
Finding small patterns in permutations in linear time∗

Sylvain Guillemot † Dániel Marx ‡

Abstract

Given two permutations σ and π, the Permutation
Pattern problem asks if σ is a subpattern of π. We
show that the problem can be solved in time 2O(`2 log `) ·
n, where ` = |σ| and n = |π|. In other words, the
problem is fixed-parameter tractable parameterized by
the size of the subpattern to be found.

We introduce a novel type of decompositions for
permutations and a corresponding width measure. We
present a linear-time algorithm that either finds σ as a
subpattern of π, or finds a decomposition of π whose
width is bounded by a function of |σ|. Then we show
how to solve the Permutation Pattern problem in
linear time if a bounded-width decomposition is given
in the input.

1 Introduction

A permutation of length n is a bijective mapping π :
[n] → [n]; one way to represent it is as the sequence of
numbers π(1)π(2) . . . π(n). We say that a permutation
π written in this notation contains permutation σ if π
has a (not necessarily consecutive) subsequence where
the relative ordering of the elements is the same as in σ.
In this case, we say that σ is a subpattern of π; otherwise,
π avoids σ. For example, 3215674 contains the pattern
132, since the subsequence 154 is ordered the same way
as 132. On the other hand, the permutation avoids
4321: it does not contain a descending subsequence of
4 elements.

Counting the number of permutations avoiding a
fixed pattern σ has been a very actively investigated
topic of enumerative combinatorics. It was shown that
for every length n, the number of permutations avoid-
ing the pattern 123 and the number of permutations
avoiding the pattern 231 are the same, namely the nth
Catalan number [22, 23, 29, 9], which is asymptotically
4n+o(1). Around 1990, Stanley and Wilf conjectured

∗Research supported by the European Research Council
(ERC) grant “PARAMTIGHT: Parameterized complexity and
the search for tight complexity results,” reference 280152 and

OTKA grant NK105645.
†Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI) sguillem@sztaki.hu.
‡Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI) dmarx@cs.bme.hu.

that for every fixed pattern σ, the number of permu-
tations of length n avoiding σ can be bounded by cn

for some constant c depending on σ (whereas the total
number of permutations is n! = 2Θ(n logn)). This con-
jecture has been proved by Marcus and Tardos [24] in
2004.

The algorithmic study of permutations avoiding
fixed patterns was motivated first by the observation
that permutations sortable by stacks and deques can
be characterized by certain forbidden patterns and
such permutations can be recognized in linear time
[22, 27, 28]. In the Permutation Pattern problem,
two permutations σ and π are given and the task is
to decide if π contains σ. In general, the problem
is NP-hard [5]. There are known polynomial-time
solvable special cases of the problem: for example,
when σ is the identity permutation 12 · · · k, then the
problem is a special case of Longest Increasing
Subsequence, whose polynomial-time solvability is a
standard textbook exercise [10]. Other polynomial
cases include the cases when σ and π are separable
[5], or when both σ and π avoids 321 [20]. For more
background, the reader is referred to the survey of
Bruner and Lackner [7].

The Permutation Pattern problem can be
solved by brute force in time O(n`), where ` = |σ| and
n = |π|. This has been improved to O(n0.47`+o(`)) by
Ahal and Rabinovich [1]. These results imply that the
problem is polynomial-time solvable for fixed pattern σ,
but as the size of σ appears in the exponent of the run-
ning time, this fact is mostly of theoretical interest only.
Our main result is an algorithm where the running time
is linear for fixed σ and the size of σ appears only in the
multiplicative factor of the running time.

Theorem 1.1. Permutation Pattern can be solved
in time 2O(`2 log `) · n, where ` = |σ| is the length of the
pattern and n = |π|.

In other words, Permutation Pattern is fixed-
parameter tractable parameterized by the size of the
pattern: recall that a problem is fixed-parameter
tractable with a parameter ` if it can be solved in time
f(`)·nO(1), where f is an arbitrary computable function
depending only on `; see [12, 15]. The fixed-parameter
tractability of Permutation Pattern has been an

82 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



open question implicit in previous work.
The main technical concept in the proof of Theo-

rem 1.1 is a novel form of decomposition for permuta-
tions. The decomposition can be explained most intu-
itively using a geometric language. Given a permutation
π of length n, one can represent it as the set of points
(1, π(1)), (2, π(2)), . . . , (n, π(n)) in the 2-dimensional
plane. We can view these points as a family of degener-
ate rectangles, each having width and height 0. Starting
with this family of n degenerate rectangles, our decom-
position consists of a sequence of families of rectangles,
where the next family is created from the previous one
by a merge operation. The merge operation removes two
rectangles R1, R2 from the family and replaces them
with their bounding box, that is, the smallest rectangle
containing both (see Figure 1). The decomposition is
a sequence of n− 1 merges that eventually replaces the
whole family with a single rectangle. Note that the rect-
angles created by the merges are not necessarily disjoint.
We define a notion of width for a family of rectangles,
which roughly corresponds to the maximum number of
other rectangles a rectangle can “see” either horizontally
or vertically. The decomposition has width at most d if
the rectangle family has width at most d at every step
of the decomposition. Let us observe that the merge
operation can increase the width (by creating a large
rectangle that sees many other rectangles) or it can de-
crease width (since if a rectangle sees both of the merged
rectangles, then it sees one less rectangle after the merge
operation). Therefore, whether it is possible to maintain
bounded width during a sequence of merge operations
is a very subtle and highly nontrivial question.

The proof of Theorem 1.1 follows from the following
two results on bounded-width decompositions:

(1) For every fixed pattern σ, there is a linear-time
algorithm that, given a permutation π, either shows
that σ appears in π or outputs a bounded-width
decomposition of π (Theorem 4.1).

(2) Permutation Pattern can be solved in linear
time if a bounded-width decomposition for π is
given in the input (Theorem 5.1).

The proof of (1) needs to show how to find the next
mergeable pair in the decomposition. We argue that
there have to be two rectangles that are “close” in a
certain sense (ensuring that the width is still bounded
after the merge), otherwise the rectangles are so much
spread out that a result of Marcus and Tardos [24] guar-
antees that every permutation of length ` (in particular,
σ) appears in π. The implementation of this idea needs
careful control of the global structure of the rectangles.
Therefore, the algorithm is not based on simply merg-
ing pairs in a greedy way: instead of showing that a

mergeable pair always exist, what we show is that if the
global property holds, then it is possible to merge two
rectangles such that the global property still holds after
the merge.

The algorithm in (2) uses dynamic programming
the following way. Given a family of rectangles, we
can define a visibility graph where the vertex set is
the set of rectangles and two rectangles are adjacent
if their horizontal or vertical projections intersect. For
our purposes, the meaning of this graph is that if
two rectangles R1 and R2 are nonadjacent, then the
relative position of x ∈ R1 and y ∈ R2 follows from
the relative position of R1 and R2; on the other hand,
if R1 and R2 are adjacent, then the relative position
of x and y can depend on exactly where they appear
in R1 and R2. The fact that the decomposition has
bounded width implies that the visibility graph of the
rectangle family at every step has bounded degree. We
enumerate every set K of at most ` rectangles that
induces a connected graph in the visibility graph; as
the visibility graph has bounded degree, the number
of such sets is linear in n. The subproblems of the
dynamic programming are as follows: at each step of the
decomposition, for each set K of size at most ` that is
connected in the visibility graph, we have to enumerate
every pattern that appears in the points contained in the
rectangles (and the possible distribution of the elements
of the pattern among the rectangles). In each step
of the decomposition, only those subproblems have to
be updated that involve the merged rectangles, and
this can be done efficiently using the information at
hand. At the last step, there is only a single rectangle
containing every element of π; thus the subproblems for
this single rectangle tell us if σ is contained in π.

The fixed-parameter tractability of the Permuta-
tion Pattern problem seems to be very fragile: every
reasonable extension or generalization of the problem
(e.g., introducing colors or introducing additional con-
straints such as certain elements of the pattern having
to appear consecutively) turned out to be W[1]-hard
[7, 20, 18]. In Section 6, we prove the W[1]-hardness of
another colored variant of the problem and then infer
that the natural 3-dimensional generalization of Per-
mutation Pattern is also W[1]-hard.

The reason for the 2O(`2 log `) dependence on ` in
Theorem 1.1 is the following. Recall that Marcus and
Tardos [24] proved that for every fixed permutation
σ, there is a constant c such that the number of
permutations of length n that avoid σ can be bounded
by cn. In their proof, the constant c is exponential in
the length of σ, but it might be true that the result
holds with polynomially bounded c. Our algorithm for
finding a decomposition relies on the proof of Marcus

83 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1

2

3

4

5

6

7

1

2

5

6

7

9

5

6

7

10

8 8

9

8

5

10

9

11

8

10

9

11

12

10

14

10

11

13

15

(3, 4) (1, 2) (6, 7) (5, 8)

(9, 12) (11, 13) (10, 14)

Figure 1: A possible decomposition of the permutation 32784615. The dashed rectangles and the pairs of numbers
below the figures show the next two rectangles to be merged. We follow the convention that the rectangle created
in the i-th merge is labeled n+ i.

and Tardos, and the bound we get on the width is
exponential in the length ` of σ, which implies that the
algorithm using this decomposition has running time
2O(`2 log `) · n. Improving the exponential bound in the
result of Marcus and Tardos to a polynomial would
immediately imply that we can find a decomposition
of polynomially bounded width, and then the running
time would be 2O(` log `) · n.

We investigate a specific class of permutations for
which we can give improved bounds. A sequence is
monotone if it is either increasing or decreasing; we
say that a permutation is t-monotone if it can be par-
titioned into t monotone (not necessarily consecutive)
subsequences. For the special case when π is t-monotone
we show that it is possible to find a decomposition of
width polynomially bounded by t. Moreover, we show
that there is a very simple way of solving Permutation
Pattern when π is t-monotone. The crucial observa-
tion is that if, given t monotone sequences, the task is
to select some elements from each sequence such that
they form a specific pattern, then this can be encoded
as a constraint satisfaction problem (CSP) having a ma-
jority polymorphism. It is well-known that CSPs with
a majority polymorphism is polynomial-time solvable,
which gives us a polynomial-time solution for Permu-

tation Pattern for a specific distribution of the el-
ements of σ among the t monotone subsequences of π.
Finally, we can try all possible way of distributing the el-
ements of the pattern among the monotone sequences,
yielding a very compact proof for the fixed-parameter
tractability of Permutation Pattern on t-monotone
permutations.

On a high level, our algorithm can be described
by the following scheme: either the permutation π
has no bounded-width decomposition, in which case
we can answer the problem immediately, or we can
find a bounded-width decomposition, in which case we
can use an algorithm working on the decomposition.
This win/win scenario is very similar to how the notion
of treewidth is used for many graph problems: high
treewidth implies an immediate answer and bounded-
treewidth graphs can be handled using standard tech-
niques. This idea was used, for example, in the classi-
cal work of Bodlaender [4, 3] and more recently in the
framework of bidimensionality for planar graphs [11].
However, it has to be pointed out that our notion of de-
composition is very different from tree decompositions.
The main property of tree decompositions is that the
graph is broken down into parts that interact with each
other only via a small boundary. Nothing similar hap-

84 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



pens in our decomposition: when we merge two rectan-
gles, then the points appearing in the two rectangles can
have very complicated relations. Perhaps it is even mis-
leading to call our notion a “decomposition”: it would
be more properly described as a construction scheme
that maintains a notion of bounded-degreeness through-
out the process. It would be interesting to see if there is
a corresponding graph-theoretic analog for this scheme,
which might be useful for solving some graph-theoretical
problem.

The paper is organized as follows. Section 2 in-
troduces notation, including a somewhat nonstandard
way of looking at permutations as a labeled point
set. Section 3 defines our notion of decomposition and
width measure, and observes some properties. Section 4
presents our algorithm for finding a decomposition. Sec-
tion 5 shows how to solve the Permutation Pattern
problem given a decomposition. Section 6 proves hard-
ness results for some natural generalizations of the prob-
lem. Section 7 investigates the special case when π is a
t-monotone permutation.

2 Definitions

A permutation of length n is a bijection π : [n] → [n].
It will be convenient for us to look at permutations
from a more geometric viewpoint by considering them
as point sets, as our decomposition can be explained
conveniently in terms of families of points and rectan-
gles. A point is an element p = (x, y) ∈ N2; we de-
note pr1(p) = x and pr2(p) = y (these are called the
x-coordinate and y-coordinate of p). A point set is a fi-
nite set of points; it is in general position if no two points
have the same x-coordinate or the same y-coordinate.
We define a permutation as a pair π = (S, P ), where
S is a subset of positive integers and P : S → N2

is an injection such that P (S) is a point set in gen-
eral position. For a permutation π = (S, P ), we use
S(π) to refer to the set S, and define the length of π as
|π| = |S(π)|. Given S′ ⊆ S, we define the permutation
π|S′ = (S′, P |S′).

