Math 561: Foundations of Combinatorics Lecturer: Prof. Sara Billey

Problem Set #6 due Wednesday, Nov 6, 2019

Reading: In Chapter 1, read Section 1.10.

Recommended Problems: Play with these problems before reading the solutions: EC1 Chapter 1. Problems 154, 158, 166, 167.

Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

- 1. To be determined. This problem will be assigned based on the lecture Friday on "Juggling card sequences"
- 2. Exercise 155 from Chapter 1 of EC1.
- 3. Exercise 169 from Chapter 1 of EC1.
- 4. Let f(n) be the number of length 3 permutations in S_n . Show f(n) is a polynomial for $n \geq 3$. More generally, let $f_k(n)$ be the number of length k permutations in S_n . What can you say about the function $f_k(n)$ for other values of k?
- 5. How many colored partitions are there of n = 10 where each part can be colored by one of 3 colors?
- 6. Let $A_n(q)$ be the Eulerian polynomial. Give a combinatorial proof showing there exists and expansion

$$A_n(q) = q \sum_{i \ge 0} a_i q^i (1+q)^{n-2i-1}$$

with nonnegative integer coefficients a_i .

- 7. As a function of n, how many permutations in S_n have descents in positions 1 and 3 only?
- 8. (Bonus) How many $n \times n$ matrices over \mathbb{F}_q have a square root? Here a matrix M is the square root of N if $N = M^2$.