suppose A is a set of affine hyperplanes in €/ which do not all contain the
origin. Here the corresponding poset L consisting of intersections A, n...N A4, is
not a geometric lattice (even if we adjoin the empty set as a maximal element).
Nevertheless the Poincaré¢ polynomial of M is given by the formula B,(1)

=Y u(X)(—ty™. Since L is not a geometric lattice our algebra ./ is not
XeL

defined. However, an algebra like &/ may be defined for any finite poset with a
unique minimal element and we intend to study its homological properties in a
sequel to this paper.

If L is the lattice of subspaces of an /-dimensional vector space over IF, and
G=GL,(IF) our algebras o/ ~ % have Poincaré polynomial

(L5) (140(1+q0...(1+q¢ 'n=Y [i] R g

k=0

where [k] is the Gaussian g-binomial coefficient. Thus we have constructed an

algebra o/ which plays the same role for the g-binomial theorem as the exterior
algebra does for the ordinary binomial theorem where g=1. In this case the G-
module .o/, is the Steinberg module of GL,(IF) and the isomorphism «/; ~ %,
gives its homological interpretation [16]. The map (3.3) and its anti-sym-
metrization are similar to constructions used by Steinberg [17, §§2-3]. Some of
the ideas in Sect. 4 were used in work of Solomon [15]. The exact sequence
(2.19} is closely related to a sequence used by Lusztig [10, p. 11] in his work on
the discrete series of GL,(IF,). Lusztig uses it to give a recursive formula for the
Steinberg character [10, p. 22].

If G is a finite irreducible subgroup of GL,(IR) generated by reflections and
A consists of the complexified reflecting hyperplanes, Brieskorn [5, Theorem 6]
found the formula

(1.6) Py()=(1+m,t)...(1+m,1)

where the m; are the exponents of G. In a sequel to this paper we will show that
if G is a finite irreducible subgroup of GL,(C) generated by unitary reflections
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and A consists of the reflecting hyperplanes then
(1.7) By,)=(1+n,t)...(14n,t)

where the n,eIN are certain generalized exponents. In case G is real, n,=m; so
our formula agrees with Brieskorn’s.

Our notational conventions are as follows. All vector spaces are over € and
all (co)homology has coefficients in €. In the course of the argument we define
certain functors &, o/, ... on a category of lattices. To simplify notation we
usually suppress the dependence of the objects &(L), (L), ... on L and write &
=§&(L), o =/ (L), .... Similarly for functions on L we write u=p,, r=r,, ... and
exhibit the dependence on L only when necessary. The lattice terminology is
standard as used by Birkhoff [3].

We would like to thank D. Zagier for a suggestion which simplified our proof of Theorem 5.2.

2. Geometric Lattices and Exterior Algebra

Let L be a finite poset (partially ordered set) with a unique minimal element 0.
The Mobius function g is an integer valued function on L x L defined recursively
as follows: u(x, x)=1,

(2.1) Y plxz)=0 if x<y

xS5zXy

and u(x, y)=0 otherwise. We agree to write p{x)= (0, x). Our aim in this section
is to associate to a geometric lattice L a graded finite dimensional anticom-

mutative C-algebra o/ = (P o/, and to show that the dimension of ./, may be
pz0
computed in terms of pu.

We recall the definition of a geometric lattice. A poset L satisfies the chain
condition if for each xeL all maximal linearly ordered subsets 0
=X, <X, <...<x,=x have the same cardinality. The integer p is called the rank
of x, and will be written r(x). The rank r(L) of L is the maximum of the ranks of
its elements. Elements of rank 1 are called atoms. A finite lattice L is said to be
geometric if (i) it satisfies the chain condition, (ii) every element in L —0 is a join
of atoms, and (iii) the rank function satisfies the inequality

2.2) r(xaAy)+rixvy)Sr(x)+r(y), x,yeL.

Henceforth we assume that L is a finite geometric lattice. We let 1 denote the
unique maximal element of L and assume that 0=1.

Let A be the set of atoms of L. Let S, be the set of all p-tuples S=(a,, ..., a,)
where a,eA. For p=0 we agree that S, consists of the empty tuple ( ). Let
S={JS,. If S=(ay, ...,a,) write VS=a, v... va, and for p=0 write \/( )=0. If

20
xelf_let S, consist of all SeS with \/S=x. We introduce an arbitrary linear order
< on the set A and say that S=(qa,, ..., a,) is standard if a; <...<a,. This linear
order is introduced for notational purposes and has nothing to do with the
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partial order < in L, since no two elements of A are comparable in L. If SeS
then (2.2) implies that r(\/ S)<p. We say that SeS, is independent if r(\/ S)=p,
and dependent if r(\/ S)<p. We agree that the empty tuple is standard and
independent.

Let &= @ &, be the exterior algebra of the vector space which has a basis

pz0
consisting of elements e, in one to one correspondence with the elements acA. If
S={a,,...,a,) let eg=e, ...e, . Thus & has a basis consisting of all eg with §

standard. If S () write eS:I Defme a C-linear map ¢: §—»& by ¢1=0, de,=1
and for S=(a,,...,a,)

r
des= ) (—1)"te, ...é, ...e,.
k=1
Then ¢ =0. If SeS, and TeS then

(2.3) dlegesr)=(deg)er+(~Feg(de,).

Let .# be the ideal of & generated by all elements Jeg where S is dependent. Let
o =¢&/F. Since £ is generated by homogeneous elements &/ is a graded
anticommutative C-algebra. If L is another geometric lattice and f: L—>L is a
map satisfying

24 O fAYSAL @) fxviy=Ffxvy (i) (/%) S (x)

then the map e,—e,, defines a homomorphism f,: &(L)—&(L) of graded C-
algebras. It follows from (2.4) that / maps dependent S to dependent f(S) and
thus f, induces a homomorphism f,: .o (L)— /(L) of graded C-algebras. In fact
¢ and o/ are covariant functors from the category of geometric lattices and
maps satisfying (2.4) to the category of graded anticommutative C-algebras.