Let us discuss how permutations are represented in
algorithms. We say that a permutation π = (S, P ) of
length n is reduced if S = [n] and P (S) ⊆ [n] × [n].
A reduced permutation can be represented naturally
as an array of n points in [n] × [n]. We require that
the permutation given as an input of an algorithm is
reduced and has this representation; we mainly use this
assumption to ensure that we can sort the points by x-
or y-coordinate in linear time. Note that if we consider
a permutation to be a bijection π : [n]→ [n], then it is
straightforward to obtain such a representation.

Given p, p′ ∈ S and α ∈ {1, 2}, we denote p <πα p
′ iff

prα(P (p)) < prα(P (p′)). Given two permutations σ and

π, a mapping φ : S(σ)→ S(π) is an embedding of σ into
π iff for every p, p′ ∈ S(σ), for each α ∈ {1, 2}, p <σα p′
iff φ(p) <πα φ(p′). We say that σ is a subpattern of π,
or that π contains σ, if there is an embedding of σ into
π. (Intuitively, we can represent a permutation as a 0-1
matrix where every column and every row contains at
most one cell with 1 in it; then σ is a subpattern of π if it
corresponds to a submatrix of the matrix representation
of π). We define the following decision problem:

Permutation Pattern
Input: Two reduced permutations σ and

π.
Question: Is σ a subpattern of π?

For a given instance (σ, π) of the problem, we will
denote ` = |σ| and n = |π|. Besides points and sets of
points, we will be dealing with rectangles and sets of
rectangles as well. Given two positive integers p, q with
p ≤ q, we define the interval [p, q] = {p, p + 1, . . . , q};
note that we only consider discrete intervals. Given two
intervals I = [p, q] and I ′ = [p′, q′], we denote I < I ′ iff
q < p′. A (axis-parallel) rectangle is a set R = I × J
where I, J are two intervals; we denote I1(R) = I and
I2(R) = J .

3 Decompositions

The purpose of this section is to introduce the decom-
position used by the main algorithm and observe some
of its properties. A rectangle family is a set of rectan-
gles indexed by a subset of natural numbers; formally, a
rectangle family is a pair R = (S,R), where S ⊆ N is a
set and R maps each element i ∈ S to a rectangle R(i).
For a rectangle family R = (S,R), we use S(R) to refer
to the set S and we define the size of R as |R| = |S(R)|.
Note that a point is a degenerate rectangle, and thus
a permutation can also be viewed as a rectangle fam-
ily. We define the operation of merging two rectangles
in a family as follows. Given two elements i, j ∈ S and
k /∈ S, we denote by R[i, j → k] the rectangle family
R′ = (S′, R′) where S′ = S −{i, j}+ {k}, R′(p) = R(p)
for every p ∈ S−{i, j}, and R′(k) is the smallest rectan-
gle enclosing R(i)∪R(j). That is, we replace rectangles
R(i) and R(j) by their bounding box, and assign the
index k to the new rectangle.

Our notion of decomposition is defined as follows.

Definition 3.1. Let π = (S, P ) be a permutation of
length n. A decomposition of π is a sequence D =
(R0, . . . ,Rs) of rectangle families such that:

(i) R0 = π;
(ii) there exists a sequence of integers k1 < k2 <

. . . < ks such that maxS < k1 and for every

85 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1 ≤ p ≤ s, there exist i, j ∈ S(Rp−1) such that
Rp = Rp−1[i, j → kp];

(iii) |Rs| = 1.

That is, in each step we are merging two rectangles to
create a new rectangle. Observe that by Point (iii) we
have s = n−1, i.e. the decomposition contains n rectan-
gle families. This means that the obvious representation
of the decomposition can have size Ω(n2). However, let
us observe that it is sufficient to list the pairs of rect-
angles that are merged in each step. Therefore, we can
compactly represent the decomposition in space O(n)
by the merge sequence Σ = σ1 . . . σs, where for each
1 ≤ p ≤ s we have σp = (i, j, kp) if Rp = Rp−1[i, j → kp].

Next we define a notion of width for permutations.
For α ∈ {1, 2}, we say that two rectangles R,R′ α-view
each other if Iα(R) intersects Iα(R′). Let R = (S,R)
be a rectangle family. Given i ∈ S and α ∈ {1, 2}, we
define viewα(R, i) as the set of elements j ∈ S−{i} such
that R(i) and R(j) α-view each other. Given i ∈ S,
we define view(R, i) = maxα∈{1,2} |viewα(R, i)|. Note
that we define the number view(R, i) as the maximum
of the two cardinalities rather as the cardinality of the
union, for reasons that will become clear later. Let d
be an integer. We say that a rectangle family R is d-
wide if view(R, i) < d holds for every i ∈ S(R). We say
that a decomposition D = (R0, . . . ,Rs) of π is d-wide if
each rectangle family Rp is d-wide. Observe that it is
enough to ask whenever Rp merges rectangles i and j to
produce rectangle k, then view(Rp, k) < d: indeed, the
view number of a rectangle can increase only if it views
k but not i, j, in which case it is upper bounded by the
view number of k. We define the width of a permutation
π, denoted by w(π), as the minimum d such that π has
a d-wide decomposition.

3.1 Basic properties We observe that width is
monotone for subpatterns:

Lemma 3.2. If σ is a subpattern of π, then w(σ) ≤
w(π).

Proof. It is sufficient to show that if S′ is a subset of
S(π), then w(π|S′) ≤ w(π); in fact, by induction, it is
sufficient to show this for the case when S′ = S − {j1}
for some j1 ∈ S(π). Consider a d-wide decomposition
D = (R0, . . . ,Rn−1) of π. We modify the decomposition
as follows. There is a unique step i1 in D when j1 is
merged with some rectangle j2 and they are replaced
by the bounding box j3. If this is the last step of the
decomposition, then it is clear that removing this step
and removing j1 from each of R0, . . . , Rn−2 results in a
d-wide decomposition of π|S′.

Otherwise, suppose that this is not the last step.
Then there is a unique step i2 > i1 when j3 is

merged with some rectangle j4. We remove step i1
and modify step i2 such that j4 is merged with j2
instead of j3. Therefore, we obtain a decomposition
D′ = (R′0, . . . ,R

′
n−2), where

• for 0 ≤ i < i1, rectangle family R′i is obtained from
Ri by removing element j1.
• for i1 ≤ i ≤ i2 − 2, rectangle family R′i is obtained

from Ri+1 by replacing j3 with j2,
• for i2−1 ≤ i ≤ n−2, rectangle family R′i is obtained

from Ri+1 by modifying only a single rectangle,
namely the one whose construction involved j1.

In the last case, the single modified rectangle cannot
become larger: it is constructed as the merge of one
fewer points than in D. Therefore, in all cases, the
fact that every Ri is d-wide implies that every R′i is d-
wide. Thus D′ is a d-wide decomposition of π|S′ and
w(π|S′) ≤ w(π) follows. �

Next, we observe a relation between the width and
the existence of close pairs of points. Let π be a
permutation. Given p, p′ ∈ S(π) and α ∈ {1, 2}, if
p <πα p′ then we denote Intα(π, p, p′) = {p′′ ∈ S(π) |
p <πα p

′′ <πα p
′}; if p′ <πα p then we let Intα(π, p, p′) :=

Intα(π, p′, p). For an integer d, we say that {p, p′} ⊆
S(π) is a d-close pair of π if for each α ∈ {1, 2} it
holds that |Intα(π, p, p′)| < d. Let us observe that the
existence of a d-close pair is a necessary condition for
having a d-wide decomposition: the first pair {j1, j2} of
points merged in the decomposition should be d-close:
otherwise the rectangle family obtained by replacing
j1 and j2 with their bounding box would have a view
number greater than d.

Proposition 3.1. If w(π) ≤ d, then π has a d-close
pair.

Note that by Lemma 3.2, in fact every subpermutation
of π has a d-close pair. As we shall see in Section 4,
the existence of d-close pairs in the subpermutations
approximately characterizes the width of the permuta-
tion.

3.2 Separable permutations In this section, we re-
late our width measure to the well-known notion of sep-
arable permutations (note that this connection is not
needed for the main algorithmic results of the paper).
The separable permutations are the permutations that
are totally decomposable under the substitution decom-
position [25, 2], and we show in Proposition 3.3 below
that they correspond to permutations of width at most
1.

We first define the operation of substitution for
permutations. Let π = (S, P ) and π′ = (S′, P ′) be

86 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



two permutations with S ∩ S′ = ∅. Given x ∈ S, we
define the permutation π[x ← π′] as follows. This is a
permutation π′′ = (S′′, P ′′), where S′′ = S − {x} + S′,
and such that two elements p, p′ ∈ S′′ have the following
relations: (i) if p, p′ ∈ S then p <π

′′

α p′ iff p <πα p′;
(ii) if p, p′ ∈ S′, then p <π

′′

α p′ iff p <π
′

α p′; (iii) if
p ∈ S, p′ ∈ S′, then p <π

′′

α p′ iff p <πα x.

Proposition 3.2. Given two permutations π and π′,
and given x ∈ S(π), it holds that w(π[x ← π′]) =
max(w(π), w(π′)).

Proof. Let d = w(π) and d′ = w(π′), and let π′′ =
π[x← π′]. As π and π′ are subpatterns of π′′, it follows
that w(π′′) ≥ max(d, d′) by Lemma 3.2. Let us show
that w(π′′) ≤ max(d, d′). Let D = (R0, . . . ,Rr) be a
d-wide decomposition of π and let D′ = (R′0, . . . ,R

′
s)

be a d′-wide decomposition of π′. We assume w.l.o.g.
that D′ produces a sequence of indices k′1 < . . . < k′s
and D produces a sequence of indices k1 < . . . < kr
such that maxS(π′′) < k′1 and k′s < k1. We construct a
decomposition D′′ = (R′′0 , . . . ,R

′′
t ) of π′′ as follows. We

first simulate the merges of D′, then once the points of
π′ have been merged into a single rectangle we simulate
the merges of D. More precisely, we start with R′′0 = π′′,
and:

• for 1 ≤ p ≤ s, if R′p = R′p−1[i, j → k] then
R′′p = R′′p−1[i, j → k];

• for 1 ≤ p ≤ r, if Rp = Rp−1[i, j → k] then
R′′s+p = R′′s+p−1[i′, j′ → k], where i′, j′ are obtained
from i, j by replacing x with k′s.

Observe that a rectangle created in the first step views
the same rectangles as in D′, while a rectangle created
in the second step views the same rectangles as in D.
We conclude that D′′ is a d′′-wide decomposition of π′′

with d′ = max(d, d′). �

We recall that the separable permutations can be
defined as follows [5]. A permutation π is increasing
(resp. decreasing) if for each p, p′ ∈ S(π) it holds that
p <π1 p

′ iff p <π2 p
′ (resp. p′ <π2 p). A permutation π is

monotone if it is increasing or decreasing. The separable
permutations is the smallest class of permutations that
contains the monotone permutations and is closed under
substitution; alternatively, they are the permutations
that do not contain 2 4 1 3 or 3 1 4 2.

Proposition 3.3. A permutation π is separable iff
w(π) ≤ 1.

Proof. As the monotone permutations have width at
most 1, it follows from Proposition 3.2 that the sepa-
rable permutations have width at most 1. Conversely,

if a permutation π is not separable, then π contains
2 4 1 3 or 3 1 4 2; as these two permutations have no
1-close pair, they have width at least 2 by Proposition
3.1, which implies that w(π) ≥ 2 by Lemma 3.2. �

3.3 Grids In this section, we define certain permu-
tations with a grid-like structure, and we characterize
their widths. The main interest of these permutations is
that they serve as obstruction patterns to small width;
moreover, we will see in Section 4 that they are the only
obstructions in an approximate sense.

Given an interval I, we say that a sequence P =
(I1, . . . , Is) of intervals is a partition of I if (i) the Ij ’s
are disjoint and their union is I, and (ii) I1 < I2 <
. . . < Is. Consider the rectangle R = I × J , and fix
two integers r, s. An r × s-gridding of R is a pair
G = (P1, P2), where P1 = (I1, . . . , Ir) is a partition
of I, and P2 = (J1, . . . , Js) is a partition of J . Fix
x ∈ [r], y ∈ [s]. We call Ix the xth column of G, and
Jy the yth row of G; the rectangle G(x, y) := Ix × Jy
is called the (x, y)th-cell of G. If M is a point set, we
say that M contains an r × s-grid if there exists an
r × s-gridding G such that for every x ∈ [r], y ∈ [s],
G(x, y) intersects M . By extension, if π = (S, P ) is a
permutation, we say that π contains an r × s-grid if
P (S) does.

