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Abstract Arc permutations and unimodal permutations were introduced in the study
of triangulations and characters. This paper studies combinatorial properties and
structures on these permutations. First, both sets are characterized by pattern avoid-
ance. It is also shown that arc permutations carry a natural affine Weyl group action,
and that the number of geodesics between a distinguished pair of antipodes in the as-
sociated Schreier graph, and the number of maximal chains in the weak order on uni-
modal permutations, are both equal to twice the number of standard Young tableaux
of shifted staircase shape. Finally, a bijection from non-unimodal arc permutations to
Young tableaux of certain shapes, which preserves the descent set, is described and
applied to deduce a conjectured character formula of Regev.

Keywords Arc permutation · Unimodal permutation · Pattern avoidance · Affine
Weyl group · Descent set · Shifted staircase · Weak order

1 Introduction

A permutation in the symmetric group Sn is an arc permutation if every prefix forms
an interval in Zn. It was found recently that arc permutations play an important role
in the study of graphs of triangulations of a polygon [3]. A familiar subset of arc
permutations is that of unimodal arc permutations, which are the permutations whose
inverses have one local maximum or one local minimum. These permutations appear
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in the study of Hecke algebra characters [4, 13]. Their cycle structure was studied by
Thibon [16] and others.

In this paper we study combinatorial properties and structures on these sets of
permutations.

In Sect. 3 it is shown that both arc and unimodal permutations may be character-
ized by pattern avoidance, as described in Theorem 1 and Proposition 1.

In Sect. 4 we describe a bijection between unimodal permutations and certain
shifted shapes. The shifted shape corresponding to a unimodal permutation π has the
property that standard Young tableaux of that shape encode all reduced words of π .
It follows that

– Domination in the weak order on unimodal permutations is characterized by inclu-
sion of the corresponding shapes (Theorem 3). Hence, this partially ordered set is
a modular lattice (Proposition 4).

– The number of maximal chains in this order is equal to twice the number of stair-
case shifted Young tableaux, that is, 2

(n
2

)
! · ∏n−2

i=0
i!

(2i+1)! (Corollary 6).

The above formula is analogous to a well-known result of Richard Stanley [15],
stating that the number of maximal chains in the weak order on Sn is equal to the
number of standard Young tableaux of triangular shape.

In Sect. 6 we study a graph on arc permutations, where adjacency is defined by
multiplication by a simple reflection. It is shown that this graph has the following
property: an arc permutation is unimodal if and only if it appears in a geodesic be-
tween two distinguished antipodes. Hence the number of geodesics between these
antipodes is, again, 2

(n
2

)
! · ∏n−2

i=0
i!

(2i+1)! . This result is analogous to Ref. [3, Theo-
rem 9.9], and related to Ref. [10, Theorem 2].

The set of non-unimodal arc permutations is not a union of Knuth classes. How-
ever, it carries surprising Knuth-like properties, which are described in Sect. 7. A bi-
jection between non-unimodal arc permutations and standard Young tableaux of hook
shapes plus one box is presented, and shown to preserve the descent set. This implies
that for n ≥ 4,

∑

T ∈Tn

xDes(T ) =
∑

π∈Zn

xDes(π),

where Zn denotes the set of non-unimodal arc permutations in Sn, Tn denotes the
set of standard Young tableaux of shape (k,2,1n−k−2) for some 2 ≤ k ≤ n − 2, and
Des(π) is the descent set of π (see Theorem 5). Further enumerative results on arc
permutations by descent sets appear in Sect. 8. These enumerative results are then
applied to prove a conjectured character formula of Amitai Regev in Sect. 9.

Interactions with other mathematical objects are discussed in the last two sections:
close relations to shuffle permutations are pointed out in Sect. 10.2; further represen-
tation theoretic aspects are discussed in Sect. 10. In particular, Sect. 10.1 studies a
transitive affine Weyl group action on the set of arc permutations, whose resulting
Schreier graph is the graph studied in Sect. 6.
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2 Basic concepts

In the following definitions, an interval in Z is a subset [a, b] = {a, a + 1, . . . , b} for
some a ≤ b, and an interval in Zn is a subset of the form [a, b] or [b,n] ∪ [1, a] for
some 1 ≤ a ≤ b ≤ n.

2.1 Unimodal permutations

Definition 1 A permutation π ∈ Sn is left-unimodal if, for every 1 ≤ j ≤ n, the first j

letters in π form an interval in Z. Denote by Ln the set of left-unimodal permutations
in Sn.

Example 1 The permutation 342561 is left-unimodal, but 3412 is not.

Claim 1 |Ln| = 2n−1.

Proof A left-unimodal permutation π is uniquely determined by the subset of values
i ∈ {2, . . . , n} such that π(i) > π(1). There are 2n−1 such subsets. !

We denote by Des(π) the descent set of a permutation π , and by RSK(π) =
(P,Q) the pair of standard Young tableaux associated with π by the RSK corre-
spondence. For a standard Young tableau T , its descent set Des(T ) is defined as the
set of entries i that lie strictly above the row where i + 1 lies. It is well known that if
RSK(π) = (P,Q), then Des(π) = Des(Q) and Des(π−1) = Des(P ).

Remark 1 A permutation π is left-unimodal if and only if Des(π−1) = {1,2, . . . , i}
for some 0 ≤ i ≤ n − 1. In other words π ∈ Ln if and only if RSK(π) = (P,Q),
where P is a hook with entries 1,2, . . . , i + 1 in the first column, and Q is any hook
with the same shape as P . It follows that left-unimodal permutations are a union of
Knuth classes.

Definition 2 A permutation π ∈ Sn is unimodal if one of the following holds:

(i) every prefix forms an interval in Z; or
(ii) every suffix forms an interval in Z.

Denote by Un the set of unimodal permutations in Sn.

We remark that our definition of unimodal permutations is slightly different from
the one given in [4, 13], where unimodal permutations are those whose inverse is left-
unimodal in this paper, and in [16], where unimodal permutations are those whose
inverse is right-unimodal in our terminology.

Example 2 The permutation 165243 is unimodal.

Claim 2 For n ≥ 2, |Un| = 2n − 2.
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Proof A permutation π ∈ Sn is unimodal if either π or its reversal πR = π(n) . . .
π(2)π(1) is left-unimodal. The only permutations for which both π and πR are left-
unimodal are 12 . . . n and n . . .21. The formula now follows from Claim 1. !

Remark 2 A permutation π ∈ Sn is unimodal if and only if

Des
(
π−1) =

{
{1,2, . . . , i} or
{i + 1, i + 2, . . . , n − 1}

for some 1 ≤ i ≤ n − 1. This happens if and only if RSK(π) = (P,Q), where P is a
hook with entries 1,2, . . . , i + 1 in the first column or in the first row, and Q is any
hook with the same shape as P . Thus unimodal permutations are a union of Knuth
classes.

2.2 Arc permutations

Definition 3 A permutation π ∈ Sn is an arc permutation if, for every 1 ≤ j ≤ n, the
first j letters in π form an interval in Zn (where the letter n is identified with zero).
Denote by An the set of arc permutations in Sn.

Example 3 The permutation 12543 is an arc permutation in S5, but 125436 is not an
arc permutation in S6, since {1,2,5} is an interval in Z5 but not in Z6.

Claim 3 For n ≥ 2, |An| = n2n−2.

Proof To build π ∈ An, there are n choices for π(1) and two choices for every other
letter except the last one. !

Remark 3 Arc permutations are not a union of Knuth classes. Note, however, that arc
permutations may be characterized in terms of descent sets as follows. A permutation
π ∈ Sn is an arc permutation if and only if

Des
(
π−1) =

{
{1,2, . . . , i, j + 1, j + 2, . . . , n − 1} and π−1(1) < π−1(n), or
{i + 1, i + 2, . . . , j} and π−1(1) > π−1(n)

for some i ≤ j .

It is clear from the definition that the sets of left-unimodal, unimodal and arc
permutations satisfy Ln ⊂ Un ⊂ An. We denote by Zn = An \ Un the set of non-
unimodal arc permutations. It follows from Remarks 2 and 3 that Zn is not a union
of Knuth classes. However, Zn has some surprising Knuth-like properties, which will
be described in Sect. 7.

3 Characterization by pattern avoidance

In this section the sets of left-unimodal permutations, arc permutations, and unimodal
permutations are characterized in terms of pattern avoidance. Given a set of patterns
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Fig. 1 The grid for
left-unimodal permutations, and
a drawing of the permutation
32415

τ1, τ2, . . . , denote by Sn(τ1, τ2, . . .) the set of permutations in Sn that avoid all of the
τi , that is, that do not contain a subsequence whose entries are in the same relative
order as those of τi . Define An(τ1, τ2, . . .) analogously.

3.1 Left-unimodal permutations

It will be convenient to use terminology from geometric grid classes. Studied by
Albert et al. [5], a geometric grid class consists of those permutations that can be
drawn on a specified set of line segments of slope ±1, whose locations are determined
by the positions of the corresponding entries in a matrix M with entries in {0,1,−1}.
More precisely, G(M) is the set of permutations that can be obtained by placing n

dots on the segments in such a way that there are no two dots on the same vertical
or horizontal line, labeling the dots with 1,2, . . . , n by increasing y-coordinate, and
then reading them by increasing x-coordinate. All the geometric grid classes that we
consider in this paper are also profile classes in the sense of Murphy and Vatter [9].

Left-unimodal permutations are those that can be drawn on the picture on the left
of Fig. 1, which consists of a segment of slope 1 above a segment of slope −1. The
picture on the right shows a drawing of the permutation 32415. The grid class of
permutations that can be drawn on this picture is denoted by

G
(

1
−1

)
,

so that we have

Ln = Gn

(
1

−1

)
= G

(
1

−1

)
∩ Sn.