(2.5)  Remark. If L is the lattice of subsets of A, then J(L’)=O so A (L)y=&(L).
The map f: L—~L defined by f{a,,...,a }—alv a, satisfies (2.4). If we
identify A,. with A; and hence &(L) with é(L) then the induced map f, may be
identified w1th the ndtural homomorphism &(L}—.oZ(L).

(2.6) Theorem. Let L be a finite geometric lattice. Then the graded algebra of
has Poincaré polynomial

= T -0,
xel
The rest of this section contains the proof of Theorem 2.6. Let #=Y Ces where
the sum is over all dependent SeS.

(27) Lemma. f=¢+d¢.

Proof. If Se8 is arbitrary and TeS is dependent then the formula d(eg(de,))
=(0eg)(0e,) shows that 8. <.#. Suppose S is dependent. Choose acA. Then T
=(a,S) is dependent and since e,=e,es it follows from (2.3) that eg=de,
te,0ese #£. Thus #£<.#. Since ¢ contains the generators of .# it suffices to
show that ¢+ ¢ is an ideal. If acA then e, # = ¢ and the last equation above
shows that e, 0 = g+d¢. O
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Define a Hermitian inner product { , > on & by requiring that the standard
basis elements eg form an orthonormal basis. If ue& we define the support of u,
supp(u), as follows. Write u uniquely in the form u=) cgeg where c5eC and the
S are standard. Then supp(u) is defined to be the set of § with ¢;+0. The
support, supp(.#) of a subspace .# of & is the union of the supports of its
elements. Two subspaces with disjoint supports are orthogonal. If xeL let &,
= ) Ce, Thus & = @ &,. The subspaces &, have pairwise disjoint supports and

SeSy xel
thus they are pairwise orthogonal.

If SeS is dependent and S=(a,,...,a,) let ®(S) be the set of all indices k
=1,...,psuch that §,=(ay, ..., d,, ..., a,) is independent. Since \/ §, <V § for all
k, it follows that for ke®(S) we have p—1=r(VSP=r(VS)=p—1 and thus
VS,=VS. Let fg= Y (—1)"'es. Then fy=degmod¢. If xeL let X,

ke®@(S
=Y C fg where the sum i(s}over all dependent SeS,. Since V S=V S, whenever

ke®(S) we have eg, €6, and thus feed,. Therefore A < &,.

(2.8) Lemma. .# = ¢ + ) X, direct sum of pairwise orthogonal subspaces.

xeL
Proof. By Lemma 2.7 .# = # 40 ¢. Since deg= fgmod ¢ for any dependent S, we
have #=_¢+) A,. Since A, =&, the subspaces £, are pairwise orthogonal.
Since supp(.#,) consists of independent SeS, and supp{_¢) consists of dependent
SeS, # is orthogonal to every . [

(29) Lemma. Let © be the orthogonal projection of & onto $*. If SeS_ is
independent then negeé..

Proof. If 4 is any subspace of &, let n(eg, .#) be the orthogonal projection of eg
on .#. By Lemma 2.8 we have

n(eSa j):n(e& j)+ Z Tc(eS’ ‘}(y)
yel
If T is dependent then TS because S is independent so {eg, e;>=0. Thus
n(es, £)=0. If y&x we prove that m(es #,)=0. By definition ,)i"y=Z(Ef7-
summed over dependent TeS . If ke®(T) then V T,=V T=y so T, +S and

{es,fr)= Z (—1)k—1<es,e'1'k>=0
ked(T)
so n(es, #,)=0. Thus n(es, f)=n(eg, £ )ed,. Since esed, we have meg=e;
—7n(eg, F)ed,. I

Let ag=geg and let o, =@ &, where ¢: &> &/ is the natural homomorphism.
(2.10) Proposition. & =D, .

xeL

Proof. Since & = P&, we have o/ = ) /. Define a positive definite Hermitian

xeL xeL
inner product {, » on & by {pu,pv)y={nu,nv) for u,ve&. We prove that the
sum Y & is direct by showing that the subspaces ., are pairwise orthogonal
with respect to this inner product. Suppose x=*y and SeS, and TeS,. If § is
dependent then ege.# so ag=0 and {og, a,»>=0. Similarly if T is dependent.
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Suppose S and T are independent. By Lemma29 neseé, and me;eé, so
{og, ) ={meg,mer» =0 because &, and &, are orthogonal. [

Remark. If SeS is dependent then ag=0. If SeS, is independent then oge.o/,
where p=r(x). Thus

211) A= D .
r(x}=p

Our next aim is to show that dim.sZ =(— 1" u(x). We will do this by
induction on the rank of L after several lemmas. Here it is important to make
explicit the dependence on L of all the spaces we have constructed. Let A’ be any
subset of the set A of atoms of L. Let L be the set of all \/ S where S ranges over
the set S’ consisting of all sequences (ay,...,q,) with a,€A’. Then L is a
geometric lattice and A’ is its set of atoms. We view &(L) as a subalgebra of
&(L). Thus &(L)=@® Ceg where the sum is over all standard SeS’. Since the
rank function of L is the restriction of the rank function of L, a sequence SeS' is
dependent in L if and only if it is dependent in L. Thus

(212) F(L)nEL)=F(L)

If xeL then & (L)< &(L). If x¢ L then & (L)~ &(L)=0. Since ¥ (L)< &, (L) this
implies

(2.13) A (L)ynéL)y=A(Ly=A (L) if xeLl

and A, (L)n&(L)=0 otherwise.

(2.14) Lemma. J(L)né(Ly=4(L).

Proof. We begin with a general remark. Let .#,, .#,, ... be any subspaces of & (L)
with pairwise disjoint supports. If u;e.#; then supp(} u;)=|Jsupp(u;). Thus if
Yu,e&(L) then supp(u)esupp&(L) so that we&(L). Thus Q. AMynE(L)
=Y (M,n &(L)) whenever the .#, are subspaces of &(L) with pairwise disjoint
supports. We showed in the proof of Lemma 2.8 that the subspaces #(L) and
A (L) have pairwise disjoint supports. Thus by Lemma 2.8 together with (2.12)
and (2.13) we conclude that

FL)NEL)=(F(L)n (L) + Y (A (L)nE(L)

xeL

= L)+ Y, AUL)
:](L’) xel

where the last equality follows from Lemma 2.8 applied to L. [

Let i: L—L be the inclusion and let ¢’: &(L)— /(L) be the natural map.
Then we have a commutative diagram.