An r × s-grid permutation is a permutation of
length rs that contains an r × s-grid. Observe that
a permutation contains an r × s-grid if and only if
it contains an r × s-grid permutation. Furthermore,
observe that if a permutation contains an r × r-grid,
then it contains every permutation of length r; this fact
will be crucial for our algorithm. The canonical r × s-
grid permutation is the permutation π corresponding to
the point set {((j−1)s+(s− i+1), (i−1)r+ j)|1 ≤ i ≤
s, 1 ≤ j ≤ r}; let us denote by pi,j the element of S(π)
corresponding to point ((j−1)s+(s−i+1), (i−1)r+j).
Intuitively, pi,j is the point in row i and column j, where
rows are numbered from bottom to top and columns are
numbered from left to right (see Figure 2(a)). Note that
the indexing of points pi,j departs from the convention
used for points in cartesian coordinates, i.e. point pi,j
is inside the (j, i)th cell of the gridding of π.

The following result shows that r× r-grid permuta-
tions have width Ω(r).

Proposition 3.4. If π is a (2r + 4) × (2r + 4)-grid
permutation, then w(π) ≥ r.

Proof. Consider a decomposition (R0, . . . ,Rs) of π. Let
Rt be the first family in this sequence that includes
a rectangle R containing points from two nonadjacent
rows or from two nonadjacent columns. Suppose with-
out loss of generality that R contains points from rows

87 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



(a) (b)
R4,1

p(5, 1)

p(5, 5)

p(1, 1)

p(1, 5)

R3,3
R3,4

R3,5

R4,2

Figure 2: (a) A 5× 5 canonical grid. (b) A step of the
decomposition in the proof of Proposition 3.5.

y1 and y2 with y2−y1 > 1. Consider the set X of 2r+4
points of π in row y1 + 1. In family Rt−1, no rectangle
contains points from two nonadjacent columns, thus at
most two points of X can be contained in each rectan-
gle of Rt−1, i.e., points of X are contained in at least
r + 2 rectangles. At most two of these rectangles can
participate in the merge that created rectangle R in Rt.
Therefore, at least r of these rectangles survive in Rt
and are distinct from R. All of these rectangles 2-view
R, hence Rt (and therefore the decomposition) cannot
be r-wide. �

Proposition 3.5. If π is the canonical r × r-grid per-
mutation, then w(π) = r.

Proof. We first show that w(π) ≥ r. Consider two
distinct elements p = pi,j and p′ = pi′,j′ in S(π).
We have |Int1(π, p, p′)| = |(j′ − j)r + (i − i′)| − 1 and
|Int2(π, p, p′)| = |(i′ − i)r + (j′ − j)| − 1. Observe that
if |j′ − j| ≥ 2 then |Int1(π, p, p′)| ≥ r − 1, and likewise
if |i′ − i| ≥ 2 then |Int2(π, p, p′)| ≥ r − 1. Suppose
that {p, p′} is a (r − 1)-close pair of π. We then have
0 ≤ |i′ − i| ≤ 1 and 0 ≤ |j′ − j| ≤ 1, and one of them
is equal to 1; we suppose w.l.o.g. that i′ − i = 1. Then
|Int2(π, p, p′)| < r − 1 implies that j − j′ = 1, and thus
|Int1(π, p, p′)| = r > r − 1, contradiction. It follows
that π has no (r − 1)-close pair, and thus w(π) ≥ r by
Proposition 3.1.

For 1 ≤ j ≤ r, let R1,j be the rectangle containing
only point p1,j . We define a decomposition that first
merges R1,1 and p2,1 to obtain R2,1; then R1,2 and p2,2

to obtain R2,2; . . . ; then R1,r and p2,r to obtain R2,r.
We continue in a similar way with the next row: we
merge R2,1 and p3,1 to obtain R3,1; then R2,2 and p3,2

to obtain R3,2; . . . ; then R2,r and p3,r to obtain R3,r

(see Figure 2(b)). After repeating this process for each
row, only r rectangles Rr,1, . . . , Rr,r remain. What
needs to be observed is that when we merge Ri,j and
pi+1,j to obtain Ri+1,j , then Ri+1,j 2-views only Ri+1,1,
. . . , Ri+1,j−1, Ri,j+1, . . . , Ri,r (i.e., r − 1 rectangles)

and does not 1-view any other rectangle. Therefore,
the rectangle family is always r-wide. When there are
only r remaining rectangles, we can merge them in any
order. We get an r-wide decomposition of π, showing
that w(π) ≤ r. �

3.4 Tree representation Although it is not used
explicitly in the paper, we can give an alternative
representation of a decomposition by a labeled tree. We
state in Proposition 3.6 below a characterization of d-
wide decompositions in terms of the associated tree.

A numbered tree is a (directed) tree T = (V,A),
where (i) V ⊆ N, (ii) the leaves of T precede the internal
nodes in the natural ordering, (iii) for each arc (i, j) it
holds that j < i. We denote L(T ) the set of leaves of
T , I(T ) the set of internal nodes of T and N(T ) the
set of nodes of T . Suppose that D = (R0, . . . ,Rs) is a
decomposition of a permutation π, we represent it by
a binary numbered tree T constructed as follows: (i)
start with one vertex per element of S(π); (ii) for p
going from 1 to s, if Rp = Rp−1[i, j → k] then add a
vertex k with arcs (k, i) and (k, j). Conversely, if T is
a binary numbered tree with L(T ) = S(π), then there
exists a decomposition D(π, T ) whose associated tree is
T .

We need the following additional definitions. Let
T be a numbered tree. Given two nodes i, j of T , we
denote i <T j (resp. i ≤T j) if j is a proper ancestor
(resp. ancestor) of i. Fix a node i ∈ N(T ). We denote
by T (i) the subtree of T rooted at i. We let R(π, T, i)
denote the bounding box of π|L(T (i)), and for each α ∈
{1, 2} we let Iα(π, T, i) := Iα(R(π, T, i)). We let S(T, i)
denote the set of elements j ∈ N(T ) such that j ≤ i
and that are maximal for <T with this property. We
let R(π, T, i) denote the rectangle family R′ = (S′, R′)
with S′ = S(T, i) and for each j ∈ S(T, i), R(j) =
R(π, T, j). Observe that if D(π, T ) = (R0, . . . ,Rs) and
step p produces index j, then Rp = R(π, T, j). Finally,
we define the restriction of a numbered tree: if T is
a numbered tree and X ⊆ L(T ), then T |X is the
minimum homeomorphic subtree of T containing the
leaves of X.

Proposition 3.6. Let π be a permutation, and let T
be a binary numbered tree with L(T ) = S(π). The
following statements are equivalent:

(i) D(π, T ) is a d-wide decomposition of π;

(ii) for every X ⊆ S(π) with |X| ≥ 2, if i is the
minimum internal node of T |X then L(T |X(i)) is
a d-close pair of π|X.

Proof. (ii) ⇒ (i): We need to show that D(π, T ) is
a d-wide decomposition of π. Let i ∈ I(T ), and let

88 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



S = S(T, i) and R = R(π, T, i). Fix i′ ∈ S, we need
to show that view(R, i′) < d. Fix α ∈ {1, 2}. Consider
j ∈ S such that Iα(π, T, i′) ⊆ Iα(π, T, j) and Iα(π, T, j)
is maximal with this property. As viewα(R, i′) −
{j} + {i′} ⊆ viewα(R, j), we have |viewα(R, j)| ≥
|viewα(R, i′)|. We will thus show that |viewα(R, j)| < d,
which will imply that |viewα(R, i′)| < d as needed. Let
V = viewα(R, j), let p (resp. p′) be the minimal (resp.
maximal) element of L(T (j)) in the order <πα, and let
j′ denote the least common ancestor of p and p′ in T ,
with j′ ≤T j. For each x ∈ V , choose an element
px ∈ L(T (x)) such that p <πα px <

π
α p
′; this is possible

as R(π, T, x) and R(π, T, j) α-view each other, and as
we cannot have Iα(π, T, j) ⊆ Iα(π, T, x) by definition of
j. Let Y = {px | x ∈ V }. As the nodes of V form
an antichain for the relation <T , the elements px are
distinct, implying that |Y | = |V |. Consider the set
X = {p, p′} ∪ Y , and let T ′ = T |X. By definition of
j′, it is still a node of T ′. Furthermore, we have that
each px is not in L(T (j)) and thus not in L(T ′(j′)),
implying that L(T ′(j′)) = {p, p′}. We claim that j′ is
the internal node of T ′ with minimum index. By way
of contradiction, suppose that j′ is preceded by another
internal node k, such that k ≤ j′ ≤ j ≤ i. Consider
k′ ∈ S such that k ≤T k′. Then L(T (k′)) intersects Y
and thus R(π, T, k′) and R(π, T, j) α-view each other,
implying that k′ ∈ V . It follows that L(T (k′)) contains
two elements px, py, a contradiction. We obtain that
j′ is the internal node of T ′ with minimum index, and
thus L(T ′(j′)) = {p, p′} is a d-close pair of π|X. As
Intα(π|X, p, p′) = Y and |V | = |Y |, we conclude that
|V | < d.

(i) ⇒ (ii): The fact that T verifies property (ii) is
a consequence of the following points.

Point 1: let i be the internal node of T with
minimum index, then L(T (i)) is a d-close pair in π.
Suppose that L(T (i)) = {x, y}. Since the leaves of T
precede the internal nodes, S(T, i)−{i} contains exactly
the leaves of T distinct from x, y. It follows that for
each α ∈ {1, 2}, viewα(R(π, T, i), i) corresponds to the
elements of Intα(π, x, y), which has thus cardinality less
than d.

Point 2: for every X ⊆ S(π), D(π|X,T |X) is a d-
wide decomposition of π|X. It is enough to show this
for X of the form S(π)−{j} with |X| ≥ 2. Suppose that
X has this form, let π′ = π|X and let T ′ = T |X. Let u
denote the parent of leaf j in T , let v denote the other
child of u, and let w denote the parent of u in T (possibly
undefined if u is the root of T ). Note that T ′ is obtained
from T by suppressing the nodes j and u, and attaching
v as a child of w. Fix i ∈ I(T ′), let the associated
sets be S = S(T, i) and S′ = S(T ′, i), and let the
associated rectangle families be R = R(π, T, i) and R′ =

R(π′, T ′, i). We need to show that view(R′, i) < d. Fix
α ∈ {1, 2}, let V = viewα(R, i) and V ′ = viewα(R′, i).
Observe that for k ∈ I(T ′), if the intervals Iα(π′,R′, k)
and Iα(π′,R′, i) intersect, then in π the corresponding
intervals Iα(π,R, k) and Iα(π,R, i) also intersect. We
consider three cases:

• Case 1: j ∈ S. In this case, it holds that S′ =
S − {j}, which implies that V ′ ⊆ V and thus
|V ′| ≤ |V |.

• Case 2: u ∈ S. In this case, it holds that S′ =
S − {u} + {v}. Thus, we have either V ′ = V (if
u /∈ V ) or V ′ ⊆ V −{u}+ {v} (if u ∈ V ), and thus
|V ′| ≤ |V |.

• Case 3: u, j /∈ S. In this case, it holds that S′ = S,
which implies that V ′ ⊆ V and thus |V ′| ≤ |V |.

In all cases, we obtain that |V ′| ≤ |V | < d, which
concludes the proof. �

4 Finding decompositions

We present in this section a linear-time algorithm that
either finds a large grid or gives a decomposition of
bounded width:

Theorem 4.1. There exists an algorithm that, given a
reduced permutation π of length n, runs in O(n) time,
and either finds an r × r-grid of π, or returns the
merge sequence of a g(r)-wide decomposition of π, where
g(r) = 2O(r log r).

On one hand, Theorem 4.1 proves that grids are the
only obstructions for having a bounded-width decom-
position. On the other hand, this decomposition algo-
rithm together with the algorithm of Section 5 working
on bounded-width decompositions show that Permu-
tation Pattern is linear-time solvable for fixed `.

The proof of Theorem 4.1 relies on the following
statement, which is a variation of the main technical
result of Marcus and Tardos [24] in the proof of the
Stanley-Wilf conjecture.

Theorem 4.2. Let f(r) = r4
(
r2

r

)
. For every p, q, r ∈ N

with p+q > 2, if M is a point set included in [p]×[q] with
|M | > f(r)(p + q − 2), then M contains an r × r-grid.
Moreover, such a grid can be found in time O(|M |).

As the result in [24] is not stated algorithmically
and it finds a permutation pattern rather than a grid,
we reproduce the proof in Appendix A with appropriate
modifications. The proof of Theorem 4.1 below yields
g(r) = 4f(r); therefore, any improvement to Theorem
4.2 would immediately improve Theorem 4.1.

89 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Proof. [Proof (of Theorem 4.1)] Let d = 4f(r). The
algorithm (see Algorithm 1) maintains an integer k, a
rectangle family R, a merge sequence Σ and a gridding
G. Given a column x of G (resp. a row y of G), we
denote by d1(x) (resp. d2(y)) the number of rectangles
of R included in column x (resp. row y).