It is clear from the description that geometric grid classes are always closed un-
der pattern containment, so they are characterized by the set of minimal forbidden
patterns. In the case of left-unimodal permutations, we get the following description.

Claim 4 Ln = Sn(132,312).

Proof The condition that every prefix of π is an interval in Z is equivalent to the
condition that there is no pattern π(i)π(j)π(k) (with i < j < k) where the value of
π(k) is between π(i) and π(j), that is, π avoids 132 and 312. !
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Fig. 2 Grids for arc
permutations

3.2 Arc permutations

Arc permutations can be characterized in terms of pattern avoidance, as those permu-
tations avoiding the eight patterns τ ∈ S4 with |τ (1) − τ (2)| = 2.

Theorem 1

An = Sn(1324,1342,2413,2431,3124,3142,4213,4231).

Proof For an integer m, denote by m the element of {1,2, . . . , n} that is congru-
ent with m mod n. Let π ∈ Sn, and suppose that π /∈ An. Let i > 1 be the small-
est number with the property that {π(1),π(2), . . . ,π(i)} is not an interval in Zn.
By minimality of i, the set {π(1),π(2), . . . ,π(i − 1)} contains neither π(i) + 1 nor
π(i) − 1. Letting j < k be such that {π(j),π(k)} = {π(i) + 1,π(i) − 1}, it follows
that π(i − 1)π(i)π(j)π(k) is an occurrence of one of the eight patterns above.

Conversely, if π ∈ Sn contains one of the eight patterns, let π(h)π(i)π(j)π(k)
be such an occurrence, where h < i < j < k. Then {π(1),π(2), . . . ,π(i)} is not an
interval in Zn. !

Corollary 1 |Sn(1324,1342,2413,2431,3124,3142,4213,4231)| = n2n−2 for
n ≥ 2.

Arc permutations can also be described in terms of grid classes, as those permuta-
tions that can be drawn on one of the two pictures in Fig. 2. We write

An = Gn

⎛

⎜⎜⎝

1 0
−1 0
0 −1
0 1

⎞

⎟⎟⎠ ∪ Gn

⎛

⎜⎜⎝

0 −1
0 1
1 0

−1 0

⎞

⎟⎟⎠ .

3.3 Unimodal permutations

In terms of grid classes, unimodal permutations are those that can be drawn on one
of the two pictures in Fig. 3, that is,

Un = Gn

(
1

−1

)
∪ Gn

(−1
1

)
.

Next we characterize unimodal permutations in terms of pattern avoidance.
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Fig. 3 Grids for unimodal arc
permutations

Proposition 1

Un = An(2143,3412)

= Sn(1324,1342,2143,2413,2431,3124,3142,3412,4213,4231).

Proof If π contains 2143 or 3412, then it is clear that π is not unimodal. For the
converse, we show that every arc permutation π ∈ An that is not unimodal must
contain one of the patterns 2143 or 3412. Since π ∈ An, it can be drawn on one of
the two pictures in Fig. 2. Suppose it can be drawn on the left picture. Since π is
not unimodal, any drawing of π on the left picture requires some element π(i) with
i > 1 to be on the first increasing slope, and some element π(j) with j < n to be on
the second increasing slope. Then π(1)π(i)π(j)π(n) is an occurrence of 3412. An
analogous argument shows that if π can be drawn on the right picture in Fig. 2 but it
is not unimodal, then it contains 2143. !

Corollary 2 |Sn(1324,1342,2143,2413,2431,3124,3142,3412,4213,4231)| =
2n − 2 for n ≥ 2.

4 Prefixes associated with the shifted staircase shape

Consider the shifted staircase shape #n with rows labeled 1,2, . . . , n − 1 from top
to bottom, and columns labeled 2,3, . . . , n from left to right. Given a filling with
the numbers from 1 to n(n − 1)/2, with increasing entries in each row and column,
erase the numbers greater than k, for some k, obtaining a partial filling of #n. For
each of the remaining entries 1 ≤ r ≤ k, if r lies in row i and column j , let tr be the
transposition (i, j). Associate with the partial filling the permutation π = t1t2 . . . tk ,
with multiplication from the right.

Example 4 The partial filling
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corresponds to the product of transpositions

(1,2)(1,3)(1,4)(2,3)(2,4)(1,5)(3,4)(1,6)(2,5)(2,6) = 4356217.

Theorem 2 The set of permutations obtained as products of transpositions associ-
ated with a partial filling of the shifted staircase shape #n is exactly Ln.

Proof The first observation is that if two boxes in the tableau are in different rows
and columns, the associated transpositions commute. It follows that the resulting per-
mutation depends only on what boxes of the tableaux are filled, but not on the order
in which they were filled. For example, the partial filling

yields again the permutation 4356217, just as the partial filling in the above example,
since both have the same set of filled boxes.

We claim that, from the set of filled boxes, the corresponding permutation can be
read as follows. Let i be the largest such that the box (i, i + 1) is filled. Then, start-
ing at the bottom-left corner of that box, consider the path with north and east steps
(along the edges of the boxes of the tableau) that separates the filled and unfilled
boxes, ending at the top-right corner. At each east step, read the label of the corre-
sponding column, and at each north step, read the label of the corresponding row.
This claim can be easily proved by induction on the number of filled boxes. The per-
mutations obtained by reading the labels of such paths are precisely the left-unimodal
permutations. !

The above proof gives a bijection between Ln and the set of shifted shapes of size
at most

(n
2

)
, which consist of the filled boxes in partial fillings.

Definition 4 For π ∈ Ln, denote by shape(π) the shifted shape corresponding to any
partial filling of #n associated with π .

5 The weak order on Un

5.1 A criterion for domination

Let ℓ(·) be the length function on the symmetric group Sn with respect to the Coxeter
generating set S := {σi : 1 ≤ i ≤ n − 1}, where σi is identified with the adjacent
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transposition (i, i + 1). Recall the definition of the (right) weak order on Sn: for
every pair π, τ ∈ Sn, π ≤ τ if and only if ℓ(π) + ℓ(π−1τ ) = ℓ(τ ). Denote this poset
by Weak(Sn). Recall that Weak(Sn) is a lattice, which is not modular. First, we give
a combinatorial criterion for weak domination of unimodal permutations.

The concept of shifted shape from Definition 4 can be extended to all unimodal
permutations as follows: for π ∈ Un \ Ln let shape(π) := shape(w0πw0), where w0
denotes the longest permutation n . . .21, which is the maximum in Weak(Un). Denote
by e = 12 . . . n the identity permutation, which is the minimum in Weak(Un). Note
that w0 Lnw0 = Un \ Ln ∪ {e,w0}.

Theorem 3 For every pair π, τ ∈ Un, π ≤ τ in Weak(Sn) if and only if

(i) either π, τ ∈ Ln or π, τ ∈ w0 Lnw0, and
(ii) shape(π) ⊆ shape(τ ).

Proof By [6, Corollary 1.5.2, proposition 3.1.3], if π ≤ τ in Weak(Sn), then the
corresponding descent sets satisfy Des(π−1) ⊆ Des(τ−1). Combining this with the
characterizations of left-unimodal and unimodal permutations by descent sets, given
in Remarks 1 and 2, condition (i) follows.

Now we may assume, without loss of generality, that π, τ ∈ Ln (for π, τ ∈
w0 Lnw0, the same proof holds by symmetry, by conjugation by w0). To complete
the proof it suffices to show that for two left-unimodal permutations, domination
in weak order is equivalent to inclusion of the corresponding shapes. Indeed, recall
the bijection from Ln to the set of shifted shapes of size at most

(n
2

)
, described in

Sect. 4. By this bijection, for any π ∈ Ln \ {w0}, the addition of a box in the border
of shape(π) corresponds to a switch of two adjacent increasing letters in π giving
a permutation in Ln. This is precisely the covering relation in Weak(Un). Thus, for
two left-unimodal permutations, the covering relation in Weak(Un) is equivalent to
the covering relation in the poset of shifted shapes inside #n ordered by inclusion,
and hence domination is equivalent. !

Corollary 3 For every π ∈ Un

ℓ(π) =
∣∣shape(π)

∣∣,

where |shape(π)| denotes the size of the shape.

5.2 Enumeration of maximal chains

Denote by Weak(Un) the subposet of Weak(Sn) which is induced by Un. Theorem 3
implies the following nice properties of this poset.

Corollary 4 Weak(Un) is a graded self-dual modular lattice.

Corollary 5 For every π ∈ Un \ {w0}, the number of maximal chains in the interval
[e, π] is equal to the number of standard Young tableaux of shifted shape shape(π),
hence given by a hook formula.
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Proof By Theorem 2 together with Theorem 3, the statement holds for every π ∈
Ln \ {w0}. By conjugation by w0, it holds for all elements in Un \ Ln as well. !

Corollary 6 For n > 2, the number of maximal chains in Weak(Un) is equal to twice
the number of standard Young tableaux of shifted staircase shape, hence equal to

2
(

n

2

)
! ·

n−2∏

i=0

i!
(2i + 1)! .

Proof The maximum w0 covers the two elements w0σ1 and w0σn−1. Thus the num-
ber of maximal chains in Weak(Un) is the sum of the numbers of maximal chains
in [e,w0σ1] and [e,w0σn−1]. By Corollary 5, this equals the number of standard
Young tableaux of shape shape(w0σ1) plus number of standard Young tableaux of
shape shape(w0σn−1). Since w0(w0σn−1)w0 = w0σ1, these two shapes are the same,
namely #n with the box in row n − 1 (the bottommost row) removed. By Schur’s
Formula [14], [8, p. 267 (2)], the number of standard Young tableaux of this shape is(n

2

)
! · ∏n−2

i=0
i!