E(L)—¢ 8L
o’ @

o (L) ¥ & (L).
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(2.15) Proposition. The map i,: /(L) .o/ (L) is injective. Thus (L) is isomor-
phic to the subalgebra of /(L) generated by the identity and all pe, where acA'.
Furthermore for each xeL the map i,. o (L)— 2/ (L) is an isomorphism.

Proof. Clear from (2.14) and the diagram. [J
3
(216) Lemma. ) (- 1)’ dim.«/,=0 where ¢ =r(L).
p=0
Proof. Our convention 01 implies that £ is not zero. Note from (2.7) that (.4, 0)

is a chain complex. Let e= ) e, and define 0*: §>& by d*u=eu. Then (00*
acA
+0*0)u=nu for all ued where n=|A} is the number of atoms. The maps 4, J*

carry # to 4 and thus induce maps o, 6*: &/— . Since 66*+0o*o=n-id, the
map o* is a contracting homotopy for the chain complex (&,g) which is
therefore acyclic. In particular the Euler characteristic of (., ¢) is zero. [

(2.17) Lemma. dims/, =(— 1Y% u(x) xeL.

Proof. We argue by induction on the rank /=#(L). If /=1 then L={0,1} and
the assertion is clear,

Suppose xeL and x=+1. Let A, ={acAla<x} and let L, be the geometric
lattice consisting of 0 and joins of elements of A, The rank and Mobius
functions of L, are the restrictions of the corresponding functions of L. By
Proposition 2.15 & (L, )~ </ (L). Since the rank of L, is less than the rank of L
the induction hypothesis shows that dim.eZ, =(—1)"™ u(x) if x+1. For x=1 we
note that by (2.11) o/,= @ ., and then the vanishing of the Euler characteris-

. . r{x)=p
tic for £ >0 gives

Y (—1y®dimss,= ¥ p(x)+(— 1y dim .o, =0.

xeL x*1
On the other hand, by the definition (2.1) of 4 we have Z u(x)=0, so dim &7,
=(=1Yu1). O

This completes the proof of Theorem 2.6. Since (&, 6) is acyclic we have an
exact sequence

218) 0>y — @ A— @ A—..—Ay—0.

r{x)=£-1 r(x)=¢-2

3. An Algebra Defined by Shuffles

Let L be a finite geometric lattice of rank /. In this section we construct an
algebra 4 whose elements are certain C-linear combinations of ordered subsets
of L with multiplication defined using a shuffle product. The aim of this section
is to prove that o/ and 4 are isomorphic algebras. In fact & is also a functor
from the category of geometric lattices and maps satisfying (2.4) to the category
of graded anticommutative C-algebras, and our construction yields a natural
transformation between the functors & and 4.
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Define vector spaces 7, for p=0 as follows. For p>0 let J, have basis
consisting of all p-tuples (x,,...,x,) where x,eL—~0. For p=0 let J,=C. Let
Sym(p) be the symmetric group on the letters 1,...,p. If meSym(p) and u

=(Xy5 o5 Xp) let mu=(x,-1y, ..., x,-1,). This makes 7, a Sym(p)-module. Let
= ([P J,. Define a product 7 x 7 -7, written *, as follows. If u=(x,, s X))
pz0

and v=(y,, ...,y ) let w=(zy, ..., 2, J=(xy, ..., X,, ¥y, .-+, y,) and define
Uxv=) SgNT TW

where the sum is over all (p, g)-shuffles = of 1, ..., p+4. Recall [11, p. 243] that a
(p,q)-shuffle of 1,...,p+g is a permutation neSym(p+gq) such that mi<nj
whenever i<j<p or p<i<j. This makes  into an associative graded anticom-
mutative C-algebra with identity. Let #:  —>.7 be the antisymmetrizer defined
for u=(x,,...,x,) by

B.1) nqu=) (sgnmru=) (sgnm)n'u
summed over all neSym(p). It follows by induction that
(3.2) 7l x)=(x)* ... % (x,).
Define a €-linear map A: 9 -7 by 11=1 and
(B.3) AXps s X)) =0y, X, V X g, X VX, VL VX))
(3.4) Lemma. If v, ved then

A(Aux Avy=A(u=v).

Proof. 1t suffices to check this for u=(x,, .»x,) and v=(y;,..., y,). Then Au
=(x7,...,x,) and Av=(y},...,y;) where xj=x,v..vx; and Y=y, v.. vy,

Write (zl,...,qu):(xl,...,xp,yl,...,yq)and(zj,...,z;3+q).=(xj,...,.x;, Visooos Vo
It follows from the idempotence z=z v z of the lattice join that z,, V...V zj;
=z v..vz,foralli=1, ..., p+g and all permutations n of 1, ..., p+q. Thus

MAuxdv)=Y sgnn- Az, s Znpr )

=Ysgn7 - Azyy---s Zaipia)
=Au=+v). O
Let % =A(7). Then % inherits a grading from 7. Since 4 is idempotent % is
spanned by the identity and all (x,, ..., x,) with x; ... <x,,. Define a product in
« by
uv=~Auxv) u ved.

This multiplication is associative: if u, v, we# then Aw=w so Lemma 3.4 shows

(uv)yw=A(uv+w)y=A(A(u*v)* Aw)=A((u* v) * W).
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Thus % is an associative, anticommutative algebra with identity. We may view
cach clement SeS as an element of 7. If S=( ) let fg=1 and for S=(a,,...,a,)
define pge# by

ﬂ:p)'

(3.5) Bs=A(nS)=) sgnm(a,y, Ay V sy, ...y dy Va, V...V a

(3.6) Lemma. Let S, TeS. Then Bsf,=Bs 1)

Proof. Let S=(ay, ...,a,) and T=(b,, ..., b ) where a;, b,cA. Then using (3.2) and
(3.4) we have

BsBr=A(Bs+Py)

AMAmS)* A(nT))

AnS*nT)
=M(a)x...x(a,)x(by)x*... (b))
=in{ay,...,a, by, ..., b))

:ﬂ(S,T)‘ U
Let Z= ) Cf;. Lemma 3.6 shows that Z= @ 4, is a graded subalgebra of %.