Initially: k = n+1; R = π; Σ is empty; the gridding
G consists of rows r1, . . . , rs and columns c1, . . . , cs, such
that each row ri and each column ci (1 ≤ i < s) contains
exactly d points of π. The algorithm ensures that the
following invariant conditions hold at each step:

(C1) each rectangle of R is included in a cell of G;
(C2) for any column x of G, d1(x) ≤ d, and for any row

y of G, we have d2(y) ≤ d;
(C3) for any two consecutive columns x, x′ of G, we have

d1(x) + d1(x′) > d;
(C4) for any two consecutive rows y, y′ of G, we have

d2(y) + d2(y′) > d;
(C5) R is d-wide.

Clearly, these conditions hold initially.
The algorithm performs the following main step re-

peatedly. As long as R contains at least two rectan-
gles, it does the following: (i) it looks for a cell (x, y)
of G which contains at least two rectangles of R; (ii)
if there is no such cell, then it constructs a point set
M corresponding to the nonempty cells and invokes the
algorithm of Theorem 4.2 to find an r×r-grid; (iii) oth-
erwise, let i, j be two rectangles of R inside G(x, y). The
algorithm merges them in a new rectangle numbered by
k, i.e. it updates R ← R[i, j → k], and it appends the
pair (i, j, k) to Σ. After this merge, the algorithm can
update the gridding G as follows: (i) if there is a column
x′ of G consecutive to x such that d1(x) + d1(x′) ≤ d,
then merge columns x and x′; (ii) if there is a row y′ of
G consecutive to y such that d2(y) + d2(y′) ≤ d, then
merge rows y and y′. Finally, the algorithm increments
k, and moves to the next step of the loop.

Correctness. To prove the correctness of the
algorithm, we first observe that the invariant conditions
(C1)–(C5) hold every time Step 6 of Algorithm 1 is
reached. Indeed, (C1) remains true, since we are
modifying G by merging rows and columns; (C2) holds,
since we merge two rows or columns only if they together
contain at most d rectangles; and (C3)–(C4) hold, since
we immediately merge any pair of rows or columns that
would violate it. Invariant (C5) is a consequence of (C1)
and (C2): a rectangle can only view other rectangles in
the same row or column.

Suppose that G is a p × q-gridding when Step 14
is reached, and let us construct the point set M =
{(x, y) ∈ [p] × [q] | G(x, y) contains a rectangle of R}.
As the condition in Step 6 did not hold, each point

(x, y) ∈ M corresponds to a single rectangle of R. It
follows that |M | > dbp2c ≥ dp−1

2 by Invariant (C3),

and |M | > db q2c ≥ d q−1
2 by Invariant (C4). Thus,

|M | > dp+q−2
4 = f(r)(p+q−2): we obtain by Theorem

4.2 that M contains an r×r-grid, which yields an r×r-
grid in π. Therefore, Step 15 indeed finds an r × r-grid
in π, which we return.

Finally, we observe that the sequence Σ returned
in Step 18 is the merge sequence of a d-wide decom-
position. Indeed, these merges produce a sequence of
rectangle families, with the last one containing only a
single rectangle. By invariant (C5), each rectangle fam-
ily is d-wide.

Details of implementing Algorithm 1 and achieving
the claimed O(n) running time appear in the full version
of the paper [19]. �

We close this section by stating a corollary of Theorem
4.1. Given a permutation π, we can define three values
that measure the “complexity” of π. The first measure is
the largest integer r such that π contains an r× r-grid;
we denote this measure as g(π). The second measure
is the smallest integer d such that every subpattern of
π has a d-close pair; we denote this measure as d(π).
The third measure is the width of π defined earlier,
denoted by w(π). We observe that these three measures
are equivalent, in the following sense: we say that two
functions m,m′ mapping permutations to integers are
equivalent if there exist increasing functions f, g : N →
N such that m(π) ≤ f(m′(π)) and m′(π) ≤ g(m(π))
hold for any permutation π.

Corollary 4.1. The measures g, d and w are equiva-
lent.

Proof. The equivalence between g and w follows from
Proposition 3.4 and Theorem 4.1. We now argue that d
is equivalent to the other two, by showing that d(π) ≤
w(π) and g(π) < 5d(π). On one hand, d(π) ≤ w(π)
follows from Proposition 3.6. On the other hand,
g(π) < 5d(π) follows by showing that any 5r × 5r-grid
permutation π has a subpattern containing no r-close
pair. Suppose that π is such a permutation, let G be the
corresponding 5r × 5r-gridding, and let p(x, y) denote
the point of π in column x, row y of G. We define the
subset S′ ⊆ S(π) containing the points p(x, y) such that
y ≡ 2x (mod 5), and we let π′ = π|S′. Observe that S′

contains exactly r points in each row and column of
G. Furthermore, we cannot have two distinct points
p(x, y), p(x′, y′) ∈ S′ with |x′ − x| ≤ 1 and |y′ − y| ≤ 1.
It follows that for any two elements p, p′ ∈ S′, either
|Int1(π′, p, p′)| ≥ r (if p, p′ belong to non-consecutive
columns) or |Int2(π′, p, p′)| ≥ r (if p, p′ belong to non-
consecutive rows). We conclude that π′ is a subpattern
of π with no r-close pair. �

90 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Algorithm 1 BuildDecomposition(π)

Input:
π: a permutation of length n

1: R := the rectangle family representing π
2: Σ := ()
3: k := n+ 1
4: initialize gridding G such that every row and column (except the last ones) contains exactly d points
5: while |R| > 1
6: if there are two rectangles R(i), R(j) in some cell G(x, y)
7: R := R[i, j → k]
8: append (i, j, k) to Σ
9: if d1(x) + d1(x′) ≤ d for some x′ ∈ {x− 1, x+ 1}

10: merge columns x and x′ in G
11: if d2(y) + d1(y′) ≤ d for some y′ ∈ {y − 1, y + 1}
12: merge rows y and y′ in G
13: else
14: construct the point set M /* We have |M | > f(r)(p+ q − 2) */
15: use the algorithm of Theorem 4.2 to find an r × r grid in M
16: return the grid
17: k := k + 1
18: return Σ

5 Solving the Permutation Pattern problem

This section is devoted to showing that the Permuta-
tion Pattern problem can be solved in linear time if
a decomposition of bounded width is given in the input:

Theorem 5.1. The Permutation Pattern problem
can be solved in time (d`)O(`) · n, where ` = |σ| and
n = |π|, if the merge sequence of a d-wide decomposition
of π is given in the input.

To prove Theorem 1.1, we run first the algorithm of
Theorem 4.1 on permutation π with r = `, which
takes O(n) time. If the algorithm concludes that π
has an ` × `-grid, we conclude that σ is a subpattern
of π and we answer “yes”. Otherwise, we obtain the
merge sequence of a g(`)-wide decomposition of π, where
g(`) = 2O(` log `). Using Theorem 5.1, we can then
decide if σ is a subpattern of π in time (g(`)`)O(`) · n =

2O(`2 log `) · n.
For the proof of Theorem 5.1, let D =

(R0, . . . ,Rn−1) be the decomposition of π given in the
input, with Ri = (Si, Ri). Recall that each rectangle
in Ri was created by a sequences of merges (possibly 0)
from the rectangle family R0 representing the permu-
tation π. We denote by L(j) the set of points (more
precisely, indices) taking part in the merges creating
rectangle indexed by j. For example, in Figure 1, we
have L(13) = {3, 4, 5, 8}. Note that, even if a point p is
covered by rectangle j, it is not necessarily in L(j): for
example, in Figure 1, point 6 is covered by rectangle 13,
but 6 is not in L(13), as it did not take part in any of

j

(a)

j1
j2

(b)

Figure 3: Step i+1 of the decomposition merges j1 and
j2 to j. (a) A connected set K of Gi+1 containing j.
(b) Replacing j with j1 and j2 gives a set KΠ inducing
4 connected components in Gi.

the 3 merges creating 13 (point 6 appears only in L(6),
L(11), L(14), and L(15)).

For 0 ≤ i ≤ n − 1, we define the visibility graph
Gi at step i of the decomposition the following way:
the vertex set of Gi is Si and x, y ∈ Si are adjacent if
and only if the rectangles Ri(x) and Ri(y) α-view each
other for some α ∈ {1, 2}. As Ri is a d-wide rectangle
family, it follows that Gi has maximum degree at most
2d. Figure 3(a) shows a connected set of rectangles
in the visibility graph (by “connected set”, we mean
that they induce a connected subgraph of the visibility
graph).

We solve the Permutation Pattern problem
using dynamic programming. For each step i, we define
a set of subproblems. Informally, a subproblem asks for

91 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



a subset of σ to be embedded into elements of π that
appear in a set K of rectangles inducing a connected
subgraph of the visibility graph Gi, with the elements
of σ distributed among the rectangles of K in a specified
way.

For the formal definition of the subproblems, we
need the following definition first. Given two sets X,Y ,
a distribution of X into Y is a function F : Y → 2X

such that for i, j ∈ Y distinct, F (i)∩F (j) = ∅; the range
of F is Rng(F ) = ∪i∈Y F (i). An admissible subproblem
is a triple t = (i,K, F ), where

• 0 ≤ i ≤ n− 1,
• K is a connected subset of Gi, and
• F is a distribution of S(σ) into K such that F (i) 6=
∅ for each i ∈ K.

Note that the last condition implies that K can have at
most ` vertices. We define the range of t as Rng(F ).
The number of possible distributions is (|K|+1)|S(σ)| =
`O(`). The following simple fact bounds the number of
possible connected sets, and it follows that the number
of subproblems is (d`)O(`) · n for a given i.

Proposition 5.1. If G is a graph with maximum de-
gree ∆ and v is a vertex of G, then the number of sets K
of size at most ` such that v ∈ K and G[K] is connected
is ∆O(`). Moreover, all these sets can be enumerated in
time ∆O(`).

Proof. The vertices of G[K] can be visited by a walk
of length at most 2` − 1 starting at v. In each step of
the walk, we move to one of the at most ∆ neighbors.
Thus there are at most ∆2`−1 such walks, which is an
upper bound on the number of sets K. Enumerating
all these walks gives ∆O(`) sets that are not necessarily
distinct. However, we may sort these sets in time ∆O(`)

and remove the duplicates. �

We say that t is satisfiable iff there exists a mapping
φ : Rng(F )→ S(π) such that

(i) for each p ∈ Rng(F ), if p ∈ F (j), then φ(p) ∈ L(j),
and

(ii) φ is an embedding of σ|Rng(F ) into π.

In this case, we say that φ is a solution of t. Recall that
Rn−1 contains only a single rectangle j and L(j) = S(π).
Therefore, there is an embedding from σ to π if and only
if the subproblem (n−1, {j}, F ) is satisfiable, where F is
the distribution of S(σ) into {j} such that F (j) = S(σ).

Lemma 5.1 below gives a recurrence relation that
allows us to decide if a subproblem t = (i + 1,K, F )
is satisfiable, assuming that we have computed the
satisfiable subproblems at step i. Our goal is to show

that a solution φ for t can be constructed by putting
together solutions for particular subproblems at step i.

Suppose that t = (i+ 1,K, F ) is an admissible sub-
problem, and suppose that step i+ 1 of the decomposi-
tion merges j1, j2 into j. Clearly, this means that L(j)
is the disjoint union of L(j1) and L(j2). Any solution φ
of t maps F (j) to L(j) = L(j1)∪L(j2), hence it defines
a bipartition of the elements of L(j). As a first step of
solving t, we guess this bipartition, that is, which ele-
ments of F (j) are mapped to L(j1) and to L(j2) (there
are 2|L(j)| ≤ 2` such bipartitions). Let X = F (j), and
fix a bipartition Π = (X1, X2) of X. Mapping φ maps
Rng(F ) to the rectangles K−{j}+{j1, j2} of Gi. How-
ever, there is a technical detail here: if X1 or X2 is
empty, then φ does not map any element of Rng(F ) to
L(j1) or L(j2), respectively. Therefore, we define the
set KΠ as follows:

KΠ =


K − {j}+ {j1, j2} if X1, X2 6= ∅,
K − {j}+ {j1} if X1 6= ∅, X2 = ∅,
K − {j}+ {j2} if X1 = ∅, X2 6= ∅.

We define the distribution FΠ : KΠ → 2S(σ) that
describes how mapping φ maps the elements of K to
the rectangles in KΠ:

FΠ(k) =


F (k) if k 6∈ {j1, j2},
X1 if k = j1,

X2 if k = j2.