(2i+1)! , completing the proof. !

5.3 The Hasse diagram

Let Γn be the undirected Hasse diagram of Weak(Un). A drawing of Γ4 is given by
the black vertices and solid edges in Fig. 4.

Proposition 2

(i) The diameter of Γn is
(n

2

)
.

(ii) The vertices e and w0 are antipodes in Γn.
(iii) The number of geodesics between e and w0 is 2

(n
2

)
! · ∏n−2

i=0
i!

(2i+1)! .

Proof Since Weak(Un) is a modular lattice, the distance between any two ver-
tices is equal to the difference between the ranks of their join and their meet (see
[1, Lemma 5.2]). Hence, the diameter is equal to the maximum rank. This proves (i)
and (ii). Part (iii) then follows from Corollary 6. !

6 A graph structure on arc permutations

6.1 The graph Xn

Let Xn be the subgraph of the Cayley graph X(Sn,S) induced by An. In other words,
the vertex set of Xn is An, and two elements u,v ∈ An are adjacent if and only if there
exists a simple reflection σi ∈ S, such that u = vσi . The graph X4 is drawn in Fig. 4.
The following theorem shows that Xn and Γn share similar properties.
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Fig. 4 The graph X4. The
vertices not lying in a geodesic
between e and w0 are drawn in
red with dotted edges, and they
correspond to non-unimodal
permutations by Lemma 2

Theorem 4

(i) The diameter of Xn is
(n

2

)
.

(ii) The vertices e and w0 are antipodes in Xn.
(iii) The number of vertices in geodesics between e and w0 is 2n − 2.
(iv) The number of geodesics between e and w0 is 2

(n
2

)
! · ∏n−2

i=0
i!

(2i+1)! .

This theorem will be proved in Sects. 6.2 and 6.3.

6.2 The diameter of Xn

In this subsection we show that the diameter of Xn is
(n

2

)
, proving Theorem 4(i). To

see that this is a lower bound, note that the inversion number does not change by
more than 1 along each edge of Xn. It follows that the diameter of Xn is at least
inv(w0) − inv(e) =

(n
2

)
. This argument also shows that part (ii) of Theorem 4 will

follow once we prove part (i), since the distance between e and w0 is at least
(n

2

)
.

The proof that this is also an upper bound on the diameter is more involved,
and it is similar to the proof in [1, Theorem 5.1]. Consider the encoding ψ : An →
{0,1, . . . , n − 1} × {0,1}n−2 given by ψ(π) = (ψ0,ψ1, . . . ,ψn−2), where

ψ0 := π(1) − 1

and, for 1 ≤ i ≤ n − 2,

ψi :=
{

1 if π(i + 1) − 1 ∈ {π(1),π(2), . . . ,π(i)},
0 if π(i + 1) + 1 ∈ {π(1),π(2), . . . ,π(i)},

where m denotes the element of {1,2, . . . , n} that is congruent with m mod n. Note
that exactly one of the two above conditions holds, because {π(1),π(2), . . . ,π(i)}
forms an interval in Zn.

Example 5 For π = 4352176 ∈ S7, ψ(π) = (3,0,1,0,0,0).

The encoding of the vertices of X4 is given in Fig. 5. The following observation is
clear from the definition of Xn and the encoding ψ .
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Fig. 5 The graph X4 with its
vertices encoded by ψ (commas
and parentheses have been
removed). Deleting the two
dotted blue edges gives the
undirected Hasse diagram of the
dominance order on
{0,1,2,3} × {0,1}2 ⊂ Z3

Lemma 1 Two arc permutations π, τ ∈ An with π ≠ τ are adjacent in Xn if and
only if exactly one of the following holds:

(i) ψ(τ ) is obtained from ψ(π) by switching two adjacent entries ψi and ψi+1 for
some 1 ≤ i < n − 2;

(ii) ψ(π)i = ψ(τ )i for all 0 ≤ i < n − 2;
(iii) ψ(π)0 + ψ(π)1 = ψ(τ )0 + ψ(τ )1 mod n, and ψ(τ )i = ψ(π)i for all 2 ≤ i ≤

n − 2.

The set {0,1, . . . , n− 1}× {0,1}n−2 of possible encodings inherits the dominance
order from Zn−1, that is, v ≤ u if and only if for every 1 ≤ i ≤ n − 1,

i∑

j=1

vj ≤
i∑

j=1

uj .

The covering relations in this poset are almost identical to those described by
Lemma 1. More precisely, we have the following result.

Proposition 3 Through the encoding ψ , the graph Xn is isomorphic to the undi-
rected Hasse diagram of the dominance order on {0,1, . . . , n−1}×{0,1}n−2 with the
2n−3 additional edges arising from Lemma 1(iii) with {ψ(τ )0,ψ(π)0} = {n − 1,0}.

Denote by ddom the distance function in the undirected Hasse diagram of the dom-
inance order. To compute ddom(ψ(π),ψ(τ )), let us first recall some basic facts. The
dominance order on Zn−1 is a ranked poset where

rank(v1, . . . , vn−1) =
n−1∑

j=1

(n − j)vj =
n−1∑

j=1

j∑

k=1

vk.

This poset is a modular lattice, with

(v1, . . . , vn−1) ∧ (u1, . . . , un−1) = (α1, . . . ,αn−1)
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where αk = min{∑k
i=1 vi,

∑k
i=1 ui} − min{∑k−1

i=1 vi,
∑k−1

i=1 ui} for every 1 ≤ k ≤
n − 1, and

(v1, . . . , vn−1) ∨ (u1, . . . , un−1) = (β1, . . . ,βn−1)

where βk = max{∑k
i=1 vi,

∑k
i=1 ui} − max{∑k−1

i=1 vi,
∑k−1

i=1 ui} for every 1 ≤ k ≤
n − 1. Finally, recall that the distance between two elements in the undirected Hasse
diagram of a modular lattice is equal to the difference between the ranks of their join
and their meet, see e.g. [1, Lemma 5.2].

Combining these facts implies that

ddom
(
ψ(π),ψ(τ )

)

= rank
(
ψ(π) ∨ ψ(τ )

)
− rank

(
ψ(π) ∧ ψ(τ )

)

=
n−2∑

j=0

j∑

k=0

(

max

{
k∑

i=0

ψ(π)i ,

k∑

i=0

ψ(τ )i

}

− max

{
k−1∑

i=0

ψ(π)i ,

k−1∑

i=0

ψ(τ )i

})

−
n−2∑

j=0

j∑

k=0

(

min

{
k∑

i=0

ψ(π)i ,

k∑

i=0

ψ(τ )i

}

− min

{
k−1∑

i=0

ψ(π)i ,

k−1∑

i=0

ψ(τ )i

})

=
n−2∑

j=0

∣∣∣∣∣

j∑

i=0

(
ψ(π)i − ψ(τ )i

)
∣∣∣∣∣. (1)

Now we are ready to prove the upper bound on diameter of Xn. Denoting by dXn

the distance function in Xn, we will show that for any π, τ ∈ An, dXn(π, τ ) ≤
(n

2

)
.

Let γ be the n-cycle (1, . . . , n). Clearly, An is invariant under left multiplication
by γ . Moreover, left multiplication by γ is an automorphism of Xn. Thus, for any
integer k,

dXn(π, τ ) = dXn

(
γ kπ,γ kτ

)
≤ ddom

(
ψ

(
γ kπ

)
,ψ

(
γ kτ

))
, (2)

where the last inequality follows from Proposition 3. Let x0 = ψ(π)0 − ψ(τ )0.
By (1),

ddom
(
ψ(π),ψ(τ )

)
=

n−2∑

j=0

∣∣∣∣∣x0 +
j∑

i=1

(
ψ(π)i − ψ(τ )i

)
∣∣∣∣∣ =

n−2∑

j=0

|xj |, (3)

where xj = x0 +∑j
i=1(ψ(π)i −ψ(τ )i) for 1 ≤ j ≤ n− 2. Note that |xj − xj−1| ≤ 1

for every j . If x0 = 0, then

dXn(π, τ ) ≤ ddom
(
ψ(π),ψ(τ )

)
=

n−2∑

j=0

|xj | ≤ 0 + 1 + · · · + (n − 2) =
(

n − 1
2

)

and we are done.
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Otherwise, we can assume without loss of generality that 1 ≤ x0 ≤ n − 1. Let
k = −τ (1), so that ψ(γ kπ)0 − ψ(γ kτ )0 = x0 − n. Note that for 1 ≤ i ≤ n − 2, we
have ψ(γ kπ)i = ψ(π)i and ψ(γ kτ )i = ψ(τ )i . Thus, by (1),

ddom
(
ψ

(
γ kπ

)
,ψ

(
γ kτ

))
=

n−2∑

j=0

∣∣∣∣∣x0 − n +
j∑

i=1

(
ψ(π)i − ψ(τ )i

)
∣∣∣∣∣ =

n−2∑

j=0

|xj − n|.

Combining this formula with (2) and (3), we get

dXn(π, τ ) ≤ min

{
n−2∑

j=0

|xj |,
n−2∑

j=0

|n − xj |
}

.

If 0 ≤ xj ≤ n for all j , then

dXn(π, τ ) ≤ 1
2

(
n−2∑

j=0

|xj | +
n−2∑

j=0

|n − xj |
)

= 1
2

n−2∑

j=0

(xj + n − xj ) =
(

n

2

)
.