Ses pz0
If f: L—> L satisfies (2.4) then the induced map f,: 7 (L)> 7 (L) commutes with

4 and n and thus f, induces a homomorphism f;: #(L)—>4(L) of graded C-
algebras, which is functorial.

Il

(3.7) Theorem. Let L be a finite geometric lattice. There exists an isomorphism
0: o —>% of algebras such that Bug=[fg. The map 0: of >R defines a natural
transformation of functors.

Theorem 3.7 is a consequence of Lemmas 3.8 and 39. If S=(a,,...,a,) and
neSym(p) then nrS=(sgnn)yS so f,s=(sgnn)ps. Thus there exists a (E 11near
map y: &2 such that Y eg=fis. Since ege,=e r, it follows from (3.6) that s is
a homomorphism of algebras.

(3.8) Lemma. If SeS is dependent then =0.

Proof. Let S=(a,,...,a,). If S,=(a,,...,d,,...,a,) is dependent for some k
=1,...,p then By=(—1)" ‘B(ak sw=(~ 114, Bs, and we are done by in-
ductlon Thus we may assume that S, is independent for each k. Then as in the
paragraph preceding Lemma 2.8 we see that \/ S, =/ § for all k. If zeSym(p) let
{ be the permutation defined by {k=nk for k=1,...,p—2, {(p—1)==p and {(p)
=n(p—1). Then sgn{= —sgnn and the terms corresponding to 7 and { in (3.5)
cancel. [

£
Note that Lemma 3.8 implies f=0if |S|>¢ so that Z= @ 4,. Define a C-
p=0
linear map t: -7 by 11=0, 1(x)=1 for xeL—0, and 7z(x,,...,X,)
=(—1Y"(xy, ..., x,_;)for p=2and x,e L — 0. The computation in the next lemma
shows in particular that t#,=4,_ .
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(39) Lemma. The diagram below commutes.

% 4 %
§—" b,

Jw
B ———> B

p T rp—1

1

v

Proof. If S€S,, then
p
Ydeg=4 (z(—nk-lnsk)
k=1

)4

_J (Z Y (=1 sgnd(a, .. g,(,...,agp))
k=1 {eW)

where W, is the group of permutations of 1, ..., &, ..., p. On the other hand since

A=At we have

es=A) sgnn(d,,, -.., Anip- 1))

where 7 ranges over Sym(p). If zeSym(p) and np=k define {eW, by

(o ""an(p—l)):(agl’ s Orge 1y Qe+ 1y ‘..,agp).

Then sgnnm=(—1)""*sgn{ and the sums Y des and Ty eg are equal term for
term. [

Now we may complete the proof of (3.7). If S is dependent then W deg=1¥ e
=1f,=0 so that degekery. Thus £ <kery¥ and ¥ induces a surjective map 6:
/- such that Qog= . Since ¥ is an algebra homomorphism so is 6. Recall
that ¢, 0*: &—& defined in Sect. 2, carry .# to .# and thus induce maps o, o*:
o ~of. We have a commutative diagram

A, >,

(3.10) 9J lo

B
jl’ T gl’—l

Let B= Y B,. If ue® then Buech. Define t*: B—>% by t*u=pu. Then ¥ d*e;

acA

=Y(Y aeg)=Y (Ya)Yes)= Y B.Bs=1*Ves. Thus the diagram

acA acA acA

U*
Mpe——dp_l

(3.11) oj }9

17
Jp o* ‘%p——l
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commutes. Since ¢* is a contracting homotopy for the chain complex (7, g), t*
is a contracting homotopy for (%, 1) so (#, 1) is also acyclic. Thus (2.16) holds
with 4 in place of .. Define L as we did following (2.11). Then (2.15) holds with
2 in place of .&/. The proof of this fact does not require the same effort as (2.15):
there is a natural inclusion 7 (L)— .7 (L), and because joins in I’ are the same as
joins in L there is a natural inclusion % (L)—~% (L) and hence #(L)— Z(L).

If xeLlet Z,= ) Cfs. Then #=PDA,. We may choose =L, and apply

SeS. xeL
the remarks of the preceding paragraph to conclude that #, (L )~% (L). This
allows us to prove (2.17) with # in place of .&/. Thus dim.<, =dim#, so the
surjective map 6: o/~ 2, is an isomorphism. Thus 8: o/ -2 is an isomorphism
of algebras. Since all our constructions are functorial, this completes the proof of
Theorem 3.7. [

Since #,= @ %, we have a commutative diagram of exact sequences
rx)=p

O-o)—> P H—> @ A —...—>H—0

(312) } r(x)=f’— 1 r(x)~f’— 2 l

0-%- &® %4- & B.—..—>B,—0

rix)=¢-1 rx)=~¢,-2

where the vertical maps are isomorphisms. The Poincaré polynomial of # is

(3.13) By(t)= 3 p(x)(—1)®.

xeL

Baclawski [2] has shown that there corresponds to the finite geometric
lattice L a (co)chain complex whose (co)homology has Poincaré polynomial
equal to E,(t). We show here that the elements S e are cycles in Baclawski’s
homology 4, and that the map p: #— 4 sending f to its homology class [ ]
is an isomorphism of vector spaces. We recall Baclawski’s definitions, slightly
altered to suit our purposes in that we shift dimensions up by one in order to
agree with the earlier results in this section and the topological applications in
Sect. 5.