Assuming that we have already computed the satisfi-
able subproblems at step i, we would like to use this
information to decide whether there is a solution φ sat-
isfying t = (i + 1,K, F ) that corresponds to the bipar-
tition Π. Let us observe that if (i,KΠ, FΠ) happens
to be an admissible and satisfiable subproblem, then it
immediately implies the existence of such a solution φ.
However, in general, KΠ is not necessarily connected.
In that case, we would like to put together the solution
φ from the solutions of the subproblems correspond-
ing to the connected components of Gi[K

Π]. Formally,
if C is a connected component of Gi[K

Π], we define
the subproblem tΠ,C = (i, C, FΠ|C). If C1, . . . , Cm
are the connected components of Gi[K

Π], then we let
TΠ = {tΠ,C1 , . . . , tΠ,Cm} denote the set of subproblems
corresponding to these components; observe that they
are admissible subproblems. Note that Gi[K

Π] can have
more than two connected components: it is not true that
every connected component contains either j1 or j2. As
Figure 3(b) shows, rectangle j can view rectangles that
neither j1 nor j2 view, thus there can be connected com-
ponents not containing either j1 or j2.

We would like to combine solutions of the subprob-
lems in TΠ to obtain a solution for subproblem t. How-

92 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ever, the subproblems have to satisfy a certain condition
in order for this to be possible. Consider two admissible
subproblems t1 = (i,K1, F1) and t2 = (i,K2, F2). We
say that t1 and t2 are independent if Rng(F1),Rng(F2)
are disjoint, K1 and K2 are disjoint, and Gi has no edge
between K1 and K2. Observe that the subproblems in
TΠ are pairwise independent. Suppose that t1 and t2
are independent with solutions φ1 : Rng(F1) → S(π)
and φ2 : Rng(F2)→ S(π), respectively. Then the map-
ping φ : Rng(F1)∪Rng(F2)→ S(π) defined the obvious
way from φ1 and φ2 is not necessarily a correct embed-
ding of σ|Rng(F1) ∪ Rng(F2). The problem is that if
r1 ∈ K1 and r2 ∈ K2, then for some s1 ∈ F1(r1) and
s2 ∈ F2(r2), the relative position of the points φ(s1) and
φ(s2) is not necessarily the same as the relative position
of s1 and s2. However, the crucial observation here is
that the rectangles r1 and r2 do not view each other,
hence the relative position of φ(s1) and φ(s2) depend
only on the relative position of r1 and r2, and not on
the actual selection of points in r1 and r2. Therefore,
the sets K1 and K2 and the distributions F1 and F2 al-
ready determine if the two solutions can be combined.
Formally, two independent subproblems t1 = (i,K1, F1)
and t2 = (i,K2, F2), are said to be compatible if for each
r1 ∈ K1, r2 ∈ K2 and α ∈ {1, 2}:

• if Iα(Ri(r1)) < Iα(Ri(r2)) then for each p1 ∈
F1(r1), p2 ∈ F2(r2) it holds that p1 <

σ
α p2, and

• if Iα(Ri(r2)) < Iα(Ri(r2)) then for each p1 ∈
F1(r1), p2 ∈ F2(r2) it holds that p2 <

σ
α p1.

Note that by the independence assumption for t1
and t2, one of the above two conditions must hold. We
are now able to state the recurrence relation as follows:

Lemma 5.1. Suppose that t = (i + 1,K, F ) is an
admissible subproblem. Then t is satisfiable if and only
if

• j /∈ K and t′ = (i,K, F ) is satisfiable, or
• j ∈ K and there exists a bipartition Π of X

such that the subproblems of TΠ are satisfiable and
pairwise compatible.

Proof. The case when j /∈ K is clear, by observing that
if j /∈ K then t′ is also an admissible subproblem. Let
us consider the case when j ∈ K.

Suppose that t is satisfiable through a mapping
φ : Z → S(π) with Z the range of t. Let Π = (X1, X2)
with Xr = φ−1(L(jr)), we show that the subproblems of
TΠ satisfy the requirement. Suppose that the connected
components ofGi[S

Π] are C1, . . . , Cm, and let tr = tΠ,Cr

for r ∈ [m]. As the Cr’s are the connected components
of Gi[S

Π], each tr is an admissible subproblem, and they
are pairwise independent. Let Zr denote the range of

tr, then Z1, . . . , Zm form a partition of Z. We first show
that each subproblem tr is satisfiable through φ|Zr.
Point (ii) of the definition is verified as it holds for φ, and
for point (i) observe that if p ∈ FΠ(k) and k ∈ Cr then:
either k 6= j1, j2, hence p ∈ F (k) and thus φ(p) ∈ L(k)
(by definition of φ), or k = js in which case p ∈ Xs and
thus φ(p) ∈ L(js) (by definition of Xs). We now show
that two triples tr = (i,K1, F1), ts = (i,K2, F2) are
compatible. Indeed, suppose that k ∈ K1 and k′ ∈ K2

are such that Iα(Ri(k)) < Iα(Ri(k
′)), then for p ∈ F1(k)

and p′ ∈ F2(k′) we have φ(p) ∈ L(k), φ(p′) ∈ L(k′) (by
definition of φ), and thus φ(p) <πα φ(p′), which implies
that p <σα p

′ as φ is an embedding.
Conversely, suppose that there exists Π = (X1, X2)

bipartition of X such that the subproblems of TΠ are
satisfiable and pairwise compatible. Suppose that the
connected components of Gi[S

Π] are C1, . . . , Cm, and
let tr = tΠ,Cr for r ∈ [m]. Let Zr denote the range
of tr, and let Z denote the range of t, then Z1, . . . , Zm
form a partition of Z. Suppose that tr is satisfiable
through a mapping φr : Zr → S(π). We can then define
φ : Z → S(π) which coincides with φr on Zr. We show
that t is satisfiable through φ. We first show Point (i)
of the definition. Suppose that p ∈ F (k). If k 6= j,
we have that p ∈ (FΠ|Cr)(k) for some r, which implies
that φ(p) = φr(p) ∈ L(k) (by definition of φr). If k = j,
then we have p ∈ Xs for some s ∈ {1, 2}, and thus
p ∈ (FΠ|Cr)(js) for the component Cr containing js,
which implies that φ(p) = φr(p) ∈ L(js) (by definition
of φr) and thus in L(j). We now show Point (ii) of
the definition. Let p, p′ be two elements of Z and
α ∈ {1, 2}, and suppose that p <σα p

′, we need to show
that φ(p) <πα φ(p′). If p, p′ belong to a same set Zr, then
φ(p) = φr(p) <

π
α φr(p

′) = φ(p′) (by definition of φr). If
p ∈ Zr, p′ ∈ Zs with r 6= s, suppose that p ∈ (FΠ|Cr)(k)
and p′ ∈ (FΠ|Cs)(k′). As tr and ts are compatible
and as p <σα p′, we have Iα(Ri(k)) < Iα(Ri(k

′)). As
φ(p) = φr(p) ∈ L(k) and φ(p′) = φs(p

′) ∈ L(k′), we
conclude that φ(p) <πα φ(p′). �

Lemma 5.1 allows us to determine if t = (i +
1,K, F ) is satisfiable, assuming that we have solved
all subproblems at step i (see Algorithm 2). Let us
briefly sketch how to implement this algorithm in time
(d`)O(`) ·n; more details and a more precise time bound
can be found in the full version of the paper [19].

We maintain a representation of the graph Gi and
for every v ∈ Si, a linked list of every subset K of size
at most ` containing v such that Gi[K] is connected;
note that each such list is of size dO(`) by Lemma 5.1.
For each such set K, there is a linked list of all the
satisfiable subproblems (i,K, F ) for every distribution
F ; the length of this list is `O(`). In order to get Gi+1

from Gi efficiently, we maintain a sorted linked list of

93 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Algorithm 2 FindPattern(π, σ,D)

Input:
π: a permutation of length n
σ: a permutation of length `
D: a decomposition of π

1: for i := 0 to n− 2
2: suppose that step i+ 1 merges j1, j2 to obtain j.
3: update Gi to obtain Gi+1.
4: for every subproblem t = (i+ 1,K, F )
5: if j /∈ K
6: add (i+ 1,K, F ) to the list of satisfiable subproblems if (i,K, F ) is satisfiable.
7: else
8: for every bipartition Π of F (j)
9: compute V Π

10: compute the connected components C1, . . . , Cq
11: compute the set TΠ of subproblems.
12: if the subproblems in TΠ are pairwise compatible
13: add (i+ 1,K, F ) to the list of satisfiable subproblems.
14: let j be the unique rectangle in Rn−1

15: let F be the distribution of S(σ) into {j} with F (j) = S(σ).
16: if (n− 1, j, F ) is satisfiable
17: return “yes”
18: else
19: return “no”

the horizontal endpoints of all the rectangles appearing
in Ri (containing two entries for each rectangle) and
a similar list for the vertical endpoints. When j1 and
j2 are merged to obtain j, we can use these lists of
endpoints to efficiently find all those rectangles that
j views, but neither j1 not j2 views. Therefore, we
can efficiently update Gi to obtain Gi+1. Then for
every vertex of Gi+1 at distance at most `, we have to
recompute the list of connected subsets; there are dO(`)

such vertices and enumeration of the subsets takes dO(`)

time at each vertex.
To solve the subproblems at step i + 1, we have

to update only those subproblems t = (i + 1,K, F )
for which j ∈ K holds, where j is the new rectangle
created at this step. For each such subproblem, we
enumerate every bipartition Π of L(j) and compute
the set KΠ and distribution FΠ. We compute the
connected components C1, . . . , Cm of Gi[K

Π] and the
set of subproblems TΠ. By Lemma 5.1, we need to
check if these problems are pairwise compatible, and
if so, we have to add this satisfiable subproblem to
the list of every v ∈ K. Note that all these steps
involve only vertices at distance at most ` from j,
j1, or j2, whose number is dO(`), and each operation
can be performed in time dO(`). As there are (d`)O(`)

subproblems (i + 1,K, F ) with j ∈ K, all the updates
for step i+ 1 can be done in time (d`)O(`).

6 Hardness results

In this section, we establish the W[1]-hardness of some
variants of the Permutation Pattern problem. We
first consider the following constrained version of the
problem.

Partitioned Permutation Pattern
Input: Two permutations σ and π, a

partition of S(π) in sets Si (i ∈
S(σ))

Question: Does there exist an embedding φ
of σ into π such that φ(i) ∈ Si for
each i ∈ S(σ)?

Theorem 6.1. Partitioned Permutation Pat-
tern is W[1]-hard for parameter |σ|, even when σ is a
canonical r × r-grid.

Proof. We give a reduction from Partitioned Clique
[26]. Let I be an instance of Partitioned Clique,
consisting of a graph H = (V,E), an integer k, and
a partition of V into sets V1, . . . , Vk. We let σ be the
canonical (3k+ 1)× (3k+ 1)-grid. We now describe the
construction of π. For each i ∈ [k], let v1

i , . . . , v
ni
i be an

enumeration of Vi. We start with a rectangle R = I×J ,
and we subdivide I into intervals I0, . . . , Ik and J into
intervals J0, . . . , Jk. Then we subdivide each interval
Ii (i ∈ [k]) into 3ni consecutive intervals I1

i,j , I
2
i,j , I

3
i,j

94 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



(1 ≤ j ≤ ni), and we subdivide each interval Ji (i ∈ [k])
into 3ni consecutive intervals J1

i,j , J
2
i,j , J

3
i,j (1 ≤ j ≤ ni).

Let G be the resulting (3n + 1) × (3n + 1)-gridding
of R. Each cell C of G will contain at most one
point of π according to the following criterion: (i) if
C = I2

i,x × J2
j,y, then C contains a point iff (i = j

and x = y) or (i 6= j and {vix, vjy} ∈ E); (ii) every
other cell contains one point. It remains to describe
the horizontal ordering of the points inside a column
of G, and the vertical ordering of the points inside
a row of G. Inside a column x of G corresponding
to an interval Iri,j , we order the points such that if
p ∈ G(x, y) and p′ ∈ G(x, y′), then pr1(p) < pr1(p′)
iff y′ < y. Inside a row y of G corresponding to an
interval Jri,j , we order the points such that if p ∈ G(x, y)
and p′ ∈ G(x′, y) then pr2(p) < pr2(p′) iff x < x′. Inside
column 1 of G corresponding to the interval I0, we order
the points such that if p ∈ G(1, y) and p′ ∈ G(1, y′),
then: (i) if y corresponds to Jri,j and y′ corresponds
to Jsi,j′ with j < j′, then pr1(p) < pr1(p′); (ii) in
all other cases, pr1(p) < pr1(p′) iff y′ < y. Inside
row 1 of G corresponding to the interval J0, we order
the points such that if p ∈ G(x, 1) and p′ ∈ G(x′, 1),
then: (i) if x corresponds to Iri,j and x′ corresponds
to Isi,j′ with j′ < j, then pr2(p) < pr2(p′); (ii) in all
other cases, pr2(p) < pr2(p′) iff x < x′. We let π
be the resulting permutation. Finally, we define the
sets Si (i ∈ S(σ)) as follows. Let us denote by p(x, y)
the element of S(σ) corresponding to the point in the
(x, y)th cell of the gridding of σ. For a point p of π, we
define f1(p) such that if p ∈ I0 × J then f1(p) = 1,
and if p ∈ Iri,j × J then f1(p) = 3(i − 1) + r + 1;
we define f2(p) symmetrically, and we put the point
p in Sp(f1(p),f2(p)). Let I′ be the resulting instance
of Partitioned Permutation Pattern, then I′ can
clearly be constructed in polynomial time.

