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Carries, Combinatorics, 
and an Amazing Matrix 

John M. Holte 
_ I I . . l._ 11._ 

This is the stoiy of a serendipitous discoveiy. It began when I was investigating a 
mundane subject: carries in addition. To my surprise, a probabilistic perspective 
and some heavy-duty number crunching revealed a mathematical cache: an infinite 
collection of stochastic matrices in every dimension exhibiting an unusual symme- 
try and multifaceted combinatorial features. For each matrix II: 

* The eigenvalues are all positive and form a finite, decreasing, geometric 
sequence; furthermore, if we diagonalize II as U-1IIU = D, where the 
eigenvalues are arranged in decreasing order in the diagonal matrix D, then, 
aside from a constant of proportionality: 

* The entries in the row of U-1 corresponding to the eigenvalue 1 are Eulerian 
numbers. 

* The entries in the row of U-1 corresponding to the least eigenvalue are the 
entries in a row of Pascal's triangle, but with alternating signs; the entries in 
the column of U corresponding to this eigenvalue are their reciprocals. 

* The entries in the first and last rows of U are respectively unsigned and signed 
Stirling numbers of the first kind. 

These unanticipated relationships first came to light when I explored the 
territory numerically, using Mathematica@. That started me on a project that 
cycled through phases of computer experimentation, conjecture, and rigorous 
mathematics. The mathematics involved included generating functions, recurrence 
relations, summation and matrix manipulation, combinatorial identities, and dis- 
crete probability the techniques of "concrete mathematics" ([8]; see also [18]). 
This article is an invitation to aficionados of concrete mathematics to enjoy a 
guided tour of some wonderful sights. Along the way we will also point out several 
interesting side trips (exercises) for explorers. 

THE PROBLEM. When we add two long random base-ten (say) numbers, how 
often do we have a carry (of 1) from one column to the next? For example, 
consider the following addition of two fifty-digit numbers composed of digits taken 
from a table of random numbers: 

010011 00110 11100 01111 00001 00000 01101 11111 00000 1100 

24003 80475 19793 71578 52010 72216 15692 96689 80452 46312 
+ 16129 49245 21693 20946 60874 82351 32516 23823 30046 06870 

40133 29720 41486 92525 12885 54567 48209 20513 10498 53182 

We observe that we got a carry-out of 0 in 27 cases and a carry-out of 1 in 23 casesS 
or 54% and 46%, respectively. It would be natural to conjecture that in the long 
run, as the number of digits increases without bound, the relative frequencies 
would be 50%-50%. This is true, and a thorough treatment is given in [12, pp. 
262-263]. 
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What happens if we add three long random numbers? When I asked some 
faculty colleagues, they conjectured that carries of 0, 1, and 2 would be equally 
likely. In a seminar for students, one participant confidently asserted that there 
would be mostly l's. In the following sum of three 50-digit random numbers 

111011 10111 11000 10111 10210 11102 11122 01011 11210 2112 
05453 03060 83621 43443 07082 04401 15299 64642 73497 38426 
67711 70528 46700 00171 55077 11440 95932 91116 17255 19649 
76306 39287 31026 49339 70267 68885 98147 70311 43856 37376 

149471 12876 61347 92954 32426 84728 09380 26070 34608 95451 

we have 12 (24%) carries of 0, 31 (62%) carries of 1, and 7 (14%) carries of 2; 
perhaps the student was right. 

But are these empirical percentages good estimates of the long-run frequencies? 
And more generally, what is the long-run frequency of each possible carry value 
when we add any number of long numbers represented in any base? 

THE (:ARRIES PROCESS. Consider the addition of m random n-digit base-b 
numbers: 

Carries Cn Cn-l Cn_2 ... C2 Cl C0 = 0 
Addends X1,n-1 X1 B_2 *n X1,2 X1l X1,O 

* * * * * 

+ Xm, n - 1 Xm n - 2 * * * Xm, 2 Xm 1 Xm o 

Sum Sn Sn-1 Sn-2 S2 Sl SO 

We assume that the {Xh k} are independent uniformly distributed random digits. 
The key to our analysis is this probabilistic insight: the carries form a finite Markov 
chain: 

Pr(Ck+l = Ck+llCk = Ck,**e,Cl = ClsCo = O) = Pr(Ck+l Ck+llCk ck)e 

This is true because the carry-out Ck+l depends only on Ck and, of course, the 
digits X1, k S X2, k X * * * X and Xm, k X 

What are the possible values of Ck? Those who have experience with adding 
long columns of figures by hand know that the carry-out can be anything from 0 to 
m-1.1 Thus the state space of the carries process (Ck) is {O,l,...,m-1}. 
Furthermore, it is possible to get from any state to any other state in 
Llogb(m - 1)J + 1 steps. A probabilist would say that this Markov chain is acyclic 
(aperiodic) and irreducible. 