Define subspaces €, of 7, for p=0, ...,/ as follows. For p=0 let ¢,=C. For
p>0 let , have basis consisting of all p-tuples (x,, ..., x,) where x,eL—0 and

£
Xy <...<x, Let €= @ %, Define a C-linear map é: €—>% by 61=0, 6(x)=0
p=0
for xeL—0 and

p—1

3xy, o, X)) = Y (= 1F 1 xyy o, Ky s X))

k=1

for p=2,...,7. Note that ¢ differs from the usual boundary operator in that x,, is
never deleted. Nevertheless 62=0 so (¢,0) is a chain complex. There is an
ancestor of this complex in work of Deheuvels [6, §10]. Let 5# be the homology
of (%, 9).

(3.14) Theorem (Baclawski). Let L be a finite geometric lattice. The Poincaré
polynomial of H# is Pe(t)= ) p(x)(—1)"™.

xelL
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Baclawski’s proof uses results of Rota [13] and Folkman [9] on the
homology of geometric lattices. We give a direct argument along the lines of
(2.17) as follows. For xeL—0 let ¥, be the subspace of € spanned by all
(Xy,...,x,) with x,=x and let ,=C. Then =P %, and 6: €, —>%,. Thus

xeL

(€., 0) is a subcomplex and # = (P #, where #, is the homology of (%, §). Let

xeL
%,=C. For p>0 let ,=%, be the subspace spanned by all (x,,...,x,) with
x,*1 and let €<%, be the subspace spanned by all (x;,...,x,) with x,=1.
Then %,=%,®%,. The C-linear map defined by 1-(1) and
(X14ooos X )= {x, ..., x,, 1) establishes an isomorphism #,~%, | of vector spac-
es, for p=0,...,/—1. Thus the Euler characteristic of 4 is zero. Since #
=@ #, and the natural identification €.(L,)=%,(L) implies #,(L,)~#. (L),

xelL
we may argue as in the proof of (2.17) that dim #, =(—1)"™® u(x), which proves
the assertion.

4. Character Formulas

Let L be a finite geometric lattice. Let G be a group which acts as a group of
automorphisms of L. This means that G acts as a permutation group on L and
preserves the partial order. We do not assume that the action is effective. If ge G
then g(x v y)=gx v gy and r(gx)=r(x). Thus G induces maps which satisfy the
conditions (2.4) and hence, by functoriality the group G is represented by linear
transformations of the graded vector spaces o/ and #. In this section we
compute the character of the representation of G on %, and hence, by Theorem
3.7, on &/. In Sect. 5 we will see that the character formulas on & admit a
topological interpretation.

Let L be a finite poset with unique minimal element 0 and maximal element
I. Define a simplicial complex K =K(L) as follows. The vertices of K are the
elements of L~{0,1} and (x,, s Xp)is a (p—1)-simplex if 0<x; <...<x,<1. If
L 1s a geometric lattice of rank #=2 let K be the augmented complex obtained
from K by adjoining a simplex of dimension — 1 on which G acts trivially. Then
the reduced homology H(K) of K is the homology H(K) of K. According to
Folkman [9] and Rota [13] the homology of K is given by

41) dimH (K)=0 if p%/-2
dimH, ,(K)=(—1y u(1).

If L is a Boolean algebra on atoms a,,...,a,, /22, then K is the barycentric
subdivision of the boundary of the (/— 1)-simplex with vertices ay, ..., a,. The
group H, ,(K) is generated by the cycle z(a;,...,a)=1p,,. . «p Where
11 J,~7, , defined by t(x,,...,x,)=(—1)"*(x;,...,x,_,) is the map used in
(3.9). Thus

42 zay,...,a) = Y (1 SENE(Ayy, gy V lagy ey By Ve V gy,

neSym(£)
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Note that a G-action on L induces a simplicial G-action on K, so that H,_,(K)
is a G-module.

(4.3) Theorem. Let L be a finite geometric lattice of rank £22. Then %, and
H, ,(K) are isomorphic G-modules.

Proof. If /=2 then we have G-isomorphisms

%, (@ Ca)/C( ZAa)ﬁHo(K)'

Assume ¢ > 3. Since there are no /—2 boundaries we have H, ,(K)=H,_,(K)
=7, ,(K). We identify the cycle group Z,_ ,(K) with a subspace of 7, ,. Note
that #,<9,. We show that t#,=Z, ,(K). Let S=(a,,...,a,)eS,. If § is
dependent then (3.8) shows that 1 fg=10=0. Suppose S is independent. Let Lg
be the sublattice of L generated by a,,...,a, and 0. Then Lg is a Boolean
algebraon a,, ..., a,. Let K be the corresponding complex. From (3.5) and (4.2)
we see that tfg=2z{a,, ..., a,) is a generating cycle of Z, ,(K)&€Z,_,(K). Thus
1#,=Z,_,(K). Let 7, be the subspace of J, spanned by all (x,, ..., x,) with x,
=1. If Se§, is independent then \/ nS=\/ §S=1 for all eSym(¢) so #,=7,".
But 7: /-7, _, is a monomorphism and thus 7: #,—Z,_,(K) is a monomor-
phism. Since dim %, =(— 1Y u(l)=dimH, ,(K) and t: 9,-7,_, is a G-module
homomorphism, t: #,—-H,_,(K) is a G-isomorphism. []

The G-isomorphisms 0: &/ —>% and t: #,—>H,_,(K) allow us to compute
the character of the representation of G on 7. Let R(G) be the representation
ring of G. If M is a G-module we let [M] denote its image in R(G). If H is a
subgroup of G and N is an H-module we let Ind§ N denote the induced G-
module and write Ind$§ [N]=[Ind$§ N]. For simplicity of notation we write [M]
=[G/H] if M=C[G/H]. If xe L and r(x)=2 the complex K(L,) is defined. Let
G,={geGlgx=x}.If ¢ is a simplex of K(L) let d(c) denote its dimension, let G,
={geGlgo=0} and let G, ,=G,NG,.