Otherwise, since |xj − xj−1| ≤ 1 for all j , there must be some i such that xi = 0
or xi = n. If xi = 0 for some i, then |xj | ≤ |j − i| for all j , so

∑n−2
j=0 |xj | ≤

(n
2

)
.

Similarly, if xj = n for some j , then
∑n−2

j=0 |n − xj | ≤
(n

2

)
, completing the proof of

Theorem 4(i).

6.3 Geodesics of Xn

To prove parts (ii) and (iii) of Theorem 4 we need the following lemma.

Lemma 2 A permutation in An lies in a geodesic between e and w0 if and only if it
is unimodal.

Proof By Corollary 4, all unimodal permutations lie in geodesics between e and w0
in the undirected Hasse diagram of Weak(Un). By Proposition 2 and Theorem 4(i),
the distance between e and w0 in this Hasse diagram is the same as in Xn, thus the
geodesics between these vertices in this Hasse diagram are also geodesics in Xn.

It remains to show that for every non-unimodal arc permutations π ∈ Zn, π is
not in a geodesic between e and w0. It suffices to prove that for every such π , either
dXn(e,π) > ℓ(π), or dXn(w0,π) >

(n
2

)
− ℓ(π). These two cases are analogous to the

dichotomy in Remark 3 and Fig. 2.
If π−1(1) > π−1(n), then π−1(n − 1) < π−1(n) < π−1(1) < π−1(2), since oth-

erwise π would be unimodal. Let ℓ = ℓ(π), and suppose for contradiction that
dXn(e,π) = ℓ. Then there is a sequence of arc permutations π = πℓ,πℓ−1, . . . ,π1 =
e where each πi is obtained from πi+1 by switching two adjacent letters at a de-
scent, decreasing the number of inversions by one. In particular, in every πi , the
entry n − 1 is to the left of n, and 2 is to the right of 1. In order to remove the inver-
sion created by the pair (1, n) in π we would have to switch 1 and n, which would
create a permutation containing 3142, thus not in An by Theorem 1. This shows that
dXn(e,π) > ℓ(π).
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Similarly, if π−1(1) < π−1(n), then π−1(2) < π−1(1) < π−1(n) < π−1(n − 1).
Let k =

(n
2

)
− ℓ(π), and suppose for contradiction that dXn(w0,π) = k. Then there is

a sequence of arc permutations π = πk,πk−1, . . . ,π1 = w0 where each πi is obtained
from πi+1 by switching two adjacent letters at an ascent, increasing the number of
inversions by one. Again, this is impossible because after switching the pair (1, n),
the entries 2n1(n − 1) would form an occurrence of 2413, so the permutation would
not be in An by Theorem 1. We conclude that dXn(w0,π) >

(n
2

)
− ℓ(π). !

Proof of Theorem 4 Parts (i) and (ii) were proved in Sect. 6.2. To prove part (iii),
combine Lemma 2 with Claim 22. Finally, (iv) follows from Lemma 2 together with
Corollary 6. !

7 Equidistribution

In this section we show that the descent set is equidistributed on arc permutations that
are not unimodal and on the set of standard Young tableaux obtained from hooks by
adding one box in position (2,2).

7.1 Enumeration of arc permutations by descent set

For a set D = {i1, . . . , ik}, define xD = xi1 . . . xik .

Proposition 4 For n ≥ 2,

∑

π∈An

xDes(π) = (1 + x1) . . . (1 + xn−1)

(

1 +
n−2∑

i=1

xi + xi+1

(1 + xi)(1 + xi+1)

)

.

Proof Let π ∈ An, and let i = max{π−1(1),π−1(n)} − 1.
If i = n−1, then π can be drawn on the picture on the left of Fig. 3. The generating

function for these permutations with respect to the descent set is (1 + x1) . . . (1 +
xn−1). Indeed, each π(j) for 2 ≤ j ≤ n is either larger or smaller than all the previous
entries, and causes a descent with π(j −1) only in the second case (this is when π(j)

corresponds to a dot on the descending slope in the picture). So, π(j) contributes a
factor 1 + xj−1 to the generating function.

Let us now consider permutations with fixed i, with 1 ≤ i ≤ n − 2. Since
π(1) . . .π(i) can be drawn on the picture on the left of Fig. 3, the same reasoning
as above shows that the contribution of the descents of π(1) . . .π(i) to the generating
function is (1 + x1) . . . (1 + xi−1). Now we have π(i + 1) ∈ {1, n}, by the choice of
i. If π(i + 1) = 1 (resp. π(i + 1) = n), then we can draw π on the picture on the left
(resp. right) of Fig. 2, with π(i + 1) being the first entry to the right of the vertical
dotted line. In this case, the descent π(i)π(i + 1) contributes xi (resp. the descent
π(i +1)π(i +2) contributes xi+1) to the generating function. In both cases, each one
of the entries π(j) with i + 2 ≤ j ≤ n − 1 will produce a descent π(j)π(j + 1) iff
the corresponding dot is on the descending slope to the right of the dotted line. Thus,
π(j) contributes a factor 1 + xj for each i + 2 ≤ j ≤ n − 1.
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Combining all these contributions we get the generating function
∑

π∈An

xDes(π) = (1 + x1) . . . (1 + xn−1)

+
n−2∑

i=1

(1 + x1) . . . (1 + xi−1)(xi + xi+1)(1 + xi+2) . . . (1 + xn−1)

= (1 + x1) . . . (1 + xn−1)

(

1 +
n−2∑

i=1

xi + xi+1

(1 + xi)(1 + xi+1)

)

.
!

Corollary 7 Let maj(π) denote the major index of π . For n ≥ 2,
∑

π∈An

qmaj(π) = (1 + q) . . .
(
1 + qn−2)[n]q .

Proof The generating function for the major index is obtained by replacing xi with
qi for each 1 ≤ i ≤ n − 1 in the formula from Proposition 4:

∑

π∈An

qmaj(π) = (1 + q) . . .
(
1 + qn−1)

(

1 + (1 + q)

n−2∑

i=1

qi

(1 + qi)(1 + qi+1)

)

.

The summation inside the parentheses can be simplified as

n−2∑

i=1

qi

(1 + qi)(1 + qi+1)
= 1

q − 1

n−2∑

i=1

(
1

1 + qi
− 1

1 + qi+1

)

= 1
q − 1

(
1

1 + q
− 1

1 + qn−1

)

= q − qn−1

(1 − q)(1 + q)(1 + qn−1)
.

Putting it back in the original equation,

∑

π∈An

qmaj(π) = (1 + q) . . .
(
1 + qn−1)

(
1 + q − qn−1

(1 − q)(1 + qn−1)

)

= (1 + q) . . .
(
1 + qn−2)

(
1 + qn−1 + q

1 − qn−2

1 − q

)

= (1 + q) . . .
(
1 + qn−2)[n]q . !

7.2 Non-unimodal arc permutations

Recall that Zn denotes the set of arc permutations that are not unimodal. Let f λ

denote the number of standard Young tableaux of shape λ.
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Proposition 5 For n ≥ 4,

|Zn| =
n−2∑

k=2

f (k,2,1n−k−2).

Proof By Claims 2 and 3, it is clear that

|Zn| = n2n−2 − 2n + 2 = 2n−2(n − 4) + 2.

On the other hand, using the hook-length formula, we obtain

n−2∑

k=2

f (k,2,1n−k−2) =
n−2∑

k=2

(k − 1)(n − k − 1)

n − 1

(
n

k

)
= 2n−2(n − 4) + 2,

where the last step follows from easy manipulations of binomial coefficients. !

Proposition 6 For n ≥ 2,

∑

π∈Zn

xDes(π) =
∑

π∈An

xDes(π) − 2(1 + x1) . . . (1 + xn−1) + 1 + x1 . . . xn−1.

Proof Since Zn = An \ Un, the statement to be proved is equivalent to

∑

π∈Un

xDes(π) = 2(1 + x1) . . . (1 + xn−1) − 1 − x1 . . . xn−1.

Unimodal arc permutations are those that can be drawn on one of the pictures in
Fig. 3. We have shown in the proof of Proposition 4 that for permutations that can be
drawn on the left picture, the generating function for the descent set is (1+x1) . . . (1+
xn−1). We obtain the same generating function for permutations that can be drawn on
the right picture, since each π(j) for 1 ≤ j ≤ n − 1 causes a descent with π(j + 1)

iff it is drawn on the descending slope of the grid, thus contributing a factor 1 + xj .
Finally, the we have to subtract the contribution of the only two permutations that can
be drawn on both grids, which are 12 . . . n and n . . .21. !

Corollary 8 For n ≥ 2,

∑

π∈Zn

qmaj(π) = (1 + q) . . .
(
1 + qn−2)[n]q − 2(1 + q) . . .

(
1 + qn−1) + 1 + q(n

2).

7.3 Standard Young tableaux of shape (k,2,1n−k−2)

Let Hn be the set of standard Young tableaux of shape (k,1n−k) (a hook) for some
1 ≤ k ≤ n. Let Tn be the set of standard Young tableaux of shape (k,2,1n−k−2) for
some 2 ≤ k ≤ n − 2.
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Lemma 3
∑

T ∈Hn

xDes(T ) = (1 + x1) . . . (1 + xn−1).

Proof Any T ∈ Hn has a 1 in the upper-left corner. T is now determined by the set
of entries j with 2 ≤ j ≤ n that are in the first column, since the rest have to be in the
first row. Each such j creates a descent with j − 1 iff it is in the first column, which
gives the contribution 1 + xj−1 to the generating function. !

Theorem 5 For n ≥ 4,
∑

T ∈Tn

xDes(T ) =
∑

π∈Zn

xDes(π).