Let II = [7rii] denote the transition matrix: 

7Tij = Pr(carry-out = jlcarry-in = i) where 0 < i, j < m - 1. 

Because the states of the Markov chain are numbered 0, . . ., m - 1, we number 
the rows and columns of II in the same way. Now, to calculate rij, consider the 
base-b addition in the kth place: 

Ck+l = j jb < i + X1,k + *** +Xm k < (j + l)b 

where 0 < X1 kS . . . S Xm k < b - 1. Introducing the slack variable Y, we observe 

lAn interesting induction problem is to prove that the maximum possible value of the carry Ck is 
m-1-[(m-1)/bk l. 
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that this is equivalent to 

Xl,k + +Xm,k + Y = (j + 1)b - 1 - i = Z (1) 
where 0 < X1 k S Xm kS Y < b-1. As Tucker [16, p. 311] notes concerning a 
similar problem, '4By using generating functions to solve this problem, we [do] not 
need to know anything about the inclusion-exclusion complexities of this problem. 
Generating functions automatically [perform] the required combinatorial logic!" So 
now we invoke generating functions (and we gear up to the level of chapter 6 of 
[16] or chapter 2 of generatinvunctionology [18]). The number of integer solutions 
of (1) is the same as the coefficient of xZ in (1 + x + x2 + *a +xb-1)m+l. Because 

(1 +x +X2 + ... +Xb-l)mfl _ (1 -X6)m+l(l _x)-(m+l) 

and 

(1 -Xb) = E (m + 1 )(-xb)r 

and 

(1 - X)-(m+l) = E (m + s )xs, 

the desired coefficient is 

r<b( ) ( r )( m ) 
Since r < z/b = j + 1 - (i + 1)/b if and only if r < j - Li/bS, we may summarize 
our result as follows. 

Theorem 1. The cames process ( Ck > for the base-b addition of m random numbers is 
afinite Markov chain with state space {O, 1, . . ., m-1} and transition matriJc II = [rij] 
gaven by 

b-m i E J ( _ l)r(m + l ) ( m-1-i + ( j + 1-r)b ) 

When b = 2, the number of bit-valued solutions of (1) is simply (m + 1) SO 

tij - 2 m ( 2J - i + 1 ) in the binary case. 

Let's look at some other examples. When b = 10 and m = 2,3,4, then II is 

0.55 0.45- 0220 0660 0.120 00495 04840 04335 00330 
[ 45 055, 0.165 0.670 0165 , 00330 0.4335 0.4840 0.0495 

- 0.120 0.660 0.220 00210 0.3795 0.5280 0.0715 

The 0.0210 in the upper right corner, for example, signifies that, given a carry-in of 
0 to a column of 4 random decimal digits, the probability of a carry-out of 3 is 
0.0210. For a general base b we obtain the following formulas when m = 2, 3: 

1 b + 1 b-1 

Il= 2b b - 1 b + 1 and 

1 b2 + 3b + 2 4b2 _ 4 b2 _ 3b + 2 
u = 2 b2-1 4b2 + 2 b2 _ 1 

6b b2 _ 3b + 2 4b2 _ 4 b2 + 3b + 2 
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CROSS-SYMMETRY. These examples reveal that II has an unusual sort of 
symmetry: it is radially symmetric about its center. A typical crossword puzzle grid 
has the same sort of symmetry. This symmetry is familiar to matrix theorists, who 
call it "centrosymmetry," and to statisticians, who call it "cross-symmetry." See [17] 
for a survey. 