(4.4) Theorem. Let L be a finite geometric lattice of rank ¢ and let G act as a
group of automorphisms of L. Then

[o]=[C],
[«]= ) 1G:G,| '[G/G,]

rix}=1
and for p=2,...,¢
[L]=(-1 ¥ Y (-1)|G:G, I '[G/G,].
r(x)=p D‘EI—((LX)

Proof. The assertion of the theorem is clear for &/, and &, since &/, ~ &, is the
G-module defined by permuting the atoms. This proves the assertion if £/=1.
Henceforth assume /= p=2. The Hopf trace formula says

-2 £—~2
Y (~IPTH,(K)T= T (= 1FIC,(K)]
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where C,(K) is the group of g-chains of K. It follows from (4.1) and (4.3) that

(-2

Y (= DH(K)]=[C]+(-1)[8,].

4=0

If 0 € K(L) then, since G preserves the orientation of ¢, the modules C[G ] and
C[G/G,] are isomorphic. Thus we have

¢-2
Y (=LCEN= Y (—1)*G:G,I7 [G/G,].
a=0 aeK(l)

Putting these facts together shows that

[CI+H(—1Y[%,]= ;L(—U‘““’iGrG,,l”[G/Ga].
geK(L)

Now replacing K(L) by the augmented complex K(L) we absorb the term [C]
on the right hand side so we get

(45) (= [%8,(L]= X (=1)IG:G,|7'[G/G,].

seK(L)

If xeL and r(x)=p=2 then we may apply (4.5) to L, and the group G,
operating on L, to conclude that

4.6) (—)@[B(LY)= ) (—D"IG,:G, 17 [G,/G,,]

seK{ly)

in the representation ring R(G,). Let @ be a G-orbit on the set of elements of L
of rank p. Let #,=@ #.(L). Thus %, @J}@, sum over all orbits. Since

xel

gj (L)y=2,(L) we have %, IndG B (L) for any fixed xe@. Since
(L)~,9£ (L,) as G,-modules we have [B,]= IndG [#.(L,)]. Now it follows
from (4.6) and transitivity of induction that

[(B,1=(-17 ) Y (=1)|G:G, 7' [G/G, ]
r(x)=p aeK(Ly)
The assertion of the theorem follows from the G-module isomorphism oA, ~R,
of Theorem 3.7. [J

By choosing representatives for the orbits we may write [+,] as a Z-linear
combination of certain [G/G, ,] and thereby put the formulas of Theorem 4.4 in
a form more suitable for calculation. Let T, be a set of representatives for the G-
orbits on the set of elements of L of rank p. For each xeT, let U, be a set of
representatives for G, -orbits on the set of simplices of K(L,). Then

“7) [4,1= Y [G6/G]

xeT

]=(=1 Y ¥ (=D'[G/G,,] p=2,...7.

xeT, aelUy
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(4.8) Theorem. Let L be a finite geometric lattice of rank £. Let G be a group
which acts as an automorphism group of L. If geG let [f={xeL|gx=x} and let
Ug be the Mébius function of the poset If. Then

4
X el = 3 (=0

xeL®
where r is the rank function in L.

Proof. The statement is clear for p=0, 1. Assume p=2 and compute tr(g|%,).
Since g4, (L)=4%,,(L) the terms with gx #+ x do not contribute to the trace. Thus

tr(gl®,)= 3 wr(glB.(L)= ) tr(glB.(L).

xelLs xele
r(x}=p rix}=p

Choose xeI# with r(x)=p. Let O, ..., O, be the orbits of G, on K(L,) and
choose 0;€ ;. Let Mj:(E[@j]:(E[GX/GLGJ]. Now (4.6) gives

N

(=1DPtr (gl B, (L Z — 1) tr (gIM)

— 11|05 = — 1 +e(K (L))

I
i ny n

where e denotes the Euler characteristic. If L is any finite poset with 0, 1, u is its
Mobius function and K is the corresponding complex then Rota [14, Cor. 2]
has shown that e(K)=1+pu(1). Since K(L,)f=K(I£) this gives, in our case,
(—1)Ptr(glB (L)) =p,(x). O

(4.9) Remark. Note that I# is a lattice containing 0, 1 and joins of elements in
I# are the same as in L. But I* need not satisfy the chain condition and the
elements of L need not be joins of atoms of I£.

(4.10) Example. Let L be the lattice of partitions of the set {1,2,3,4} with
refinement as the order relation. The elements of L listed by rank are

r(x) X

0 1121314

1 121314, 13214, 14{2}3, 23|1{4, 24{1|3, 34i1]2
2 12314, 124|3, 134|2, 234|1, 12|34, 13|24, 14|23
3 1234

Let G=Sym(4). Choose representatives g=(1), (12), {123), (12)(34), (1234) for the
conjugacy classes. The following diagrams, for g=(1), picture [# with the values
of p,(x) inside the circles. A picture of L=L" appears in Birkhoff's book [3,
p.15].
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123)
a2 L

112]314

1234

L1234 1234 @ 1234
D 13(24

(M)

@uzum

1121314

The polynomials P,(t, g)=) tr(g|e )" are:

g Pvi(t’ g)

(1) (I+0(1+20(1+31)
(12) 1+ +0)

(123) (1—-0(t+10)

(12)(34) 1=+ +20
(1234) (t—0(l+0

The first line of this table is a special case of a known fact about the lattice of
partitions of the set {1,...,#} where B,(t, )=(1+t)(1+2¢)...(1 +(# —1)t). This
has a topological counterpart in work of Arnold [1]. The connection between
the combinatorics and the topology will be given in Sect. 5. The formulas for
F,(t, g) with g=(1) will be studied in a forthcoming paper.

3. Topology of Complements of Hyperplanes

Let V=’ and let A be a finite set of hyperplanes in V. If A€ A let ¢ 4 be a linear

form with kernel 4. Let M=V — (] A be the complement of the union of the
AeA
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hyperplanes. Define holomorphic differential forms w, on M by o,
=do,2nip, and let {w,] denote the corresponding deRham cohomology

class. Let #= @ Z, be the graded C-algebra of holomorphic differential forms

on M generated by the o, and the identity.

