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Odd as it may sound, when n exams are randomly returned to n students, the probabil-
ity that no student receives his or her own exam is almost exactly 1/e (approximately
0.368), for all n > 4. We call a permutation with no fixed points, a derangement, and
we let D(n) denote the number of derangements of n elements. For n > 1, it can be
shown that D(n) = Y_;_,(—1)*n!/k!, and hence the odds that a random permutation
of n elements has no fixed points is D(n)/n!, which is within 1/(n + 1)! of 1/e [1].

Permutations come in two varieties: even and odd. A permutation is even if it can
be achieved by making an even number of swaps; otherwise it is odd. Thus, one might
even be interested to know that if we let £ (n) and O (n) respectively denote the number
of even and odd derangements of n elements, then (oddly enough),

D(n) + (n — DH(=D""!

En) = 2
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and

D(n) — (n — H(=D""!

o) = 5

The above formulas are an immediate consequence of the equation E(n) + O(n) =
D(n), which is obvious, and the following theorem, which is the focus of this note.

THEOREM. Forn > 1,
E(n) —0m) = (="' (n—1). ey
Proof 1: Determining a Determinant The fastest way to derive equation (1), as is

done in [3], is to compute a determinant. Recall that an n-by-n matrix A = [a;;]};_,
has determinant

det(A) = Z A (1Y27(2) * * * Ane(n) SEN(T), (2)

TES)
where S, is the set of all permutations of {1, ..., n}, sgn(;r) = 1 when 7 is even, and
sgn(r) = —1 when 7 is odd. Let A, denote the n-by-rn matrix whose nondiagonal

entries are a;; = 1 (for i # j), with zeroes on the diagonal. For example, when n = 4,

1111 100 0 01 1 1
1111 0100 10 1 1
Av=Si=L=1 11 1 117 loo1o|=|1 101
1111 000 1 1110

By (2), every permutation that is not a derangement will contribute O to the sum
(since it uses at least one of the diagonal entries), every even derangement will con-
tribute 1 to the sum, and every odd derangement will contribute —1 to the sum. Conse-
quently, det(A,) = E(n) — O(n). To see that det(A,) = (—1)""'(n — 1), observe that
A, = J, — I,, where J, is the matrix of all ones and /, is the identity matrix. Since J,
has rank one, zero is an eigenvalue of J,,, with multiplicity n — 1, and its other eigen-
value is n (with an eigenvector of all 1s). Apply J, — I, to the eigenvectors of J, to
find the eigenvalues of A,: —1 with multiplicity n — 1 and n — 1 with multiplicity 1.
Multiplying the eigenvalues gives us det(A,) = (—1)""'(n — 1), as desired. ]

A 1996 Note in the MAGAZINE [2] gave even odder ways to determine the deter-
minant of A,,.

Although the proof by determinants is quick, the form of (1) suggests that there
should also exist an almost one-to-one correspondence between the set of even de-
rangements and the set of odd derangements.

Proof 2: Involving an Involution Let D, denote the set of derangements of
{1,...,n}, and let X, be a set of n — 1 exceptional derangements (that we spec-
ify later), each with sign (—1)"~!'. We exhibit a sign reversing involution on D, — X,,.
That is, letting 7, = D, — X,,, we find an invertible function f : 7,, — T, such that
for 7 in 7,, 7 and f(;r) have opposite signs, and f(f(r)) = 7. In other words, ex-
cept for the n — 1 exceptional derangements, every even derangement “holds hands”
with an odd derangement, and vice versa. From this, it immediately follows that
|Eal = 10,1 = (=1)""'(n = 1).

Before describing f, we establish some notation. We express each 7 in D, as the
product of k disjoint cycles Cy, ..., C; with respective lengths my, ..., m; for some
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k > 1. We follow the convention that each cycle begins with its smallest element,
and the cycles are listed from left to right in increasing order of the first element. In
particular, C; = (1 a, --- a,,) and, if kK > 2, C, begins with the smallest element that
does not appear in C;. Since 7 is a derangement on # elements, we must have m; > 2
for all i, and Zle m; = n. Finally, since a cycle of length m has sign (—1)""!, it
follows that 7 has sign (= D)Xz =D — (—1yr=k,

Let 7 be a derangement in D, with first cycle C; = (1 a, --- a,) for some
m > 2. We say that 7 has extraction point e > 2 if e is the smallest number in the set
{2,...,n} — {a,} for which C; does not end with the numbers of {2, ..., e} — {a»}
written in decreasing order. Note that 7 will have extraction point e = 2 unless the
number 2 appears as the second term or last term of C;. We illustrate this definition
with some pairs of examples from Dy. Notice that in each pair below, the number of
cycles of 7 and 7’ differ by one, and the extraction point e occurs in the first cycle of
7 and is the leading element of the second cycle of 7’.

7=(19728)((36)45) and 7n'=(197)(28)(36)(45) havee =2.
7=(1297385)(46) and 7n'=(1297)(385)(46) havee=3.
T=(1973852)(46) and n'=(1972)(385)(46) havee=3.
7=(1948532)(67) and 7'=(1932)(485)(67) havee=4.
T=(1495832)(67) and 7n'=(14932)(58)(67) havee=>5.
T=(138697542) and 7'=(138542)(697) have e = 6.

Observe that every derangement 7 in D, contains an extraction point unless
consists of a single cycle of the form 7 = (1 a, Z), where Z is the ordered set

{2,3,...,n —1,n} — {ay}, written in decreasing order. For example, the 9-element
derangement (1 59 8 7 6 4 3 2) has no extraction point. Since a, can be any element
of {2,...,n}, there are exactly n — 1 derangements of this type, all of which have

sign (—1)"~'. We let X, denote the set of derangements of this form. Our problem
reduces to finding a sign reversing involution f over 7, = D, — X,,.

Suppose 7 in T, has extraction point e. Then the first cycle C; of w ends with the
(possibly empty) ordered subset Z consisting of the elements of {2, ..., e — 1} — {a,}
written in decreasing order. Our sign reversing involution f : 7, — T, can then be
succinctly described as follows:

Uy XeY Z)o <> (1ay X Z)(e Y)o, 3)

where X and Y are ordered subsets, Y is nonempty, and o is the rest of the derange-
ment 7.

Notice that since the number of cycles of m and f(m) differ by one, they must
be of opposite signs. The derangements on the left side of (3) are those for which the
extraction point e is in the first cycle. In this case, ¥ must be nonempty, since otherwise
“e Z” would be a longer decreasing sequence and e would not be the extraction point.
The derangements on the right side of (3) are those for which the extraction point e is
not in the first cycle (and must therefore be the leading element of the second cycle).
In this case, Y is nonempty since 7 is a derangement. Thus for any derangement 7,
the derangement f(77) is also written in standard form, with the same extraction point
e and with the same associated ordered subset Z. Another way to see that w and f ()
have opposite signs is to notice that f(r) = (xy)mr (multiplying from left to right),
where x is the last element of X (x = a, when X is empty), and y is the last element
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of Y. Either way, f(f(r)) = 7, and f is a well-defined, sign-reversing involution, as
desired. [ |

In summary, we have shown combinatorially that for all values of n, there are almost
as many even derangements as odd derangements of n elements. Or to put it another
way, when randomly choosing a derangement with at least five elements, the odds of
having an even derangement are nearly even.
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