Theorem 2. For i, j = 0, 1, . . ., m-1, we have Xm - 1 -i, m - 1 -j = Xi, jS ie 
Pr(Ck+ 1 = m - 1 - jlCk = m - 1 - i ) = Pr(Ck+ 1 = jlCk = i) C 

Proof: The cross-symmetry is not obvious from the formula in Theorem 1, so we 
turn to the probabilistic definition. Given that Ck = i, we have Ck+l = j if and 
only if 

jb < i + X1 k + X2, k + +XmX k < ( j + 1) b (2) 
The {Xh k} are independent random variables that are uniformly distributed on 
{0, 1, . . ., b - 1}. Accordingly, the equation Xh, k := b - 1 - Xh, k defines indepen- 
dent random variables that are also uniformly distributed on {0, 1, . . ., b - 1}. Now 
if we negate the inequalities (2) and add mb - 1, we get 

(m - 1 -j + l)b - 1 2 m - 1 - i + Xl,k + X2,k + +Xm,k 2 (m 1 j)b, 
which is the condition for Ck+l = m - 1 - j given that Ck = m - 1 - i. k 

EIGENVALUES AND EIGENV15CTORS AND SERENDIPITY. Let's return to the 
carries problem. It is well known in Markov chain theory that our original question 
concerning the long-run relative frequencies of the carry values is answered by the 
stationary probability vector, i.e., the row vector v = (p0, . . ., Pm - 1 ) with nonnega- 
tive entries summing to 1 that satisfies vII = v. Thus7 v is the left eigenvector of II 
associated with the eigenvalue 1. When I used Mathematicae to calculate some 
sample cases, out of curiosity I asked for more than v alone; I asked for the entire 
eigensystem. That's when I discovered the surprises hidden in the matrix II. 

Let's look at the eigenvalues first. For b = 10 and m = 2,3,4,5, we find 
these eigenvalue sets: {1, 0.1}, {1, 0.1, 0.01}, {1, 0.1, 0.01, 0.001}, and 
{1, 0.1, 0.01, 0.001, 0.0001}. For b = 2 and m = 5 we get {1, 1/2, 1/4, 1/8, 1/16}. 

Conjecture 1. The eigenvalues of II are given by the geometric sequence 
1, b-l,. . ., b-(m-l) 

The eigenvectQrs for the two m = 5 cases (b = 10 and b = 2) turn out to be the 
same. Further numerical experimentation shows that the eigenvectors are indepen- 
dent of the base! 

Conjecture 2. The eigenvectors do not depend on b. 

What do these eigenvectors look like? If we assemble these (row) eigenvectors 
in a matrix V = [vij] = [vij(m)] for m = 2, 3, 4, and 5, we get: 

[l l] 1 4 1 1 3 -3 -| i 10 ° 10 -i 

(3) 
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Familiar sequences emerge at the bottom and top of V. 

Conjecture 3. The bottom row of V is proportional to a row of Pascal's triangle, 
but with alternating signs. 
Conjecture 4. The top row of V is proportional to a row of Eulerian numbers. 

EULERIAN NUMBERS. The first few Eulerian numbers are listed in the follow- 
ing table. 

(° ) (1 ) (2 ) (3 ) (4 ) (5 ) (6 ) 
o 1 

1 1 o 

2 1 1 o 
3 1 4 1 o 
4 1 11 11 1 o 
5 1 26 66 26 1 o 

It appears that vOi(m) = (J ) for j = O,. . . S m - 1. The Eulerian numbers, first 
discussed by Euler (of course) in [6, pp. 485-487], [7> pp. 373-375], arise naturally 
in the study of random permutations; see [13, sect. 5.1.3] and the references there, 
[2], [4]7 [5, ch. 10], [14], and [15]. They satisi3r the recurrence relation (see [8, sect. 
6.2]) 

(k ) )( k \/ + (n k)(k _ 1 ) forinteger n > O (4) 
with the boundary condition (k)= aOk, the Kronecker delta. Using this relation 
and induction, one may deduce (as in [3]) 

E (k ) = n !. (5) 
Anticipating the verification of Conjecture 4, we normalize the Eulerian num- 

bers in accordance with (5) to get the stationazy probabilities for the carries process: 

Pi= m!(j) f°ri=°r--m-1. 
In particular, the long-run relative frequencies of carry values are (1, 2) for m = 2 
and (1 ,3,6) for m = 3. We see that our empirical values came reasonably close. 

The explicit formula 

(n ) E ( l)r(n + 1 )(k + 1 )n (6) 
was given by Euler himself. Notation for Eulerian numbers is not standardized; our 
notation conforms to that of [8]. 

THE EULERIAN RECURRENCE AND V. How can we find an explicit formula 
for V, the matrix whose rows are the left eigenvectors of II? If we are clever or 
lucRy we can guess the right answer and then verify it. 