Let L be the collection of subspaces of V' of the form X =4,n...n 4, where
A;e A. We partially order L by reverse inclusion; thus X' < X means X' 2 X. The
poset L satisfies the chain condition, has a unique minimal element 0=V, and a

unique maximal element 1= () A. The poset L is a lattice with X v X' =X n X'
AeA

and X AX'2X+X'. Since X+ X' may not be in L the equality dim (X + X")
+dim{(X nX)=dim X +dim X’ becomes an inequality X A X))
+r(X v X)Er(X)+r(X"). Thus L is a geometric lattice, with r(X)=codim (X),
and the atoms of L are the hyperplanes.

As in Sect.2 let & be the exterior algebra of the vector space with basis
consisting of elements e, in one to one correspondence with the hyperplanes
AeA. Let o =&/F, let ¢: £— .o be the natural homomorphism, let =, =¢@dy
and let o, =g@e,. Let ,%X=Z(EwAl...mAp where the sum is over all independent

p

S=(Ay, ..., 4,) with () A;=X. Note that in the present context the notion of
i=1
independence defined in Sect. 2 means that codim X = p so that the hyperplanes
A, are in general position. We have Z,= Y. %,.
rX)=p
(5.1 Lemma. There exists a surjective homomorphism y: o/ >R of graded
algebras such that y(o,)=w, and y(Ay)=Ry.

Proof. Define an algebra homomorphism v: £§->% by v(e,)=w,. To show that
v(#)=0 we need to show that if S=(4,, ..., 4,) is dependent then v(deg)=0. Let
¢;=¢, and w;=w,. Since § is dependent r(4,v..vA4)<p. Thus
codim(A4;n...n A )<p so the form§ @;,--., ¢, are linearly dependent. Thus
vieg)=w;...w,=0. Let S, =(4,, ..., 4, ..., 4,). I S, is dependent for some k, it
follows from (2.3) that (—1)* deg=e,, Jes, —e5, so we are done by induction.
Thus we may assume that no proper subset of {¢,, ..., @,} is linearly dependent,

P
so that there exist c;e €, all nonzero, with Y ¢;¢,=0. If we replace ¢; by ¢; ¢

i=

P
then w; is unchanged. Thus we may assume that ) ¢,=0. Suppose j=1, ...

1=

13 NN TN
p—1. Then 0= Zd(pl implies Oz(zdcpi)(d(pl...d<pjd(pj+1...dgop) 80

i=1
do,..dp;, ,...dg =—d(p1 .d®;...dg,. Define n; by @;n;=(=1y ' w,..d;..0,

Then <P1~~-(Pp’7,+1—( 1Ydo,...d¢;,,...de,=(—1Y" de,...dp;...dp,= ¢, ...
@,1;- Let n be the common value of the #;. Then

14
v(des)= Y (=1 'w,...dy...0,

i=1

—Zqon, (iiw.) =0. O
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(5.2) Theorem. Let A be a finite set of hyperplanes in €. There exists an
isomorphism of ~ H*(M) of graded algebras such that o ,—[w ] for all AcA. In
particular the Poincaré polynomial of M is given by

Py(t)= 3, p(X)(—~ty ™.

XelL

Proof. We know from Brieskorn’s work that the natural map #—H*(M) is an
isomorphism sending w,—[®,]. Thus it will suffice to show that the map
y: =R is an isomorphism. Since dime/= ) (—1)"® u(X) it will suffice to
show that XeL

(53) dimH*(M)= ) (—1y® u(X).

XeL

If XeLlet Ay={A4ecA]A2X} and let L, be the geometric lattice consisting of

V=C’ and intersections of elements of Ay. Let My=V— (] A. The inclusion
AeAyx

i : M—M, induces a map i¥: H"''(My)—>H"®(M). Let Hy be the image of i%.

Brieskorn [5, Lemmas 3, 5] showed that: (i) i% is a monomorphism and H?(M)

= @ Hy and (ii) if r(X)>0 then the Euler characteristic e(M,)=0. Assuming

. r(X):p“
(1) and (1) we prove

(54) dim H(M)=(—10u( [ A)

AeA

where g=r( () A) is the rank of L. We use induction on ¢; the argument is
AcA
similar to the one used in (2.17). If g=0 then both sides of (5.4) are equal to one.

If X e L and r(X) <gq then the induction hypothesis shows that
(5.5)  dim H"®(M )= (— 1)y u(X).

Note that the rank and Mobius functions of Ly are the restrictions of the
corresponding functions of L. Using Brieskorn’s (i), (ii) and (5.5) we have

0= i (= 1)° dim H?(M)

p=0

q-—1
=Y (=1 Y dimHy+ (- 1) dim HY(M)
p=0 r(X)=p

= ¥ wX)+(=1) dim HY(M)

r(X)<gq

=—u(() A)+(—1)?dim H{(M).

AeA

This proves (5.4), and hence (5.5) for all X. Now using (i) again we obtain
(53). O

(5.6) Corollary. Let A be a finite set of hyperplanes in V=C’. Let L be the

corresponding lattice and let M=V — U A. Then the de Rham cohomology groups
AcA

of M and the Baclawski (co)homology groups of L are isomorphic vector spaces.

Proof. This follows at once from (5.2) and (3.14). [
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(5.7) Corollary. Let G be a finite subgroup of GL(V) which permutes a set of
hyperplanes. If geG let If={X e L|gX < X} and let u, be the Mdbius function of
the poset Lf. Then

2 tr@HY M) = 3 p (X) (=P

pz0 XelLs

where r is the rank function of L. The Poincaré polynomial for the orbit space
M/G is

|
Pyic()= Z Z #,;(X)(—t)r(x)-

!GI geG XelLs

Proof. The first assertion follows at once from Theorem 4.8 since the isomor-
phism in Theorem 5.2 is G-equivariant. The second assertion follows since
H*(M/G)~H*(M)°, [4, p.120]. O

We may use (4.7) to compute the Poincaré polynomial of M/G without the
trace formulas. Since each induced module C[G/Gy ,] contains the trivial
module with multiplicity one (4.7) gives:

(5.8) Corollary. The Betti numbers of M/G are by=1, b,=|T,| and for p
=2,...,¢
by=(=1F ¥ T (~1".
XeTy oeUx
(5.9) Remark. Let G be a finite subgroup of GL(IRY) generated by reflections in
hyperplanes V,,...,V,. Let G act on €’ and let 4,=C® V,=C’. Brieskorn [5]
has computed the Betti numbers b, explicitly in this case. Since one knows from
Brieskorn and Deligne [5, 7] that M and M/G are K(m, 1) spaces the Betti

numbers b, give the ranks of the cohomology groups of the corresponding
generalized braid groups.