We now argue for the correctness of the reduction.
Suppose that H has a clique C = {vp11 , . . . , vpkk }. Given
2 ≤ i ≤ 3k+ 1, let f(i) = ((i− 2) div 3 + 1, (i− 2) mod
3 + 1). We define φ : S(σ)→ S(π) as follows:

• We map p(1, 1) to the unique point of π in I0× J0;

• for 2 ≤ x ≤ 3k + 1, let (i, r) = f(x), then we map
p(x, 1) to the unique point of π in Iri,pi × J0;

• for 2 ≤ y ≤ 3k + 1, let (j, s) = f(y), then we map
p(1, y) to the unique point of π in I0 × Jsj,pj ;

• for 2 ≤ x, y ≤ 3k + 1, let (i, r) = f(x) and
(j, s) = f(y), then we map p(x, y) to the unique
point of π in Iri,pi × J

s
j,pj

.

Note that in the last case, the existence of the point
follows from the fact that {vipi , v

j
pj} ∈ E. We then have

φ(p) ∈ Sp for each p ∈ S(σ), and it can be checked that
φ is an embedding of σ into π. Conversely, suppose that
φ is an embedding of σ into π such that φ(p) ∈ Sp for
each p ∈ S(σ). Given i ∈ [k], consider the elements
q1
i = p(3(i − 1) + 2, 1), q2

i = p(3(i − 1) + 3, 1), q3
i =

p(3(i− 1) + 4, 1) in S(σ). We have q1
i <

σ
2 q

2
i <

σ
2 q

3
i , and

by the arrangement of the points it means that there
exists 1 ≤ pi ≤ ni such that φ(qai ) is the unique point
of Iai,pi × J0. Likewise, given j ∈ [k], by considering the

points r1
j = p(1, 3(j−1)+2), r2

j = p(1, 3(j−1)+3), r3
j =

p(1, 3(j−1)+4), we obtain that there exists 1 ≤ p′j ≤ nj
such that φ(raj ) is the unique point of I0 × Jaj,p′j . Now,

for i, j ∈ [k], consider si,j = (3(i− 1) + 3, 3(j − 1) + 3).
Since q1

i <σ1 si,j <σ1 q3
i , it follows that φ(si,j) is in

I2
i,pi
×J ; since r1

j <
σ
2 si,j <

σ
2 r

3
j , it follows that φ(si,j) is

in I×J2
j,p′j

; thus φ(si,j) is the unique point of I2
i,pi
×J2

j,p′j
.

In particular, since for i ∈ [k] the point φ(ri,i) is present
we obtain that pi = p′i, and since for i, j ∈ [k] distinct
the point φ(ri,j) is present we obtain that {vpii , v

pj
j } ∈

E. We conclude that C = {vp11 , . . . , vpkk } is a clique of
H. �

We now consider the generalization of the
Permutation Pattern problem to d-dimensional
permutations. Given an integer d, a d-dimensional
point is a tuple p = (x1, . . . , xd) ∈ Nd, and for α ∈ [d]
we define prα(p) = xα. A d-dimensional permutation
is defined as a tuple π = (S, P ) with S a set and
P : S → Nd an injection such that P (S) is a set
of d-dimensional points in general position (i.e. for
each α ∈ [d] it holds that prα is injective on P (S));
we let S(π) = S. Given p, p′ ∈ S and α ∈ [d], we
denote p <πα p

′ iff prα(P (p)) < prα(P (p′)). Given two
d-dimensional permutations σ and π, an embedding
of σ into π is a function φ : S(σ) → S(π) such that
for every p, p′ ∈ S(σ), for every α ∈ [d], p <σα p′ iff
φ(p) <πα φ(p′). We consider the following problem.

d-Dimensional Permutation Pattern
Input: Two d-dimensional permutations

σ and π.
Question: Does there exist an embedding of

σ into π?

Theorem 6.2. For every d ≥ 3, d-Dimensional Per-
mutation Pattern is W[1]-hard for parameter |σ|.

Proof. We prove the result for d = 3, since the extension
to any d ≥ 3 is straightforward. We give the following
reduction from Partitioned Permutation Pattern.
Let I be an instance of Partitioned Permutation
Pattern, consisting of a permutation σ with S(σ) =
[`], a permutation π, and a partition of S(π) in sets

95 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



S1, . . . , S`. We assume w.l.o.g. that for i, j ∈ [`],
i < j iff i <σ1 j. Suppose that σ = (Sσ, Pσ) and π =
(Sπ, Pπ). We define two 3-dimensional permutations
σ′ = (Sσ, Pσ′) and π′ = (Sπ, Pπ′) as follows. For each
i ∈ Sσ, if Pσ(i) = (x, y) then we set Pσ′(i) = (x, y, i).
Now, we define a numbering f(i) of the points of π as
follows: we first number the points of S1 by decreasing
x-coordinate, then the points of S2 by decreasing x-
coordinate, etc. For each i ∈ Sπ, if Pπ(i) = (x, y) then
we set Pπ′(i) = (x, y, f(i)). Let I′ = (σ′, π′) be the
resulting instance, observe that I′ can be constructed
in polynomial time. We show that I is a positive
instance of Partitioned Permutation Pattern iff I′

is a positive instance of 3-Dimensional Permutation
Pattern.

Suppose that I is a positive instance via an em-
bedding φ of σ into π. Given i, j ∈ Sσ distinct, for each
α ∈ {1, 2} we have that i <σ

′

α j iff φ(i) <π
′

α φ(j) (by defi-
nition of φ), and for α = 3 we have that i <σ

′

3 j iff i < j
iff f(φ(i)) < f(φ(j)) (since φ(i) ∈ Si and φ(j) ∈ Sj ,

and as i, j are distinct) iff φ(i) <π
′

3 φ(j). Conversely,
suppose that I′ is a positive instance via an embedding
φ of σ′ into π′. Clearly, φ is also an embedding of σ
into π, and there is a function ψ : [`] → [`] such that
φ(i) ∈ Sψ(i) for each i ∈ [`]. Suppose by contradic-
tion that ψ is not the identity function, then there exist
i, j ∈ [`] such that i < j and ψ(j) ≤ ψ(i). If ψ(i) = ψ(j),
we obtain that i <σ1 j and thus φ(i) <π1 φ(j), but
then f(φ(j)) < f(φ(i)); if ψ(j) < ψ(i), we also obtain
that f(φ(j)) < f(φ(i)). In both cases, we obtain that
φ(j) <π

′

3 φ(i) and i <σ
′

3 j, contradicting the assumption
that φ is an embedding. �

7 The case of t-monotone permutations

The notions of increasing and decreasing permutations
are defined the obvious way and we will use monotone
for a permutation that is either increasing or decreasing.
Formally, let π be a permutation, we say that π is
increasing (resp., decreasing) if for any p, p′ ∈ S(π),
it holds that p <π1 p′ iff p <π2 p′ (resp., p′ <P2 p);
we say that π is monotone if it is either increasing
or decreasing. Given an integer t, we say that π is
t-increasing (resp., t-monotone) if there is a partition
Π = (S1, . . . , St) of S(π) such that π|Si is increasing
(resp., monotone) for each i ∈ [t]. The partition Π will
be called a t-increasing (resp., t-monotone) partition.

Let us briefly discuss the recognition problem for
these classes. While t-increasing permutations can be
recognized in polynomial time, recognizing t-monotone
permutations is NP-hard for unbounded t [6]. For a
fixed t, recoginizing t-monotone permutations is fixed-
parameter tractable: the algorithm of Heggernes et
al. solves the problem in time 2O(t2 log t) · nO(1) [21].

We can also give a constant-factor approximation for
the problem in the sense that, given a permutation π of
length n, in time O(n2) we can either find a ct-monotone
partition of π, or conclude that π is not t-monotone.
This easily follows from Greene theorem with c = 2 [17],
and there exists a better algorithm that yields c = 1.71
[16].

7.1 Width of t-monotone permutations It can
be seen that a t-increasing permutation cannot have a
(t+1)×(t+1)-grid, and that a t-monotone permutation
cannot have a (2t+1)×(2t+1)-grid. It follows that these
permutations have bounded width (at most 4f(2t+ 1))
by Theorem 4.1. The following result gives a better
bound.

Proposition 7.1. If π is a t-monotone permutation,
then w(π) ≤ 6t− 5.

Proof. We first need some additional definitions on
rectangle families. Let R = (S,R) be a rectangle family.
Given S′ ⊆ S, we let R|S′ = (S′, R|S′). We say that
R is increasing if there is an enumeration i1, . . . , in of
S such that for each p < q, I1(R(ip)) < I1(R(iq))
and I2(R(ip)) < I2(R(iq)). Likewise, we say that R

is decreasing if there is an enumeration i1, . . . , in of S
such that for each p < q, I1(R(ip)) < I1(R(iq)) and
I2(R(ip)) > I2(R(iq)). In each case, we call consecutive
two indices of the form ip, ip+1. We say that R is
monotone if it is increasing or decreasing; we say that
R is t-monotone if it admits a t-monotone partition, i.e.
a partition of S in sets S1, . . . , St such that each R|Sr
is monotone.

We are now ready to prove the proposition. Suppose
that π has a t-monotone partition Π = (S1, . . . , St).
Starting with R = π, we will do a sequence of merges
maintaining the following invariants: (i) R is a (6t− 5)-
wide rectangle family; (ii) Π is a t-monotone partition
of R. At each step, we proceed as follows. Suppose
that R = (S,R) and Π = (S1, . . . , St). If each set Sr
is a singleton, then R has at most t rectangles and we
can easily complete the sequence of merges. Suppose
now that some set Sr is not a singleton. We define
the set M of mergeable pairs as the set of pairs (i, j)
coming from a same set Sr and that are consecutive
in R|Sr; observe that M is not empty. Given a pair
m = (i, j) ∈ M coming from a set Sr, by merging
the pair m, we mean the following: (i) replace R by
R′ = R[i, j → k] where k is a new index; (ii) replace Π
by Π′ = (S′1, . . . , S

′
t) where S′r = Sr − {i, j}+ {k}, and

S′s = Ss for s 6= r. Observe that after this operation,
Π′ is still a t-monotone partition of R′. We will show
that we can find a mergeable pair in M whose merging
results in a new rectangle k with view(R′, k) < 6t− 5.

96 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Consider a pair m = (i, j) ∈ M, and let R be
the smallest rectangle enclosing R(i) ∪ R(j). For each
α ∈ {1, 2}, we define pinα(m) as the set of elements
i′ ∈ S − {i, j} such that Iα(R(i′)) ⊆ Iα(R), we define
the sum Σα :=

∑
m∈M |pinα(m)|, and we define

Σ :=
∑
m∈M max(|pin1(m)|, |pin2(m)|).

Claim 7.1. For each α ∈ {1, 2}, Σα ≤ 2(t− 1)|M|.

Proof. Fix α ∈ {1, 2}. We say that an element i ∈ S
contributes to a pair m ∈ M if i ∈ pinα(m); we let
cont(i) denote the number of pairs m ∈ M to which i
contributes. Then clearly Σα =

∑
i∈S cont(i). Observe

that an element i ∈ Sr contributes to no pair in Sr,
and to at most two pairs in each set Ss (s 6= r), hence
cont(i) ≤ 2(t − 1). This yields that Σα ≤ 2(t − 1)|S|.
We can slightly improve the bound to 2(t − 1)|M| as
follows. For each s ∈ [t], let is, i

′
s be the first and

last indices in the natural enumeration of Ss. Let us
sort the elements s ∈ [t] by increasing order of the
left endpoint of Iα(R(is)); this gives an enumeration
E1 of [t]. Likewise, let us sort the elements s ∈ [t]
by decreasing order of the right endpoint of Iα(R(i′s));
this gives an enumeration E2 of [t]. Now, if s is the
pth element of E1 (resp., E2), we have that cont(is) ≤
2(p − 1) (resp., cont(i′s) ≤ 2(p − 1)). It follows that
Σα ≤ 2(t−1)(|S|−2t)+2

∑t
p=1 2(p−1) = 2(t−1)|S|−

4t(t− 1) + 2t(t− 1) = 2(t− 1)(|S| − t) = 2(t− 1)|M|. y

Now, for each m ∈ M, we have
max(|pin1(m)|, |pin2(m)|) ≤ |pin1(m)| + |pin2(m)|,
and thus Σ ≤

∑
m∈M(|pin1(m)| + |pin2(m)|) =

Σ1 + Σ2 ≤ 4(t − 1)|M|. Hence, we can find a pair
m ∈ M coming from a set Sr such that for each
α ∈ {1, 2} it holds that |pinα(m)| ≤ 4(t− 1). Consider
the result of merging pair m into a new rectangle k, thus
yielding the rectangle family R′ and the t-monotone
partition Π′ = (S′1, . . . , S

′
t).