Playing with the V cases in (3) we find that the Eulerian recurrence (4) holds 
. > , t * also tor every row ot v, l.e., 

vij(m) - ( j + l)Usy(m - 1) + (m - j)vi j_l(m - 1) for O < i < mS (7) 
where we define vi_1(m) = O and uim(m) = O. This recurrence cannot give us the 
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last row of V(m) in terms of V(m-1), because the latter matrix is short one row. 
But if Conjecture 3 is correct, we can paste in the last row of V(m) by the formula 

Vm-l,j(m)=(-1) ( y )* 

A little calculation shows that ,. | = (- l)i(m J. I ) has the near-Eulerian property 

jm + ( j + 1) j + ( m - j) j _ 1 ' 

so (7) will be satisfied for i = m - 1 if we define vm_1 j(m - 1) = (-l)i(mJ. 1), 

or, 

v j(m) = (_1)i ( m) (8) 

This is an equation for the row below the bottom row of V. Now, to see the pattern 
that generalizes, we make the nonobvious observation [1, p. 822] that 

(-l)it j ) = ( O ) _ ( 1 ) + +(-l)it j ) 

This equation, (8), Conjecture 4, and (6) give 

vmj(m) = E (-1) (m + 1 )(j + 1-r)°, and 

vOj(m) = E (-1) (m + 1)(j + 1-r) 

so we conjecture that 

vij = vij(m) = E (-1) (m + l )(X + 1 _ r)m i (9 
r=O 

Theorem 3. Let V = [vij] be the m X m matrixgiven by (9) for O < i, j < m, and let 
D = diag{1, b-ls . . . S b-m-l}. Then 

VHv-l = D 

Assuming Theorem 3, we have [I = V-1DV; this is an equation that may be 
used to define II = Il(b) for every complex b + O and to prove rf(ab) = H(a)H(b) 
for all nonzero coxnplex numbers a and b. When a and b are bases-say a = S 
and b = 2, whence ab = 10 this may be explained as follows. We may rewrite 
each base-ten digit T in the mixed-radix system having bases S and 2: T = O X S X 

2 + F X 2 + B; now when the carry-in i is applied to the binary column, it leads 
to an intermediate carry of k to the base-S column with probability 7rik(2), which 
then generates a carry-out of j with probability 1Zkj(5), and so 7rij(10)= 
ik(2)k j(5), i.e., H(10) = H(2)H(5). 

Proof: Concrete Mathematics Ahead. Here we'll make heavy use of "concrete 
mathematics" techniques. First we observe that 

Vij = E (_l)r(M + l )(j + 1 _ r)m i 
r=O 
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is the convolution, or Cauchy product, of the sequences (in k) (( - 1) k ( m k+ 1 ) ) and 
<km-i) evaluated at j + 1, i.e., 

vij = coefficient of xi+1 in E ( - 1) k ( m k 1 ) Xk * E km-iXk. 
k20 k>0 

Now we use the binomial theorem and the generating function of (kn), 

', k ( d )n( )-1 (10) 

to get 

vij = coefficient of xi+ 1 in ( 1 - x) m+l ( X d ) ( 1 - x) 

= coefficient of xj in x-1(l - x)m+1 (x d ) (1 - x)- 

Thus we obtain the generating function of the ith row of V: 

, U Xj X-l(l-X)m+l(X d ) (1-x)-l (11) 

When i = O, this generating function is x-1tm(x), where tm(x) is the Eulerian 
polynomial of degree m (see [14], [4]). 

We must show 
m-l 
, vik 7rkj = b iVij for i, j = O, 1, . . ., m - 1. 

k=0 

By substituting, interchanging the order of summation (an entertaining exercise!), 
and simplifying, we get 

E sik7rkj = b E E (-1) ( ) ( k + ( j + 1 r)b ) u 

y (m-l)/\((jEl r) )( l)r(m + 1 ) 

r=O k=O r 

x(m - 1 - k + (j + 1 - r)b)v 

_ b-m E ( l)r (m + 1 ) E 

r=O r k=O 

X ( m-1 - k + ( j + 1-r) b ) 

Let K = (j + 1 - r)b-1. The inner sum, EkK=0(m + K - k)Vik, iS the convolution of 

the sequences (in k) ((mm+ k) ) and (Vik> evaluated at K. We know that 

, (m + k)xk = (1 -X)-m-l 

144 [February CARRIES, COMBINATORICS, AND AN AMAZING MATRIX 



and we have the generating function of <Vik> in (11). Thus, the inner sum is equal 
to the coefficient of xK in 

(1-x) m T x-l(l-x)m+l(xd ) (1 +x) 1 =x-l(xd ) (1-x) 1, 

which, invoking (10), is 
K 

E (m +K k)vik= (K+ l)m i = ((j+ l-r)b)m i 

Therefore, 

b-m L(-l)r(m+l) x, (m+K-k)v 

= b E (-1) ( r )((j + 1-r)b)m- 

. 