Proof Given T ∈ Tn, let i +2 be the element in the box in the second row and second
column. Note that 2 ≤ i ≤ n − 2. There are two possibilities for i + 1: it is either in
the first row or in the first column.

– If i + 1 is in the first row, the entries 1,2, . . . , i form an arbitrary hook with more
than one row. As in the above lemma, the descents of these entries contribute (1 +
x1) . . . (1 + xi−1) − 1 to the generating function, with the −1 corresponding to the
invalid one-row tableau. Now i is not a descent of T but i +1 is, producing a factor
xi+1. Each one of the remaining entries j with i + 3 ≤ j ≤ n can be in the first row
or in the first column, and it creates a descent with j − 1 iff it is in the first column,
which gives the contribution 1 + xj−1 to the generating function. Thus, this case
gives a summand

[
(1 + x1) . . . (1 + xi−1) − 1

]
xi+1(1 + xi+2) . . . (1 + xn−1).

– If i + 1 is in the first column, the entries 1,2, . . . , i form an arbitrary hook with
more than one column. The descents of these entries contribute (1 + x1) . . . (1 +
xi−1) − x1 . . . xi−1 to the generating function, subtracting the invalid one-column
tableau. Now i is a descent of T but i + 1 is not, producing a factor xi . As in the
previous case, each one of the remaining entries j with i + 3 ≤ j ≤ n contributes
a factor 1 + xj−1 to the generating function. Thus, this case gives a summand

[
(1 + x1) . . . (1 + xi−1) − x1 . . . xi−1

]
xi(1 + xi+2) . . . (1 + xn−1).

We have proved that
∑

T ∈Tn

xDes(T )

=
n−2∑

i=2

[
(1 + x1) . . . (1 + xi−1) − 1

]
xi+1(1 + xi+2) . . . (1 + xn−1)

+
n−2∑

i=2

[
(1 + x1) . . . (1 + xi−1) − x1 . . . xi−1

]
xi(1 + xi+2) . . . (1 + xn−1)
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=
n−2∑

i=1

(1 + x1) . . . (1 + xi−1)(xi + xi+1)(1 + xi+2) . . . (1 + xn−1)

−
n−2∑

i=1

(xi+1 + x1 . . . xi)(1 + xi+2) . . . (1 + xn−1). (4)

The last sum above can be simplified using the following two telescopic sums:

n−2∑

i=1

xi+1(1 + xi+2) . . .
(
1 + xn−1)

=
n−2∑

i=1

(
1 + xi+1)(1 + xi+2) . . .

(
1 + xn−1) −

(
1 + xi+2) . . .

(
1 + xn−1)

= (1 + x2) . . . (1 + xn−1) − 1,

n−2∑

i=1

x1 . . . xi(1 + xi+2) . . . (1 + xn−1)

=
n−2∑

i=1

x1 . . . xi(1 + xi+1)(1 + xi+2) . . . (1 + xn−1)

− x1 . . . xixi+1(1 + xi+2) . . . (1 + xn−1)

= x1(1 + x2) . . . (1 + xn−1) − x1 . . . xn−1.

Plugging these formulas back into (4) we get

∑

T ∈Tn

xDes(T ) =
n−2∑

i=1

(1 + x1) . . . (1 + xi−1)(xi + xi+1)(1 + xi+2) . . . (1 + xn−1)

− (1 + x1)(1 + x2) . . . (1 + xn−1) + 1 + x1 . . . xn−1

=
∑

π∈An

xDes(π) − 2(1 + x1)(1 + x2) . . . (1 + xn−1) + 1 + x1 . . . xn−1

=
∑

π∈Zn

xDes(π).
!

7.4 A bijective proof

We now give a bijection φ between Zn and Tn that preserves the descent set, provid-
ing an alternative proof of Theorem 5.

Given π ∈ Zn with n ≥ 4, consider two cases. If π−1(1) > π−1(n) (this happens
iff π can be drawn on the picture on the left of Fig. 2, and also iff π(1) > π(n)), let
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j = π−1(1), and let

I =
{
i : π(i) ≥ π(1)

}
∪

{
i : i > j + 1 and π(i − 1) < π(n)

}
.

Then φ(π) ∈ Tn is the tableau having the elements of I in the first row, having j + 1
in the box in the second row and column, and having the rest of the elements of
[n] = {1,2, . . . , n} in the first column.

If π−1(1) < π−1(n) (this happens iff π can be drawn on the picture on the right
of Fig. 2, and also iff π(1) < π(n)), let j = π−1(n), and let

I =
{
i : π(i) ≤ π(1)

}
∪

{
i : i > j + 1 and π(i − 1) > π(n)

}
.

Then φ(π) ∈ Tn is the tableau having the elements of I in the first column, having
j + 1 in the box in the second row and column, and having the rest of the elements
of [n] in the first row.

For example, if

π =
(

1 2 3 4 5 6 7 8 9 10 11
8 9 10 7 11 1 2 6 5 3 4

)
,

then j = 6 = π−1(1) > π−1(n) = 5, I = {1,2,3,5,8,11}, and φ(π) is the tableau

If

π =
(

1 2 3 4 5 6 7 8 9 10 11 12
2 3 1 4 5 6 12 7 11 10 8 9

)
,

then j = 7 = π−1(n) > π−1(1) = 3, I = {1,3,10,11}, and φ(π) is the tableau

In the case π−1(1) > π−1(n), the descent set of both π and φ(π) equals {i :
i + 1 /∈ I, i ≠ j}. In the case π−1(1) < π−1(n), the descent set of π and φ(π) equals
{i : i + 1 /∈ I } ∪ {j}. To see that φ is a bijection, note that given a tableau in T ∈ Tn

with entry j + 1 in the box in the second row and column, we can distinguish the
two cases by checking whether j is in the first row (case π−1(1) < π−1(n)) or not
(case π−1(1) > π−1(n)). In both cases, the set I can be immediately recovered from
the tableau, and together with the value of j , it uniquely determines the permutation
φ−1(T ).
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7.5 A shape-preserving bijection

Here we give another bijection ψ between Zn and Tn. It has the property that ψ(π)

has the same shape as φ(π), although it does not preserve the descent set. Another
property is that the entries in the tableau ψ(π) that are weakly north and strictly east
of 2 are the elements in the set C(π), defined as follows.

Definition 5 For π ∈ An, let C(π) be the set of values i ∈ {3,4, . . . , n} such that
π(i − 1) − 1 ∈ {π(1),π(2), . . . ,π(i − 2)}.

Let π ∈ Zn with n ≥ 4. If π−1(1) > π−1(n), let j = π−1(1), and let

S = {1} ∪
{
i + 1 : π(1) ≥ π(i) > π(n)

}
= [n] \ C(π).

Then ψ(π) is the tableau whose first column is S, having j + 1 in the box in the
second row and column, and having the rest of the elements in [n] in the first row.

If π−1(1) > π−1(n), let j = π−1(n), and let

S = {1} ∪
{
i + 1 : π(1) ≤ π(i) < π(n)

}
= {1,2} ∪ C(π).

Then ψ(π) is the tableau whose first row is S, having j + 1 in the box in the second
row and column, and having the rest of the elements in [n] in the first column.

For example, if

π =
(

1 2 3 4 5 6 7 8 9 10 11 12
10 9 11 8 7 12 1 2 6 5 3 4

)
,

then j = 7 = π−1(1), S = {1,2,3,5,6,10,11}, and ψ(π) is the tableau

If

π =
(

1 2 3 4 5 6 7 8 9 10 11
3 2 4 1 5 6 11 7 10 9 8

)
,

then j = 7 = π−1(n), S = {1,2,4,6,7,9}, and ψ(π) is the tableau
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The map ψ is clearly invertible, since given a tableau T ∈ Tn, the position of the
entry 2 determines which of the cases π−1(1) > π−1(n) or π−1(1) > π−1(n) we
are in. In both cases, the set S and the value of j , which are immediately recovered
from the tableau, uniquely determine the permutation ψ−1(T ). The fact that φ(π)
and ψ(π) have the same shape follows by noting that in both cases |I | + |S| = n,
with I as defined in Sect. 7.4, and thus the tableaux φ(π) and ψ(π), which consist
of a hook plus a box, have the same number of rows.

8 Encoding by descents

In this section we present an encoding of arc permutations that is different from the
one used in Sect. 6. This encoding, which keeps track of the positions of the descents,
is applied to prove further enumerative results, some of which will be used in Sect. 9.

8.1 The encoding

Let Wn be the set of words w = w1w2 . . .wn−1 over the alphabet {A,D} where at
most one adjacent pair AD or DA may be underlined. We encode arc permutations
by words in Wn via the following bijection ν.

Lemma 4 There is a bijection ν : An −→ Wn such that if ν(π) = w, then

wi = D ⇐⇒ i ∈ Des(π).

Proof Given π ∈ An, first let wi = D if i ∈ Des(π), and wi = A otherwise, for each
1 ≤ i ≤ n−1. If π ∈ Ln, then ν(π) is the word w with no underlined pair. Otherwise,
let k be the smallest such that {π(1), . . . ,π(k)} is not an interval in Z, and note that
k < n. If wk−1 = D, then π(k) = 1 < π(k + 1), so wk = A. Similarly, if wk = A,
then π(k) = n > π(k + 1), so wk = D. In both cases, ν(π) is the word w with the
pair wk−1wk underlined.

To show that ν is a bijection between An and Wn, we describe the inverse map.
Given w ∈ Wn, let wk−1wk be the underlined pair in w if there is one, and let k =
n + 1 otherwise. It is easy to verify that the unique π ∈ An with encoding ν(π) = w
can be recovered as follows.