Claim 7.2. view(R′, k) ≤ 6(t− 1).

Proof. We show that |viewα(R′, k)| ≤ 6(t− 1) holds for
each α ∈ {1, 2}. Let V = viewα(R′, k), we partition V
in two sets V1 := pinα(m) and V2 := V \V1. Observe
that S′r contains no element from V , and that for s 6= r
the set S′s can contain at most two elements from V2

(for if S′s contains three elements u, v, w ∈ V with
Iα(R(u)) < Iα(R(v)) < Iα(R(w)), then v ∈ V1). It
follows that |V2| ≤ 2(t− 1), and as we also have |V1| =
|pinα(m)| ≤ 4(t− 1), we conclude that |V | ≤ 6(t− 1) as
claimed. y

That is, R′ is also (6t− 5)-wide, as required. �

Observe that the proof of Proposition 7.1 can be
turned into an algorithm that takes a permutation π of
length n together with a t-monotone partition, and pro-
duces in time O(n2) a (6t−5)-wide decomposition of π.
Combining this with Theorem 5.1, this yields a tO(`)n2

algorithm for the Permutation Pattern problem on
t-monotone permutations. However, it turns out that
this problem admits a very simple algorithm using the
theory of constraint satisfaction problems and com-
pletely independent of our decomposition and width
measure; we present this algorithm in the next section.

7.2 CSPs and t-monotone permutations We
present an algorithm for solving Permutation Pat-
tern on t-monotone instances by reducing it to a con-
straint satisfaction problem. The algorithm relies on
the known fact that a CSP instance with a majority
polymorphism can be solved in polynomial time.

As our use of CSP techniques is standard and what
makes it surprising is the observation is that these
techniques solve the problem immediately, we recall only
briefly the most important notions related to CSPs. For
more background, the reader is referred to, e.g., the
survey [8].

Definition 7.3. An instance of a constraint satisfac-
tion problem is a triple (V,D,C), where:

• V is a set of variables,
• D is a domain of values,
• C is a set of constraints, {c1, c2, . . . , cq}. Each

constraint ci ∈ C is a pair 〈si, Ri〉, where:

– si is a tuple of variables of length mi, called
the constraint scope, and

– Ri is an mi-ary relation over D, called the
constraint relation.

For each constraint 〈si, Ri〉 the tuples of Ri indicate
the allowed combinations of simultaneous values for the
variables in si. The length mi of the tuple si is called
the arity of the constraint. A solution to a constraint
satisfaction problem instance is a function f from the
set of variables V to the domain of values D such that
for each constraint 〈si, Ri〉 with si = 〈vi1 , vi2 , . . . , vim〉,
the tuple 〈f(vi1), f(vi2), . . . , f(vim)〉 is a member of Ri.

A polymorphism of a (say, n-ary) relation R on D
is a mapping f : Dk → D for some k such that for any
tuples a1, . . . ,ak ∈ R the tuple

f(a1, . . . ,ak) = (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n]))

belongs to R. A majority polymorphism is a ternary
polymorphism f with the property that f(x, x, y) =
f(x, y, x) = f(y, x, x) = x for any x, y ∈ D. It is
known that if there is a function f that is a majority

97 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



polymorphism for every constraint of the instance, then
the instance can be solved in polynomial time [14].

We solve a constrained version of the Permuta-
tion Pattern problem, where the image of each el-
ement of σ has to be in a prespecified monotone se-
quence. That is, given two permutations σ and π, given
a t-monotone partition Σ = (S1, . . . , St) of σ and a t-
monotone partition Π = (S′1, . . . , S

′
t) of π, the task is to

find an embedding φ of σ into π such that φ(Si) ⊆ S′i
holds for each i ∈ [t]. Such an embedding φ will be
called a (Σ,Π)-embedding. We show that the (Σ,Π)-
embedding problem is polynomial-time solvable; then
by trying all possible partitions Σ, we get an algorithm
for the original Permutation Pattern problem on t-
monotone permutations.

We define a CSP instance I = (V,D,C) with V =
S(σ) and D = S(π). The intended meaning of the value
of variable x ∈ S(σ) is the image of x in the embedding,
or in other words, we want to introduce constraints
such that there is a one-to-one correspondence between
the solutions of I and the (Σ,Π)-embeddings. The
constraints are defined as follows. For each x, y ∈ S(σ)
and α ∈ {1, 2}, if x <σα y holds, then we introduce
the constraint 〈(x, y), Rx,y,α〉, where Rx,y,α is defined
as follows. Suppose that x ∈ Si and y ∈ Sj (possibly
i = j); we let

Rx,y,α = {(x′, y′) | x′ ∈ S′i, y′ ∈ S′j , x′ <πα y′}.

That is, the images of x and y have to appear in the
prespecified classes of the partition and have to respect
the same ordering relation in π as in σ. It is easy to see
that indeed there is a correspondence between solutions
and embeddings.

Our goal is to show that there is a function f that is
majority polymorphism for every constraint in I. Given
three elements x′1, x

′
2, x
′
3 ∈ S(π) and an α ∈ {1, 2},

we define midα(x′1, x
′
2, x
′
3) as the median value x′ of

these three elements with respect to the ordering ≤πα,
that is, at most one of {x′1, x′2, x′3} is strictly larger
than x′ and at most one element is strictly smaller
than x′; note that this value x′ is well defined. The
crucial observation where monotone sequences come
into play is that if x′1, x

′
2, x
′
3 ∈ S′i, i.e., they come from

the same monotone sequence, then mid1(x′1, x
′
2, x
′
3) =

mid2(x′1, x
′
2, x
′
3). This allows us to show that both of

these functions are polymorphisms of every constraint:

Proposition 7.2. Both mid1 and mid2 are polymor-
phisms of every constraint in I.

Proof. Suppose that (x′1, y
′
1), (x′2, y

′
2), (x′3, y

′
3) ∈ Rx,y,α;

we need to show that

(mid1(x′1, x
′
2, x
′
3),mid1(y′1, y

′
2, y
′
3)) ∈ Rx,y,α

(mid2(x′1, x
′
2, x
′
3),mid2(y′1, y

′
2, y
′
3)) ∈ Rx,y,α

Suppose that x ∈ Si and y ∈ Sj hold; it follows
that x′1, x

′
2, x
′
3 ∈ S′i and y′1, y

′
2, y
′
3 ∈ S′j . Therefore, as

observed above, mid1 and mid2 coincide on these values,
thus it is sufficent to prove the statement for midα.

It is clear that midα(x′1, x
′
2, x
′
3) ∈ S′i and

midα(y′1, y
′
2, y
′
3) ∈ S′j . Thus we need to show only

midα(x′1, x
′
2, x
′
3) ≤πα midα(y′1, y

′
2, y
′
3). This is simply the

well-known fact that the median function is a polymor-
phism of a linear ordering. For completeness, we provide
a simple proof. Without loss of generality, suppose that
x′1 ≤πα x′2 ≤πα x′3, that is, midα(x′1, x

′
2, x
′
3) = x′2. We

consider the following cases:

• If midα(y′1, y
′
2, y
′
3) = y′1, then either y′2 ≤πα y′1

(implying x′2 ≤πα y′2 ≤πα y′1) or y′3 ≤πα y′1 (implying
x′2 ≤πα x′3 ≤πα y′3 ≤πα y′1).

• If midα(y′1, y
′
2, y
′
3) = y′2, then x′2 ≤πα y′2 holds.

• If midα(y′1, y
′
2, y
′
3) = y′3, then x′2 ≤πα x′3 ≤πα y′3

holds.

In all cases, we have shown that midα(x′1, x
′
2, x
′
3) ≤πα

midα(y′1, y
′
2, y
′
3), completing the proof. �

Combining Proposition 7.2 with the result of [14],
we obtain a polynomial-time algorithm for the above
CSP instance. Actually, we may observe that this par-
ticular CSP can be directly reduced to a 2SAT instance
and can be solved in time O(`2n2). Note that this im-
mediately implies a fixed-parameter algorithm for the
Permutation Pattern problem on t-monotone per-
mutations: given a pattern σ, and a t-monotone target
π with a t-monotone partition Π = (S1, . . . , St), we enu-
merate each possible partition Σ of σ into t classes, test
whether Σ is a t-monotone partition of σ, and if so test
in O(`2n2) the existence of a (Σ,Π)-embedding. Thus,
we obtain:

Theorem 7.1. Given an instance (σ, π) of the Permu-
tation Pattern problem, and a t-monotone partition
Π of π, we can solve (σ, π) in time O(t``2n2) and poly-
nomial space.

We make two remarks about this result. First,
it extends a result of [18] that solves the problem in
O(t``n) time for t-increasing permutations. Second,
note that it assumes that a t-monotone partition of π
is given as input. However, if we have a promise that π
is t-monotone without knowing the explicit partition,
then we can first obtain a 2t-monotone partition in

98 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



O(n2) time as mentioned above, and thus we can
solve the problem in O((2t)``2n2) time for t-monotone
permutations.

The previous theorem has an interesting conse-
quence. Observe that a permutation of length n is al-
ways t-monotone for t = 2d

√
ne (this can be deduced

from Greene’s theorem [17] or from Erdős-Szekeres the-
orem [13]). Plugging this into Theorem 7.1 yields a non-

trivial n
`
2 +o(`) time algorithm for Permutation Pat-

tern using polynomial space. This has to be com-
pared with the algorithm of [1] that uses n0.47`+o(`)

time and exponential space. Note also that our FPT
algorithm for Permutation Pattern uses exponen-
tial space, due to the dynamic-programming step.

Theorem 7.2. We can solve the Permutation Pat-
tern problem in time n

`
2 +o(`) and polynomial space.

References

[1] S. Ahal and Y. Rabinovich. On Complexity of the Sub-
pattern Problem. SIAM J. Discrete Math., 22(2):629–
649, 2008.

[2] M. Albert and M. Atkinson. Simple permutations
and pattern restricted permutations. Discrete Math.,
300(1–3):1–15, 2005.

[3] H. L. Bodlaender. On Linear Time Minor Tests with
Depth-First Search. J. Algorithms, 14(1):1–23, 1993.

[4] H. L. Bodlaender. On Disjoint Cycles. Int. J. Found.
Comput. Sci., 5(1):59–68, 1994.

[5] P. Bose, J. F. Buss, and A. Lubiw. Pattern Matching
for Permutations. Inf. Process. Lett., 65(5):277–283,
1998.

[6] A. Brandstädt and D. Kratsch. On Partitions of
Permutations into Increasing and Decreasing Subse-
quences. Elektronische Informationsverarbeitung und
Kybernetik, 22(5/6):263–273, 1986.

[7] M.-L. Bruner and M. Lackner. The computa-
tional landscape of permutation patterns. CoRR,
abs/1301.0340, 2013.

[8] H. Chen. A rendezvous of logic, complexity, and
algebra. ACM Comput. Surv., 42(1), 2009.

[9] A. Claesson and S. Kitaev. Classification of bijections
between 321- and 132-avoiding permutations. Sém.
Lothar. Combin., 60:Art. B60d, 30, 2008/09.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

[11] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi,
and D. M. Thilikos. Subexponential parameterized
algorithms on bounded-genus graphs and H-minor-free
graphs. J. ACM, 52(6):866–893, 2005.

[12] R. G. Downey and M. R. Fellows. Parameterized Com-
plexity. Monographs in Computer Science. Springer,
New York, 1999.

[13] P. Erdős and G. Szekeres. A combinatorial problem in
geometry. Compositio Mathematica, 2:463–470, 1935.

[14] T. Feder and M. Y. Vardi. The Computational Struc-
ture of Monotone Monadic SNP and Constraint Satis-
faction: A Study through Datalog and Group Theory.
SIAM J. Comput., 28(1):57–104, 1998.

[15] J. Flum and M. Grohe. Parameterized Complexity
Theory. Springer, Berlin, 2006.

[16] F. V. Fomin, D. Kratsch, and J.-C. Novelli. Ap-
proximating minimum cocolorings. Inf. Process. Lett.,
84(5):285–290, 2002.

[17] C. Greene. An Extension of Schensted’s Theorem.
Advances in Mathematics, 14:254–265, 1974.

[18] S. Guillemot. Parameterized Algorithms for Inclusion
of Linear Matchings. In ISAAC, pages 354–363, 2011.

[19] S. Guillemot and D. Marx. Finding small patterns in
permutations in linear time. CoRR, abs/1307.3073,
2013.

[20] S. Guillemot and S. Vialette. Pattern Matching for
321-Avoiding Permutations. In ISAAC, pages 1064–
1073, 2009.

[21] P. Heggernes, D. Kratsch, D. Lokshtanov, V. Raman,
and S. Saurabh. Fixed-Parameter Algorithms for
Cochromatic Number and Disjoint Rectangle Stabbing.
In SWAT, pages 334–345, 2010.