= b i , (-l)r(m + l)(j + 1 - r)m-i = b-iv m 
r=0 

CONFIRMATION OF THE CONJECTURES AND MORE. Theorem 3 tells us 
that the rows of V are left eigenvectors of II corresponding to the eigenvalues 
1, b-l, . . ., b-(m-l), so Conjectures 1 and 2 are true. Also the formula for soj is 
the same as the explicit formula (6) for the Eulerian numbers, so Conjecture 4 is 
true. Finally, letting i = m - 1 in (11), we get 

E sm_1 jxj =x-l(l-x)m+1x d (1-x)-1 (1- )m- 

so Conjecture 3 follows, by the binomial theorem. 
There are other patterns in V. It is easy to verify that the leftmost column of V is 

all l's. It is a little harder to show that the rightmost column has alternating + l's 
and - l's, but it is a splendid opportunity to use the calculus of finite differences. 
Both exercises are left to the reader. 

THE RIGHT EIGENVECTOR MATRIX U: EMPIRICAL RESULTS. Let's look at 
the right eigenvectors of the transition matrix [I. As an alternative to direct 
computation of the eigenvectors, we may compute the inverse of the matrix V. 
Numerical experimentation reveals that, in order to get integer values, we should 
multiply by m !, so we let U = m tV- 1 For m = 2, 3, 4, 5, we find that U is: 

[ 1 1 ] 1 ° - 1 X I - 2 -1 2 > L _ 5 5 5 - h 

Tantalizing patterns are already visible in these first few examples. Even though 
the columns are the eigenvectors, the top and bottom rows leap out at the 
combinatorial cognoscenti: They are Stirling numbers of the first kind! The pattern 
of the eigenvector in the last column may be exposed by dividing by (m -1)!: 
reciprocals of binomial coefficients with alternating signs! Forming difference 
tables of the columns reveals more patterns: It appears that the jth difference of 
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the jth column is a constant (-l)nm!/(m-j)!-which would make the jth 
column a polynomial of degree j in the row index i. To summarize, for the matrix 
U = m!V-l, we propose: 

Conjecture 5. Column j is a degreej polynomial function of row index i. 
Conjecture 6. The entries in the final column are proportional to reciprocals of 
entries in a row of Pascal's triangle with alternating signs. 
Conjecture 7. The top row consists of unsigned Stirling numbers of the first kind 
(in reverse order). 
Conjecture 8. The bottom row consists of signed Stirling numbers of the first kind 
(in reverse order). 

STIRLING NUMBERS OF THE FIRST KIND. The first few (unsigned) Stirling 
numbers of the first kind are as follows. 

[ol [11 [2] [3] [4] [5] [6] 
o 1 

1 o 1 

2 o 
3 o 2 3 
4 o 6 11 6 
5 o 24 50 35 10 1 

The Stirling number |k] may be characterized combinatorially as the number of 
ways n objects can be arranged into k cycles, but for our purposes we characterize 
Stirling numbers algebraically. Rising factorial powers may be represented in terms 
of ordinary powers by means of unsigned Stirling numbers of the first kind: 

x& =x(x + l)(x + 2) (x + n-1) = [k]x; (12) 

falling factorial powers may be represented in terms of ordinaty powers by means 
of signed Stirling numbers the first kind: 

x- =x(x - l)(x - 2) (x-n + 1) = (-1) [k]Xk (13) 

(See [8, sect. 6.1], [11, pp. 65-68], or [10, ch. 4].) 

THE RIGHT EIGENVECTORS. How can we find an explicit formula for the 
matrix U of right eigenvectors of II? One way would be to solve IIU = UD, which 
appears to be very difficult. My way was to find U by solving UV = m!I. It turns 
out to take longer to solve this equation than it does to prove the answer is right, 
so let's start with the answer. 