(5.10) Example. Let A be the set of hyperplanes in C* defined by the linear
forms z;—z;, 1<i<j<4. The corresponding lattice L is the lattice of partitions
of {1,2,3,4}. Let G=Sym(4). In view of Corollary 5.7 the polynomials P,(t, g)
computed in (4.10) give the trace for the G-action on H*(M). According to (5.7)
the Poincaré polynomial of M/G is the average over G of the polynomials
P,(t,g). This turns out to be 1+t, which agrees with Brieskorn. We may also
compute this Poincaré polynomial directly from (5.8) as follows. Since G acts
transitively on the hyperplanes we have b, =1. Let 4, =ker(z, —z,), 4, =ker(z,
—z4), Ay=ker(zy—z,) and A,=ker(z,—z,;). For p=2 we may choose T,
={A,NA,;, A ,nA;}. For p=3 there is a unique representative element so T,
={A,nA,nA,}. The table

X R(Ly) Ux

AlnAZ ¢’A17A25A4 ¢’A1

A 04, ¢, Ay, A, P, A,

A NA,NA, K(L) ¢, A, AjnA,, Ain Ay, (A, A{nA,), (A, A;nA5)

yields b, =b,=0. Here ¢ denotes the simplex of dimension —1. []
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The isomorphism of Theorem 5.2 allows us to give geometric interpretations
to some of our combinatorially defined maps, which we summarize in Prop-
osition 5.11. To interpret the map o: o/ — .o/ consider the space Z(V) of
holomorphic vector fields on V. There is a natural map V*® V-2 (V) given by
h®uv—hD, where D, is directional derivative in the direction v. Let e, ..., e, be

any basis for V and let z,, ..., z, be the dual basis for ¥*, The (Casimir) element
I4

Y z;®e¢; is independent of basis and thus defines a holomorphic vector field &

j=1

4

=Y z;D, , which is independent of basis. We may view &e Z'(M) as a holomor-

j=1
phic vector field on M. Let £7(M) be the space of holomorphic p-forms on M.
Recall that any vector field ¢ on M induces an interior multiplication i(é):
QF(M)—QP~ (M) defined by

(Im¢,, ~-~’€p‘1):r](éaéla "'Bép—])

where neQP(M) and ;eZ(M). Define i(9)*: QF~'(M)-Q°(M) by i(&)*n
=( > w,)n. Note that both i(¢) and i(é)* map #—>Z.

AeA
To interpret the map ¢: § —»/ geometrically we imbed M in a complex n-
torus M’ =(C*)" as follows. Write A={A4, ..., 4,} in some chosen order. Let V'

=" Define a C-linear map f: V-V’ by f(v)=(¢,(v), ..., ¢,(v), where Q=
Note that f: M—M'. Let 2}, ..., z; be the coordinate functions in V' and let A;
=ker z;. Since M’ is the complement of the set A’={A4",..., 4/} of coordinate
hyperplanes in €", all our constructions may be applied io it. Let L be the
corresponding lattice. Since L' is a Boolean algebra the map f: V-V’ induces a
map, again called f: L'—L, defined by f(4j)=A,. This map satisfies (2.4). In
view of (2.5) ¢: §(L)— /(L) may be identified with f,: o/ (L)—>/(L).

(5.11)  Proposition. The connection between the combinatorics and the topology is
given by the commutative diagram:

A(L)—— 0 ——> (L)

/

i
|
i) | %
|
A(L) 4 0 — L)
I
l
ALY - - =i(Z)-{ ~A(L)

/

/
f*/ /f
i/
Ly
R(L) —i(&)—— A(L)
where the vertical maps are y and f* is the induced map on differential forms.

There is a similar diagram with o, i(£) replaced by o*, i(&)* and we have i(£)i(&)*
i i(E)=n- id,.
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Proof. The top and bottom faces commute by functoriality. Let 4,,...,4,€A
and let «;=a, . Since d: £ & induces o: o/ — o/, we have

p

o(ay...o)=y (=D o .d..a,
k=1

and there is a corresponding formula for the map yoy~" where «; is replaced by
w;=w, =d¢/2nip; To show that the front face is commutative it suffices to
check the equality i(€)n=y07~'5 on a set of elements # which span 2(L). Thus
take n=w,...w, where ¢, ..., @, are independent. We must prove that

(512) (@4 )& Eys s &y )
=k§1(—l)k_l(wl...(ﬁk...wp)(él,...,épﬁl)

for all {;eZ(M). Let D;=D,. We may assume (51,...,ép#1)=(Dj‘,...,Djp_‘)
where j, <...<j,_;. Since
dzy Ao Adz Dy, Dy, .., Dy )=(— 1!

if (jl,...,jp_l)z(l,...,k:...,p) and is zero otherwise, both sides of (5.12) are
equal to (—1)*"'(z,...Z...z,)~'. This proves the commutativity of the front face,
and hence the back face. Since f*(zj))=¢; we have f*(w)=w; where w;
=dz}/2riz}. This proves the commutativity of the two sides. The last assertion
follows from the formula co*+6*0=n-id,. O

Define f: V—C by f= [] ¢,. Then f has a critical point at the origin
AcA

which is not in general isolated. It follows from Milnor’s fibration theorem [12,
p.5] that the map f: M—C* is the projection map of a smooth fiber bundle.
Thus our computations yield the cohomology of the total space of this fibration
but they do not yield the cohomology of the Milnor fiber.
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