If wk−1wk = DA, let δ = n + 1, otherwise let δ = k. Then, for 1 ≤ i < k,

π(i) =
{

δ − 1 − |{j ∈ [i, k − 2] : wj = A}| if i = 1 or wi−1 = A,

δ − k + 1 + |{j ∈ [i, k − 2] : wj = D}| if wi−1 = D.

Now let δ′ = δ mod n. For k ≤ i ≤ n,

π(i) =
{

δ′ + |{j ∈ [k, i − 1] : wj = A}| if i = 1 or wi = A,

δ′ + n − k − |{j ∈ [k, i − 1] : wj = D}| if wi = D. !

For example, ν(342561) = ADAAD, ν(12543) = AADD, and ν(65781423) =
DAADADA. The following is an immediate consequence of our encoding of arc
permutations.
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Proposition 7 Let B ⊆ [n − 1]. Then
∣∣{π ∈ An : Des(π) = B

}∣∣ = 1 +
∣∣{i ∈ [n − 2] : |B ∩ {i, i + 1}| = 1

}∣∣.

Proof Permutations in An with descent set B correspond via ν to encodings w ∈ Wn

such that wi = D if and only if i ∈ B . There is one such encoding with no underlined
pairs, and one encoding where the pair wiwi+1 is underlined for each i for which this
pair equals AD or DA. !

8.2 µ-Left-unimodal permutations

Here we define a generalization of left-unimodal permutations. Let µ = (µ1, . . . ,µt )

be a partition of n with t nonzero parts. For 1 ≤ i ≤ t , denote

µ(i) :=
i∑

j=1

µj

and

S(µ) := (µ(1), . . . ,µ(t)).

Let µ(0) := 0. A permutation π ∈ Sn is µ-left-unimodal if for every 0 ≤ i < t there
exists 0 ≤ ji ≤ µi+1 such that

π−1(µ(i) + 1) > π−1(µ(i) + 2) > · · · > π−1(µ(i) + ji)

< π−1(µ(i) + ji + 1) < · · · < π−1(µ(i+1)).

Denote the set of µ-left-unimodal permutations by Lµ. Note that for the partition
with one part µ = (n), we have L(n) = Ln, the set of left-unimodal permutations
in Sn.

We will consider the set L−1
µ , consisting of those permutations whose inverse is

µ-left-unimodal. Translating the above definition, we see that π ∈ L−1
µ if for every

0 ≤ i < t , the sequence π(µ(i) + 1),π(µ(i) + 2), . . . ,π(µ(i+1)) first decreases and
then increases; we say that this sequence is V -shaped.

For example, if µ = (µ1,µ2,µ3) = (4,3,1), then S(µ) = (µ(1),µ(2),µ(3)) =
(4,7,8). In this case 53687142,35687412 ∈ L−1

µ because the sequences 5368, 714,
8, 3568, 741, 2 are V -shaped. However, 53867142,53681742 /∈ L−1

µ because the
sequences 5286 and 174 are not V -shaped.

8.3 Enumeration of arc permutations whose inverse is µ-left-unimodal

Proposition 8 For every partition µ = (µ1, . . . ,µr ,1s) of n with µr > 1,

∣∣An ∩ L−1
µ

∣∣ = µ1 . . .µr 2r+s

(

r + s

4
−

r∑

i=1

1
µi

)

.
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Note that when µ = (1n), Proposition 8 gives Claim 3. Indeed, in this case
L−1

(1n) = Sn, r = 0 and s = n, so

|An| =
∣∣An ∩ L−1

(1n)

∣∣ = 2n

(
n

4

)
= n2n−2.

Proof We use the encoding ν of permutations in An by words in Wn, defined in
Lemma 4. Recall that π ∈ An ∩ L−1

µ if π(µ(i−1) + 1),π(µ(i−1) + 2), . . . ,π(µ(i)) is
V -shaped for all 1 ≤ i ≤ r + s. By Lemma 4, this property is equivalent to the fact
that for all 1 ≤ i ≤ r , the subword w(i) := wµ(i−1)+1wµ(i−1)+2 . . .wµ(i)−1 has no A

followed by a D.
To find |An ∩ L−1

µ | we will enumerate the words w ∈ Wn where each block w(i)

satisfies this condition. Note that the length of w(i) is µi −1, and that w has one letter
between each block and the next, and s letters to the right of the rightmost block w(r).
Consider four cases as follows.

(i) If w has no underlined pair, then w(i) = DkAµi−k−1 for some 0 ≤ k ≤ µi − 1,
so there are µi choices for each w(i), times 2r+s−1 choices for the remaining
letters, for a total of µ1µ2 . . .µr2r+s−1 words of this form.

(ii) If w has an underlined pair contained inside a block, say w(i), then w(i) =
DkDAAµi−k−3 for some 0 ≤ k ≤ µi − 3, so there are µi − 2 choices for this
block. The remaining choices are as in case (i), so the number of words of this
form is

r∑

i=1

µ1 . . .µi−1(µi −2)µi+1 . . .µr2r+s−1 = µ1µ2 . . .µr2r+s−1

(

r −2
r∑

i=1

1
µi

)

.

(iii) If w has an underlined pair outside of the blocks w(i), then there are s−1 choices
for the location of the pair (assuming s ≥ 1), 2 choices for whether it is AD or
DA, and 2r+s−3 choices for the remaining letters outside the blocks, giving a
total of µ1µ2 . . .µr(s − 1)2r+s−2 words of this form. When s = 0 there are no
words of this form.

(iv) If w has an underlined pair that is partly inside a block w(i) and partly outside,
the number of choices for the location of the underlined pair is 2r − 1 if s ≥ 1,
since it can be at the beginning or at the end of any block but not at the beginning
of w(1), and 2r − 2 if s = 0, since it cannot be at the end of block w(r) either.
Afterwards, the letters inside the blocks can be chosen in µ1µ2 . . .µr ways as
before, with the understanding that the choice of the underlined letter forces the
other underlined letter. Now we have 2r+s−2 choices for the not underlined let-
ters outside the blocks, for a total of µ1µ2 . . .µr(2r − 1)2r+s−2 words if s ≥ 1,
or µ1µ2 . . .µr(2r − 2)2r+s−2 if s = 0.

Adding the four contributions we obtain the stated formula. !

Next we give a signed version of Proposition 8, that is, a formula for signed enu-
meration of arc permutations whose inverse is µ-left-unimodal. This formula will be
used in the proof of Regev’s character formula in Sect. 9.
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Proposition 9 For every partition µ = (µ1, . . . ,µr ,1s) of n with µr > 1,

∑

π∈An∩L−1
µ

(−1)|Des(π)\S(µ)| = 1
4

· s ·
r+s∏

j=1

(
1 + (−1)µj −1). (5)

Before proving this proposition, we give an example for n = 4 and µ = (3,1). In
this case,

An ∩ L−1
µ = {1234,1243,2134,2143,2341,3214,3241,4123,4132,4312,4321}.

Since |Des(π) \ S(µ)| = |Des(π) \ {3}|, the left-hand side of (5) becomes

(−1)0 + (−1)0 + (−1)1 + (−1)1 + (−1)0 + (−1)2 + (−1)1 + (−1)1

+ (−1)1 + (−1)2 + (−1)2 = 1.

Proof of Proposition 9 We use the encoding ν from Lemma 4. Defining the sign of a
permutation π to be (−1)|Des(π)\S(µ)|, we will construct a sign-reversing involution
on the set An ∩ L−1

µ . If µ has some part of even size, then this involution will have
no fixed points, so all the terms on the left-hand side of (5) cancel with each other. If
all the parts of µ have odd size, then some permutations will not be canceled by the
involution, but their contribution to the sum is easy to compute.

Recall that π ∈ An ∩ L−1
µ if and only if w(i) = wµ(i−1)+1wµ(i−1)+2 . . .wµ(i)−1 has

no A followed by a D for all 1 ≤ i ≤ r .
Suppose first that µ has some part of even size, and let µe be the first such part.

We define an involution ϕ on the set of encodings w of permutations in An ∩ L−1
µ

by changing only the subword w(e), and possibly the letters immediately preceding
and following w(e), but leaving the rest of the word w unchanged. Note that w(e) has
odd length, which we write as µe − 1 = 2a + 1. If the underlined pair is completely
inside or outside of w(e) (or there is no underlined pair), define ϕ on w(e) as follows:

D2i+1A2(a−i) ϕ←→ D2iA2(a−i)+1 for 0 ≤ i ≤ a,

D2i+1DAA2(a−i−1) ϕ←→ D2iDAA2(a−i−1)+1 for 0 ≤ i ≤ a − 1.

If the pair wµ(e)−1wµ(e) is underlined, define ϕ on w(e)wµ(e) as follows:

D2aDA
ϕ←→ D2aAD,

D2i+1A2(a−i)−1AD
ϕ←→ D2iA2(a−i)AD for 0 ≤ i ≤ a − 1.

Finally, if the pair wµ(e−1)wµ(e−1)+1 is underlined, define ϕ on wµ(e−1)w
(e) as follows:

ADA2a ϕ←→ DAA2a,

ADD2iA2(a−i) ϕ←→ ADD2i−1A2(a−i)+1 for 1 ≤ i ≤ a.
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Since the above definitions cover all the possibilities, the map ϕ is an involution
on the set ν(An ∩ L−1

µ ). It is also clear that the sign of the permutation encoded
by a word changes when applying ϕ to it, since the parity of the number of Ds in
w(e) changes (note that the letters wµ(e−1) and wµ(e) do not contribute to the sign). It
follows that

∑

π∈An∩L−1
µ

(−1)|Des(π)\S(µ)| = 0

when µ has some part of even size, which agrees with the right-hand side of (5) in
this case.

