Math 561: Foundations of Combinatorics
Lecturer: Prof. Sara Billey

Problem Set \#4

due Wednesday, October 23, 2019
Reading: In Chapter 1, read Sections 1.6-1.7.
Recommended Problems: Give each of these problems careful consideration before reading the solutions: Chapter 1: 71, 72, 74, 155, 158.

Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

1. Let $w=\left[w_{1}, w_{2}, \ldots, w_{n}\right] \in S_{n}$ and let $w_{0}=[n, n-1, \ldots, 1] \in S_{n}$. Express $\operatorname{inv}\left(w w_{0}\right)$, $\operatorname{maj}\left(w w_{0}\right)$ and $\operatorname{des}\left(w w_{0}\right)$ in terms of $\operatorname{inv}(w), \operatorname{maj}(w)$ and $\operatorname{des}(w)$.
2. Give a bijective proof showing $\sum_{w \in S_{n}} q^{\operatorname{maj}(w)}=\left(1+q+q^{2}+\ldots+q^{n-1}\right) \sum_{v \in S_{n-1}} q^{\operatorname{maj}(v)}$.
3. Show that the number of permutations in S_{n} with k exceedences equals the number of permutations in S_{n} with $k+1$ weak exceedences.
4. Prove the following identity where x is an indeterminate, n, k are nonnegative integers:

$$
x^{n}=\sum_{k} A(n, k)\binom{x+k-1}{n}
$$

where $A(n, k)$ is the Eulerian number.
5. If $w \in \mathfrak{S}_{n}$, let $m(w)$ be the number of left-to-right minima in w and let $\operatorname{inv}(w)$ be the number of inversions in w. Find a "nice" way to present the generating function

$$
G(q, t)=\sum_{w \in \mathfrak{S}_{n}} t^{m(w)} q^{i n v(w)} .
$$

6. Let $k, n \in \mathbb{P}$ with $k \leq n$. Let $V(n, k)$ be the volume of the region in \mathbb{R}^{n} defined by

$$
\begin{aligned}
0 & \leq x_{i} \leq 1 \text { for all } 1 \leq i \leq n \\
k-1 & \leq x_{1}+x_{2}+\cdots+x_{n} \leq k .
\end{aligned}
$$

Show that $V(n, k)=A(n, k) / n!$ where $A(n, k)$ is an Eulerian number.
7. What well-known sequence of numbers has

$$
\sum_{n=0}^{\infty} \prod_{k=1}^{k} \frac{1}{1-k t}
$$

as it's ordinary generating function? Prove your answer.
8. Let $f(w)$ be the number of fixed points of a permutation $w \in S_{n}$. Conjecture and prove a nice formula for

$$
f_{n}^{2}=\sum_{w \in S_{n}} f(w)^{2} .
$$

9. (Bonus: 10pts) Let $f(w)$ be the number of fixed points of a permutation $w \in S_{n}$. What can you say about

$$
f_{n}^{k}=\sum_{w \in S_{n}} f(w)^{k} ?
$$

