Problem Set \#5
 due Wednesday, October 30, 2019

Reading: In Chapter 1, read Section 1.8-1.9. Plus, read "Juggling card sequences" by Steve Butler, Fan Chung, Jay Cummings, and Ron Graham, published in Journal of Combinatorics, vol. 8 (2017).
Recommended Problems: Give each of these problems careful consideration before reading the solutions: Chapter 1: 143, 154, 169, 190.

Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

1. (Second try!) What well-known sequence of numbers has

$$
1+\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{t}{1-k t}
$$

as it's ordinary generating function? Prove your answer.
2. Describe the set of permutations in S_{n} with exactly 2 commutivity classes. In this special case, can you refine the bounds from "Enumerations relating braid and commutation classes" by Fishel, Milićević, Patrias and Tenner ?
3. Give a combinatorial proof of the following identity:

$$
k^{n}=\binom{k}{1} 1!S(n, 1)+\binom{k}{2} 2!S(n, 2)+\cdots+\binom{k}{n} n!S(n, n)
$$

where $S(n, k)$ is the Stirling number of the second kind.
4. Show $\sum_{k=0}^{n} S(n, k) x^{k}=e^{-x} \sum_{k=0}^{\infty} k^{n} x^{k} / k!$.
5. Let $f(n)$ be the number of non-isomorphic ways one can color a $1 \times n$ rectangular map of countries in a row such that no two adjacent countries gets the same color. Note, two colorings are isomorphic if there is a permutation on the colors that takes one coloring to the other. Find the exponential generating function for this sequence.
6. The Euler number E_{n} is the number of alternating permutations in S_{n}. Defining sec and tan in terms of the even and odd Euler numbers respectively, prove the identity $\sec ^{2}(x)=\tan ^{2}(x)+1$.
7. Use the basic recurrence relations to extend the definitions of $c(n, k)$ and $S(n, k)$ to all $n, k \in \mathbb{Z}$ with the base cases $c(0, k)=S(0, k)=\delta_{k=0}$ and $c(n, 0)=S(n, 0)=\delta_{n=0}$. Show that for all integers k, n

$$
c(n, k)=S(-k,-n)
$$

8. Given a set partition π of $[n]$, let $x^{\pi}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ where b_{i} equals the number of blocks of size i in π for $1 \leq i \leq n$. Let $B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum x^{\pi}$ where the sum is over all partitions of $[n]$ into exactly k blocks.
(a) Show $B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the partial Bell polynomial defined in class (also on Wikipedia).
(b) Let $f(x)=\sum_{n \geq 1} a_{n} x^{n} / n$! and $g(x)=\sum_{n \geq 1} b_{n} x^{n} / n$!. Show that the coefficients of the composition are determined by

$$
g(f(x))=\sum_{n \geq 0}\left(\sum_{k=1}^{n} b_{k} B_{n, k}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) x^{n} / n!
$$

9. (Bonus) Are the Bell numbers ever divisible by 8 ? If so, for which n ? If not, prove it.
10. (Bonus) Are there an infinite number of Bell numbers which are also prime numbers?