Consider now the case where all the parts of µ have odd size. The case r = 0
is trivial because then An ∩ L−1

µ = An and |Des(π) \ S(µ)| = 0, so (5) becomes
|An| = n2n−2, which is true by Claim 3. Suppose in what follows that r ≥ 1. For
each fixed 1 ≤ i ≤ r , we first define an operation ϕi on w(i) and its surrounding
letters that can only be applied if this subword has a certain form. Write the length
of w(i), which is even, as µi − 1 = 2b. If the underlined pair is completely inside or
outside of w(i), or there is no underlined pair, define ϕi on w(i) as follows:

D2i+1A2(b−i)−1 ϕi←→ D2iA2(b−i) for 0 ≤ i ≤ b − 1,

D2i+1DAA2(b−i−1)−1 ϕi←→ D2iDAA2(b−i−1) for 0 ≤ i ≤ b − 2.

If wµ(i)−1wµ(i) = AD, define ϕi on w(i)wµ(i) by

D2i+1A2(b−i−1)AD
ϕi←→ D2iA2(b−i−1)+1AD for 0 ≤ i ≤ b − 1.

If wµ(i−1)wµ(i−1)+1 = AD, define ϕi on wµ(i−1)w
(i) by

ADD2iA2(b−i−1)+1 ϕi←→ ADD2i+1A2(b−i−1) for 0 ≤ i ≤ b − 1.

The operation ϕi is defined for all words w ∈ Wn except when w(i) = D2b , w(i) =
D2b−2DA, w(i)wµ(i) = D2b−1DA, or wµ(i−1)w

(i) = DAA2b−1.
Now we are ready to define the involution ϕ when all the parts of µ are odd. To

compute ϕ(w) for a given w ∈ ν(An ∩ L−1
µ ), if there is some i with 1 ≤ i ≤ r for

which the operation ϕi is defined, take the smallest such i and apply ϕi to w(i) and
its surrounding letters, leaving the rest of w unchanged. If there is no such i, then ϕ

does not change w, that is, w is a fixed point of ϕ. It is clear from the construction
that ϕ is a sign-reversing involution, since ϕi changes the parity of the number of Ds
in w(i), while the other w(j) for j ≠ i are unchanged. However, unlike in the case of
parts of even size, here ϕ has some fixed points: those words w ∈ Wn for which the
operation ϕi is not defined for any 1 ≤ i ≤ r . For this to happen, w(i) has to equal
either Dµi−1, Dµi−3DA, Dµi−2D, or AAµi−2, for all 1 ≤ i ≤ r .

Let us enumerate the words w ∈ Wn having this property, separating them in four
cases. Note that w has one letter between w(i) and w(i+1) for each 1 ≤ i ≤ r − 1, and
s letters to the right of w(r). Suppose first that s ≥ 1.



J Algebr Comb (2014) 39:301–334 327

(i) If w has no underlined pair, then w(i) = Dµi−1 for all i, and there are 2r+s−1

choices for the remaining letters of w. The corresponding permutations have
positive sign, since every block w(i) has an even number of Ds.

(ii) If w has an underlined pair contained inside a block, the above number of
choices has to be multiplied by the r choices of the block for which w(i) =
Dµi−3DA. The r 2r+s−1 corresponding permutations have now negative sign,
since exactly one block w(i) has an odd number of Ds.

(iii) If w has an underlined pair outside of all the blocks w(i), then again w(i) =
Dµi−1 for all i. Since the underlined pair has to be contained in the last s letters
of w, we have s − 1 choices for its location, times 2 choices for whether it
is AD or DA, and finally 2r+s−3 choices for the remaining letters in w. The
(s − 1)2r+s−2 corresponding permutations have positive sign.

(iv) If w has an underlined pair that is partly inside a block w(i) and partly outside,
we have to choose the index i such that w(i) equals Dµi−2D or AAµi−2. For
each possible i we have two choices, except for i = 1, in which case w(1) =
Dµ1−2D is the only possibility because there is no letter to the left of w(1). This
gives 2r − 1 choices for the underlined pair, which also forces the entries in
all the blocks w(j), leaving 2r+s−2 choices for the remaining entries of w. The
(2r − 1)2r+s−2 corresponding permutations have again positive sign.

Adding the contributions in the four cases, the sum of the signs of the permutations
fixed by the involution is

2r+s−1 − r 2r+s−1 + (s − 1)2r+s−2 + (2r − 1)2r+s−2 = s 2r+s−2, (6)

which agrees with the right-hand side of (5) when all the parts of µ have odd size.
Formula (6) also holds when s = 0. The only change in the argument is that there are
no permutations in case (iii), but in case (iv), when choosing the index i such that w(i)

equals Dµi−2D or AAµi−2, the choice i = r forces w(r) = AAµr−2, giving 2r − 2
choices for the underlined pair, times 2r−2 choices for the remaining entries of w. !

As an example of the involution in the above proof, let n = 10 and µ = (5,3,1,1).
The words fixed by ϕ of each of the above types are those of the following form:

(i) DDDD w5 DD w8 w9,
(ii) DDDAw5 DD w8 w9, DDDD w5 DAw8 w9,

(iii) DDDD w5 DD AD, DDDD w5 DD DA,
(iv) DDDDADD w6 w7, DDDD DAAw6 w7, DDDD w5 DDAw7.

The sum of the signs of the corresponding permutations is 8 − 16 + 4 + 12 = 8 =
s 2r+s−2. The contributions of all the other words are canceled by the sign-reversing
involution. For example,

ϕ(DDAAw5w7 w8 w9) = DDDAw5w7 w8 w9 and

ϕ(DDDD w5 DADA) = DDDD w5 AADA.
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9 A character formula of Regev

In this section we apply Theorem 5 and Proposition 9 to prove a conjectured character
formula of Amitai Regev.

Let V be an (n − 1)-dimensional vector space over C, and let ∧V be its exterior
algebra. Consider the natural action of the symmetric group Sn−1 on ∧V , and de-
note the character of the induced Sn-module ∧V ↑Sn by χn. Regev conjectured the
following character formula (personal communication, 2011).

Theorem 6 (Regev’s formula) Let µ = (µ1, . . . ,µr ,1s) be a partition of n with µr >

1. Then

χn(µ) = 1
4

· s ·
r+s∏

j=1

(
1 + (−1)µj −1).

Let us introduce some notation for the proof of Regev’s Formula. Given a partition
µ = (µ1, . . . ,µt ) of n, recall from Sect. 8.2 that L−1

µ is the set of permutations whose
inverse is µ-left-unimodal. If RSK(π) = (P,Q), then the fact that π ∈ L−1

µ translates
into the following condition on the descent set of Q: for every 1 ≤ i < t there exists
0 ≤ ji ≤ µi+1 such that µ(i) + k ∈ Des(Q) for 1 ≤ k < ji , and µ(i) + k /∈ Des(Q)

for ji ≤ k < µi+1. A standard Young tableau Q satisfying this condition is called
µ-unimodal. Denote the set of µ-unimodal standard Young tableaux of shape λ by
SYTλ

µ.

Proof of Theorem 6 It is well known that the exterior algebra ∧V is equivalent as
an Sn−1-module to a direct sum of all Specht modules indexed by hooks, see e.g. [7,
Ex. 4.6]. By the branching rule, the decomposition of the induced exterior algebra
∧V ↑Sn into irreducibles is then given by

χn =
n∑

k=1

χ (k,1n−k) +
n−1∑

k=2

χ (k,1n−k) +
n−2∑

k=2

χ (k,2,1n−k−2). (7)

Now we use the following character formula for symmetric group irreducible char-
acters, which is a special case of Ref. [12, Theorem 4] (see also [11, 13]):

χλ(µ) =
∑

T ∈SYTλ
µ

(−1)|Des(T )\S(µ)|.

Applying this formula to (7), we get the following expression for the character of χn

at a conjugacy class of cycle type µ:
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χn(µ) =
n∑

k=1

∑

T ∈SYT(k,1n−k)
µ

(−1)|Des(T )\S(µ)| +
n−1∑

k=2

∑

T ∈SYT(k,1n−k)
µ

(−1)|Des(T )\S(µ)|

+
n−2∑

k=2

∑

T ∈SYT(k,2,1n−k−2)
µ

(−1)|Des(T )\S(µ)|. (8)

By Remark 1, the RSK correspondence gives a descent-set-preserving bijection be-
tween permutations π ∈ Ln and standard Young tableaux Q of hook shape. Since
π ∈ L−1

µ if and only if Q is µ-unimodal, we get

n∑

k=1

∑

T ∈SYT(k,1n−k)
µ

(−1)|Des(T )\S(µ)| =
∑

π∈Ln∩L−1
µ

(−1)|Des(π)\S(µ)|.

Combining Remarks 1 and 2, the RSK correspondence also gives a descent-set-
preserving bijection between permutations π ∈ Un \ Ln and standard Young tableaux
Q of hook shape having at least two rows or two columns. It follows that

n−1∑

k=2

∑

T ∈SYT(k,1n−k)
µ

(−1)|Des(T )\S(µ)| =
∑

π∈(Un\Ln)∩L−1
µ

(−1)|Des(π)\S(µ)|.

For the third sum in (8), instead of the RSK correspondence, we use Theorem 5,
which was proved in Sect. 7.4 via a different descent-set-preserving bijection. Stan-
dard Young tableaux in Tn that are µ-unimodal correspond to permutations in Zn

whose inverse is µ-left-unimodal, and so

n−2∑

k=2

∑

T ∈SYT(k,2,1n−k−2)
µ

(−1)|Des(T )\S(µ)| =
∑

π∈Zn∩L−1
µ

(−1)|Des(π)\S(µ)|.

