Math 561: Foundations of Combinatorics
Lecturer: Prof. Sara Billey

Problem Set \#7

due Wednesday, November 20, 2019
Reading: In Chapter 2, read Section 2.1-2.3.
Recommended Problems: Play with these problems before reading the solutions: EC1 Chapter 1. Problems 169, 173, 185, 191 and Chapter 2, Problems 3,4,6,8, 11, 22.
Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

1. Exercise 178 from Chapter 1 of EC1. Watch out for the typo in the last factor. It should be $\left(q^{n}-q^{k}\right)$ I believe.
2. Exercise 179 from Chapter 1 of EC1.
3. Exercise 192 from Chapter 1 of EC1.
4. Exercise 2 from Chapter 2 of EC1.
5. Exercise 10 from Chapter 2 of EC1. Watch out for the typos. Every time it says $E(n) / n$!, it should be $E(n) / n^{n}$.
6. How many ways can one rearrange $2 n$ people seated around a circular dinner table so that no one faces the same person they were previously facing? Compute the answer explicitly for $n=4$.
7. Show that the number of permutations with exactly 1 small descent equals the number of derangments in S_{n}. A small descent is an index i such that $w_{i}=w_{i+1}+1$.
8. How many permutations in \mathfrak{S}_{n} have no cycles of length k ? What fraction of all permutations in \mathfrak{S}_{n} does this represent as n goes to infinity?
9. Let $f(m, n)$ be the number of $m \times n$ matrices of 0 's and 1 's with at least one 1 in every row and column. Show that

$$
f(m, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(2^{n-k}-1\right)^{m} .
$$

10. (Bonus) Use Burnside's Lemma to derive Jordan's theorem that if a group acts transitively on a set then it has a derangement (a fixed point free element).