Theorem 4. Let V = [vij] be the m X m matrix given by (9). Then mtV-l = [uij] 
where 

uij = uij(m) = E (-1) r (m _j)(M - 1 - i)r (m j) 
r=m-j - - 

for O < i, j < m and where 0° is taken to be 1. 
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Proof: We shall show that Ekm-ol UikSk; = M6ij. We start with the standard trick of 

interchanging the order of summation: 

m-l m-l i 

E UikVky = E Uik E (-1) (m + l)(j + 1 _r)m k 
k=O k=O r=O 

= E (-1) ( 1 ) E u k(j + 1 -r)m-k 

r=O k=O 

Here we rewrite the inner sum as follows (note that [ 0 l = ° in the second line and 

the interchange trick is used again in the third line): 

m-1 

E Uik( j + 1 -r) 

k =O 

m 

= E Ui m-k ( j + 1 -r) 
k=l 

= E E (-1) ( k ) (m - 1 -i) ( j + 1 -r) 

= , (-1) E (k)(m-1-i)S-k(j + 1-r)k 
s=O S k=O 

= E ( -l)m-s m (m - 1 - i +j + 1 - r) [by the binomial theorem] 

s = o 

= (m - i + j - r)m [by (13)] 

{ m-i + j-r 
= m! . 

m 

Therefore, 

k=O r=O ( r ) ( m ) 

Note that (m - i + j - r) = o if 0 < m - i + j - r < m, i.e., j-i < r < m - i + j. If 

O < j < i < m, every term in the last equation is 0; if 0 < i = j < m, only the 

r = 0 term is nonsero (it is m!); if 0 < i < j < m, we may add zero terms to get 

E (_l)r( )( i ) =Z\m+l (polynomialinrofdegreem)=0. 

r=O r m 

Therefore, 

m-1 

E UikSkj = m!6 

k =O 

CONFIRMATION OF THE CONJECTURES. The formula for U is complicated 

enough that it still takes some work to verify our conjectures. Conjectures 5, 6, and 

8 are left as an exercises, and we turn to Conjecture 7, which claims that the top 
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row of U contains unsigned Stirling numbers of the first kind: For j = O, . . ., m - 1, 

m 
uQj(m) = m - j 

This conjecture neatly reduces to the two basic identities relating Stirling numbers 
of the first kind to factorial powers. By Theorem 4, for n-1, . . ., m, 

m uO _ (m) = E (-1) m n (m 1) 
r=n - - 

ThusS Conjecture 7 is equivalent to the identity 

r=n( [r](n)( ) [n] (14) 

Fw m > n, and let an denote the left side of (14). Switching the order of 
summation, we find that the generating function of (an> is 

E anx = E ( 1) [ r ] E (n ) (m 1) 
n 20 r=O n=0 

m 
= , (_l)m r m (x + m - 1) [bythebinomialtheorem] 

r=O 

= (x + m - l)m [by (13)] 

= (x + m - l)(x + m - 2) *^ (x) 
m 

-X f 

which is the generating function of (|m]),by(12).Therefore,an- [m],i.e., 
identity (14) holds so Conjecture 7 is true. 

FUtl'HE;R CONSEQUENCES AND EXPLORATIONS. Many people are fasci- 
nated by combinatorial identities like (14) and there are many to be found in the 
context of the carries transition matrix. For example, the empirical recurrence 
identity for V? (7) is indeed true, and provides a family of arrays satisfying the 
Eulerian recurrence (4). Other identities, including familiar ones, may be extracted 
from the matrix equations IIU = UD VII = DV, W = mtI, and VU = m!I. Here 
is just one illustration: Set i = 0 and j - m-1 > 0 in Sksikukj = m!l3ij and get 

Eo ( ) ( k )/( k ) 

Besides identitiesn we ha^Te seen geometric sequences, binomial coefficients, 
Eulerian numbers, and Stirling numbers of the first kind. What about other special 
numbers, like Stirling numbers of the second kind? Are they lurking nearby? Yes, 
indeed. Stirling numbers of the second kind crop up naturally in formulas for the 
factorial moments of the stationaxy probability distribution of TI; alternati+7ely the 
nth factorial moment is exactly the generalized Bernoulli number B(n-m) (see [5 
chapter 15]). A different sort of result is that the stationary probabilities are 
asymptotically normally distributed [5 pp. 150-154]. I hope some readers are 
inspired to discover other interesting connections. 

Going beyond these kinds of propositionsS we may put the matrix II in a larger 
context: It is the x = 1 case of the matrix [Grijxj] which plays a central role in the 
analysis of the asymptotic prime-power divisibility of multinomial coefficients [9]. 

148 [February CARRIES, COMBINATORICS, AND AN AMAZING MATRIX 



Our tour has revealed a combinatorial richness hidden in the matrix II. But it 
leaves unanswered the question, Hiqny are all these combinatorially significant 
relationships connected with the carries matrix? 
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