Combining the last four equations and using that An is the disjoint union of Ln,
Un \ Ln and Zn = An \ Un, we get

χn(µ) =
∑

π∈Ln∩L−1
µ

(−1)|Des(π)\S(µ)| +
∑

π∈(Un\Ln)∩L−1
µ

(−1)|Des(π)\S(µ)|

+
∑

π∈Zn∩L−1
µ

(−1)|Des(π)\S(µ)|

=
∑

π∈An∩L−1
µ

(−1)|Des(π)\S(µ)|.

Proposition 9 now completes the proof. !
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10 Further representation-theoretic aspects

10.1 An affine Weyl group action

Recall that the affine Weyl group C̃n−2 is generated by

S = {s0, s1, . . . , sn−2}

subject to the Coxeter relations

s2
i = 1 ∀i,

(sisj )
2 = 1 for |j − i| > 1,

(sisi+1)
3 = 1 for 1 ≤ i < n − 3,

(sisi+1)
4 = 1 for i = 0, n − 3.

We now describe a natural action of the group C̃n−2 on the set of arc permuta-
tions An. Recall that σi denotes the adjacent transposition (i, i + 1).

Definition 6 For every 0 ≤ i ≤ n − 2, define a map ρi : An → An as follows:

ρi (π) =
{

πσi+1, if πσi+1 ∈ An;
π, otherwise.

Proposition 10 The maps ρi , 0 ≤ i ≤ n − 2, when extended multiplicatively, deter-
mine a well-defined C̃n−2-action on the set of arc permutations An.

Proof To prove that the operation is a well-defined C̃n−2-action, it suffices to show
that it is consistent with the defining Coxeter relations of C̃n−2. For every i and
π ∈ An, we have ρ2

i (π) = ρi (π) = π if πσi+1 /∈ An, and ρ2
i (π) = ρi (πσi+1) =

πσ 2
i+1 = π otherwise. Also, if |i − j | > 1, then ρi and ρj commute, so (ρiρj )

2 = 1.
To verify the other two braid relations recall the encoding ψ : An → {0,1, . . . ,

n − 1} × {0,1}n−2 from Sect. 6.2. For every 1 ≤ i ≤ n − 3, if ψ(π)i = ψ(π)i+1 then
πσi+1 /∈ An, thus ρi (π) = π ; if ψ(π)i ≠ ψ(π)i+1 then πσi+1 ∈ An, thus ρi (π) =
πσi+1. One concludes that, in both cases, the effect of ρi on ψ(π) is to switch the
entries ψ(π)i and ψ(π)i+1. It follows that for every 1 ≤ i < n − 3, ρiρi+1ρi =
ρi+1ρiρi+1.

Finally, note that for every π ∈ An, πσn−1 ∈ An, thus ρn−2(π) = πσn−1 and

ψ
(
ρn−2(π)

)
n−2 = 1 − ψ(π)n−2,

that is, ρn−2 flips the value of ψ(π)n−2. On the other hand, as shown above, ρn−3
switches the entries ψ(π)n−3 and ψ(π)n−2. One concludes that (ρn−3ρn−2)

4 = 1.
Since right multiplication by w0 = n . . .21 is an involution on An and ρi (π) =
ρn−2−i (πw0)w0, it follows by symmetry that (ρ0ρ1)

4 = 1 as well. !
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Given a group G with a generating set R, and an action of G on a set C , the
associated Schreier graph is the graph with vertex set C and edge set {(x, rx) : x ∈
C, r ∈ R}. Recall the graph Xn from Sect. 6. The following is clear by definition.

Remark 4 The graph Xn is isomorphic (up to loops) to the Schreier graph determined
by the above C̃n−2-action on An.

Corollary 9 The above C̃n−2-action on An is transitive.

Proof An action is transitive if and only if the associated Schreier graph is connected.
The result now follows from Theorem 4(i) together with Remark 4. !

Let J := S \ {s0} = {s1, . . . , sn−3, sn−2}. Recall that the maximal parabolic sub-
group WJ is isomorphic to the hyperoctahedral group Bn−2.

Proposition 11

(i) The maps ρi , 0 < i ≤ n − 2, when extended multiplicatively, determine a well-
defined Bn−2-action on An.

(ii) The orbits of this action are {π ∈ An : π(1) = k}, for 1 ≤ k ≤ n.
(iii) The Bn−2-action on each of these orbits is multiplicity-free.

Proof Part (i) follows from Proposition 10.
For i > 0, it is clear that ρi (π)(1) = π(1), hence the sets of arc permutations

with fixed first letter are invariant under this Bn−2 action. On the other hand,
for each 1 ≤ k ≤ n, the map ψ defined in Sect. 6.2 determines a bijection from
{π ∈ An : π(1) = k} to 0−1 vectors of length n − 2. The restricted Bn−2 action
on {π ∈ An : π(1) = k} may thus be identified with the natural Bn−2-action on all
subsets of [n − 2], which is transitive, implying (ii).

To prove (iii) recall that the Bn−2-representation induced from the trivial repre-
sentation of Sn−2 is multiplicity-free, see e.g. [2, Lemma 2.2(a)], and notice that this
representation is isomorphic to the Bn−2-action on all subsets of [n − 2]. !

The following question was posed by David Vogan (personal communication,
2010).

Question 1 Is the C̃n−2-module determined by its action on An multiplicity-free?

10.2 Representation-theoretic proofs

By Remarks 1 and 2, the sets Ln and Un are unions of Knuth classes, hence they
carry the associated symmetric group representation. As noted below Remark 3, the
set Zn of non-unimodal arc permutations is not a union of Knuth classes. However,
by Proposition 5, its size is equal to the number of standard Young tableaux of hook
shape plus one box. Here is a short representation-theoretic proof of Proposition 5.
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Proof of Proposition 5 By the decomposition of the induced exterior algebra ∧V ↑Sn

into Sn-irreducible characters, which is described in (7),

f (n) + f (1n) + 2
n−1∑

k=2

f (k,1n−k) +
n−2∑

k=2

f (k,2,1n−k−2)

= dim∧V ↑Sn= n · dim∧V = n2n−2 = |An|.

On the other hand, by Remark 2, |Un| = f (n) + f (1n) + 2
∑n−1

k=2 f (k,1n−k). Since
Un ⊆ An, one concludes

|Zn| = |An \ Un| =
n−2∑

k=2

f (k,2,1n−k−2).
!

Question 2 Find representation-theoretic proofs of Theorem 5 and other results in
Sect. 7.

By Corollary 6, the number of maximal chains in any interval of Weak(Un) is
equal to twice the number of standard Young tableaux of shifted staircase shape. It is
well known that this is a dimension of a projective Sn representation.

Question 3 Determine a projective Sn representation on the set of maximal chains in
Weak(Un).
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Appendix: Shuffles

The purpose of this section is to point out that permutations obtained as shuffles
of two increasing sequences have properties similar to those of unimodal and arc
permutations. In analogy to Theorem 2 for Ln, shuffles are obtained as partial fillings
of certain shapes. As a consequence, the weak order restricted to these shuffles has
properties analogous to those given in Sect. 5 for Weak(Un).

A.1 Prefixes associated with a rectangle

Similarly to the partial fillings of the shifted staircase in Sect. 4, we will now consider
partial fillings of a k × m rectangle with rows labeled k, . . . ,2,1 from top to bottom,
and columns labeled k + 1, k + 2, . . . , k + m from left to right. Again, with each of
the entries ℓ in the partial filling, if ℓ lies in row i and column j , we associate the
transposition (i, j). The product of these transpositions gives a permutation, and the
set of permutations obtained in this way is denoted by Fk,m.

It is easy to see that Fk,m is also the set of permutations π ∈ Sm+k which are a
shuffle of the two sequences 1,2, . . . , k and k + 1, k + 2, . . . , k + m (that is, both
appear as subsequences of π from left to right).
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Fig. 6 Grid for shuffles

As is the case for Ln, Un and An, the set F̄n = ⋃
k+m=n Fk,m can be characterized

in terms of pattern avoidance.

Proposition 12 F̄n = Sn(321,2143,2413).

Shuffles can be easily enumerated, obtaining that |Sn(321,2143,2413)| = |F̄n| =
2n − n for n ≥ 2. As in Sect. 3, it is also the case here that shuffles are a grid class,
consisting of those permutations that can be drawn on the picture in Fig. 6. We write

F̄n = Gn

(
1
1

)
.

Shuffles can be characterized as those permutations π with Des(π−1) = {k} for
some k. For π ∈ F̄n, if RSK(π) = (P,Q), then P is a two-row tableau with consec-
utive entries k + 1, k + 2, . . . , k + ℓ in the second row, and Q is any two-row tableau
with the same shape as P . It follows that shuffles are a union of Knuth classes.

A.2 Weak order and enumeration of maximal chains

Let Weak(F̄n) be the subposet of Weak(Sn) induced by the subset F̄n = Sn(321,

2143,2413). The following result follows from arguments analogous to the ones used
in Sect. 5.

Proposition 13 The poset Weak(F̄n) has the following properties.

(i) The local maxima are exactly the permutations πk := (k + 1)(k + 2) . . . n12 . . . k

for some k.
(ii) A permutation is in the interval [e,πk] if and only if it belongs to Fk,n−k ; hence,

the number of elements in this interval is
(n
k

)
.

(iii) The number of maximal chains in [e,πk] is equal to the number of standard
Young tableaux of rectangular shape k × (n − k).
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