[22] D. E. Knuth. The Art of Computer Programming,
Volume I: Fundamental Algorithms. Addison-Wesley,
1968.

[23] P. A. MacMahon. Combinatory Analysis. London:
Cambridge University Press, 1915.

[24] A. Marcus and G. Tardos. Excluded permutation
matrices and the Stanley-Wilf conjecture. J. Comb.
Theory, Ser. A, 107(1):153–160, 2004.

[25] R. Möhring and F. Radermacher. Substitution decom-
position for discrete structures and connections with
combinatorial optimization. In Algebraic and combi-
natorial methods in operations research, volume 95 of
North-Holland Math. Stud., pages 257–355, 1984.

[26] K. Pietrzak. On the parameterized complexity of the
fixed alphabet shortest common supersequence and
longest common subsequence problems. J. Comput.
Syst. Sci., 67(4):757–771, 2003.

[27] V. R. Pratt. Computing Permutations with Double-
Ended Queues, Parallel Stacks and Parallel Queues.
In STOC, pages 268–277, 1973.

[28] P. Rosenstiehl and R. E. Tarjan. Gauss codes, planar
hamiltonian graphs, and stack-sortable permutations.
J. Algorithms, 5(3):375–390, 1984.

[29] R. Simion and F. W. Schmidt. Restricted permuta-
tions. European J. Combin., 6(4):383–406, 1985.

A Proof of Theorem 4.2

We follow the proof technique of [24]. We show by
induction on p + q that: if M ⊆ [p] × [q] is a point
set with no r × r-grid, then |M | ≤ f(r)(p + q − 2).
Clearly, we can assume that p, q, r ≥ 2. The base case
of the induction is when p+q ≤ 2r2(r+1). In this case,

99 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



observe that
(
r2

r

)
(p + q − 2) ≥ (r + 1)2 as p, q, r ≥ 2.

As |M | ≤ (p+q)2

4 , we thus have |M | ≤ r4(r + 1)2 ≤
r4
(
r2

r

)
(p+q−2) = f(r)(p+q−2). For the general case,

we now suppose that p+ q > 2r2(r + 1).
Let p′ = d pr2 e and q′ = d qr2 e. We partition [p] into

intervals I1, . . . , Ip′ such that each Ix (1 ≤ x < p′) has
length r2, and we partition [q] into intervals J1, . . . , Jq′
such that each Jy (1 ≤ y < q′) has length r2. For each
x ∈ [p′], y ∈ [q′], we define the block Bx,y = Ix × Jy.
From M , we define a point set M ′ ⊆ [p′] × [q′] which
contains a point (x, y) iff the block Bx,y contains a point
of M . We say that a block Bx,y is wide (respectively
tall) if it contains points of M in at least r different
columns (respectively rows).

Lemma A.1. M ′ contains no r × r-grid.

Proof. Towards a contradiction, suppose that M ′ con-
tains an r× r-grid, via a gridding G consisting of inter-
vals I ′1, . . . , I

′
r and J ′1, . . . , J

′
r. Define the gridding G′ of

M consisting of intervals I ′′1 , . . . , I
′′
r with I ′′x = ∪j∈I′xIj ,

and of intervals J ′′1 , . . . , J
′′
r with J ′′y = ∪j∈J′

y
Jj . For

every i, j ∈ [r], we have that M ′ contains a point
(x′, y′) ∈ I ′x × J ′y, and thus Bx′,y′ = Ix′ × Jy′ contains
a point of M . It follows that M contains a point of
I ′′x × J ′′y ⊇ Bx′,y′ , and as this holds for every x, y ∈ [r]
we conclude that M contains an r × r-grid, contradic-
tion. �

Lemma A.2. For every x ∈ [p′], the number of blocks

in column x that are wide is less than r
(
r2

r

)
.

Proof. Suppose the contrary. For each wide block
Bx,y, suppose that it contains points of M in r differ-
ent columns x1, . . . , xr, and associate to Bx,y the set

{x1, . . . , xr} ⊆ Ix. There are at most
(
r2

r

)
possible

such sets, and thus there are r blocks Bx,y1 , . . . , Bx,yr
(y1 < . . . < yr) that are assigned the same subset
S = {x1, . . . , xr}. Set xr+1 = r2x+1, and define the in-
tervals I ′1, . . . , I

′
r by I ′i = [xi, xi+1 − 1] for i ∈ [r]. Next,

set yr+1 = q′ + 1, and define the intervals J ′1, . . . , J
′
r by

J ′j = ∪yj≤y<yj+1Jy for j ∈ [r]. These two families of
intervals define a r × r-gridding G. Observe that for
every i, j ∈ [r], G(i, j) intersects M , as Bx,yj contains
a point in column xi. We conclude that M contains an
r × r-grid, a contradiction. �

Lemma A.3. For every y ∈ [q′], the number of blocks

in row y that are tall is less than r
(
r2

r

)
.

Proof. Follows by the same proof as Lemma A.2. �

We are now ready to finish the proof. Let X1 denote
the set of wide blocks, let X2 denote the set of tall

blocks, and let X3 denote the set of nonempty blocks

that are neither wide nor tall. We obtain |X1| ≤ p′r
(
r2

r

)
by Lemma A.2, |X2| ≤ q′r

(
r2

r

)
by Lemma A.3, and

|X3| ≤ f(r)(p′ + q′ − 2) by Lemma A.1. As each block
contains at most r4 points of M , and as each block of
X3 contains at most (r−1)2 points of M , it follows that:

|M | ≤ r4|X1|+ r4|X2|+ (r − 1)2|X3|

≤ r5

(
r2

r

)
(p′ + q′) + (r − 1)2f(r)(p′ + q′ − 2)

≤ f(r)(r2 − r + 1)(p′ + q′ − 2) + 2rf(r)

Now, observe that p′ + q′ − 2 ≤ p+q
r2 , and thus:

|M | ≤ f(r)
r2 − r + 1

r2
(p+ q) + 2rf(r)

≤ f(r)(p+ q)− f(r)
p+ q

r2
+ 2rf(r)

≤ f(r)(p+ q)− 2f(r)(r + 1) + 2rf(r) = f(r)(p+ q − 2)

Here, we have used that r ≥ 2 in the second inequality,
and we have used that p + q ≥ 2r2(r + 1) in the third
inequality. We obtain that |M | ≤ f(r)(p + q − 2),
concluding the proof.

Implementation. Following the above proof,
we describe a recursive algorithm FindGrid(p, q, r,M)
that takes a point set M ⊆ [p] × [q] with |M | >
f(r)(p + q − 2), and finds in O(|M |) time an r × r-
grid in M . Note that by the assumption on |M | we
have p, q = O(|M |). The algorithm assumes that M is
described as a list of points, and the resulting grid is
described by listing the endpoints of the horizontal and
vertical intervals.

We first describe a subroutine
FindBlocks(p, q, r,M) that collects the non-empty
blocks of M ′. The result will be represented by a
list Blocks, where each entry b ∈ Blocks represents a
non-empty block Bx,y and holds two fields: point(b)
equal to (x, y); cols(b) equal to the list of non-empty
columns of the block, sorted by increasing order. The
subroutine proceeds as follows. First, it arranges
the points of M in columns, constructing for each
x ∈ [p] the set L(x) = {z ∈ M : pr1(z) = x}; this
can be performed in O(|M |) time. Second, it scans
the columns from left to right, collecting the blocks.
For each row y ∈ [q′], we maintain a variable block[y]
pointing to the last created block in row y. We initialize
all variables block[y] to ⊥. When processing column
x ∈ [p], we examine each point (x, y) ∈ L(x), and in
each case: (i) we compute the block Bx′,y′ containing
(x, y); (ii) if block[y′] =⊥ or block[y′] is a block b such
that pr1(point(b)) < x′, then we allocate a new block b,

100 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



we set block[y′] to b, and we initialize point(b) to (x′, y′)
and cols(b) to {x}; (iii) otherwise, if b = block[y′] then
we append x to cols(b) if it was not already present.
The list Blocks is then returned; it is clear that it holds
the desired information, and that its construction takes
O(|M |) time.

We now describe a second subroutine
FindGridOrReduce(p, q, r,M). The subroutine
first calls FindBlocks(p, q, r,M) to obtain the list
Blocks. Now, for each column x ∈ [p′], it constructs
a list BigSets[x] as follows. Initially each such list
is empty. Then, we examine each block b of Blocks,
compute (x, y) = point(b), test if |cols(b)| ≥ r, and if so
we obtain S an arbitrary r-subset of cols(b), and add
(y, S) to BigSets[x]. For each x ∈ [p′], we determine
if there are r entries of BigSets[x] that have the same
second component; if so, we find an r × r-grid G as in
the proof of Lemma A.2, and we return (yes,G). If
we find no such grid, then we construct the matrix M ′

containing the points point(b) for each block b ∈ Blocks,
and we return (no,M ′). We claim that this algorithm
can be implemented to run in O(|M |) time. First, the
construction of the lists BigSets can be done in time
O(
∑
b∈Blocks |cols(b)|) = O(|M |). Second, for a given

x ∈ [p′], consider the time needed to determine if there
are r entries of BigSets[x] that have the same second
component. We can do this in time O(r|BigSets[x]|),
by constructing a trie of height r where each leaf is
labeled by an r-set S together with the set I of indices
y ∈ [q′] such that BigSets[x] contains (y, S); note that
the insertion of a new set in the trie takes O(r), and
that at the end of the construction we need to look for a
leaf whose set of indices I contains at least r elements.
Thus, the total time needed for this second step is at
most O(

∑
b∈Blocks |cols(b)|) = O(|M |). Finally, we can

construct the reduced matrix M ′ in O(|M |) time.
To conclude the description of the algorithm, we

implement FindGrid(p, q, r,M) as follows. First, we
call FindGridOrReduce (q, p, r,M t), where M t =
{(y, x) : (x, y) ∈ M}. If this call returns (yes,G′), we
conclude that G′ is an r × r-grid in M t, and we return
the corresponding r × r-grid in M . Otherwise, we call
FindGridOrReduce(p, q, r,M). If this call returns
(yes,G′′), we conclude that G′′ is an r × r-grid in M ,
and we return it. Otherwise, we obtain (no,M ′), where
M ′ is the set of points (x, y) ∈ [p′]× [q′] such that Bx,y
intersects M . As the two calls to FindGridOrReduce
answered negatively, we have obtained that |X1| ≤
p′r
(
r2

r

)
and that |X2| ≤ q′r

(
r2

r

)
, and by the above

proof we conclude that |M ′| > f(r)(p′ + q′ − 2). We
remove some points of M ′ to obtain M ′′ ⊆ M ′ such
that f(r)(p′ + q′ − 2) < |M ′′| ≤ 1.1f(r)(p′ + q′ − 2).
This is possible: since f(r)(p′ + q′ − 2) ≥ f(2) ≥ 10, we

have f(r)(p′+ q′−2) + 1 ≤ 1.1f(r)(p′+ q′−2). Finally,
we call recursively FindGrid(p′, q′, r,M ′′).

The correctness of the algorithm follows from the
above proof, so let us argue about the running time.
Consider a call to FindGrid(p, q, r,M) with |M | >
f(r)(p + q − 2). Assume that the two resulting calls
to FindGridOrReduce take time at most c1|M |,
and that the instructions executed inside the call to
FindGrid (excluding the function calls) take time at
most c2|M |. Let c0 = c1 + c2, let c be the solution of

c = c0+ 3.3c
r2 , and let c′ = 2.2cf(r)

r2 . As r ≥ 2, it holds that
c is positive and that c ≥ c0. We show by induction on
p+q that the call to FindGrid(p, q, r,M) takes time at
most T (M) ≤ c|M |. If the call issues no recursive call,
then it takes time at most c0|M | ≤ c|M |. Suppose now
that it issues a recursive call FindGrid(p′, q′, r,M ′′)
with f(r)(p′ + q′ − 2) < |M ′′| ≤ 1.1f(r)(p′ + q′ − 2),
and that this recursive call takes time at most c|M ′′|
by induction hypothesis. Considering the time taken by
the initial call, we obtain:

T (M) ≤ c0|M |+ c|M ′′|
≤ c0|M |+ 1.1cf(r)(p′ + q′ − 2)

≤ c0|M |+ 1.1c
f(r)

r2
(p+ q − 2) + c′

≤ c0|M |+ 3.3c
|M |
r2

≤ c|M |

Here we used that |M ′′| ≤ 1.1f(r)(p′ + q′ − 2) in
the second inequality, that p′ + q′ − 2 ≤ p+q

r2 in the
third inequality, and that |M | > f(r)(p + q − 2) and

c′ ≤ 2.2c|M |
r2 in the fourth inequality. As c is bounded

by a constant independent of r (c ≤ 5.72c0), we
conclude that the running time of FindGrid(p, q, r,M)
is O(|M |).

101 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/0

9/
15

 to
 2

05
.1

75
.1

18
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


